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ABSTRACT
The international GNSS service (IGS) started publishing the
precise ephemeris files in the form of the standard products
#3, version C (the sp3c files) in which the GPS satellite orbits
and clocks and their uncertainties were available since 2004.
Incorporating these uncertainties into the GPS observation
equations results in a better stochastic model of the proces-
sing system. The reality of these uncertainties is questioned
and studied in this paper. Precise point positioning (PPP)
model, statistical tests and variance component estimation
(VCE) techniques are employed for this study. The results con-
firm the efficiency of the proposed method in the assessment
of reality of the published ephemeris uncertainties.

KEYWORDS
PPP; VCE; precise ephemeris;
uncertainties

1. Introduction

Satellite ephemeris, published by the IGS (see Hilla, 2010), used to play the role of fixed
known constraints in the system of the GPS observation equations (Beutler et al. 1999 and
Dow et al. 2009). After they began to add the ephemeris uncertainties (see JCGM-100, 2008
for details on the term “Uncertainty”) to the precise ephemeris files, the use of these values
for the GPS processing became possible. Shirazian (2006, 2013a) showed that incorporation
of these values improves the stochastic model of the GPS-PPP. Nevertheless, how realistic
these values are, is a question that should be properly answered. Griffiths and Ray (2009)
and Griffiths (2018) tried to answer this question by considering the discontinuity in the IGS
ephemeris or by the elimination of more systematic errors and modifying their models.
Thesemodifications were implemented in reprocessing of the IGS data which led to the new
realisations of the International Terrestrial Reference Frame (ITRF), namely ITRF2008 and
ITRF2014. The details of these frames and their attributed IGS ephemeris files could be found
in Griffiths (2018), Rebischung et al. (2016), Altamimi et al. (2016) and Altamimi et al. (2011).

Our approach to answer the question about the ephemeris uncertainties is to elaborate
on the observation weight matrix (which is the inverse of the observation covariance
matrix), and using an overall model test (see Teunissen 2000), infer whether the covar-
iance matrix is realistic enough or not.
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In this paper, the inference is conducted through three steps:

(1) GPS undifferenced phase observation equations are formed while the satellite
ephemeris entries are used as fixed constraints. Then, the overall model test is
carried out.

(2) The satellite coordinates and clocks are used as weighted constraints and then
the overall model test is repeated for this case.

(3) Utilising VCE techniques, the weight matrix is balanced in advance, and then
after the adjustment of the observation equations with the new weight matrix,
the overall model test carried out once again.

Comparing the results of the overall model tests shows that after applying the
variance components, the resulting weight matrix turns out to be more realistic.
Note that the reason for using undifferenced observation is that the satellite
ephemeris takes part in the equations directly and their effect on the estimated
parameters is not reduced by differencing. Another restriction is that the method is
tested only on the static positioning mode because in this case the number of
degrees of freedom of the system of observation equations is big enough for such
tests. The method of this study is explained in the sequel.

2. GPS precise point positioning

GPS precise point positioning (PPP) is a processing technique which uses measure-
ments from a single receiver to provide accurate position. Many contributions, e.g.
Zumberge et al. (1997) and Kouba and Héroux (2001,) initiated and studied PPP and
its various aspects. In this paper, the phase-only PPP method, explained by
Shirazian (2013a) is used as the mathematical model. Undifferenced ionosphere-
free linear combinations of L1 and L2 phase data (L3) are used as raw observations.
The observation equation for this observation, which is obtained after some sim-
plification reads:

ϕs
r ¼ ρsr þ c dtr � dtsð Þ þ Tsr þ λasr þ ηþ �ϕ (1)

ϕs
r is the L3 carrier phase from satellite s to receiver r, λ is the L3 wavelength

(10.3 cm), asr is phase ambiguity, ρsr is the satellite-receiver range, Tsr is the tropo-
spheric slant delay, dtr and dts are the receiver and satellite clock errors, c is the
speed of light and �ϕ is measurement noise including multipath (Navstar, 2004). The
term η contains corrections for various systematic effects (e.g. relativistic effect,
tropospheric refraction, satellite and receiver antenna offsets, solid Earth tide and
phase wind-up effect) with the amplitude of more than 1 cm that are to be
computed from known models (see Shirazian 2013a and IERS Conventions 2010 for
more details).

The linearised observation equations in the form of the Gauss–Markov model, for each
epoch, are:
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The vector Δyk consists of the original L3 observations minus computed observations
from Equation (1), E :f g and D :f g are the mathematical expectation and dispersion

operators, esr ¼ esr1 ; e
s
r2 ; e

s
r3
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is the unit satellite-receiver vector at epoch k, Mw zsr

� �
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the Neill’s wet mapping function when zsr is the satellite zenith angle (Niell 1996), Dwk is
the wet part of zenith tropospheric delay and qyk is the diagonal covariance matrix of the
observations, of which the diagonal entries are the inverse of cosine of the zenith angle of
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where σ0 is the observation noise at zenith direction which is around 1 cm (see Shirazian
2013a). As one can use the satellite orbits and clocks in the form of weighted known
parameters (Δxsk) for positioning purposes, they must be incorporated into the system of
observation equations. Then, Equation (2) must be converted to the following equation:

E
Δyk
Δxsk

� 	
 �
¼ Ak As

k
0 I

� 	
Δxk
Δxsk

� 	
; D

Δyk
Δxsk

� 	
 �
¼ qyk 0

0 Qs
k

� 	
(4)

where As
k, the relevant design matrix of orbits and clock at epoch k, converting orbit and

clock errors into the range domain and Qs
k is the relevant covariance matrix of the orbits

and clocks at epoch k and I is the unity matrix of appropriate size. Finally, for the static
solution, the covariance matrix for all epochs reads:

Qy ¼ blkdiag qy1 ; qy2 ; � � � ; qyn|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
qy

;Qs
1;Q

s
2; � � � ;Qs

n|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Qs

0
B@

1
CA (5)

where n is the number of epochs and ‘blkdiag’ denotes block diagonal matrix. The Gauss–
Markov model for the static solution reads then:

E
Δy
Δxs

� 	
 �
¼ A As

0 I

� 	
Δx
Δxs

� 	
; D

Δy
Δxs

� 	
 �
¼ Qy (6)

where Δy ¼ Δy1; . . . ; Δynð ÞT , Δx ¼ Δx1; . . . ; Δxnð ÞT and Δxs ¼ Δxs1; . . . ; Δxsn
� �T

.
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3. Variance component estimation (VCE)

In general, the Gauss–Markov model with p variance components is given as:

Ef g ¼ AX ; Qy ¼
Xp
i¼1

iQi (7)

where 1; . . . ; p are unknown variance components and Q1; . . . ;Qp are known cofactor
matrices. The estimation of the variance components is the goal of VCE, provided that
E �AXf g ¼ E ef g ¼ 0 and the cofactor matrices Q1; . . . ;Qp are linearly independent.

In Equations (5), if Qy ¼ blkdiag qy; 0
� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Q1

þ blkdiag 0;Qsð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Q2

, one can infer that the VCE princi-

pals are possible to apply on the PPP model of Equation (6). Having the variance
components, the covariance matrix could be balanced and using this new covariance
matrix, the more realistic estimates could be obtained.

Various VCE methods are introduced by different scholars, e.g. MINQUE method by Rao
(1971), BIQUE method by Sjöberg (1983), Helmert method by Helmert (1924), LS method
by Teunissen (1988), etc. (see Amiri-Simkooei 2007 for more details).

To test and compare different methods of VCE, a 24-hours set of GPS data of the 19th of
June 2005 for the Brussels’ IGS station is selected and processed. To fix the satellite
coordinates and clocks, we used the IGS sp3 c files (final orbits and clocks) of the
aforementioned days. The number of degrees of freedom is 395. The comparison results
are shown in Table 1.

For this comparison, Qy ¼ σ1Q1 þ σ2Q2, with unknown variance components σ1 and σ2
is the stochastic model, and the unknown variance components are estimated through
the abovementioned VCE methods. As one can see in Table 1, different estimates of the
variance components are very close to each other. Among the above methods, BIQUE and
LS-VCE possess the best property (Amiri-Simkooei 2007) and, therefore, are better esti-
mators. The BIQUE method is employed in this paper due to its simplicity in implementa-
tion. See the Appendix for more information about BIQUE.

4. The overall model test

A test on the variance factor of unit weight σ̂20, called overall model test (or Bartlett’s test),
is done to determine if the selected weight matrix is acceptable or there are blunders in
the observation vector. An overview of the test is given below (see Kuang 1996,
Section 5.3.1):

We require to test the null hypothesis H0 : E yf g ¼ Ax versus the alternative hypoth-
esis HA : E yf g 2 R

m . From these hypotheses, one can infer these new hypotheses for the
overall model test:

Table 1. The results of comparing four different VCE methods.
MINQUE BIQUE HELMERT LS-VCE

σ1 0.85634223413487 0.85661304428063 0.85634228018342 0.85661304428062
σ2 0.54245294349512 0.54240155717123 0.54245293635716 0.54240155717124
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H0 : E σ̂20
� 
 ¼ σ20 ¼ 1

HA : E σ̂20
� 


� σ20 ¼ 1



(8)

The test statistic is t ¼ df σ̂20 ¼ êTQ�1
y ê, where ê ¼ y � ŷ and df is the number of degrees of

freedom. The distribution of t is t,χ21�α dfð Þ, where χ2 denotes the Chi-square distribution and
1� α is the significance level. Equally, one can write σ̂20,F 1� α; df ; 1ð Þ; where F denotes
the Fisher’s distribution (Teunissen 2000). As a two-tailed test, one accepts the null hypothesis
H0 if kα=2 � σ̂20 � k1�α=2 where kα ¼ F α; df ; 1ð Þ, is the critical value at the significance level
α and rejectsH0 otherwise. This two-tailed test is selected for the numerical study of this paper.

5. Numerical study

5.1. Data specifications

Data from 14 IGS stations (shown in Table 2) observed for different full days (24 hours) are
processed. The geographical distribution of the points is shown in Figure 1. The IGS final
orbit and clock files are used throughout the PPP processing. These files are partially (up
to 2010) produced before the IGS reprocessing campaigns and the rest belong to the
reprocessed ones. The data are processed at the observation time interval of 15 min. The
results are tabulated and discussed in the sequel.

5.2. The analysis strategy and results

The data analysis in this paper consists of three steps:

(1) Static PPP solution of the station coordinates while the satellite coordinates and clocks
are fixed (their uncertainties are not incorporated into the system of observation
equations),

(2) Static PPP solution of the station coordinates with the satellite ephemeris uncer-
tainties incorporated into the observation equations,

(3) Repetition of step 2 after multiplying cofactor matrices Q1 and Q2 by the estimated
variance components σ1 and σ2 (through the BIQUE method) and balancing the
covariance matrix.

At the end of each step, the overall model test (a two-tailed test at a confidence level of
95%) is conducted to assess the influence of the defined covariance matrix of that step.
The analysis results are shown in Table 2.

To determine the effect of the IGS reprocessing contributions, the above-mentioned
method is tested on the data of 2008 used in Table 2 and their corresponding reprocessed
ephemeris files. The results are shown in Table 3.

As one can see in Table 2, the IGS stations using the data of years 2006, 2008, 2010, 2012,
2015 and 2016 are processed. In all cases, the overall model test fails when the ephemeris
uncertainties are not incorporated into the system of observation equations. After incorpor-
ating them, in more than 38% of cases the test passes. This means that incorporating the
uncertainties improves the stochastic model of the PPP process which confirms the con-
clusion of Shirazian (2013b). In Step 3, after applying the estimated variance components on

JOURNAL OF SPATIAL SCIENCE 5



the covariance matrix, the resulting covariance matrix turns out to be better and all overall
model tests pass. If we accept that this new stochastic model is the most realistic one, we
can infer that the satellite ephemeris uncertainties are pessimistic. Looking at the column of
σ2 in Table 2, one can find out that all the estimated variance components corresponding to
the ephemeris uncertainties up to the year 2008 are much less than one (~0.47 in average).
This means that the estimated uncertainties are pessimistic. From year 2010 to 2016, this σ2

becomes closer to one which means that the uncertainties are more realistic. This is also the
case for reprocessed ephemeris in Table 3. This result is consistent with the contributions
lead to the ITRF2008 and ITRF2014 (e.g. Griffiths 2018 or Rebischung et al. 2016) and
confirms that our presented three-step method is an efficient tool to measure the reality
of the published ephemeris uncertainties.

Table 2. The IGS stations processed and the date of the observations and their corresponding results
(DOY means Day of Year).

Step 1 Step 2 Step 3

Year Station-DOY k0:025 k0:975 bσ20 Test result bσ20 Test result σ1 σ2 bσ20 Test result

2006 ANKR-120 0.870 1.139 6.680 Fail 0.880 Pass 3.550 0.408 1.001 Pass
BRUS-258 0.866 1.144 6.241 Fail 0.640 Fail 1.385 0.534 0.998 Pass
BRUS-311 0.865 1.145 4.085 Fail 0.498 Fail 1.423 0.332 0.997 Pass
BRUS-338 0.870 1.139 6.258 Fail 0.555 Fail 1.035 0.495 0.999 Pass
BZRG-258 0.867 1.143 5.589 Fail 0.626 Fail 0.814 0.595 1.000 Pass
BZRG-311 0.868 1.141 10.056 Fail 1.050 Pass 4.031 0.639 0.993 Pass
BZRG-338 0.871 1.138 7.462 Fail 0.675 Fail 1.771 0.540 0.998 Pass
DRAO-120 0.873 1.135 5.880 Fail 0.754 Fail 2.172 0.505 0.992 Pass
DRAO-258 0.874 1.134 3.491 Fail 0.468 Fail 1.542 0.270 0.995 Pass
DRAO-311 0.875 1.134 7.754 Fail 0.913 Pass 5.100 0.314 0.977 Pass
DUBO-311 0.870 1.139 7.109 Fail 0.734 Fail 2.635 0.473 0.994 Pass
DUBO-338 0.877 1.131 8.803 Fail 0.870 Fail 4.184 0.451 0.988 Pass
FLIN-120 0.873 1.135 6.798 Fail 0.893 Pass 3.072 0.495 0.997 Pass
FLIN-311 0.875 1.133 8.094 Fail 0.875 Pass 1.700 0.751 0.998 Pass
GRAZ-004 0.873 1.136 6.338 Fail 0.900 Pass 3.970 0.343 0.984 Pass
GRAZ-009 0.866 1.144 6.641 Fail 0.755 Fail 0.312 0.832 0.999 Pass
GRAZ-338 0.867 1.143 4.638 Fail 0.551 Fail 0.964 0.478 0.998 Pass
POTS-312 0.872 1.136 8.115 Fail 0.818 Fail 1.663 0.695 0.999 Pass
PRDS-258 0.873 1.135 3.364 Fail 0.472 Fail 1.904 0.206 0.990 Pass
PRDS-311 0.876 1.132 9.490 Fail 1.154 Fail 5.707 0.487 0.967 Pass
PRDS-338 0.875 1.133 7.109 Fail 0.632 Fail 1.725 0.501 0.996 Pass
QUIN-120 0.875 1.134 7.476 Fail 0.953 Pass 3.028 0.587 0.993 Pass
QUIN-258 0.871 1.138 3.494 Fail 0.424 Fail 0.781 0.358 1.000 Pass
QUIN-311 0.870 1.139 7.190 Fail 0.753 Fail 3.225 0.405 0.997 Pass
SASK-120 0.874 1.135 6.594 Fail 0.847 Fail 2.486 0.548 0.996 Pass
SASK-258 0.871 1.138 3.603 Fail 0.486 Fail 1.562 0.290 0.994 Pass
SASK-311 0.860 1.151 5.315 Fail 0.487 Fail 0.490 0.486 1.000 Pass
SOL1-120 0.872 1.137 7.972 Fail 1.024 Pass 4.296 0.471 0.986 Pass

2008 DRAO-003 0.882 1.126 4.435 Fail 0.510 Fail 0.983 0.435 0.999 Pass
GRAZ-003 0.875 1.133 4.673 Fail 0.447 Fail 0.801 0.394 1.000 Pass
SASK-003 0.879 1.129 4.743 Fail 0.536 Fail 1.299 0.410 0.996 Pass
TEHN-003 0.883 1.124 5.483 Fail 0.539 Fail 1.662 0.380 0.996 Pass

2010 TEHN-051 0.877 1.131 5.194 Fail 0.912 Pass 2.085 0.603 0.998 Pass
2012 TEHN-014 0.879 1.129 5.620 Fail 1.018 Pass 1.698 0.828 0.999 Pass
2015 QUIN-044 0.881 1.126 5.020 Fail 0.964 Pass 1.175 0.897 1.000 Pass

TEHN-044 0.881 1.126 5.694 Fail 1.095 Pass 1.115 1.089 1.000 Pass
2016 ARUC-086 0.878 1.130 6.569 Fail 1.437 Fail 2.470 1.093 0.997 Pass

TEHN-086 0.880 1.128 7.597 Fail 1.682 Fail 3.041 1.216 0.997 Pass

6 M. SHIRAZIAN ET AL.



6. Conclusions

A GPS observation data series of 38 days of 14 different IGS stations was processed to
measure the reality of the published satellite ephemeris uncertainties. The results confirm
the previous contributions mentioning that incorporation of these uncertainties improves
the stochastic model of the PPP process. The major conclusion indicates that the published
ephemeris uncertainties are pessimistic about two times of their realistic values and after
the IGS reprocessing campaign, released in 2017, they became more realistic. This is also
worth mentioning that the presented three-step method in this paper is an efficient tool to
verify the reality of the published GPS ephemeris by the IGS (or other organisations).

Other complications about the ephemeris uncertainties may come from neglecting the
correlations between estimated ephemeris by different analysis centres. This issue is
worth studying in the future to estimate more realistic ephemeris uncertainties. The
same method is applicable to the other GNSS constellations (GLONASS, GALILEO or
BeiDou systems) which should be conducted in the future studies.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Figure 1. Geographical distribution of the used IGS stations.

Table 3. Repetition of some of the IGS stations processing, using reprocessed ephemeris files.
Step 1 Step 2 Step 3

Year Station-DOY k0:025 k0:975 bσ20 Test result bσ20 Test result σ1 σ2 bσ20 Test result

2008 DRAO-003 0.897 1.129 5.109 Fail 0.968 Pass 1.672 0.753 0.998 Pass
GRAZ-003 0.875 1.133 4.812 Fail 0.940 Pass 1.369 0.790 0.999 Pass
SASK-003 0.879 1.129 4.940 Fail 0.976 Pass 1.804 0.717 0.997 Pass
TEHN-003 0.877 1.131 5.794 Fail 1.131 Pass 1.242 1.093 1.000 Pass
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Appendix. A brief expression of BIQUE method in Gauss–Markov model

A reformulation of Equation (7) reads:

Ef g ¼ AX ; Qy ¼ Pp
i¼1

iQi ¼ E eeT
� 


, where e is the residual vector. If the vector of the unknown

variance factors is ¼ 1; 2; . . . ; p
� �T

, then the estimator ^ of will be:
^ ¼ N�1l,
where the entries of N and l are as follows:

Nij ¼ trace RQiRQj
� �

; i; j ¼ 1; 2; . . . :; p

li ¼ eTRQiRe; i ¼ 1; 2; . . . :; p and

R ¼ Qy�1 I�A ATQy
�1A� ��1ATQy�1

� �
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