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Producing consistent visually interpreted land cover reference
data: learning from feedback
Agnieszka Tarko, Nandin-Erdene Tsendbazar , Sytze de Bruin and Arnold K. Bregt

Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Wageningen,
Netherlands

ABSTRACT
Reference data for large-scale land cover map are commonly acquired by
visual interpretation of remotely sensed data. To assure consistency,
multiple images are used, interpreters are trained, sites are interpreted
by several individuals, or the procedure includes a review. But little is
known about important factors influencing the quality of visually
interpreted data. We assessed the effect of multiple variables on land
cover class agreement between interpreters and reviewers. Our analyses
concerned data collected for validation of a global land cover map
within the Copernicus Global Land Service project. Four cycles of visual
interpretation were conducted, each was followed by review and
feedback. Each interpreted site element was labelled according to
dominant land cover type. We assessed relationships between the
number of interpretation updates following feedback and the variables
grouped in personal, training, and environmental categories. Variable
importance was assessed using random forest regression. Personal
variable interpreter identifier and training variable timestamp were
found the strongest predictors of update counts, while the
environmental variables complexity and image availability had least
impact. Feedback loops reduced updating and hence improved
consistency of the interpretations. Implementing feedback loops into the
visually interpreted data collection increases the consistency of acquired
land cover reference data.
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1. Introduction

Global land cover and land use maps are important for various planning and management activities
(Lillesand, Kiefer, and Chipman 2008; Zhao et al. 2014). For map validation and calibration, a refer-
ence dataset of greater quality than the map itself is needed. Genuine ground truth would supply
such high-quality data, but populating a global dataset with a sufficiently large sample of field
measurements is extremely costly. Visual interpretation of high-resolution imagery is a feasible
alternative acquisition method.

The reference data collected by means of visual interpretations of remotely sensed data, even
when delivered by well-trained professionals, are subject to interpreters’ variation. Due to their per-
ception of different land cover types, interpreters may largely disagree on category labels they assign
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to sampling units based on visual interpretation of imagery. For example, in an experiment set up by
Powell et al. (2004), a group of five trained interpreters produced reference data by visual interpret-
ation of aerial videography. The assigned land cover type differed for almost 30% of the sample units.
Tarko, de Bruin, and Bregt (2018) compared shadow areas interpreted by 12 individual
interpreters and found that the intersection of the shadows digitised by the interpreters was
less than 3% of their union. Such disagreement among interpreters is indicative of labelling
error, which may have a substantial impact on the later uses of the reference dataset. McRoberts
et al. (2018) showed that interpretation error induces bias into the stratified estimator of forest
proportion and recommend to use input from at least three experienced interpreters to mitigate
this effect. Sample data interpreted by multiple interpreters boosts the accuracy of visually inter-
preted datasets (McRoberts et al. 2018). In addition to collecting reference data by trained indi-
viduals, vast number of land cover interpretations can be obtained from volunteered geographic
information (VGI). To overcome the issue of unknown quality of such data, the use of control
locations with known land cover were used (Comber et al. 2013). However, there are no concrete
methods for implementing VGI data or utilise information about the quality of individual con-
tributors (See et al. 2015).

Another way forward for increasing the consistency of visually interpreted data is to include a
review in the data acquisition process. This approach was used by Zhao et al. (2014), who created
a validation dataset for a global land cover map. Samples were collected with the help of experts,
later checked by those experts from the group with ‘outstanding skills in image interpretation’
and finally checked, and if necessary adjusted, by the most experienced interpreter. To achieve sat-
isfactory accuracy of dataset, as much effort as two rounds of review were implemented, but no feed-
back was provided to the experts during the data collection.

In the domain of education, learning, and instruction, feedback is considered to be a funda-
mental principle for efficient learning. It is defined as post-response information provided to lear-
ners to inform them of their performance (Narciss 2008). Feedback loops are considered efficient
in various research fields, and it is a basic concept in the education science where a feedback loop
is needed to adjust the actions of teachers to ensure that a student learns (Boud and Molloy
2013). Feedback loops are also efficient in the field of automated interpretation of images. An
example of active machine learning algorithms benefitting from interpreter feedback is presented
in Tuia and Munoz-Mari (2012). In the domain of medical image interpretation, where the mis-
interpretation of clinical exams is a delicate issue, a good training process is of high importance.
da Silva et al. (2019) proposed a training platform where the application compared the image
analysis performed by a student with the teacher’s and provided feedback to the user. The
measures of teaching efficiency were left for the future work, but the platform usability assess-
ment done by the students was positive.

Similar to the examples above, collecting global land cover reference data by visual interpretation
can be expected to benefit from feedback loops. To assess the effectiveness of feedback provided,
individual learning curves can be characterised. Learning curves are mathematical models to
model skill acquisition, representing the relationship between practice and the associated changes
in behaviour (Speelman and Kirsner 2005; Lallé, Conati, and Carenini 2016).

Our analyses concern acquisition of a validation dataset for the Copernicus Global Land Service
(CGLS) Dynamic Land Cover project. The CGLS Dynamic Land Cover project provides a global
land cover mapping service as a component of the Land Monitoring Core Service of Copernicus,
the European flagship programme on Earth Observation (CGLS 2019). The acquisition of the vali-
dation dataset for this project bears similarity with the work of Zhao et al. (2014), in which visual
interpretations of reference land cover were reviewed. In addition, feedback loops concerning indi-
vidual interpretations were provided. Validation is performed according to the protocols of the
Committee on Earth Observation Satellites – Land Product Validation Subgroup (CEOS-LPV pro-
tocols, CEOS 2019), and the data follow the design of a multi-purpose validation dataset, aiming to
be applicable for multiple map assessments (Tsendbazar et al. 2018).
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Given that land cover visual interpretations may differ between interpreters, more consistent land
cover reference data can be achieved when there is more agreement between the multiple interpreters
on land cover visual interpretations. In this paper, we assess whether feedback loops can improve the
consistency of validation data for global land cover maps. We also assess the explanatory power of
variables related to image interpretation such as interpreter identifier, feedback stage, or location of
the sample, in predicting the agreement level between the interpreters and the reviewers regarding
visual interpretations of land cover.

2. Methods

2.1. Experimental setting

To collect a global land cover reference dataset, sample sites were selected using a global stratification
by Olofsson et al. (2012), which is based on Köppen bioclimatic zones (Peel, Finlayson, and McMa-
hon 2007) and human population density. Tsendbazar et al. (2018) provide details on the used
sampling design. The validation sample consisted of 15,743 sites of approximately 1 ha. The sites
were divided between regional interpreters chosen in a similar way as described by Tsendbazar
et al. (2018, 2019). Interpreters then interpreted and mapped sites appointed to them. The sample
site is composed of 100 equally sized square elements. Interpreters assigned a dominant land cover
class to each of these elements (Figure 1). The sample size handled by individual interpreters ranged
between 130 and 1194, with an average of 685 sites. Sample sites were offered in random order, so that
the individual interpreted different land cover types over the course of the validation task.

During the data collection process, four review cycles were conducted by two global land cover
reviewers (contracted within context of the (CGLS) Dynamic Land Cover project) who provided
feedback on each interpretation to the regional interpreters. In case of disagreement on the interpret-
ation, the regional interpreters either rebutted the feedback or modified their interpretations where
necessary. After finishing a feedback loop and potential modifications by the regional interpreters,
the interpreters proceeded to interpret and label the next batch. For the majority of interpreters,
the feedback loops were designed to first provide a quick feedback on a batch of 10–20 sample
sites within few days after submission by the interpreters. Next, approximately 50 sample sites
were reviewed followed by a batch of some 100 sample sites, and finally, the remaining sample
sites were reviewed and feedback was passed to the regional interpreters. Data collection and the
review process are schematised in Figure 2.

Figure 1. Example of a sample site. Left – the sample site (approximate size 1 ha) comprising of 100 equally sized square elements
(approximate size of an element 10 m by 10 m). Right – interpreted sample site with three different land cover classes assigned to
every block (white, grey, and black indicate different dominating land cover classes at element level). Source: Tsendbazar et al.
(2018).
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If the regional interpreters (or, in exceptional cases, a reviewer) modified land cover type for at
least one of the 100 elements of a sample site, the entire sample site was considered to be re-sub-
mitted. By comparing counts of elements assigned to land cover types at the first submission and
the final submission of given sample site, updated sample sites were identified (Figure 3). In what
follows, such a sample site is referred to as an ‘updated sample site’. Note that not every sample
site with modification of element results in an updated sample site, for example, re-submitted sample
site, where the land cover assigned to elements has been modified, but the counts of elements
assigned to land cover type are the same.

Figure 2. Flowchart presenting the simplified process of sample collection, review, and feedback in one of the four loops; flowchart
shapes with grey background indicate compared data.

Figure 3. Flowchart for identifying sample sites that are updated based on element counts.
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In a post-processing step, the proportions of land cover types at 1 ha site level were translated into
the simplified CGLS legend categories (see the legend categories in Table 1 and class definitions in
CGLS (2019) and Tsendbazar et al. (2018)). In the reference data, both wetland and burnt area were
treated as conditions of land cover rather than as separate classes. For reasons of simplicity, these
conditions were omitted in the current data acquisition exercise. Sample sites with a CGLS legend
update were identified by comparing the CGLS legend categories assigned at the first and the
final submission (Figure 4). Note that not every updated sample site results in a change in CGLS
legend category.

Data acquisition involved 27 regional interpreters distributed over 25 regions. Following the
finding that volunteers interpreting land cover perform better in case of samples near their familiar
places or samples with their familiar climate type (Zhao et al. 2017), experienced interpreters
involved in our experiment were selected based on their region of expertise. In two regions, data col-
lection was done by two interpreters to handle the large sample size; the other regions had one
interpreter each (Figure 5(a)). All interpreters were experienced in satellite-based land cover analysis
and image interpretation. All of them were provided with a mapping tutorial explaining the interface
for data collection, the land cover interpretation specific for the project, and the interpretation keys.

Table 1. Selected factors potentially influencing the MPU.

Category Factor Description Values

Personal Interpreter
identifier

Individual identification of the interpreter 23 Interpreters, id labels from 1 to 23
(nominal scale)

Experience Ordinal categorisation of years of experience
in land cover/land use visual interpretation
of the interpreters

Five ordinal categories: up to 2 years; 2–3;
4–5; 6–9; 10 and more

Interpretation
duration

Time used to submit the sample site by the
interpreter

From 0 to 30 min (continuous scale)

Training Feedback stage Ordinal categorisation of the review cycle at
which the sample site was mapped

Four ordinal categories: from first to fourth
stage (review cycle)

Timestamp Time (seconds) between the first collected
sample site (time 0) and the submission of
any other sample site. Registered for each
interpreter, for first submission of given
sample site

From 0 to 10,262,630 s (16 weeks 6 days
18 h 43 min 50 s) (continuous scale)

Environmental Complexity Number of different land cover types
identified and mapped within the sample
site final submission

Integers from 1 to 6

Image
availability

Four-level ordinal categorisation explained
above (Section 2.2)

Four ordinal categories: no information on
season, non-growing season only,
growing season only, information on both
seasons

Land cover Final land cover assigned to the sample site
according to the CGLS legend category

Nine categorical labels: bare, closed forest,
crop, grass, open forest, shrub, snow and
ice, urban, water (nominal scale)

Location Longitude and latitude of the sample site
(treated separately)

84°N–56°S, 180°W–180°E (continuous
scales)

Figure 4. Flowchart for identifying sample sites that are updated based on the CGLS legend category.
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Since the learning curves of the interpreters most likely changed already after getting acquainting
with the tutorial, the starting point of our analysis coincides with the moment the tutorial was
finished. Collection of the first few points was organised as an on-line training exercise that was tai-
lored to each interpreter’s needs. Three interpreters mapping three regions in Africa had prior
knowledge and experience with the project because they had contributed to a similar task before
(Tsendbazar et al. 2018). The results produced by those interpreters were excluded from the exper-
iment, as their learning curves were expected to be different from the interpreters who took the
activity for the first time (Figure 5). For similar reasons, data of one interpreter mapping, Eastern
Europe was excluded from the analysis (Figure 5). In total, the input of 23 interpreters was analysed
for the purpose of this paper. Figure 5 shows the spatial distribution of sample sites.

The CGLS land cover validation data were collected using a dedicated branch on the Geo-Wiki
Engagement Platform (http://www.geo-wiki.org). Figure 6 shows a screenshot of the validation data
collection interface. Through the interface, several remote sensing images were interpreted, and the

Figure 5. (a) Validation regions. Grey tones indicate regions interpreted by single interpreters; hatch patterns indicate regions
interpreted by two interpreters; white fills indicate regions outside the scope of this paper’s experiment. (b) Distribution of sample
sites (grey dots) in the scope of this paper experiment.
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prevalent land cover was assigned to each element. Land cover types to be assigned are listed in the
rightmost panel of Figure 6. Interpreters could use several data layers, i.e.:

. openly-available very-high-resolution Google and/or Bing imagery;

. Natural Colour Composite and False Colour Composite Sentinel-2 imagery from 2015;

. time-series imagery from Sentinel 2;

. normalised difference vegetation index (NDVI) time-series from Landsat 7 32-Day,
MOD13Q1.005 16-Day Global 250 m, PROBA-V C1 Daily at 100 m; and/or

. map with Köppen-Geiger bioclimatic zones (Olofsson et al. 2012).

Interpreters were also offered functionality to export the sample site to Google Earth, which
allowed viewing historical imagery. Whenever possible, Google image was the main data layer to
be used. Interpretation targeted to represent land cover in the growing season of 2015. This implies
that seasonal changes in land cover were not considered in this research.

2.2. Exploratory analyses

We expected that regional interpreters interpreting the validation samples gained practice over time
and that the feedback loops induced the learning effect. We quantified the learning effect with the
update level changing in time for each individual. Updates upon feedback were counted and
expressed as a percentage relative to the total number of sample sites submitted by the interpreter
concerned up to a given moment in time. From here on these percentages are referred to as ‘momen-
tary percentage of updates’ (MPU).

We researched nine factors as potential explanatory variables, clustered in three categories (training,
personal, and environmental) and listed in Table 1. Note that interpretation duration was calculated
under the assumption that a submission gap longer than 30 min corresponded to a break taken by

Figure 6. Screen shot of Geo-Wiki portal interface for land cover validation. The leftmost panel allows selection of additional data
such as NDVI profile or bioclimatic zone; the second panel from the left shows the local NDVI; the third panel from the left displays
the sample site with chosen background image; the rightmost panel shows the list of land cover types.
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the interpreter. Interpretation duration could not be computed for the first submission after any break.
As a consequence, 1152 out of the 15,743 sample sites lacked data of interpretation duration.

To assess the relationship between interpreter identifier and MPU, we investigated individual
learning curves of the interpreters as well as a collective learning curve (aggregated over all
interpreters). Learning curve is expressed as a graph indicating normalised timestamp in the x-
axis and MPU in the y-axis.

To approximate interpreter’s proficiency in land cover interpretation, we asked the interpreters
about their years of experience with land cover, land use, and vegetation cover mapping in the
form of a survey. Possible responses were grouped in five ordinal categories:

. up to 2 years;

. from 2 up to 4 years;

. from 4 up to 6 years;

. from 6 up to 10 years;

. 10 and more years of experience.

Image availability was assessed using data from the work of Lesiv et al. (2018), which presents the
availability of Google Earth imagery (with resolution <5 m) across the world’s land surface for differ-
ent growing seasons. Bing images were not included in their seasonal analysis. The world is rep-
resented by a 1° grid holding information concerning seasons on available imagery in four
ordinal categories:

. no information on seasons;

. images taken only in non-growing season;

. images only in growing season;

. images from growing and non-growing seasons.

Through overlay, we determined the availability of Google images in growing seasons for each
sample site.

The influence of each factor on the MPU was assessed using scatter plots, bar graphs, box
plots (McGill, Tukey, and Larsen 1978), and Spearman’s rank-order correlation. Factors can be
correlated because some of them represent similar attributes, such as timestamp and feedback
stage. As a diagnostic for RF analysis, we used a correlation matrix. For obvious reasons, categ-
orical factors (land cover class and interpreter identifier) were excluded from the correlation
analysis.

All plots were created using R software for statistical computing (R Core Team 2017) using the
‘graphics’ packages for box plots (R Core Team 2017), the ‘plotly’ package for scatter and bar plots
(Sievert 2018), and the ‘corrplot’ package for correlation matrix (Wei and Simko 2017).

2.3. Modelling the learning effect

RF regression analysis was chosen to identify the importance of factors for describing the learning
effect. The input factors in Table 1 were used as explanatory variables. Random forest regression
analysis was chosen because tree-based models can handle correlated input data, non-linear relation-
ships, and mixtures of categorical and numerical data types. Moreover a RF model is non-para-
metric, accounts for interactions, and is robust against over fitting (Breiman 2001, 2002).

Since RF cannot handle missing predictor values, we analysed two models:

. a model using all (ten) explanatory variables but excluding sample sites without data on interpret-
ation duration (14,591 sites were used);
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. a model using all sites (15,743 sites) but without the interpretation duration factor (nine expla-
natory variables were used).

First model allows importance identification of all factors while the second model uses all avail-
able input sites. The two models are complementary.

The parameter settings in the RF regression analysis were as follows: 500 trees, three variables
tried on each split and a minimum of five observations in the terminal nodes. Factors were treated
as numeric variables, except for land cover class and interpreter identifier, which were treated as cat-
egorical variables in the RF regression analysis. From the model we obtained:

. mean square difference (MSD, sum of squared residuals divided by the number of sample sites in
the dataset);

. percentage of variance explained for the entire validation dataset (formula: 1 – MSD/variance of
the dataset);

. variable importance (reported as % increase of MSD). Variable importance was estimated with
out-of-bag cross-validation as a result of variable being permuted.

To assess the stability of the RF results, we ran the models 15 times and reported average values of
MSD, percentage of variance explained for the entire validation dataset, and variable importance, as
well as the range (smallest and largest value) obtained from the 15 iterations for each value. Good-
ness of fit is indicated by the percentage of variance explained and MSD, while variable importance
was assessed by the percentage increase of MSD.

The RF regression analysis was performed using R software (R Core Team 2017) using the ‘ran-
domForest’ package (Liaw and Wiener 2002).

Figure 7. Correlation matrix of factors potentially influencing the momentary percentage of update. The two highest correlation
values are marked by a grey background.
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3. Results

3.1. Exploratory analysis

Figure 7 shows the correlation matrix of selected factors that were deemed to influence the MPU. As
expected, timestamp and feedback stage are strongly correlated, which can be explained by the
second factor being a discrete representation of the first one. Note also the observed positive corre-
lation between interpretation duration and complexity owing to visual interpretation of complex
scenes being usually more time consuming. Location factors (longitude and latitude) showing nega-
tive correlation with interpreter’s experience are considered as random effect of the choice of regional
interpreters.

3.1.1. Personal factors
Figure 8 shows selected learning curves for individual interpreters with normalised timestamp factor
on the x-axes. MPU varied in time and per interpreter and changed from 0 up to 100 for different
interpreters at different moments during the mapping process. For Figure 8(a), the curves indicate a
general downward trend in time; those correspond to interpreters who learned from the feedback
loop. These curves represent positive learning effects. Positive learning effects were observed for
the majority of interpreters who were characterised by high MPU at the beginning of the task
and lower MPU towards the end of the data collection process. In Figure 8(b), the curves show
upward MPU trends, representing interpreters to whom the feedback did not bring the expected
learning effect. Learning curves strongly differed between individual interpreters (Figure 8). More-
over, learning effects also changed over time for individual interpreters (see Figure 8). When calcu-
lating the percentage of updated sample sites per feedback loop for each interpreter, only three of
them reached the highest update percentage in the third or fourth loop, meaning that the positive
learning effect is not confirmed for those three individuals.

Figure 9 shows the aggregated learning curve over all regional interpreters. The solid black line
with the downward trend means that there was a positive learning effect over the entire group of
interpreters on average because the MPU dropped in time and finally reached 30% of updated
sample sites. Translated into the CGLS legend category at the sample site level, the final update per-
centage on CGLS legend category is 9% (solid grey line in Figure 9).

The dashed lines in Figure 9 show the update percentage relative to the total sample. The lightest
grey line shows that the data collection increases in time, and the exponential-like shape of the plot
indicates that data collection was more intensive during the last stretches of the project. The darkest
line indicating the percentage of updated sample sites shows a stable increase over time, with slightly
steeper slope of the plot from the 0.8 of normalised timestamp of the collection task. Similarly, for the

Figure 8. (a) Exemplary learning curves of interpreters (indicated by different grey shades) with positive learning effect. (b) Exemp-
lary learning curves of interpreters without positive learning effect (indicated by different grey shades).
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percentage of sample sites with CGLS legend update, the percentage increase plot seems linear (med-
ium-grey colour).

Figure 10 shows the distribution of percentage of updated sample sites per experience category.
The update percentage is expressed relative to an interpreter’s individual sample size, and the cat-
egory is represented as years of experience in land cover/land use visual interpretation. Regional
interpreters participating in the land cover reference data collection were evenly distributed concern-
ing years of experience (three interpreters with the least experience category and five interpreters in
each of the other categories). The lowest mean value of the update percentage for the individual
interpreters was for the group with four to six years’ expertise, and the highest mean value concerned
interpreters with the longest experience. Less experienced interpreters (less than six years of experi-
ence) tended to have similar update rates, while interpreters with more than six years of experience
varied considerably in terms of update rates. The percentage of updated sample sites substantially
varied between individual regional interpreters: the lowest update percentage was 12%, the highest
62%, and the mean 30% (Figure 10).

Figure 9. Learning curves aggregated over all regional interpreters.

Figure 10. Distribution of updated sample sites per interpreters’ experience category.
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3.1.2. Training factors
The box plot in Figure 11 shows percentage of updated sample sites grouped by feedback stage. The
mean and the median of update percentage decreased over subsequent feedback stages. The spread of
update percentages for individual feedback stages is caused by the large variation among the
interpreters.

3.1.3. Environmental factors
The exploratory analysis of relationships between environmental factors and interpretation
updates are shown in Figure 12. Figure 12(a) concerns land cover complexity expressed by the
number of land cover types within a sample site. The majority of the sample sites (∼89%) did
not have more than three different land cover classes. The update percentage increased with
the increasing number of land cover classes up to five (Figure 12(a)). Note that fewer than
4% of all sample sites had five or more different land cover classes, and therefore, the categories
with the highest number of land cover may not be representative for drawing conclusions on
update percentage.

Figure 12(b,d) shows the total sample categorised by the final CGLS legend. Figure 12(b) illus-
trates that the majority of sample sites (63%) had forest (closed and open) or grass as a final
CGLS legend category. The urban land cover had only 3% of sample sites from the total sample,
but the update percentage was the highest from all CGLS legend categories (44%). The lowest update
percentages were for the classes ‘water’ and ‘snow and ice’ (12% and 11%, respectively).

Figure 12(c) shows the total sample categorised by the image type available for mapping and the
distribution of percentage of updated sample sites with the same image availability, calculated for
each interpreter. For more than half (59%) of the total sample, images with at least growing season
were available. The percentage of updated sample sites relative to all sample sites with given image
availability varied between the interpreters: most for the updated sample sites with images available
only in the non-growing season (from 10% to 90%) and least for the updated sample sites with
images available only in the growing season (from 11% to 54%).

Figure 12(d) shows the distribution of the percentage of updated sample sites for individual
interpreters against the final CGLS legend category. Closed forest, open forest, and grass cover
had the largest dispersion of the update percentage among the interpreters as well as the highest
mean update percentage values.

Figure 11. Distribution of updated sample sites per feedback stage.
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3.2. Random forest

In Table 2, we report the percentage of variance explained and MSD results of the RF regression
model. Table 2 shows that the fit is high for both versions of the model. The mean from 15 runs
explained 98.0% and 96.5% of variance of the MPU for the individual interpreters in first and second
model, respectively, and the range was less than 1% in both cases. The MSD value was higher for the
second version on the model (5.5%) and almost double compared with the first model version.

For both model versions, the order of mean importance value was the same for the first three fac-
tors: interpreter identifier, timestamp, and feedback stage from the personal and training categories.
From those, the first two factors were ranked the same in all single model runs. In Table 3, we

Figure 12. Environmental category analysis: (a) updated sample sites per given complexity (black dots) and percentage of sample
sites with given complexity relative to total sample (grey bars); (b) updated sample sites per final land cover class (black dots) and
percentage of sample sites with given CGLS legend category relative to total sample (grey bars); (c) distribution of updated sample
sites per image type available for mapping; (d) distribution of updated sample sites per CGLS legend category.

Table 2. Goodness of fit statistics of the RF regression model based on 15 iterations.

Value

Model version

(1) Dataset subset (2) Full dataset
Mean (range) Mean (range)

Variance explained, % 98.0 (97.9–98.0) 96.5 (96.4–96.6)
MSD, % 3.2 (3.1–3.2) 5.5 (5.5–5.7)
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reported the mean importance of the input factors and in parentheses their range in 15 runs. The
most important variable for both models and in all runs was the interpreter identifier, with 76.2%
mean importance in first model and 80.0% mean importance in second model. The second-most
important factor was the timestamp and the third-most important factor was the feedback stage.
In the first model, the range of the feedback stage importance was overlapping with the next in
order – experience factor range; therefore, in two single runs, the order of feedback stage and experi-
ence factors was swapped. The two least-important factors were complexity and image availability,
with swapped order between the model versions and between the runs within the model. Their mean
importance was between 11.6% and 13.2%, with the ranges from 9.1% to 15.1%.

To assess the importance of feedback, we run once RF regression with parameter settings as
above, but without timestamp variable. The model fit was high, at 92.2%, with MSD of 12.1%.
Regarding the importance of explanatory variables, by far the most important factor was feedback
stage (228.2%), followed by interpreter identifier (78.9%), land cover (32.1%), and latitude,
(30.1%). The least important was image availability (14.1%).

4. Discussion

4.1. Interpreter identifier and training factors

We assessed basic factors influencing learning effect represented by MPU. The most important fac-
tors were interpreter identifier, timestamp, and feedback stage (Table 3). Timestamp and feedback
stage were strongly correlated (Figure 7), as the latter can be considered a discrete representation
of the first one. In the RF regression model, timestamp has a finer granularity than feedback
stage, which may explain its higher importance rating compared with the four-level feedback
stage (Table 3). Despite its coarser granularity, feedback stage immediately follows timestamp in
the importance ranking (Table 3). This implies that it adds information to the timestamp variable.
Assessing the model without the timestamp factor, feedback stage comes in first place as the most
important explanatory variable influencing the MPU. Feedback adds to the fact that, with time,
interpreters gained more knowledge on the project and confidence using the software through
autonomous learning or ‘learning by doing’ (Schank, Berman, and Macpherson 1999).

Interpreter identifier and timestamp, together with the MPU, are presented as individual learning
curves, and in our study a decrease of MPU for individuals indicated a positive learning effect of the
regional interpreters (Figure 8(a)). The biggest drops in the MPU for various interpreters were in
different moments of the normalised time (Figure 8(a)). All curves were distinct, emphasising the
interpersonal differences between the interpreters. Despite regular review and feedback loops, the
positive learning effect is not confirmed for three interpreters out of 23 (Figure 8(b)). The reasons
of this finding are not clear to the authors.

Table 3. Importance of the RF explanatory variables based on 15 iterations.

Factor

Model version

(1) Dataset subset (2) Full dataset
Mean importance, % (range) Mean importance, % (range)

Interpreter identifier 76.2 (73.1–80.4) 80.0 (77.3–84.6)
Timestamp 65.8 (61.9–68.9) 69.6 (66.9–72.1)
Feedback stage 34.3 (30.5–37.4) 35.9 (33.1–38.6)
Experience 32.1 (30.9–33.8) 31.3 (29.3–33.1)
Location (latitude) 30.8 (29.7–32.3) 31.4 (30.0–32.4)
Location (longitude) 26.6 (24.9–29.3) 27.5 (25.7–29.9)
Land cover 22.6 (21.1–24.9) 19.1 (17.5–21.5)
Interpretation duration 19.0 (16.0–21.8) –
Complexity 13.2 (11.4–14.1) 11.6 (9.6–12.6)
Image availability 12.6 (10.9–15.1) 12.0 (9.1–14.0)
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The interpreter identifier is a categorical factor, with 23 distinct values. Since in the RF method
the variable importance measures for categorical predictor variables are affected by the number of
categories (Strobl et al. 2007), we repeated variables assessment with the ‘cforest’ function from
the ‘party’ package (Hothorn et al. 2006; Strobl et al. 2008, 2007). This function provides unbiased
variable selection in the individual classification trees (Strobl et al. 2007). The importance of the
order of factors was identical to the order reported in Table 3, confirming our earlier results. Despite
the many levels of the interpreter identifier, its importance was prevalent, meaning that this remains
the most important factor influencing the positive learning effect of the interpreters.

The group of interpreters collected less intensively at the beginning of the task and collected
many more sample sites towards the end of the mapping task: Figure 9 shows that only 30% of
the sample sites were collected half way during the assignment. This might be also partially a result
of more frequent feedback loops at the beginning of data collection. However, the last feedback
loop had the lowest update percentage (Figure 11). A regular review without feedback is one of
the ways to increase the consistency of collected dataset (Zhao et al. 2014). In the work of Zhao
et al. (2014), sample sites collected by interpreters were checked by one reviewer and adjusted
when necessary. Such a procedure can be prone to the subjectivity of the reviewer’s final assign-
ment of land cover. In our data collection design, feedback on all sample sites was implemented
and provided to the regional interpreters. In case of disagreement, interpreters had a possibility
to rebut the reviewer’s feedback, and therefore, to reduce the reviewer’s subjectivity of land
cover interpretation. The mean and the median of update percentage for individual interpreters
was decreasing in the subsequent feedback stages (Figure 11), meaning that the interpreters and
the reviewers agreed more often on the sample site interpretation at the later stages of the data
collection process.

In the experiment of Powell et al. (2004), five trained interpreters produced reference data by
visual interpretation of aerial videography, where the assigned land cover type differed for almost
30% of the sample units. In our study, the MPU at the end of our experiment showed that 9% of
sample sites were updated regarding CGLS legend category (Figure 9). This update percentage high-
lights that fewer updates were required thanks to the feedback stages implemented in this study.

4.2. Personal factors

Personal factors influenced the learning effect of the individuals. This result is similar to a study done
by Van Coillie et al. (2014) where a web-based digitisation exercise performance was mainly deter-
mined by interpersonal differences.

The number of years of experience in visual interpretation was previously used as a measure of
interpreter expertise (Mincer 1974). Our results (Table 3) suggest that the interpreter identifier is
twice as important as the number of years of experience. This finding indicates that there are
large differences between interpreters, which are not captured by years of experience.

In visual interpretation projects with many actors, it is challenging to engage a uniform group of
interpreters with similar interpretation skills, regional expertise, and experience. In our research,
interpreters had different years of experience and their percentage of updated sample sites varied,
even for individuals within the same interpreter’s experience category (Figure 10). In our exper-
iment, all interpreters had remote sensing background, previous experience in land cover classifi-
cation and knowledge on the region of their expertise. In the absence of detailed information
about the experience of interpreters, we chose the number of years of experience in land interpret-
ation as a feasible indicator of individual experience. The number of years of experience may be con-
sidered an insufficient or merely partial indicator of interpretation expertise as it does not cover the
intensity of work nor regional knowledge, for example. It would be worthwhile exploring alternative
indicators (e.g. experience only in image interpretation) if richer data about the interpreters are
available.
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4.3. Environmental factors

The complexity factor was positively correlated with the interpretation duration (Figures 7 and 12
(a)), meaning that more land cover classes within a sample site coincided with an increase in
time needed to interpret a sample site. Although complexity had little impact on the learning
effect (Table 3), knowledge on the level of complexity for a mapped area can facilitate task planning:
visual interpretation is likely to take more time for sample sites with complex land cover.

Image availability (see Section 2.2) was found to be the least important explanatory factor (Table
3). In contrast, a study of Zhao et al. (2017) found that with increased VHR image availability, more
volunteering interpreters agreed on the majority land cover type, which implied higher reliability. In
our research image availability did have an influence on MPU, although other factors were found to
be more important. Moreover, we did not investigate whether interpreters have used all available
imagery and ancillary data.

It could be valuable to assess the extent, in which data were really used by the interpreters.
Additional detailed characteristics of all available images (such as spectral, temporal, and spatial res-
olution) and other input data such as NDVI information or Google Street View can be an important
tool in the absence of ground truth observations. Integration of various imagery and ancillary data is
a current direction in land cover/land use data collection platforms. For example, a dedicated branch
of the Geo-Wiki Engagement Platform (http://www.geo-wiki.org) used in this experiment, next to
the collection of Bing and Google images, Sentinel 2 imagery, and NDVI profiles, offered function-
ality to export sample site shape to a Google Earth programme to review historical imagery and Goo-
gle Street View. Another example is Collect Earth, an open source tool for environmental monitoring
enabling data collection through Google Earth in conjunction with Bing Maps and Google Earth
Engine (http://www.openforis.org).

Location of the interpreted sample site is less important than the feedback stage, yet latitude is
more important than longitude (Table 3). A potential explanation is that latitude is roughly followed
by the climate zones, which in this research were taken into account in sample sites selection by stra-
tified random sampling considering Köppen bioclimatic zones (see Section 2.1). There are more con-
sistent variations in the bioclimatic zones along the latitudes rather than the longitudes, and
bioclimatic zones could reflect landscape types. The influence of bioclimatic zones could be investi-
gated further to identify MPU hot spot areas.

4.4. Research method

In case of absence of land classification performed on the ground, reference data used for developing
and validating large-scale land change maps are commonly acquired by visual interpretation.
Interpretation involves remotely sensed images with higher resolution than those used for map cre-
ation and is considered of greater accuracy than the map (Olofsson et al. 2014). Since visual
interpretation is subjective which introduces a source of uncertainty (Jia et al. 2016; Pengra et al.
2019; Powell et al. 2004), various methods of boosting data consistency can be implemented, such
as field visits (if resources are available), having sites labelled by multiple interpreters, or a review
procedure. In our research, field visits were infeasible owing to limited resources. Therefore, a review
with feedback loops was implemented and we assessed the effect of multiple variables influencing
agreement between interpreters and reviewers about visual interpretations. Feedback ensures the
presence of the learning process (Boud and Molloy 2013), and therefore, it is expected to improve
the quality of interpreted land cover reference data. Despite its potential, such feedback procedure
is not commonly adopted in the acquisition of reference data. Therefore, we advocate the use of feed-
back loops for improved consistency of visually interpreted reference data. To further assess the
magnitude of reference data consistency improvement and to assess a different feedback strategy,
we recommend a comparative study setup including a control group performing visual interpret-
ation but not receiving a feedback.
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Having confirmed the disagreement between individuals in land cover interpretation, to obtain
the reference data with boosted accuracy, McRoberts et al. (2018) and Powell et al. (2004) suggest
having sites labelled by multiple interpreters providing the majority interpretation. Such an approach
can be challenging to implement for a large-scale global reference datasets that involve many
interpreters from different regions of the world. The two approaches – multiple interpreters deliver-
ing majority land cover class and a single interpreter collecting land cover data whose work is
reviewed and feedback is provided – are considered complementary.

5. Conclusions

Land cover reference data acquired by visual interpretation are affected by interpreter subjectivity.
One way to assure a consistent land cover reference dataset is to include a review step in the acqui-
sition process. In our experiment concerning global land cover reference data acquisition, we
researched the rate of land cover updates following reviewers’ feedback on visual interpretations per-
formed by 23 regional interpreters. The number of updates following feedback differed substantially
between interpreters. Despite those differences, feedback loops induced a positive learning effect in
land cover visual interpretation for 20 of the 23 interpreters. Those interpreters delivered more con-
sistent land cover interpretations, which is expected to boost reliability of the land cover validation
dataset.

The most important factors influencing the learning effect were those from the personal and
training categories: interpreter identifier, timestamp, and feedback stage while the least important
factors were from the environmental category, being complexity of the sample site and image avail-
ability. We observed a positive learning effect upon consecutive feedback loops. Interpreter identifier
and timestamp, together with the momentary percentage of update, can be expressed as individual
learning curves. The majority of individual curves showed a positive learning effect.

Collection of reference data through visual interpretation performed by interpreters benefits from
a feedback loop, which increases the consistency and reliability of the collected dataset. Within a
reference data collection project, factors such as interpersonal differences between the interpreters
or autonomous learning of interpreters cannot be fully controlled, while review and feedback can
be planned and customised to optimise the project results.
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