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Three-dimensional CityGML building models in mobile
augmented reality: a smartphone-based pose tracking system
Christoph Blut and Jörg Blankenbach

Geodetic Institute, Department of Computing in Civil Engineering and Geo-Information Systems, RWTH Aachen
University, Aachen, Germany

ABSTRACT
Many augmented reality (AR) systems are developed for entertainment,
but AR and particularly mobile AR potentially have more application
possibilities in other fields. For example, in civil engineering or city
planning, AR could be used in combination with CityGML building
models to enhance some typical workflows in planning, execution and
operation processes. A concrete example is the geo-referenced on-site
visualization of planned buildings or building parts, to simplify planning
processes and optimize the communication between the participating
decision-makers. One of the main challenges for the visualization lies in
the pose tracking, i.e. the real-time estimation of the translation and
rotation of the mobile device to align the virtual objects with reality. In
this paper, we introduce a proof-of-concept fine-grained mobile AR
CityGML-based pose tracking system aimed at the mentioned
applications. The system estimates poses by combining 3D CityGML data
with information derived from 2D camera images and an inertial
measurement unit and is fully self-sufficient and operates without
external infrastructure. The results of our evaluation show that CityGML
and low-cost off-the-shelf mobile devices, such as smartphones, already
provide performant and accurate mobile pose tracking for AR in civil
engineering and city planning.
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1 Introduction

Geo-referenced virtual 3D models increasingly represent a valuable addition to traditional 2D geos-
patial data, since they provide more detailed visualizations and an improved understanding of spatial
contexts (Herbert and Chen 2015). The Geography Markup Language (GML)-based XML encoding
schema City Geography Markup Language (CityGML) is an open standardized semantic infor-
mation model with a modular structure and a level of detail system that satisfies the increasing
need for storing and exchanging virtual 3D city models (Gröger et al. 2012). Specifically, the rep-
resentation of semantic and topological properties distinguishes CityGML from pure graphical 3D
city models and enables thematic and topological queries and analyses. Typical use cases are
large-scale solar potential analyses, shadow analyses, disaster analyses and more using the CityGML
Application Domain Extension (ADE) (Gröger et al. 2012). An ADE augments the base data model
with use case-specific concepts, as, for example, the CityGML Energy ADE, to perform energy simu-
lations (Agugiaro et al. 2018) or the CityGML Noise ADE, to perform noise simulations (Biljecki,
Kumar, and Nagel 2018). Therefore, the list of CityGML use cases is extensive, as shown by Biljecki
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et al. (2015), naming ∼30 use cases and 100 applications for CityGML and virtual 3D models in gen-
eral, in their state-of-the-art review. Unfortunately, most of these are employed only on desktop per-
sonal computers.

With the increasing hardware capabilities of low-cost off-the-shelf mobile devices and growing
popularity of mobile augmented reality (AR), we see the potential for the geospatial domain, specifi-
cally with geo-referenced visualizations (e.g. points of interest, navigational paths or city objects,
such as buildings) and analyses with CityGML. Using AR, a key advantage is the first-person per-
spective, allowing users to view the information in a much more natural way, without the need of
imaginarily transferring virtual objects from a 2D screen into 3D reality. Schall et al. (2011) name
some concrete examples for CityGML in AR:

. Real estate and planning offices could offer their clients the possibility to visualize planned build-
ings on parcels of land. Clients could inspect the virtual 3D building models freely on-site and
easily compare colours, sizes, look and feel or overall integration into the cityscape.

. Physical buildings could be augmented to enable the visualization of hidden building parts, such
as cables, pipes or beams.

. Tourist information centres could offer tourists visual-historic city tours by visualizing historic
buildings on-site and displaying additional information and facts about these and the location.

One of the challenges of realizing a mobile AR system aimed at these use cases is the 3D regis-
tration in real time, i.e. accurately aligning the virtual 3D models with reality, so they seamlessly
are integrated into the scene or overlay their physical counterparts as closely as possible. The esti-
mation and synchronization of translation and rotation in real time is, generally, referred to as
pose tracking (Schmalstieg and Höllerer 2016), which is possible in a local and a global reference
frame. In a local reference frame, poses, for example, can be tracked relative to an arbitrary starting
point, in a global reference frame, poses are determined in a global reference system, for example, in
the World Geodetic System 1984 (WGS84).

We propose that, next to models for visualizations and analyses, CityGML’s geometric-topologi-
cal and thematic data provide the required information for pose tracking in a global reference frame.
This has multiple advantages, since, on the one side, the same data can be used for on-device render-
ing and pose tracking and, on the other side, a common global reference system eases the infor-
mation exchange between participating decision-makers, for example, in city planning.

In this paper, we introduce a proof-of-concept CityGML-based pose tracking system, comprising
optical and inertial sensor methods, for AR. Followed by the introduction in Section 1, we discuss
related work focussing on similar AR projects and their pose tracking frameworks in Section 2. In
Section 3, we describe our approach to pose tracking with CityGML, specifically focussing on optical
pose estimation with doors. We describe how we extract the required 3D information from CityGML
data and 2D information from camera images and in what manner we combine this information for
the pose estimation. The results of the in-field evaluation with a fully fledged AR system on different
smartphones are presented in Section 4, focussing on the performance of the door detection, the
optical pose estimation and the pose fusion. In Section 5, we provide an outlook on future work
in this area.

2 Background

Generally, the existing pose tracking solutions can be categorized into stationary external infrastruc-
ture-based, device-based or a combination of both. Primarily, the choice of pose tracking type depends
on the application environment, for example in- or outdoors or in small- or large-scale spaces.

In outdoor environments, typically, combined external infrastructure- and device-based methods
are applied. Global navigation satellite systems (GNSS) are a well-established solution for determin-
ing the translation in combination with device-coupled inertial measurement units (IMU), typically
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comprising accelerometers, gyroscopes and sometimes magnetometers, to determine the rotation.
Already in the 1990s, Feiner et al. (1997) and Hollerer, Feiner, and Pavlik (1999) utilized a differen-
tial global positioning system (DGPS) and an IMU-based rotation tracker for their mobile campus
information AR systemMARS, to create guided campus tours by overlaying models of historic build-
ings. Other mobile AR solutions with GNSS and IMU-based pose tracking were shown by Piekarski
and Thomas (2001) with Tinmith, to create city models in AR, for example, or Schall, Schmalstieg,
and Junghanns (2010) and Stylianidis et al. (2016) with Vidente and LARA, respectively, for visua-
lizing underground infrastructure, like pipes. A system for visualizing CityGML in AR and virtual
reality (VR) was presented by Santana et al. (2017). The data are stored in a PostgreSQL-based 3DCi-
tyDB and is transmitted using a client-server model.

Due to the use of GNSS and its strong dependency on a line of sight (LOS), these systems are
unreliable or even unusable for covered areas like street canyons, dense forests and especially build-
ings, in which the signals are obstructed (Blum, Greencorn, and Cooperstock 2013). Additionally,
IMU of low-cost mobile devices are very susceptible to drift over time and lack precision in general,
as described by Blum, Greencorn, and Cooperstock (2013). We also evaluated the IMU rotation
accuracy of our three smartphones, the Google Nexus 5, the Sony Xperia Z2 and the Google Pixel
2 XL, and received similar results with mean rotation errors around 15–25°, as shown in Figure 1.
For accurate AR visualizations, this is not feasible (see Figure 3).

As a solution to GNSS and IMU unreliability, multiple stationary external pose tracking systems
have been introduced, specifically for indoor environments; e.g. the ultrasound-based systems by
Ward, Jones, and Hopper (1997) or Priyantha, Chakraborty, and Balakrishnan (2000), the commer-
cial magnet-field system Polemus G4 or the commercial optical tracking systems SMARTTRACK3
and ARTTRACK5 by Advanced Realtime Tracking GmbH (ART). The disadvantages of these
stationary external systems are their limited range and need of installment in the environment.

To maintain the flexibility of device-based pose tracking, cameras have found an increasing appli-
cation for realizing optical pose tracking. For instance, White and Feiner (2009) include 6 degree of
freedom optical marker tracking in SiteLens, for displaying virtual 3D building models. The fiducial
markers are distributed across the environment and are captured by the mobile camera to provide
known reference points for correcting the device pose. But like stationary external tracking systems,
marker tracking also requires preparing the environment in advance, limiting the versatility of the
AR systems. Therefore, efforts have been made to integrate existing physical objects, such as build-
ings, referred to as natural features, in optical pose tracking. Vacchetti, Lepetit, and Fua (2004),
Wuest, Vial, and Stricker (2005), Reitmayr and Drummond (2006), Lima et al. (2010), Choi and
Christensen (2012) and Petit, Marchand, and Kanani (2013) show virtual 3D model-based solutions
using edge-matching methods. The defining edges of the 3D models are utilized to search for cor-
responding 2D edges of the physical objects in camera images and matched with these to derive a

Figure 1. Evaluation of the rotation error of three smartphones, the Google Nexus 5, the Sony Xperia Z2 and the Google Pixel 2 XL,
in indoor and outdoor environments.
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pose with the Perspective-n-Point (PnP) algorithm. Reitmayr and Drummond (2006) use their sys-
tem to overlay virtual wireframe models over physical buildings. The drawbacks of these approaches
are that the objects must be captured continuously by the camera to estimate poses, restricting mobi-
lity, and that, typically, prepared wireframe models are required.

In recent years, the increasing capabilities of low-cost off-the-shelf mobile devices have enabled
AR systems to be implemented with smartphones. Multiple software frameworks like Vuforia
(PTC), ARKit (Apple) or ARCore/Sceneform (Google), therefore, have been introduced, to realize
AR on smartphones with readily available 3D real-time rendering and pose tracking. Primarily,
the frameworks employ monocular visual-inertial odometry (VIO), a combination of single-camera
natural feature and IMU tracking (Linowes and Babilinski 2017). The drawbacks of these frame-
works are, on the one side, that pose estimation is only possible in a local reference frame, allowing
only relative pose tracking, i.e. the poses are estimated relative to an arbitrary initial pose, and, on the
other side, that there is no native support for CityGML, i.e. the data must be converted to a supported
format like filmbox (FBX), with the risk of losing information in the process.

We introduce a more flexible custom pose tracking system that (1) can be utilized indoors and
outdoors on off-the-shelf smartphones, (2) is fully self-contained and decoupled from external sys-
tems and (3) incorporates geometric-topologically and semantically rich CityGML data for the visu-
alizations and the pose tracking in a global reference frame in parallel.

3 Mobile CityGML pose tracking system

To facilitate mobile self-contained indoor and outdoor tracking in a global reference frame, we inte-
grate different pose tracking solutions in one system. In outdoor environments, GNSS, IMU and
optical data, and in indoor environments, an indoor positioning system (IPS), as, for example,
described by Real Ehrlich and Blankenbach (2019), IMU and optical data, are fused. The GNSS
and IPS provide coarse positional information in the WGS84 global reference system and the
IMU rotational information, global and local. For the global rotation, pitch and roll are determined
with the accelerometer and yaw with the magnetometer, relative to magnetic north, and for the local
rotation, accelerometer and gyroscope data are fused to determine yaw, pitch and roll. Each received
pose is transformed into the CityGML data reference system, so pose and model information are in
the same space.

The main component of the pose tracking system is the optical pose tracker. With a mobile
CityGML database locally available on the AR device, as shown by Blut, Blut, and Blankenbach
(2017), we can estimate poses in a global reference frame with the geo-referenced CityGML models.
The basic principle of our optical pose estimation approach is to find 3D corners in the CityGML
model and their corresponding 2D corners in camera images. The resulting pose is subsequently
fused with the IMU data. The proof-of-concept pose tracking system was implemented with smart-
phones, since these provide all necessary components, such as GNSS receiver, IMU and camera, and
using doors as pose estimation object, since these have an easily detectable simple geometric struc-
ture and are one of the basic objects of CityGML building models.

Two similar approaches to door-based pose estimation were presented by Händler (2012) for use in
an IPS. The first solution uses fiducial markers with encoded object information placed on each door to
identify them. The second solution employs an external database with images of each door, captured
from various angles to account for differences in appearance, caused by the different viewpoints. To
detect the doors, their contours are extracted from an image with the Canny algorithm (Canny
1986), to which a Hough transformation (Hough and Paul 1962) is applied. Once the door is
found, a texturized image of the door is extracted, including distinctive door features, such as door
handles. The texturized door candidates are then normalized and compared to the door images in
the database. A disadvantage of these twomethods is that they require preparations like placing fiducial
markers or creating image databases in advance. Further issues are that a network connection is
required and the total time for the pose estimation is ∼50 s, which is unsuitable for AR.
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To realize real-time pose tracking with readily available data and hardware, we designed the sys-
tem, as shown in Figure 2. The main challenges lie in the automated (1) extraction of 3D CityGML
door corners, (2) extraction of 2D image door corners, and (3) pose estimation using corresponding
2D/3D door corners. These are described in the following subsections.

3.1 Three-dimensional corner extraction

As shown in Figure 2, the first step after pose tracking initialization is to determine a coarse
global pose, either from GNSS/IMU or IPS/IMU. Using the pose, the relevant CityGML objects
are loaded from the local SpatiaLite database, according to Blut, Blut, and Blankenbach (2017)
and rendered. Since pose tracking with the IMU is inaccurate (see Figure 1), the
rendered CityGML objects do not align with their physical counterparts and appear shifted
(see Figure 3).

To align the virtual and physical objects more accurately, the pose needs to be improved. For
this, the user selects the door that should be used for the optical pose estimation. The selection
determines the type of CityGML object and its identifier. Using this information and the topolo-
gical and semantic model of CityGML, the corresponding database entry can quickly be found
with the solution of Blut, Blut, and Blankenbach (2017), and the required geometry loaded. In
the next step, the loaded geometry is processed to find the corners of the object, here the
door. Since the door geometry typically consists of hundreds of points, a method is necessary
to determine the corner points and sort them into a predefined order. This is done with the fol-
lowing steps:

Figure 2. Activity diagram of the pose tracking system.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 5



(1) Remove duplicate points.
(2) Compute the bounding box of all points that belong to the door.
(3) Sort the points from farthest to closest to the centre of the bounding box.
(4) Save the 4 or 8 points farthest from the centre, as these most likely are the corner points of the

door. If the door is modelled as a solid, it has 8 corner points and if it is modelled using only a
surface, it has 4 corner points.

(5) If the door is a surface, select the 4 corner points. If the door is a solid, select the 4 corner points
that are closest to the camera, as these are the corner points of the surface visible to the user.

(6) Sort the corner points counter-clock-wise.

The 3D corners are now ready to be used for the pose estimation. As shown in Figure 2, the cor-
responding 2D corners are next searched for in the camera image.

3.2 Two-dimensional corner extraction

The general idea for our 2D door corner extraction algorithm is to find best-fit corner candidates
using a door detection algorithm based on the work of Yang and Tian (2010). The approach requires
no training or preparations ahead of time and uses a geometric door model, an edge detector and a
corner detector. The algorithm is independent of colour or texture information, so that a wide range
of doors can be detected. The detection success heavily depends on the quality of the corners, since
these are tested against the geometric door conditions. For this, Yang and Tian (2010) use a curva-
ture-based corner detector. Alternatives are the Harris (Harris and Stephens 1988) corner detector or
the Shi-Tomasi (Shi and Tomasi 1994) corner detector.

To identify the best method for our solution, the three corner detectors were evaluated in terms of
corner quality (Table 1). Similar to Chen He and Yung (2008), some reference images were captured

Table 1. Comparison of corner detectors

Corner detector Total found Found true Missed true Found false Included (%)

Harris 4243 37 14 4206 87
Shi-Tomasi 248 34 17 214 85
Curvature-based 319 34 17 285 89

Figure 3. Due to an inaccurate pose, the virtual CityGML door is shifted and does not align with the physical door.
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in which such corners were marked and noted manually that are generally regarded as corners by
humans, thus, are at a right angle of two edges. In the following, these are referred to as true corners.
The algorithms were run on 480 × 360 px images. In average, there were 51 true corners in the image
set. The parameters of each algorithm were set, so that at least the door corners could be detected in
the majority of the images.

As Table 1 shows, the Harris corner detector in average finds the most true corners, but on the
downside also detects the most false corners, which are ∼20 times higher than with the Shi-Tomasi
detector or curvature-based detector. This is crucial for the detection speed of the door detector,
since larger corner numbers, generally, result in longer detection runtimes. Comparing the Shi-
Tomasi detector to the curvature-based detector, the results are quite similar, with equal average
found true corners and only slight differences in the amount of detected false corners. The Shi-
Tomasi detector in average detects less false corners, which speaks for this solution, but the curva-
ture-based detector showed better performance for the specific case of door detection, in which for
89% of the evaluation images the door corners were included. Therefore, the curvature-based detec-
tor was used for our implementation of the door detection algorithm.

The door detector proceeds as follows: before a search for edges and corners can be applied, the
image is down-sampled to reduce computational cost. Gaussian blur is applied to remove noise.
Next, a binary edge map is created using the Canny algorithm from which the contours are extracted.
These contours are used for the corner detector based on Chen He and Yung (2008). The following
steps consist of grouping the found corner candidates into groups of four according to the geometric
model, which defines that a door consists of four corners C1, C2, C3, C4 and four edges
E1, E2, E3, E4, and checking these against some geometric requirements such as that :

. a door must have a certain width and height,

. vertical edges should be parallel to each other,

. vertical edges are nearly perpendicular to the horizontal axis of the image.

To rate the width and height of a door, the relative size is calculated using the lengths of the door
edges Eij and the length of the diagonal of the image lengthimageDiagonal. The ratio is represented by the
below equation

Sizij =
�����������������������
(xi − xj)

2 + (yi − yj)
2

√

lengthimageDiagonal
(1)

The orientation of the edges Eij is calculated using the below equation

Oriij = tan−1 |xi − xj|
|yi − yj| x

180
p

(2)

The values are tested if these fall in a predefined threshold, set for each condition. Candidates that
comply with the requirements are further tested by combining them with the edges found by the
Canny algorithm. Edges of door candidates are checked if they match with the edge map by using
a fill ratio which defines the amount that the edges overlap the edge map (below equation)

FRij =
OverLapij
Lengthij

(3)

where OverLapij is the length of the overlapping part of the edge and Lengthij the total length of the
edge Eij.

In a last step, the 2D corner points are sorted counter-clock-wise, so these are in the same order as
the 3D corners found in the previous step (Section 3.1).
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3.3 Pose estimation with 2D/3D corners

Given 2D points (Section 3.2) in an image coordinate system extracted from an image and 3D
object points (Section 3.1) in a world coordinate system extracted from CityGML data, we esti-
mate a camera pose by exploiting the relationship between them. The relationship is expressed
by the below equation:

sm′ = K(R|t)M′, (4)

whereK(R|t) is the cameramatrix that projects a 3D pointM′ onto a 2D pointm′ in a 2D plane and s is
an arbitrary scaling factor. K , the calibration matrix, contains the intrinsic parameters and [R|t] the
extrinsic parameters of the camera, where R is the rotation matrix and t the translation vector. Typi-
cally, pose tracking algorithms assume that K is known and estimate R and t.

The relationship between 2D and 3D points was already investigated nearly 180 years ago by Gru-
nert (1841). The pose estimation approach is based on the observation that the angles between the
2D points are equal to the corresponding 3D points. A straightforward method was later introduced
by Sutherland (1968) with the direct linear transformation (DLT) that can be used to estimate both
the intrinsic and extrinsic camera parameters (see the below equation)

P11Xi + P12Yi + P13Zi + P14
P31Xi + P32Yi + P33Zi + P34

= ui,

P21Xi + P22Yi + P23Zi + P24
P31Xi + P32Yi + P33Zi + P34

= vi.

(5)

The equation can be solved using the singular value decomposition (SVD). The disadvantages of
this solution are that a relatively high number of correspondences are necessary and that the results
can be inaccurate (Faugeras 1993; Hartley and Zisserman 2004).

Therefore, more favourable solutions use a pre-determined camera calibration matrix K so that
instead of 11 parameters, only 6 must be estimated. Using K and n = 3 known correspondences gen-
erally is referred to as the perspective-three-point (P3P) problem. Many solutions to P3P have been
introduced over the years, for example, Linnainmaa, Harwood, and Davis (1988), DeMenthon and
Davis (1992), Gao et al. (2003) and Kneip, Scaramuzza, and Siegwart (2011). Typically, with n = 3
known correspondences, four possible solutions are produced so that n ≥ 4 correspondences are
necessary for a unique solution. The n ≥ 4 case is referred to as the PnP problem and, generally, is
preferred, since the pose accuracy often can be increased with a higher number of points. Some
PnP solutions were presented by Lepetit, Moreno-Noguer, and Fua (2009), Li, Xu, and Xie (2012),
Garro, Crosilla, and Fusiello (2012) and Gao and Zhang (2013). Iterative solutions typically optimize
a cost function based on error minimization, for example, using the Gauss–Newton algorithm (Gauß
1809) or the Levenberg–Marquardt algorithm (Levenberg 1944; Marquardt 1963). Examples are the
minimization of the geometric error (e.g. 2D reprojection) or algebraic error. Some disadvantages of
iterative solutions are that these require a good initial estimate. Noisy data strongly influence the
results with the risk of falling into local minima. Also, the high computational complexity of many
solutions renders them unusable for real-time applications. Therefore, an alternative to iterative sol-
utions are non-iterative ones. A popular non-iterative PnPmethod is EPnP (Lepetit, Moreno-Noguer,
and Fua 2009). The main idea is to represent the n points of the 3D object space as a weighted sum of
four virtual control points. The coordinates of the control points then can be estimated by expressing
themas theweighted sumof the eigenvectors. Some quadric equations then are solved to determine the
weights. An advantage of this approach is the O(n) complexity.

As shown in Figure 2, the received pose is utilized to correct the virtual camera and fused with
accelerometer/gyroscope readings, to enable arbitrary rotations relative to the optical pose. Figure 4
shows an AR view with poses estimated with our pose tracking system. The virtual objects accurately
overlay their physical counterparts.
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4 Evaluation

The introduced proof-of-concept pose tracking system was integrated into an Android-based
AR system (Figure 5) and deployed to three smartphones, the Google Nexus 5, Sony Xperia
Z2 and Google Pixel 2 XL, to evaluate its performance. For each smartphone, the system was

Figure 4. AR view with poses estimated by our pose tracking system.

Figure 5. Our AR system architecture. The entire system is Android-smartphone-based. The pose tracking system is one of three
core AR components, and binds the physical and virtual world. All components utilize third party libraries, such as OpenCV, jMonkey
and SpatiaLite. The system is accessible by the front-end graphical user interface.
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calibrated to account for lens distortion effects of the smartphone cameras according to
Luhmann et al. (2019).

The pose tracking system was evaluated in terms of accuracy, runtime and stability, with an image
dataset of various doors (Figure 6). Images were captured from distances of 3–9 m and at angles up
to 70° in different lighting conditions, so that results can be summed up into the six measurement
cases M1–M6, which represent our range of typical real-life application scenarios:

. M1: Near (3 m) straight

. M2: Far (up to 9 m) straight

. M3: Near (3 m) at angle

. M4: Far (up to 9 m) at angle

. M5: Good lighting

. M6: Bad lighting

In total, 80 images that fit the cases (M1–M6) were captured with each smartphone. Most images
contained a door in a complex scene. We define complex scenes as cluttered environments with arbi-
trary objects such as wall paintings, books or other furniture. Additionally, 20 images with no door,
but some similar objects such as pictures on walls, were added to the dataset. For M1 and M2, the
camera was placed straight towards the door at different distances, for M3 and M4, the camera was
placed next to the door, at an angle. For good lighting conditions (M5), images were captured during
the day. Indoors, the windows were fully opened, and artificial lighting was turned on. For bad light-
ing conditions (M6), images were captured on an overcast day with the blinds of the windows shut
and all artificial lighting turned off. Figure 7 shows the used evaluation set-up.

In the following sections, we present the evaluation results of the door detection, the pose esti-
mation and the pose fusion, since these are the key components of our pose tracking system; there-
fore, the evaluation also reflects the practical applicability of our solution.

4.1 Door detection

The pose tracking depends on the performant, reliable and accurate detection of doors. To find a bal-
ance between these factors, we evaluated the detection runtime and rate with different image resol-
utions. The detection rate was calculated by classifying the detection results into four different cases:

Figure 6. Some examples of doors used for evaluating the optical pose estimation.

10 C. BLUT AND J. BLANKENBACH



. The image contains a door and the door was properly detected (true positive – TP) (Figure 8).

. The image contains a door, but the door was not detected (false negative – FN) (Figure 9).

. The image contains no door and no door was detected (true negative – TN).

. The image contains no door, but a door was detected (false positive – FP).

Figure 10 shows the success rate (TP) of detecting a door in images at different resolutions con-
taining a door and Figure 11 the success rate of determining that no door is included in images (TN)
at different resolutions. As Figure 10 depicts, with a resolution of 240 × 180 px, the algorithm only
has a TP detection rate of 19% and increases rapidly to more than four times as much with a

Figure 7. Set-up for evaluating the optical pose estimation.

Figure 8. Example of the detected door. The red dots are corner points and the green rectangle is the correctly detected door.
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resolution of 480 × 360 px. Higher resolutions only slightly improve the TP rate. A similar trend is
found for the TN rate (Figure 11). With a resolution of 240 × 180 px, in more than 50%, a door is
falsely detected in an image without a door. For 480 × 360 px images, the rate is reduced to 20% (80%
TN rate) and only increases slightly for higher resolution images.

The measured detection time is defined as the duration of the entire detection process, including
steps such as downscaling of the image, extracting edges and analysing these. Figure 12 shows the
mean time required to detect a door in images with different resolutions. The total detection time
is lowest for 240 × 180 px with 17 ms for the Google Pixel 2 XL, 56 ms for the Sony Xperia Z2
and 72 ms for the Google Nexus 5 and increases with the size of the images to 1.5 s for the Google
Pixel 2 XL, 3.5 s for the Sony Xperia Z2 and 5.1 s for the Google Nexus 5.

Generally, we found that a resolution of 480 × 360 px represents the best compromise between
detection rate (Figures 10 and 11) and runtime (Figure 12). We, therefore, based our further evalu-
ations, specifically M1–M6, on this resolution.

We found that the TP detection rate of 84% is independent of the cases M1–M6, but the mean
detection time varies. As Figure 13 shows, the time does not directly correlate with the distance,
angle or lighting, but with the background of the door. Backgrounds with various different colours
and shapes increase the required detection time, since the algorithm finds more potential corners in
such cluttered backgrounds. Therefore, doors that are surrounded by objects require more time com-
pared to doors that are only surrounded by white walls. Typically, the images captured at an angle

Figure 9. Example of a partially detected door.

Figure 10. True positive detection rate of the door detection algorithm for images with different resolutions.

12 C. BLUT AND J. BLANKENBACH



and from a distance contained more of the surrounding environment, so that the detection process
was more complex.

The accuracy of the detection algorithm describes how well the automatically derived corners
match the actual corners of the door. A good accuracy is crucial for accurate pose estimations, as
shown by Händler (2012). For this, the door corners were manually extracted from each image
and the automatically derived corners were compared to them. Figure 14 shows that the automati-
cally extracted door corners of our algorithm in average only lie 1.3 px from the reference corners,
which is sufficient for accurate optical pose estimation.

4.2 Optical pose estimation

When using images to estimate poses, factors such as the distance or angle to the object (e.g. door) and
lighting conditions potentially influence the accuracy of the pose. To confirm or refute this, poses were
estimated for the casesM1–M6 and the accuracy of the automatically estimated poses was determined
by comparing them tomanually calculated reference poses. Figure 15 shows the positional differences
and Figure 16 the angular differences. Generally, the automatic pose estimations in average lie 17 cm
from the reference position and 2.5° in average from the reference rotation. The results show that the
accuracy is generally independent from the angle, distance or the lighting conditions.

Figure 12. Time required to detect a door in cases using the same images in different resolutions.

Figure 11. True negative detection rate of the door detection algorithm for images with different resolutions.
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4.3 Fusing optical and IMU poses

Given an initial pose from our optical pose system, fused local IMU poses enable the user to freely
look around. The stability of these poses is essential for the pose tracking system. This is inspected by
measuring the influence of sensor drift and the impact of relative movements. The stability of the
augmentations was analysed using three different sensor types provided by the Android smart-
phones, the Rotation Vector, the Game Rotation Vector and the gyroscope. The Rotation Vector
and Game Rotation Vector are referred to as composite sensors (Google, 10 December 2019,
https://developer.android.com/guide/topics/sensors), since they use multiple hardware sensors and
apply sensor fusion. The Rotation Vector incorporates the accelerometer, magnetometer and gyro-
scope and reports the rotation relative to magnetic north. The Game Rotation Vector utilizes the
accelerometer and gyroscope and measures relative to an arbitrary starting point, like the gyroscope.

Two cases were evaluated, first, the impact of the sensor drift on pose tracking, secondly, the impact
of device movements, for example, when the user looks around. For both cases, the difference between
the initial and end pose was determined. For the resting AR system, each smartphone was placed in a

Figure 13. Time required to detect a door in cases M1–M6 with 480 × 360 px images.

Figure 14. Accuracy of the automatically derived door corners with 480 × 360 px images.
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stable pose using a sturdy tripod. The initial pose was automatically saved after a delay of 2 s to prevent
any distortions caused by interactions with the touch screen. After a pre-determined amount of time,
the next pose was saved and compared to the initial pose. The resulting rotation errors for each smart-
phone and the different sensor types are shown in Figures 17–19, respectively.

Figure 17 shows that theRotationVectors, generally, performwell in a 10 minwindow,with themean
rotation errors below 1°.While the error of theGoogle Nexus 5 increases the slowest, the Sony Xperia Z2
shows a rather steep linear increase. The curveof theGoogle Pixel 2XLshows that the error stabilizes after
a certain time. The Game Rotation Vectors (Figure 18) show the mean rotation errors under 0.5° in a
10 min window. The Google Pixel 2 XL performs the best but shows a linear error increase. In compari-
son, the errors of the GoogleNexus 5 and the Sony Xperia Z2 each stabilize after a certain time.While the
average absolute rotation from theRotationVector suffers from the inaccuratemeasurements of themag-
netometer resulting in bearing errors up to 25° [also see (Schall et al. 2009)], the relative rotation results are
significantly better. A comparison of Figures 17 and 18 with Figure 19 shows that the quality of the
rotationbenefits fromsensor fusion in theRotationVector andGameRotationVector.While the rotation
derived from the gyroscope (Figure 19) alone is comparatively good for the Sony Xperia Z2 and Google
Pixel 2 XL, the Google Nexus 5 suffers significantly from the sensor drift

The impact of movement was evaluated by comparing the initial pose to the pose after the move-
ments. To find the exact physical pose, the device was in before being moved, a tripod was used of

Figure 15. Accuracy of automatically estimated position.

Figure 16. Accuracy of automatically estimated orientation.
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which the initial pose was marked on the corresponding surface. The entire tripod with the smart-
phone then was moved accordingly and later placed exactly in the markings again. The results for
each smartphone and type of sensor are displayed in Figures 20–22, respectively. Figure 20 shows
that the mean rotation error is not influenced by movement when using the Rotation Vector.
Figures 21 and 22 show that the mean rotation error increases with each turn when using the
Game Rotation Vector and gyroscope. In both cases, the Sony Xperia Z2 shows the best and the Goo-
gle Pixel 2 XL the poorest results.

Figure 17. Quality of relative rotation over time using the rotation vector.

Figure 18. Quality of relative rotation over time using the game rotation vector.

Figure 19. Quality of relative rotation over time using the gyroscope.
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5 Conclusions and future work

The evaluation shows that low-cost off-the-shelf mobile devices, such as smartphones, are sufficient
to realize a performant mobile AR pose tracking system with CityGML data, independent of exterior
infrastructures. The introduced optical pose tracking method is real time capable and provides accu-
rate results, enabling AR use cases as described in Section 1. Additionally, with CityGML-based pose
tracking, the poses become tightly coupled to the model data. This not only allows geo-referenced

Figure 20. Quality of relative rotation using the rotation vector when AR system is rotated.

Figure 21. Quality of relative rotation using the game rotation vector when AR system is rotated.

Figure 22. Quality of relative rotation using the gyroscope when AR system is rotated.
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visualizations of model data, but also, for example, extending models with newly captured geo-refer-
enced information. For instance, damaged areas could be documented, building parts annotated or
even missing models added.

The performance especially benefits from newer generation smartphones, such as the Google
Pixel 2 XL. The fusion of the optical pose with local IMU poses allows the user to freely look around.
The low-cost sensors of the evaluation smartphones provide sufficient results, but the pose tracking
could be further improved. Currently, the door detection relies on features found by a corner detec-
tor. The entirety of points is analysed and tested against selected conditions to find possible door
candidates. While the current implementation already provides good results with a detection
speed of 215 ms and a positive detection rate of 80%, the detection rate could still be improved
by increasing the image resolution, which would increase feature detectability, at the cost of detection
speed. To counter this, the amount of corner points could be reduced by additional conditions. An
approach could be to exploit the colour of the doors. This information is available in the CityGML
model, so an additional test could be performed to check if the found corner points are part of a
certain coloured CityGML object.

The initial pose derived from the door-based pose estimation in average has a positional accuracy
of 17 cm and a rotation accuracy of 2.5°. The following relative IMU pose tracking in average has a
rotation error of 1–6°. This is noticeable in the visual augmentations, but not a major issue, since the
virtual objects augment their physical counterparts sufficiently for the AR use cases described in Sec-
tion 1. To further increase the quality of the augmentations and stabilize them, a possibility would be
to combine edge-based pose tracking, as shown by Reitmayr and Drummond (2006), and our door-
based method. Since the edge-based solution requires a good initial pose, our door detection solution
could be utilized for initialization. The disadvantage here would be that the door must always be vis-
ible for the edges to be matched. Therefore, the solution would need to be extended to use other
objects in the vicinity. A challenge hereby would be to find reliable physical objects, which, on the
one hand, have a constant pose over time and, on the other hand, do not have an overly complex
shape to be detected reliably.

Alternatively, VIO, as, for example, in ARCore, could be effective. As described by Google (10
December 2019, https://developers.google.com/ar/discover/concepts), ARCore finds unambiguously
re-identifiable image features and tracks these across subsequent images, deriving a relative camera
motion. The resulting poses are fused with IMU data. Additionally, ARCore uses the sets of detected
features to find and derive planes, such as wall-, ceiling-, floor- or table surfaces. These planes could
be utilized for a geometry matching process with the corresponding geo-referenced CityGML sur-
faces, to obtain poses in a global reference frame. Disadvantageous is that the plane detection relies
on image features, so that flat surfaces must be sufficiently texturized. White walls, therefore, may not
be detectable for example.
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