
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgis20

International Journal of Geographical Information
Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tgis20

Stop-and-move sequence expressions over
semantic trajectories

Yenier Torres Izquierdo , Grettel Monteagudo García , Marco A. Casanova ,
Luiz André P. Paes Leme , Christos Sardianos , Konstantinos Tserpes , Iraklis
Varlamis & Lívia C. Ruback Rodrigues

To cite this article: Yenier Torres Izquierdo , Grettel Monteagudo García , Marco A. Casanova ,
Luiz André P. Paes Leme , Christos Sardianos , Konstantinos Tserpes , Iraklis Varlamis & Lívia
C. Ruback Rodrigues (2020): Stop-and-move sequence expressions over semantic trajectories,
International Journal of Geographical Information Science, DOI: 10.1080/13658816.2020.1793157

To link to this article: https://doi.org/10.1080/13658816.2020.1793157

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 20 Jul 2020.

Submit your article to this journal

Article views: 77

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tgis20
https://www.tandfonline.com/loi/tgis20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/13658816.2020.1793157
https://doi.org/10.1080/13658816.2020.1793157
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/13658816.2020.1793157
https://www.tandfonline.com/doi/mlt/10.1080/13658816.2020.1793157
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2020.1793157&domain=pdf&date_stamp=2020-07-20
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2020.1793157&domain=pdf&date_stamp=2020-07-20

RESEARCH ARTICLE

Stop-and-move sequence expressions over semantic
trajectories
Yenier Torres Izquierdo a, Grettel Monteagudo García a, Marco A. Casanova a,
Luiz André P. Paes Leme b, Christos Sardianos c, Konstantinos Tserpes c,
Iraklis Varlamis c and Lívia C. Ruback Rodrigues d

aDepartment of Informatics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil; bInstitute
of Informatics, Federal Fluminense University, Niteroi, Brazil; cDepartment of Informatics and Telematics,
Harokopio University of Athens, Athens, Greece; dDepartment of Computing, Federal Rural University of Rio
de Janeiro, Seropédica, Brazil

ABSTRACT
Stop-and-move semantic trajectories are segmented trajectories
where the stops and moves are semantically enriched with addi
tional data. A query language for semantic trajectory datasets has
to include selectors for stops or moves based on their enrichments
and sequence expressions that define how to match the results of
selectors with the sequence the semantic trajectory defines. This
article addresses the problem of searching semantic trajectories,
using stop-and-move sequence expressions. The article first pro
poses a formal framework to define semantic trajectories and intro
duces stop-and-move sequence expressions, with well-defined
syntax and semantics, which act as an expressive query language
for semantic trajectories. Then, it describes a concrete semantic
trajectory model in RDF, defines SPARQL stop-and-move sequence
expressions and discusses strategies to compile such expressions
into SPARQL queries. Lastly, the article specifies user-friendly key
word search expressions over semantic trajectories based on the
use of keywords to specify stop-and-move queries, and the adop
tion of terms with predefined semantics to compose sequence
expressions. It then shows how to compile such keyword search
expressions into SPARQL queries. Finally, it provides a proof-of-
concept experiment over a semantic trajectory dataset constructed
with user-generated content from Flickr, combined with Wikipedia
data.

ARTICLE HISTORY
Received 27 February 2020
Accepted 4 July 2020

KEYWORDS
Semantic trajectories search;
stop-and-move sequences;
RDF; SPARQL

1. Introduction

In the recent years, massive amounts of tracking data have been generated for the benefit
of applications that address human or animal mobility, traffic management, etc. Research
works in the field (Renso et al. 2013b, Bogorny et al. 2014) begin with a raw trajectory that
consists of spatio-temporal positions extracted from a raw movement track. Then they
partition its points into homogeneous segments, that have common properties, such as
stops, where the speed of the object is lower than a certain threshold, and moves, where

CONTACT Marco A. Casanova casanova@inf.puc-rio.br

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
https://doi.org/10.1080/13658816.2020.1793157

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any med
ium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://orcid.org/0000-0003-0971-8572
http://orcid.org/0000-0001-9713-300X
http://orcid.org/0000-0003-0765-9636
http://orcid.org/0000-0001-6014-7256
http://orcid.org/0000-0001-7262-7310
http://orcid.org/0000-0001-5183-1443
http://orcid.org/0000-0002-0876-8167
http://orcid.org/0000-0001-5000-2280
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2020.1793157&domain=pdf&date_stamp=2020-10-15

the speed is greater than such threshold (Spaccapietra et al. 2008). The subsequent
semantic enrichment step enriches the segmented trajectory with additional information
(e.g. traffic, weather, etc.) retrieved from external repositories (Parent et al. 2013). The final
output is a semantic trajectory (Renso et al. 2013b).

Given a semantic trajectory dataset, one immediate question arises: how to query the
dataset? The query language must include selectors for stops and moves based on their
enrichments and must define how to match the selectors with the sequence of stops and
moves contained in the semantic trajectory. For example, a query on semantic trajectories
of tourists in the city of Pisa can search for ‘walking trajectories that begin with a stop at
the Leaning Tower, then at Campo Santo and, later on, stop at a museum’. The intended
interpretation of ‘then’ is that the first two stops are consecutive, but ‘later on’ indicates
that there might be several stops between Campo Santo and the museum, as long as all
moves are by walking (as transportation means).

In this work, we focus on stop-and-move semantic trajectories of humans (Renso et al.
2013a). The trajectory segments are rich in information (e.g. stops contain information for
Points-Of-Interest – POIs and moves contain information on the transportation means,
duration and distance traveled) and may contain information about the moving object.
For querying the resulting semantic trajectory dataset, we employ stop-and-move sequence
expressions. Although we employ the familiar concepts of stops and moves (Alvares et al.
2007a, Spaccapietra et al. 2008, Baglioni et al. 2008), we support querying more than the
stops’ properties. The proposed expressions allow us to search for semantic trajectories
using the stops’ and moves’ properties and the intercalation of stops and moves.

The article proposes a formal framework for semantic trajectories, which is based on
Description Logic and formally introduces the syntax and semantics of stop-and-move
sequence expressions. It also provides a semantic trajectory model in RDF (Resource
Description Framework) and defines user-friendly keyword expressions that search for
individual stops and moves or their sequences. Finally, it explains how such stop-and-
move sequence expressions can be mapped to queries in the SPARQL Protocol and RDF
Query Language (or SPARQL for simplicity), taking advantage of the concrete framework.

The main contributions of this research, therefore, are threefold:

● It provides a formal representation of semantic trajectories, which for the first time
allows sequence queries that combine stops and moves;

● It implements a query mechanism for semantic trajectories, which considers in
tandem stop-and-move semantics and the semantics of their sequence in the
semantic trajectory;

● It provides an end-to-end explanation of how keyword search expressions over
semantic trajectories are mapped to SPARQL.

The article also includes a proof-of-concept experiment to validate the proposed solution.
The experiment adopts a triplified version of the TripBuilder dataset, a semantic trajectory
dataset constructed from user-generated content obtained from Flickr, combined with
data from Wikipedia. The experiment illustrates how to compile a set of keyword search
expressions into SPARQL.

The remainder of this article is organized as follows. Section 2 summarizes related
work. Section 3 introduces the use-case trajectory dataset and sample informal queries

2 Y. T. IZQUIERDO ET AL.

that help illustrate the discussion in the next sections. Section 4 provides a formal model
for semantic trajectories and defines stop-and-move sequence expressions. Section 5
defines an RDF model for semantic trajectories and for stop-and-move sequence expres
sions. Section 6 introduces keyword search expressions over semantic trajectories and
discusses their translation to SPARQL. Section 7 describes the proof-of-concept experi
ment. Finally, Section 8 contains the conclusions and suggests directions for future
research.

2. Related work

The abundance of positioning data and the applications that use them quickly raised the
interest in adding semantics to trajectories. The Baquara framework (Fileto et al. 2013) was
a pioneering approach in the domain of semantically enriched trajectories, that supported
a limited amount of Linked Open Data sources. The Athena ontology (Renso et al. 2013a)
was a step towards an OWL-based1 reasoning process for semantic trajectories. This
allowed meaningful pattern interpretations of human behavior by combining inductive
and deductive reasoning.

In order to take advantage of semantic trajectories, which are represented in an
abstract model, it is necessary to develop the appropriate query mechanisms (e.g. in
SPARQL). However, the simplicity of keyword-based queries makes them more preferable
among non-expert users and raises the need for a SPARQL transcription mechanism
(Oliveira et al. 2015, Bast et al. 2016). Examples of graph-based approaches, which directly
explore the RDF dataset for generating and ranking candidate SPARQL queries, are: i)
mapping techniques, such as (Zhou et al. 2007) and (Rihany et al. 2018), which use
Wordnet to map keywords to elementary SPARQL query building blocks Zheng et al.
(2016), ii) ranking techniques (e.g. (Ghanbarpour and Naderi 2019)) that search for the
top-k answers of the keyword-based query and iii) graph summarization algorithms of
Tran et al. (2009), Le et al. (2014), Lin et al. (2018) and Wen et al. (2018). Another schema-
based approach is QUICK (Zenz et al. 2009), which employs user feedback on the selection
of intermediate queries that will be finally executed. Finally, the compositional approach
of Han et al. (2017) uses the keywords to first obtain elementary query graph building
blocks and then applies a bipartite graph matching-based best-first search method to
assemble the final query.

Baquara2, by Fileto et al. (2015), introduced the concepts of movement segments (e.g.
stops and moves), events and movement objects and allowed SPARQL queries over them.
The datAcron ontology (Santipantakis et al. 2017) conceptualised trajectories as temporal
sequences of segments, which relate to a behaviour, event, etc. Every expression results in
an iterative execution of parametrized SPARQL queries that collects all the relevant
trajectory information. Spaccapietra et al. (2008) defined concepts for Stops, Moves,
trajectory Begin and End but ignored stop ordering. The Geo-Ontology (Hu et al. 2013)
considered the ordering of points in the trajectory (e.g. concepts hasNext, hasSuccessor,
etc.) but did not support SPARQL and intercalated stop-and-move sequence queries.

When keyword query expressions target semantic trajectories, it is important to allow
trajectory or sub-trajectory matching, either exact or approximate. It is also important to
support operations that capture the semantic properties of a trajectory (Alvares et al.
2007b, Yan et al. 2008, Parent et al. 2013), such as stops (or moves) contained in it with or

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 3

without order (Furtado et al. 2016, Petry et al. 2019). For this purpose, we aim at retrieving
trajectories of interest using approximate criteria and semantic matching operators of
increased flexibility compared to exact matching. The semantics of the trajectory refer to
various aspects of stops and moves, and the scenario we employ assumes human
trajectories in an urban environment.

In this work, we propose an algorithm for converting a keyword-based query into
SPARQL, which is composed by: i) restriction clauses that represent keyword matches and
ii) join clauses that connect the restriction clauses. The keyword-based query conversion is
schema-based since it exploits the RDF schema to compile the final SPARQL query. The
generation of the join clauses builds upon the idea of candidate networks (Hristidis and
Papakonstantinou 2002), following the successful paradigms of (Oliveira et al. 2015,
Bergamaschi et al. 2016). The answer to the SPARQL query is a subgraph of the RDF
graph, which contains literal nodes that match the keywords, and paths that connect the
literal nodes.

3. A keyword search over semantic trajectories use-case

This section briefly describes the TripBuilder (Brilhante et al. 2014) semantic trajectory
dataset, an example dataset used in this paper, and provides a set of sample queries that
follow our proposed notation for stop-and-move sequence expressions.

TripBuilder contains tourist trajectories from different Italian cities. The trajectories
have been constructed by clustering users’ Flickr photos in the spatial dimension and
relating them to points-of-interest (POIs). POI semantics (e.g. POI category) have been
extracted from Wikipedia. For example, for the city of Pisa, the dataset contains 3,430
trajectories by 1,825 distinct users, from which only 389 trajectories (approximately 11%)
have a length between 4 and 20. Table 1 illustrates two trajectories, both of which have six
POIs. This research uses a triplified version of the original TripBuilder dataset (https://doi.
org/10.6084/m9.figshare.11559090). The triplification follows the RDF schema described
in Section 5.

The sample queries defined over the TripBuilder RDF dataset can be expressed using:

● a symbolic notation, similar to that of regular expressions, that defines sequences of
stop-and-move queries

● a reserved terms-based notation, which combines query terms and reserved terms
that define the properties and interrelations of stops and moves.

Table 2 summarises the symbols and reserved terms of the proposed notation, with the
list of symbols in the first column, their equivalent terms in the second column, and

Table 1. Two illustrative trajectories, based on the TripBuilder dataset.
Trajectory 1 Trajectory 2

1: ‘Porta_Nuova_(Pisa)’, 1: ‘Torre_del_Leone’,
2: ‘Museo_delle_sinopie’, 2: ‘Torre_pendente_di_Pisa’,
3: ‘Cappella_Dal_Pozzo’, 3: ‘Camposanto_monumentale’,
4: ‘Museo_delle_sinopie’, 4: ‘Torre_del_Leone’,
5: ‘Chiesa_di_San_Giorgio_ai_Tedeschi’, 5: ‘Torre_pendente_di_Pisa’,
6: ‘Museo_delle_sinopie’ 6: ‘Camposanto_monumentale’

4 Y. T. IZQUIERDO ET AL.

https://doi.org/10.6084/m9.figshare.11559090
https://doi.org/10.6084/m9.figshare.11559090

a description of their meanings in the last column. In Table 3, we demonstrate the two
notations using a set of example queries for the city of Pisa. Queries are first expressed in
natural language, and then written using the symbolic and the reserved terms-based
notation. Finally, Table 4 shows sample query terms used in the TripBuilder RDF dataset,
their free-text equivalents and their meaning.

Queries 1 to 1 ignore moves and focus only on the semantics of stops and their
sequences. Queries 1 to 1 seek for semantic trajectories that combine stops and moves
in a specific sequence. In 1 ‘Stop�’ indicates that the trajectory may have zero or more
stops of any kind between the stop that satisfies ‘Museidipisa’ and the end of the
trajectory. In 1 ‘Move’ indicates that the trajectory may have any kind of move between
the stop that satisfies ‘Chiesedipisa’ and the end of the trajectory.

We assume that a query Q is evaluated against some segment of a trajectory τ. The
segment is required neither to start at the beginning of τ nor to terminate at the end of τ.
If Q must be evaluated against the complete trajectory, then the user must resort to the
reserved symbols Begin and End, as in Examples Q5, Q7 and Q10. Section 4.2.2 provides
a formal definition of how queries are evaluated against trajectories. Section 5 shows how
to write the example queries in SPARQL.

4. A formal framework for querying semantic trajectories

4.1. A formal framework for semantic trajectories

The formal framework for semantic trajectories provides the concepts needed to
define the syntax and semantics of the query expressions and to define an RDF
model and a SPARQL implementation of such expressions. We present its main
concepts in two groups: i) the core model that suffices to formalize semantic trajec
tories in Description Logic and ii) the extended model that includes concepts for
writing query expressions.

Core model: The core model has three classes, Trajectory, Stop and Move, and a set of
other classes collectively called enrichment classes. The individuals in Trajectory are called
trajectory individuals, those in Stop are called stop individuals, those in Move are called
move individuals, and those in the enrichment class are called enrichment individuals.

Table 2. Alphabet for keyword queries over semantic trajectories.
Symbol Reserved Term Description

Stop ‘any stop’ the set of stops
Move ‘any move’ the set of moves
Begin Begin the set of all beginning stops of trajectories
End End the set of all end stops of trajectories
E t F or the union of the results of queries E and F
E u F and the intersection of the results of queries E and F
Eþ ‘at least once’ repeat query E at least once
E� ‘zero or more times’ repeat query E zero or more times
EjF or execute query E or query F (but not both)
E; F ‘and then’ execute query E and then query F
E? optionally execute query E at most once
<M > ‘by . . . to’ move from one stop to the next, where M is a query on moves

Note: E and F are queries that define a set of stops or a set of moves, depending on the context.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 5

Ta
bl

e
3.

 A
 s

et
 o

f s
am

pl
e

qu
er

ie
s.

Q
id

Fr
ee

 t
ex

t
qu

er
y

Sy
m

bo
lic

 n
ot

at
io

n
Re

se
rv

ed
 t

er
m

s-
ba

se
d

no
ta

tio
n

Q
1

Tr
aj

ec
to

rie
s

th
at

 s
to

p
at

 a
 m

us
eu

m
 a

nd
 th

en
 a

t a
 c

ha
pe

l
M
u
s
e
i
d
i
p
i
s
a
;
 C
a
p
p
e
l
l
e
d
i
p
i
s
a

M
u
s
e
i
d
i
p
i
s
a
 ‘
a
n
d
 t
h
e
n
’
 C
a
p
p
e
l
l
e
d
i
p
i
s
a

Q
2

Tr
aj

ec
to

rie
s

th
at

 s
to

p
at

 a
 t

ow
er

, t
he

n
st

op
 a

t
a

ch
ap

el

or
 c

hu
rc

h,
 a

nd
 t

he
n

at
 a

 m
us

eu
m

T
o
r
r
i
d
i
p
i
s
a
;
(
C
a
p
p
e
l
l
e
d
i
p
i
s
a
 |

C
h
i
e
s
e
d
i
p
i
s
a
)
;
 M
u
s
e
i
d
i
p
i
s
a

T
o
r
r
i
d
i
p
i
s
a
 ‘
a
n
d
 t
h
e
n
’
 (
C
a
p
p
e
l
l
e
d
i
p
i
s
a
 o
r

C
h
i
e
s
e
d
i
p
i
s
a
)
 ‘
a
n
d
 t
h
e
n
’
 M
u
s
e
i
d
i
p
i
s
a

Q
3

Tr
aj

ec
to

rie
s

th
at

 s
to

p
at

 le
as

t o
nc

e
in

 a
 to

w
er

, a
nd

 th
en

at

 a
 m

us
eu

m
T
o
r
r
i
d
i
p
i
s
a
þ
;
 M
u
s
e
i
d
i
p
i
s
a

T
o
r
r
i
d
i
p
i
s
a
 ‘
a
t
 l
e
a
s
t
 o
n
c
e
’
 ‘
a
n
d
 t
h
e
n
’

M
u
s
e
i
d
i
p
i
s
a

Q
4

Tr
aj

ec
to

rie
s

th
at

 s
to

p
at

 th
e

Li
on

 T
ow

er
 a

nd
 th

en
 a

t t
he

Le

an
in

g
To

w
er

, o
r

st
op

 a
t

th
e

Le
an

in
g

To
w

er
 a

nd

th
en

 a
t

th
e

Li
on

 T
ow

er

T
o
r
r
e
_
d
e
l
_
L
e
o
n
e
;

T
o
r
r
e
_
p
e
n
d
e
n
t
e
_
d
i
_
p
i
s
a
)
 |

(
T
o
r
r
e
_
p
e
n
d
e
n
t
e
_
d
i
_
p
i
s
a
;

T
o
r
r
e
_
d
e
l
_
L
e
o
n
e
)

(
T
o
r
r
e
_
d
e
l
_
L
e
o
n
e
 ‘
a
n
d
 t
h
e
n
’

T
o
r
r
e
_
p
e
n
d
e
n
t
e
_
d
i
_
p
i
s
a
)
 o
r

(
T
o
r
r
e
_
p
e
n
d
e
n
t
e
_
d
i
_
p
i
s
a
 ‘
a
n
d
 t
h
e
n
’

T
o
r
r
e
_
d
e
l
_
L
e
o
n
e
)

Q
5

Tr
aj

ec
to

rie
s

th
at

 b
eg

in
 a

t
a

m
us

eu
m

 a
nd

 t
he

n
en

d
at

a

ch
ap

el
(
B
e
g
i
n
 u

M
u
s
e
i
d
i
p
i
s
a
)
;

(
C
a
p
p
e
l
l
e
d
i
p
i
s
a
 u

E
n
d
)

(
B
e
g
i
n
 a
n
d
 M
u
s
e
i
d
i
p
i
s
a
)
 ‘
a
n
d
 t
h
e
n
’

(
C
a
p
p
e
l
l
e
d
i
p
i
s
a
 a
n
d
 E
n
d
)

Q
6

Tr
aj

ec
to

rie
s

th
at

 s
to

p
at

 a
 m

us
eu

m
 a

nd
, l

at
er

 o
n,

 e
nd

 a
t

a
ch

ap
el

 o
r

a
ch

ur
ch

 o
pt

io
na

lly
M
u
s
e
i
d
i
p
i
s
a
;
 S
t
o
p
�
;
 (
C
a
p
p
e
l
l
e
d
i
p
i
s
a

|
 C
h
i
e
s
e
d
i
p
i
s
a
)
?
 u

E
n
d

M
u
s
e
i
d
i
p
i
s
a
 ‘
a
n
d
 t
h
e
n
’
 ‘
a
n
y
 s
t
o
p
 z
e
r
o
 o
r
 m
o
r
e

t
i
m
e
s
’
 ‘
a
n
d
 t
h
e
n
’
 (
C
a
p
p
e
l
l
e
d
i
p
i
s
a
 o
r

C
h
i
e
s
e
d
i
p
i
s
a
)
 o
p
t
i
o
n
a
l
l
y
 a
n
d
 E
n
d

Q
7

Tr
aj

ec
to

rie
s

th
at

 b
eg

in
 a

t a
 c

ha
pe

l,
st

op
 a

t z
er

o
or

 m
or

e
ch

ap
el

s,
 a

nd
 e

nd
 a

t
a

ch
ap

el
B
e
g
i
n
 u

C
a
p
p
e
l
l
e
d
i
p
i
s
a
;

C
a
p
p
e
l
l
e
d
i
p
i
s
a
�
;
 C
a
p
p
e
l
l
e
d
i
p
i
s
a
 u

E
n
d

B
e
g
i
n
 a
n
d
 C
a
p
p
e
l
l
e
d
i
p
i
s
a
 ‘
a
n
d
 t
h
e
n
’

C
a
p
p
e
l
l
e
d
i
p
i
s
a
 ‘
z
e
r
o
 o
r
 m
o
r
e
 t
i
m
e
s
’
 ‘
a
n
d
 t
h
e
n
’

C
a
p
p
e
l
l
e
d
i
p
i
s
a
 a
n
d
 E
n
d

Q
8

Tr
aj

ec
to

rie
s

th
at

 s
to

p
at

 a
 m

us
eu

m
 a

nd
 th

en
 ta

ke
 a

 b
us

to

 a
 c

ha
pe

l
M
u
s
e
i
d
i
p
i
s
a
 <
B
u
s
>
 C
a
p
p
e
l
l
e
d
i
p
i
s
a

M
u
s
e
i
d
i
p
i
s
a
 ‘
b
y
 B
u
s
 t
o
’
 C
a
p
p
e
l
l
e
d
i
p
i
s
a

Q
9

Tr
aj

ec
to

rie
s

th
at

 b
eg

in
 a

t
a

ch
ap

el
 o

r
a

ch
ur

ch
, a

lw
ay

s
m

ov
e

by
 b

us
 b

et
w

ee
n

st
op

s,
 a

nd
 e

nd
 a

t t
he

 L
ea

ni
ng

To

w
er

(
B
e
g
i
n
 u

(
C
a
p
p
e
l
l
e
d
i
p
i
s
a
 |

C
h
i
e
s
e
d
i
p
i
s
a
)
)
 <
B
u
s
þ
>

(
T
o
r
r
e
_
p
e
n
d
e
n
t
e
_
d
i
_
p
i
s
a
 u

E
n
d
)

B
e
g
i
n
 a
n
d
 (
C
a
p
p
e
l
l
e
d
i
p
i
s
a
 o
r
 C
h
i
e
s
e
d
i
p
i
s
a
)
 ‘
b
y

B
u
s
 a
t
 l
e
a
s
t
 o
n
c
e
 t
o
’
 T
o
r
r
e
_
p
e
n
d
e
n
t
e
_
d
i
_
p
i
s
a

a
n
d
 E
n
d

Q
10

Tr
aj

ec
to

rie
s

th
at

 b
eg

in
 a

t
a

to
w

er
, t

he
n

w
al

k
to

 t
ak

e
a

bu
s

to
 a

 c
hu

rc
h,

 a
nd

 th
en

 u
si

ng
 a

ny
 tr

an
sp

or
ta

tio
n

m
ea

ns
 e

nd
 a

t
a

pa
la

ce

B
e
g
i
n
 u

T
o
r
r
i
d
i
p
i
s
a
 <
W
a
l
k
;
B
u
s
>

C
h
i
e
s
e
d
i
p
i
s
a
 <
M
o
v
e
>
 P
a
l
a
z
z
i
d
i
p
i
s
a

u
E
n
d

B
e
g
i
n
 a
n
d
 T
o
r
r
i
d
i
p
i
s
a
 ‘
b
y
 w
a
l
k
 a
n
d
 t
h
e
n
 B
u
s
 t
o
’

C
h
i
e
s
e
d
i
p
i
s
a
 ‘
b
y
 a
n
y
 m
o
v
e
 t
o
’
 P
a
l
a
z
z
i
d
i
p
i
s
a
 a
n
d

E
n
d

6 Y. T. IZQUIERDO ET AL.

Whenever possible, the term ‘individual’ is omitted. The core model also has four binary
relationships, enrichedBy, begins, from and to.

Figure 1 schematically depicts a trajectory individual t in the core (complete lines) and
the extended model (dashed lines). A formalization of the core model reduces to captur
ing the following assumptions:

[A1.] Trajectory, Stop and Move are disjoint;
[A2.] Trajectory, Stop and Move are disjoint from the enrichment classes;
[A3.] enrichedBy relates a stop or move to one or more enrichments;
[A4.] begins relates a trajectory to a single stop, called the begin stop of the trajectory,

and a begin stop is related to a single trajectory by begins;
[A5.] from relates a move to a single stop, and a stop is related to a single move

by from;
[A6.] to relates a move to a single stop, and a stop is related to a single move by to;
[A7.] from is defined for a move mj iff to is also defined for mj;
[A8.] to does not map a move to the begin stop of a trajectory.

Table 4. Terms used on the TripBuilder dataset and the sample queries.
TripBuilder term Reserved Terms Description

Museidipisa Musei Pisa the set of museums located in the city of Pisa
Cappelledipisa Cappele Pisa the set of chapels located in the city of Pisa
Chiesedipisa Chiese Pisa the set of churches located in the city of Pisa
Torredipisa Torre Pisa the set of towers located in the city of Pisa
transportation transportation indicates the transportation means of moves
Torre pendente di pisa Torre pendent Pisa the Leaning Tower located in the city of Pisa
Torre del Leone Torre del Leone Pisa the Lion Tower located in the city of Pisa
Walk Walk the transportation means is ‘by walking’
Taxi Taxi the transportation means is ‘by taxi’
Bus Bus the transportation means is ‘by Bus’
Subway Subway the transportation means is ‘by subway’

Figure 1. Schematic trajectory in the extended model.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 7

For example, a pair in ‘enrichedBy relates stop s1 to torre di pisa’, which corresponds to
the Leaning Tower of Pisa, and another pair relates move mj to bus”, which corresponds to
the respective transportation mean used in move mj.

Using assumptions A4-A8, for a trajectory t that begins with s1, we define a unique
sequence of stops σ ¼ ðs1; . . . ; sLÞ, the stop sequence of t, and traverse from s1 to the other
stops, using from and to relationships. Likewise, we can define a unique sequence of moves,
μ ¼ ðm1; . . . ;mL� 1Þ, called the move sequence of t, by traversing from stop sj to stop sjþ1

moving by move mj, using the from and to relationships, for each j 2 ½1; L � 1�. Following
assumption A3, the semantic trajectory � induced by trajectory t will be a pair
� ¼ ððσ; μÞ; ðθ;ϕÞÞ, where θ is a sequence of sets of stop enrichments, θ ¼ ðe1; . . . ; eLÞ,
and ϕ is a sequence of sets of move enrichments, ϕ ¼ ðf1; . . . ; fL� 1Þ. Consequently, the
following properties hold:

[P1.] A stop or move belongs to at most one trajectory;
[P2.] A stop or move is not repeated in σ or μ.
Extended model: The extended model adds two more classes, Begin and End, and four

binary relationships, has, nextS, nextM and ends, as follows:
[D1.] Begin is the set of begin stops of the trajectories;
[D2.] End is the set of the last stops (end stops) in the stop sequences of the trajectories;
[D3.] nextS relates each pair of consecutive stops of the stop sequence of each

trajectory, that is, nextS is the composition of the inverse of from with to;
[D4.] nextM relates each pair of consecutive moves of the move sequence of each

trajectory, that is, nextM is the composition of to with the inverse of from;
[D5.] has relates each trajectory to each stop of the stop sequence of the trajectory,

and to each move of the move sequence of the trajectory;
[D6.] ends relates each trajectory to its end stop.

Additional classes and relationships of the extended model do not increase the
expressiveness of the model, from the formal point of view, but they facilitate writing
query expressions over semantic trajectories, as well as their SPARQL counterparts.

Description Logic: Before providing the formalization of the proposed framework, we
briefly summarize the core Description Logic (DL) (Baader et al. 2003) concepts.

The atomic concepts and atomic roles of a DL alphabet A capture the classes and
properties of the domain of discourse; the universal concept T and the bottom concept ?
are atomic concepts of A, and the identity relation I is an atomic role of A. The individuals
of the domain are denoted using a set of constants in A.

We use c1; c2; . . . to denote the atomic concepts of A, r1; r2; . . . to denote the atomic
roles of A, and a1; a2; . . . to denote the constants of A. We can then denote concept
expressions C1;C2; . . . and role expressions R1; R2; . . . over A. The atomic concepts and
roles are the simplest expressions.

Based on the above, it is possible to define for concept expressions Ci and Cj : i) the
negation ‘:Ci’, ii) full existential quantifications of the form ‘9rj:Ci’, iii) the union ‘Ci t Cj’,
iv) the intersection ‘Ci u Cj’ and v) the product ‘Ci � Cj’. Similarly, for role expressions Ri,
Rj, we can define: i) the inverse ‘R�j ’, ii) the transitive closure ‘Rþi ’, iii) the intersection
‘Ri u Rj’ and iv) the composition ‘Ri � Rj’. Finally we can define axioms ‘Ci v Cj’, ‘Ci;Cj’,

8 Y. T. IZQUIERDO ET AL.

‘Ri v Rj ’, or ‘Ri;Rj’ and assertions of the form ‘CiðakÞ’ or ‘Rjðak; alÞ’ for concept and role
expressions.

The classes and binary relationships of the core and the extended models are accom
modated by considering that alphabet A has five special atomic concepts, Trajectory,
Stop, Move, Begin, and End, and eight special atomic roles, enrichedBy, has, nextS, nextM,
from, to, begins and ends. The special symbols are called the trajectory symbols of A, and
the other symbols the enrichment symbols of A. The axioms of the core model, which
correspond to assumptions (A1-A8), and the definitions of the extended model, which
correspond to definitions (D1-D6), have been omitted due to space restrictions and can be
available upon request.

Trajectories as sequences: Let A be an alphabet, I an interpretation for A and
t 2 TrajectoryI. The stop-and-move sequences over I induced by t is the pair τ ¼ ðσ; μÞ
such that:

● σ ¼ ðs1; . . . ; sLÞ is the sequence of stops of I such that ðt; s1Þ 2 beginsI, ðt; sLÞ 2 endsI

and ðsi; siþ1Þ 2 nextSI, for each i 2 ½1; L � 1�
● μ ¼ ðm1; . . . ;mL� 1Þ is the sequence of moves of I such that ðmj; sjÞ 2 fromI, for

each j 2 ½1; L � 1�

We say that L is the length of τ. Note that an empty trajectory is allowed, as well as
a trajectory with just one stop, in which case μ is the empty sequence.

The enrichment sets sequences induced by t or simply the enrichments of t, are defined
by the pair ε ¼ ðθ;ϕÞ, where θ ¼ ðe1; . . . ; eLÞ is the sequence such that ei is the set of pairs
in enrichedByI whose first element is si, called the enrichments of si in I, for i ¼ 1; . . . ; L and
ϕ ¼ ðf1; . . . ; fL� 1Þ is the sequence such that fj is the set of pairs in enrichedByI whose first
element is mj, called the enrichments of mj in I, for j ¼ 1; . . . ; L � 1.

Finally, the semantic trajectory over I induced by t is a pair � ¼ ðτ; εÞ such that τ is the
stop-and-move sequences over I induced by t and ε is the enrichment sets sequences
induced by I. Note that ε is entirely determined by τ and the interpretation that I assigns
to enrichedBy.

4.2. Query expressions over semantic trajectories

This section defines a query language for semantic trajectory datasets that includes: (1)
stop-and-move queries that select a stop or a move based on its enrichments; and (2)
sequence expressions that define how to match the stop-and-move queries with the
sequence of actions (i.e. stops or moves) defined in the semantic trajectory. It first treats
stop-and-move expressions as separated sequences, which is convenient from the
formal point of view. Then, it introduces expressions that intercalate stop-and-move
queries.

In what follows, let A be a DL alphabet and I be an interpretation for A, satisfying the
assumptions and formalization of Section 4.1.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 9

4.2.1. Enrichment, stop and move queries
An enrichment query is simply a concept expression Ci over the enrichment symbols of A.
A stop query over A is either one of the atomic concepts Stop, Begin, End, or a concept
expression of the form

Stop u 9enrichedBy:Ci (1)

where Ci is an enrichment query. A stop query then defines the set of stops that have at
least one enrichment that satisfies Ci. Indeed, the interpretation of StopI is the set of stops
of I, and the interpretation of 9enrichedBy:Ci in I is the set of individuals that enrichedByI

maps to some individual in Ci
I. Therefore, the interpretation of Stop u 9enrichedBy:Ci is the

set of stops with an enrichment in Ci
I.

We recursively expand the set of stop queries to include stop concept expressions of the
forms ‘Qi u Qj’ and ‘Qi t Qj ’, where Qi and Qj are stop queries or stop concept expressions.

Likewise, a move query over A is either the atomic concept Move or a concept expres
sion of the forms

Move u 9enrichedBy:Ci (2)

where Ci is an enrichment query. Again, we recursively expand the set of move queries to
include move concept expressions defined as above.

The semantics of the enrichment query, as well as those of the stop-and-move queries,
need not be explicitly defined, since they result from the standard semantics of DL
concept expressions, briefly summarized in Section 4.1.

4.2.2. Stop-and-move sequence expressions
A stop sequence expression is a regular expression of stop queries, a move sequence
expression is a regular expression of move queries, and a stop/move sequence expression
is a pair ðSi;MjÞ, where Si is a stop sequence expression and Mj is a move sequence
expression.

More precisely, the set of stop sequence expressions over A is recursively defined as:

(1) The empty sequence λ is a stop sequence expression over A.
(2) Any stop query of over A is a stop sequence expression over A.
(3) If Si is a stop sequence expression over A, then ðSiÞ, Si?, Si

þ, and Si
� are also stop

sequence expressions over A.
(4) If Si and Sj are stop sequence expressions over A, then ðSijSjÞ and ðSi; SjÞ are also

stop sequence expressions over A.

Parentheses may be omitted if no ambiguity arises. The set of move sequence expres
sions over A is likewise defined, using move queries as a basis.

The definition of the semantics of stop (or move) sequence expressions is simplified if
we treat such expressions as specifying a set of sequences of the stop (or move) queries.

Recall that Stop is also a stop query that returns the set of all stops. Let λ again denote
the empty sequence. Let si; sj denote the concatenation of two sequences si and sj, with
si; sj ¼ si, if sj ¼ λ, and si; sj ¼ sj, if si ¼ λ. Let sn denote the n-fold concatenation s; . . . ; s of
s with itself, with s0 ¼ λ.

10 Y. T. IZQUIERDO ET AL.

The expansion of a stop (or move) sequence expression Si, denoted expandðSiÞ, is a set
of sequences of stop (or move) queries defined as follows:

(1) If Si is the empty sequence λ, then expandðSiÞ ¼ fλg
(2) If Si is a stop (or move) query Qi, then expandðSiÞ ¼ fQig

(3) If Si is an expression of the form ðSjÞ, then expandðSiÞ ¼ expandðSjÞ

(4) If Si is an expression of the form Sj?, then expandðSiÞ ¼ fλg [expandðSjÞ

(5) If Si is an expression of the form ðSjjSkÞ, then expandðSiÞ ¼ expandðSjÞ [expandðSkÞ

(6) If Si is an expression of the form ðSj; SkÞ, then expandðSiÞ ¼ fsj; sksj 2

expandðSjÞ ^ sk 2 expandðSkÞg

(7) If Si is an expression of the form Sj
þ, then expandðSiÞ ¼

S
m > 0 expandðSj

mÞ

(8) If Si is an expression of the form Sj
�, then expandðSiÞ ¼ fλg [expandðSj

þÞ

We immediately derive that:
(9) The expressions ‘Sj?’ and ‘ðλjSjÞ’ are semantically equivalent, since: expandðSj?Þ ¼

fλg [expandðSjÞ ¼ expandðλÞ [expandðSjÞ ¼ expandððλjSjÞÞ from (4), (1), and (5).
(10) The expressions ‘Sj

�’ and ‘ðλjSj
þÞ’ are semantically equivalent, since: expandðSj

�Þ ¼

fλg [expandðSj
þÞ ¼ expandðλÞ [expandðSj

þÞ ¼ expandððλjSj
þÞÞ from (8), (1),

and (5).
Let s ¼ ðs1; . . . ; skÞ be a sequence with k elements, and i; j be two positive integers.

Then, segmentðs; i; jÞ ¼ ðsi; . . . ; sjÞ is the segment of s starting at the ith element and
ending at the jth element of s, if 1 � i � j � k, segmentðs; i; jÞ ¼ segmentðs; i; kÞ, if
1 � i � k< j, and segmentðs; i; jÞ ¼ λ, if k< i or j< i.

We extend the notion of segment to a trajectory τ ¼ ðσ; μÞ, with length L, so that
segmentðτ; i; jÞ ¼ ðsegmentðσ; i; jÞ; segmentðμ; i; j � 1ÞÞ, for any two positive integers i and
j. We say that a trajectory τ0 is a segment of τ iff there are positive integers i and j such
that τ0 ¼ segmentðτ; i; jÞ.

Let I be an interpretation for A and τ ¼ ðσ; μÞ be a trajectory over I, with length L,
where σ ¼ ðs1; . . . ; sLÞ is a sequence of stops of I and μ ¼ ðm1; . . . ;mL� 1Þ is a sequence of
moves of I. Let Si be a stop (or move) sequence expression.

There are at least two options for the semantics of stop (or move) sequence expres
sions, depending on how Si is evaluated against τ:

● Strong semantics, denoted τ�sSi, when Si is evaluated from the beginning to the end of τ.
● Weak semantics, denoted τ�wSi, when Si is evaluated against a segment of τ, which is

required neither to start at the beginning of τ nor to terminate at the end of τ.

This research adopts the weak version as the default semantics. However, note that one
can force an expression Si to be evaluated from the beginning to the end of the
trajectories by using Begin and End at the beginning and at the end of Si.

Strong satisfiability is defined as follows. If τ is a non-empty trajectory, then τ strongly
satisfies Si iff

● λ 2 expandðSiÞ (the empty sequence λ is in expandðSiÞ), or
● There is a non-empty sequence Q1; . . . ; Qk in expandðSiÞ such that, for each i 2 ½1; k�,

si 2 Qi
I (or mi 2 Qi

I, for move sequence expressions), and k ¼ L, where L is the length
of the trajectory; in this case, we say that k is the effective length of Si induced by its
evaluation in τ.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 11

If τ is the empty trajectory, then τ strongly satisfy Si iff λ 2 expandðSiÞ.
We say that τ strongly satisfies a stop/move sequence expression ðSi;MjÞ iff τ strongly

satisfies Si, τ strongly satisfies Mj , and k ¼ l þ 1, where k is the effective length of Si induced
by its evaluation in τ and l is the effective length of Mj induced by its evaluation in τ.

We say that τ weakly satisfies Si iff there is a segment τ0 of τ such that τ0�sSi.
We conclude this section with examples that illustrate the differences between strong

and weak satisfiability. Under the notion of weak satisfiability, the queries in Table 3, with
their intended interpretation, are expressions over the alphabet APisa, where

● The terms Museidipisa, Cappelledipisa, Torridipisa and Chiesedipisa are atomic
concepts of APisa.

● The terms Torre_pendente_di_pisa and Torre_del_Leone are constants of APisa.
Furthermore, the queries 1 to 1 in Table 3 must be rewritten as follows:
● Each constant a is replaced by the concept expression fag.
● Each stop query Ei is replaced by the concept expression Stop u 9enrichedBy:Ei, as in

the example below, to conform with Eq. 1.
● Likewise, each move query Ei is replaced by the concept expression

Move u 9enrichedBy:Ei, to conform with Eq. 2.
For example, Queries 1 and 1 are respective formally rewritten as:

Q1: Stop u 9enrichedBy.Museidipisa; Stop u 9enrichedBy.
Cappelledipisa

Q5: Begin u 9enrichedBy.Museidipisa; End u 9enrichedBy.
Cappelledipisa

where Begin and End are specializations of Stop.

4.2.3. Intercalated stop-and-move sequence expressions
The definition of a stop/move sequence expression as a pair ðSi;MjÞ, where Si is a stop
sequence expression and Mj is a move sequence expression, is attractive from a formal
point of view, but it may hide some complexities. Indeed, if a semantic trajectory τ satisfies
ðSi;MjÞ, then the effective length of Mj must be one less than the effective length of Si, by
definition, to be able to intercalate the two sequences. But this requirement cannot be
verified by a syntactical inspection of Si and Mj and is introduced only in the semantic
notion of satisfiability.

For example, consider a stop/move sequence expression ðF1;G1Þ, where:

F1 ¼ p; Stop; r; s and G1 ¼ vþ; w.

Since G1 uses the ‘+’ operator, it denotes sequences of move queries of arbitrary
lengths, but only the sequence ‘v; v; w’, which has a length equal to 3, could be properly
intercalated with F1, which has a length equal to 4.

We therefore define an intercalated stop-and-move sequence expression as an expres
sion Nk of the form: Nk ¼ S0 <M1 > S1 <M2 > S2 . . . Sn� 1 <Mn� 1 > Sn, where Si is a stop
sequence expression and Mj is a move sequence expression, for i 2 ½0; n�
and j 2 ½1; n � 1�.

12 Y. T. IZQUIERDO ET AL.

To define the semantics of intercalated stop-and-move sequence expression, we
proceed as in Section 4.2.2, attaining only to weak satisfiability. The expansion of Nk ,
denoted expandðNkÞ, is defined as for stop sequence expressions, but respecting the
intercalation of stop-and-move expressions.

Let E 2 expandðNkÞ. Assume, without loss of generality, that E is of the form:
E ¼ P0 <Q1 > P1 <Q2 > P2 . . . Pn� 1 <Qn > Pn, where Pi is a sequence of stop queries and
Qj is a sequence of move queries, for i 2 ½0; n� and j 2 ½1; n�.

Let Stop0 ¼ λ and Stopn ¼ Stopn� 1; Stop, for n � 1, and likewise for Moven. The stop
projection of E is the sequence of stop queries F and the move projection of E is the
sequence of move queries G such that:

F ¼ P0; Stopm1 ; P1; Stopm2 ; P2 . . . Pn� 1; Stopmn ; Pn

G ¼ Moves0 ; Q1; Moves1 ; Q2; Moves2 . . . Movesn� 1 ; Qn; Movesn

where mj is the length of Qj and si is the length of Pi, for i 2 ½0; n� and j 2 ½1; n�.
An example of an intercalated stop-and-move sequence expression would be:

N1 ¼ ðp jqÞ< v� > rþ < v�; w > s

The following sequences pertain to expandðN1Þ:

E1 ¼ p< v; v > r<w > s and E2 ¼ q< v > r; r< v; w > s

The stop projection of E1 is F1 and the move projection of E1 is G1, where:

F1 ¼ p; Stop1; r; Stop0; s ¼ p; Stop; r; s

G1 ¼ Move0; v; Move0; v; Move0; w ¼ v; v; w

The equalities follow if we observe that Stop0 ¼ Move0 ¼ λ. Note that if we intercalate F1

and G1 we obtain E1 again:

p< v > Stop< v > r<w > s ¼ p< v; v > r<w > s ¼ E1

Finally, let τ be a trajectory. If τ is the empty trajectory, then τ does not weakly satisfy Nk.
If τ is a non-empty trajectory then τ weakly satisfies Nk iff there is E 2 expandðNkÞ such that
τ weakly satisfies ðF;GÞ, where F is the stop projection of E and where G is the move
projection of E.

5. An RDF framework for querying semantic trajectories

Based on the formal framework of Section 4, this section introduces a concrete RDF
framework for querying semantic trajectories. It first defines an RDF model for represent
ing semantic trajectories. Then, it introduces the SPARQL stop (or move) queries and
SPARQL stop (or move) sequence expressions. Next, it discusses how to compile SPARQL
stop sequence expressions into equivalent SPARQL queries. Finally, it shows how to
process SPARQL intercalated stop-and-move sequence expressions.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 13

5.1. SPARQL query expressions over semantic trajectories

The model is expressed as an RDF schema with classes (Trajectory, Stop, Move, Begin,
End), properties (enrichedBy, from, to, nextS, nextM, has, begins, ends) and declarations
(see Figure 1). The enrichment classes and properties are not part of the proposed RDF
model for semantic trajectories, as highlighted in Section 4.1. We assume that they are
defined in a knowledge base.

A SPARQL enrichment query is a SPARQL select query over the enrichments knowledge
base whose TARGET clause has a single variable and, thus, returns a set of IRIs that identify
enrichments. Figure 2 illustrates two SPARQL enrichment queries. The property function
<http://jena.apache.org/text#query > , in the query of Figure 2(a), combines SPARQL and
full-text search via Lucene in Apache Jena. SPARQL enrichment queries such as these may,
in fact, be automatically generated from keyword queries, as discussed in Section 6. We
stress that a SPARQL enrichment query is not restricted to queries of the forms shown in
Figure 2, but they can be any SPARQL query over the enrichments knowledge base,
whose TARGET clause has a single variable.

Table 5 provides a summary of stop expressions and the respective SPARQL queries.
The definition of SPARQL move queries is an exact parallel and is omitted.

As in Section 4.2.2, a SPARQL stop sequence expression is a regular expression of
SPARQL stop queries, a SPARQL move sequence expression is a regular expression of
SPARQL move queries, and a SPARQL stop/move sequence expression is a pair ðSi;MjÞ,
where Si is a SPARQL stop sequence expression and Mj is a SPARQL move sequence
expression. The notion of SPARQL intercalated stop-and-move sequence expressions is
defined as in Section 4.2.3. Finally, we introduce the notion of a restricted SPARQL stop

Figure 2. Examples of two SPARQL enrichment queries.

Table 5. A summary of expressions and their SPARQL equivalent.
Expressions SPARQL Notation

Stop, Begin, End select ?v
where {?v rdf:type C}

C 2 fStop; Begin; Endg

Stop u 9enrichedBy:Ci select ?v
where {?v rdf:type:Stop;:enrichedBy ?p. {E[?p]}}

E[?p] is enrichment of ?p

Intersection Qi u Qj select ?v where {{Q1[?v]}. {Q2[?v]}} Q1, Q2 are stop queries
Union Qi t Qj select ?v where {{Q1[?v]} UNION {Q2[?v]}} Q1[?v], Q2[?v] are stop queries of ?v

14 Y. T. IZQUIERDO ET AL.

http://jena.apache.org/text#query

sequence expression, defined exactly as a SPARQL stop sequence expression, except that
expressions of the forms S�i and Sþi are allowed only when Si is a SPARQL stop query (and
not recursively a SPARQL stop sequence expression). The same holds for <M�i > and
<Mþi > . Likewise, a restricted SPARQL intercalated stop-and-move sequence expression
allows expressions of the forms S�i and Sþi only when Si is a SPARQL stop query, and
expressions of the forms <M�i > and <Mþi > only when Mi is a SPARQL move query.

5.2. Processing of SPARQL stop sequence expressions

This section discusses how to compile restricted SPARQL stop sequence expressions to
SPARQL queries. The processing of SPARQL move sequence expressions is entirely
similar. The compilation process recursively parses a restricted SPARQL stop sequence
expression Expr and replaces each sub-expression of Expr by a SPARQL graph pattern
that depends on the syntax of the sub-expression. The result is a SPARQL graph pattern,
which is further post-processed to eliminate redundant triple patterns. The final SPARQL
graph pattern is used to construct the WHERE clause of the SPARQL query Q that
corresponds to Expr. The target clause of Q is a list of three variables, ?t, ?begin and ?
end. When executed, Q binds ?t to a trajectory τ, and ?begin and ?end to stops sB and sE

of τ, such that the segment of τ from sB to sE strongly satisfies Expr, and τ weakly satisfies
Expr. Section 6 contains an example of the compilation process.

The compilation process uses templates, which are expressions of the form

Template(Expr;?t,?begin,?end)

where Expr is a restricted SPARQL stop sequence expression, and ?t, ?begin and ?end
are SPARQL variables. When called, the template expands to a schematic graph pattern
G, in the same way, that a macro expands in traditional programming languages. The
schematic graph pattern G may contain calls to other templates, and non-standard
SPARQL commands, such as if-then-else’s, as in Template 1. The expansion process
replaces the formal parameters by the concrete parameter values passed in the call,
renames the other variables used in G to avoid conflicts, and eliminates non-standard
SPARQL commands. In the resulting SPARQL graph pattern:

● If Expr is the empty stop sequence expression λ, then G is the empty group pattern ‘{}’
that matches any graph (including the empty graph) with one solution that does not
bind any variables. This is justified since the empty stop sequence expression matches
any trajectory.

● If Expr is not the empty stop sequence expression, G binds ?t to a trajectory τ, and ?
begin and ?end to a stops sB and sE of τ such that the sequence of consecutive stops
of τ from sB to sE satisfies Expr.

Recall that a stop SPARQL query Q has a single variable ?v in the TARGET clause and let
Q[?u] denote Q with ?v replaced by ?u. Two of the most common query templates are
presented in the following:

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 15

(1) Template (‘S1;S2’;? t,? begin,? end)
1 Template (‘S1’;? t,? begin,? endS1).
2 if bound (? endS1)
3 then { ? endS1 :nextS ? beginS2.
4 Template (‘S2’; ? t , ? beginS2 , ? endS2) }
5 else { Template (‘S2’ ; ? t , ? begin , ? endS2) }
6 bind (IF (bound(? endS2) , ? endS2 , ? endS1) as ? end)

Note: This template uses a non-standard SPARQL if-then-else construct.
First note that the template call for S1 may evaluate to λ, leaving ?endS1 unbound, and

the template calls for S2 may also evaluate to λ, leaving ?endS2 unbound. There are
therefore four cases to consider:

Case 1: The template calls for S1 and S2 do not evaluate to λ. Then, they bind ?t to
a trajectory τ and ?begin, ?endS1, ?beginS2 and ?end to stops sB, sE1, sB2 and sE of τ,
respectively, such that: (1) the sequence of consecutive stops in τ from sB to sE1 satisfies S1;
(2) the sequence of consecutive stops in τ from sB2 to sE satisfies S2; (3) sE1 and sB2 are
consecutive stops of τ (by Line 3). Line 6 then makes the binding of ?end equal to that of ?
endS2.

Case 2: The template call for S1 does not evaluate to λ and the template call for S2
evaluates to λ. Then, the template call for S1 binds ?t to a trajectory τ and ?begin and ?
endS1 to stops sB and sE1 such that the sequence of consecutive stops in τ from sB to sE1

satisfies S1. The template call for S2 does not bind ?endS2. Line 6 then makes the binding
of ?end equal to that of ?endS1.

Case 3: The template call for S1 evaluates to λ and the template call for S2 does not
evaluate to λ. The template call for S1 does not bind ?endS1. Then, by Line 2, the template
call for S2 in Line 5 binds ?t to a trajectory τ and ?begin and ?endS2 to stops sB and sE2 of τ
such that the sequence of consecutive stops in τ from sB to sE2 satisfies S2. Line 6 then
makes the binding of ?end equal to that of ?endS2.

Case 4: The template calls for S1 and S2 both evaluate to λ. Then, both ?endS1 and ?
endS2 are unbound and Line 6 leaves ?end unbound.

(2) Template(‘Qþ’;?t,?begin,?end)
1 ? t : has ? begin.
2 ? begin : nextS* ?end.
3 { Q[? begin] }.
4 { Q[?end] }.
5 filter not exists {
6 ? begin : nextS* ?stopM.
7 ? stopM :nextS* ?end.
8 filter not exists {Q[?stopM] } }

This graph pattern binds variable ?t to a trajectory τ and variables ?begin and ?end to stops sB

of sE of τ such that all consecutive stops from sB to sE in τ satisfy Q, including sB and sE .
Notes:
(a) The actual implementation of the template places Lines 3 and 4 before Lines 1 and

2, for efficiency reasons.

16 Y. T. IZQUIERDO ET AL.

(b) This template applies only when Q is a SPARQL stop query, and not a SPARQL stop
sequence expression, in view of the use of the SPARQL path expression ‘:nextS*’.

(c) Lines 5 to 7 explore the fact that "xðQÞ is equivalent to :9x:ðQÞ. Thus, the sentence
‘for any stop s between s1 and s2, s satisfies Q’ is equivalent to ‘there is no stop s between s1

and s2 such that s does not satisfy Q.’
The final SPARQL graph pattern is subjected to a simplification process. However,

a detailed discussion of the simplification process is outside the scope of this article.
Section 6 contains an example that illustrates how to compile a restricted SPARQL stop
sequence expression to an equivalent SPARQL query, and how to simplify the query.

5.3. Processing of SPARQL intercalated stop-and-move sequence expressions

A restricted SPARQL intercalated stop-and-move sequence expression allows expressions
of the forms S�i and Sþi only when Si is a SPARQL stop query, and expressions of the forms
<M�i > and <Mþi > only when Mi is a SPARQL move query. Let S1 and S2 be restricted
SPARQL stop sequence expressions as those presented in Section 5.2. Let M, M1 and M2
be SPARQL move queries. Recall that M has a single variable in the TARGET clause, and let
M[?u] denote M with this single variable replaced by ?u (and likewise for M1 and M2). The
templates that follow are not an exhaustive list, but illustrate the extension process.

(3) Template(‘S1< M1;M2> S2’,?t,?begin,?end)
1 Template(‘S1’ , ? t , ? begin , ? endS1).
2 Template(‘S2’ , ? t , ? beginS2 , ? end) .
3 ?move1 : from ? endS1 ; : to ? stop2 .
4 ?move2 : from ? stop2 ; : to ? beginS2 .
5 { M1[? move1] } .
6 { M2[?move2] }

The recursive template calls in Lines 1 and 2 bind variable ?t to a trajectory τ and variables
?begin, ?endS1, ?beginS2 and ?end to stops sB, sE1, sB2 and sE of τ, respectively, and Lines 3
and 4 bind variables ?move1 and ?move2 to moves m1 and m2 of τ, respectively, such that:
(1) the sequence of consecutive stops in τ from sB to sE1 satisfies S1; (2) the sequence of
consecutive stops in τ from sB2 to sE satisfies S2; (3) m1 is from sE1 to a stop s2 and m2 from
s2 to sB2 (by Lines 3 and 4); (4) m1 satisfies M1 and m2 satisfies M2 (by Lines 5 and 6).

Note: This templates assume that the recursive template calls do not evaluate to λ.
A more elaborated template would include tests for unbound variables, as in Template 1.

(4) Template(‘S1 < Mþ> S2’;?t,?begin,?end)
1 Template(‘S1’ ; ? t , ? begin , ? endS1) .
2 Template(‘S2’ ; ? t , ? beginS2 , ? end) .
3 ?moveB : from endS1 .
4 ?moveE : to beginS2 .
5 ?moveB : nextM* ?moveE .
6 { M[? moveB] } .
7 { M[? moveE] } .
8 filter not exists {

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 17

9 ?moveB :nextM* ?moveM .
10 ?moveM :nextM* ?moveE .
11 filter not exists { M[?moveM] } }

The recursive template calls in Lines 1 and 2 bind variable ?t to a trajectory τ and variables
?begin, ?endS1, ?beginS2 and ?end to stops sB, sE1, sB2 and sE of τ, respectively, and Lines 3
and 4 bind variables ?moveB and ?moveE to moves mB and mE of τ, respectively, such that:
(1) the sequence of consecutive stops in τ from sB to sE1 satisfies S1; (2) the sequence of
consecutive stops in τ from sB2 to sE satisfies S2; (3) mB is from sE1 and mE is to sB2 (by Lines
3 and 4); (4) all moves in the sequence of moves of τ from mB to mE satisfy M (by
Lines 5–11).

6. Keyword query expressions over semantic trajectories in RDF

This section introduces keyword query expressions over semantic trajectories in RDF as
a user-friendly alternative to SPARQL intercalated stop-and-move sequence expressions. It
also discusses, with the help of an example, how to process such keyword query expres
sions, based on the results of Section 5.

As a brief motivation, we observe that keyword search proved to be a popular para
digm under the users’ perspective. From the origins of information retrieval, keyword
search was used to retrieve items (usually documents) that are somehow relevant to the
search keywords. These techniques evolved to relational and RDF database search, where
entities and their attributes are considered to be the documents that must be retrieved.
Advanced graph-search algorithms allow us to retrieve relevant entities from a database
and also show how these entities relate to each other. This makes such algorithms
attractive for searching large collections of semantic trajectory data. However, despite
their advantages, graph-based queries are still not convenient for expressing restrictions
on the sequence of stops and moves. The keyword query expressions introduced in this
section overcome this difficulty.

The definitions that follow are similar to those in Sections 4.2 and 5.1. A keyword stop query
is a finite set K ¼ fk1; . . . ; kng of literals, called keywords, that defines a set of stops based on
their enrichments. These queries would then be applied to the RDF knowledge base to select
a set R of enrichments, which are then used to select the set of stops that are related to the
enrichments in R by the enrichedBy property. A keyword move query is likewise defined.

Schema-based algorithms (García et al. 2017, Izquierdo et al. 2018) can then be used to
translate keyword stop (or move) queries into SPARQL queries that retrieve resources by
their name, such as ‘Torre Pendente di Pisa’, or by their attributes, such as ‘Musei di Pisa’.
In the first case, the query would retrieve a single POI id that corresponds to the Leaning
Tower of Pisa (see Figure 2(a)), while in the second case it would return a list of ids that
correspond to the museums in Pisa (see Figure 2(b)). One can relax the scope of the query
by informing only some keywords, such as ‘Torre di Pisa’, in which case the keyword query
could return the ids of the ‘Torre Pendente di Pisa’ and ‘Ristorante La Torre Pisa’.
A detailed discussion of the process of translating keyword queries to SPARQL queries
is outside of the scope of this article.

18 Y. T. IZQUIERDO ET AL.

A keyword intercalated stop-and-move sequence expression is a regular expression based
on keyword stop-and-move queries, as in Section 4.2. The regular expression symbols may
be replaced by the reserved terms listed in Table 2.

The processing of a keyword intercalated stop-and-move sequence expression N to
SPARQL has two basic steps:

(1) Translate N into a SPARQL intercalated stop-and-move sequence expression S:

(a) If necessary, replace the reserved terms “Stop”, “Move”, “Begin” and “End” by
SPARQL queries, as discussed in Section 5.1.

(b) Also, if necessary, replace the reserved terms that denote regular expressions by
equivalent symbols, using Table 2.

(c) Translate each keyword stop (or move) query into a SPARQL query.

(2) Process S as discussed in Section 5.
We illustrate the processing of 1 (see Table 3), in the Jena ARQ SPARQL engine:
Step 1: Translate the keyword queries ‘Cappelledipisa’, ‘Chiesedipisa’ and

‘Torre_pendente_di_pisa’ to SPARQL enrichment queries, as shown in Figure 3, to retrieve
the resources associated with these POIs. Note that variables ?v1, ?v2 and ?v3 bind the IRIs of
POIs resources associated with ‘Cappelledipisa’, ‘Chiesedipisa’ and ‘Torre_pendente_di_pisa’,
respectively.

Step 2: Process the resulting SPARQL intercalated stop-and-move sequence expression
S. The process recognizes that S satisfies Template 5.3: Template(‘S1 < Mþ> S2’; ?t,
?begin, ?end) where:

● S1 is the SPARQL query corresponding to ‘Begin u S3’;
● S3 is the SPARQL query corresponding to ‘(Cappelledipisa | Chiesedipisa)’
● S2 is the SPARQL query corresponding to ‘S4 u End’
● S4 is the SPARQL query corresponding to Torre_pendente_di_pisa
● M is the SPARQL query corresponding to <Bus>

and combines the different templates to the final template for S
Step 3: The compilation process ends by setting the TARGET clause (as a SELECT form)

with variable ?t that binds the queried trajectories, and applying some simplifications
(indicated after the query). The final synthesized SPARQL query is:

Figure 3. The SPARQL enrichment queries of the keyword queries in S.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 19

1 select ? t , ? begin , ? end
2 where {
3 ? t : begins ? begin .
4 {
5 { ? begin : enrichedBy ?v1 .
6 ?v1 text : query ‘Cappelledipisa’}
7 UNION
8 { ? begin : enrichedBy ?v2 .
9 ?v2 text : query ‘Chiesedipisa’ }
10 }
11 ? t : ends ?end .
12 { ? end : enrichedBy ?v3 .
13 ?v3 text : query ‘Torre_pendente_di_pisa’ }
14 ?moveE : to ? end ; : enrichedBy ? transpE .
15 filter (?transpE = : Bus)
16 ?moveB : from ?begin ; : nextM* ?moveE; :enrichedBy ?transpB .
17 filter (?transpB = : Bus)
18 filter not exists {
19 ?moveB :nextM* ?moveM .
20 ?moveM :nextM* ?moveE .
21 filter not exists { ? moveM : enrichedBy ? transpM filter (?

transpM = : Bus) }
22 }
23 }

7. A proof-of-concept experiment

For the construction of the TripBuilder RDF dataset, we wrote a Java program that parses
the TripBuilder city data files, extracts data for POIs, stops and trajectories and triplifies the
resulting data in RDF. We also included:

(1) The property:length, added to the instances of the:Trajectory class, indicates the
length of a trajectory.

(2) The property:move_number, added to the instances of the:Move class, indicates
the sequential position of a move in a trajectory.

(3) The class:Transportation whose resources were automatically generated, labeled
with a value in the set {“Walk”, “Taxi”, “Bus”, “Subway”}, and randomly linked to
resources of the:Move class using the property:enrichedBy. This new class helps
exploit the capabilities of the translation algorithm, given that the original
TripBuilder dataset does not contain information about moves.

The resulting RDF dataset contains a total of 1,617,582 triples, which break down to 5 rdfs:
Class declarations, 255,018 class instances (47% of them corresponding to stops, 30% to
moves and 21.5% to trajectories) and 1,973 indexed property values.

We put the RDF dataset on a Jena ARQ SPARQL server (running on a quad-core
processor Intel(R) Core(TM) i7-5820 K CPU@3.30 GHz, 64 GB of RAM and SSD 1TB, with

20 Y. T. IZQUIERDO ET AL.

GNU/Linux Ubuntu 16.04.6 LTS oS). The string property values, including rdfs:label values,
were indexed using Lucene (hosted in the same server) thus allowing both SPARQL
queries and full-text search.

The experiments evaluated our approach on the keyword query expressions of Table 3,
measuring: (1) the templates that the SPARQL stop-and-move sequence expressions
satisfy; and (2) the average execution time of 10 repetitions of each synthesized query.

Given that queries Q1 to Q7 are stop sequence expressions, and Q8 to Q10 are
examples of intercalated stop-and-move sequence expressions the results can be sum
marized as:

● Q1 and Q2 are quite simple and the equivalent SPARQL queries have a small runtime.
● The runtime of the SPARQL query for Q3 is considerably higher due to the nested

filter not exists group patterns and the SPARQL Property Path operator “*” inside the
stop patterns.

● Q7 contains a stop sequence expression similar to Q3, and its SPARQL query has
a runtime comparable to that of the SPARQL query for Q3 (about 4 seconds).

● However, the SPARQL query for Q9 has a small runtime (similar to Q2). The runtime of
its SPARQL query for Q10 is about 3 seconds.

To conclude, we observe that the complexity of the SPARQL query synthesized in each
case naturally reflects the complexity of the keyword query expressions. As expected,
queries with triple patterns with the property path operator ‘*’ inside nested ‘filter not
exists’ group patterns (Q3, Q7), or with complex graph patterns (Q10) had a high runtime.
However, unexpectedly, even with a complex graph pattern, Q9 had a small runtime.
Queries with less complex graph patterns (Q1, Q2, Q4, Q5, Q8), or with just UNION or
OPTIONAL patterns (Q6) had acceptable runtime. Overall, all queries were executed within
the specified timeout of 1 minute. The average runtime of the test suite queries, about 1.5
s, was reasonable. Hence, the experiment suggests that the proposed approach, based on
keyword query expressions and RDF, is feasible.

8. Conclusions and future work

This article addressed the question of retrieving semantic trajectories with a query lan
guage that includes: (1) stop-and-move queries that select sets of stops or moves based
on their enrichments; and (2) sequence expressions that define how to match the stop-
and-move queries with the sequence of actions defined in the semantic trajectory.

The article first introduced a formal model for semantic trajectories and defined stop-
and-move sequence expressions, with well-defined syntax and semantics. Then, it moved
to a concrete semantic trajectory model in RDF and described how to process SPARQL
stop-and-move sequence expressions, using state-of-the-art, efficient SPARQL query pro
cessors. Using keywords to capture stop-and-move queries, and terms with predefined
semantics to define sequence expressions it offers a user-friendly query notation that can
be compiled into SPARQL queries. Finally, the article described a proof-of-concept experi
ment using the TripBuilder dataset, a semantic trajectory dataset constructed from user-
generated content obtained from Flickr, combined with data from Wikipedia.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 21

In more detail, Section 4.1 formalized the semantic trajectory model adopted, within
the tradition of Description Logic. The adoption of Description Logic is justified since it is
a well-known formalism, the notions of atomic concept and atomic role suffice to model
semantic trajectories, and it has been used before to formalize trajectory models. Section
4.2 covered the syntax and semantics of stop-and-move sequence expressions – the
central concept of the article – which, for the first time, explore the richness of intercalated
sequences of stops and moves, and not just stop sequences or just move sequences. Since
a sequence expression E imposes a complex restriction on a semantic trajectory τ, this
step was required to clarity how E evaluates over τ. This article adopted the weak
semantics when E is evaluated against a segment of τ, which is required neither to start
at the beginning of τ nor to terminate at the end of τ. The formal semantic trajectory
model led to a concrete model in RDF and to concrete SPARQL queries, which opened the
way to implementations of the concepts on top of standard RDF stores. Section 5
introduced SPARQL stop-and-move sequence expressions, a concrete realization of
abstract sequence expressions, and showed how to compile them into standard
SPARQL queries. The compilation process is recursive and non-trivial since SPARQL stop-
and-move sequence expressions are constructed by composing atomic SPARQL queries
and may involve complex operators, such as ‘*’. However, SPARQL has a sophisticated
syntax, out of the reach of the typical user. The third step of the article was then to hide
such complex syntax under a user-friendly, keyword-based notation. Section 6 introduced
the class of keyword query expressions over semantic trajectories in RDF and showed how
to compile such expressions into SPARQL stop-and-move sequence expressions, which
are then compiled into SPARQL queries. Section 7, the last step, summarized a proof-of-
concept experiment, within the space limitations of the article, that showed that the
SPARQL queries compilated from stop-and-move sequence expressions have adequate
performance. Therefore, the proof-of-concept suggested that stop-and-move sequence
expressions, when compiled to SPARQL, are indeed a feasible language to search seman
tic trajectories and not just an abstract query framework.

As future work, we plan to run large-scale experiments with real-world semantic
trajectory datasets, backed up by a robust implementation of the keyword stop-and-
move sequence expression SPARQL compiler. A target application would be related to
investigations of cargo vessel incidents. The stop-and-move sequence expressions intro
duced in this article would help, for example, to locate vessel trajectories that match
disallowed movement patterns, such as ‘trajectories of oil tankers that sailed from any oil
rig port in country A, sailed through a high-risk region (e.g. a piracy prone area) and
arrived at a port P in another country B’. Such trajectories are sometimes followed by
captains at the risk of not been covered by insurance companies in the case of an attack. It
could also be used to query for different types of trajectories, such as navigation patterns
of interest in an e-shop: ‘customers who visited the product page of a tv-set A (an analogy
of stop), then followed a link (a type of move) to another tv-set B (another stop of the
same type) and later on their session searched (i.e. a different type of “move” within
a website) for a console C’. We also plan to adapt the proposed approach to other types of
sequences, such as music playlists. Finally, we will invest in extending the approach to
a question-and-answer scenario.

22 Y. T. IZQUIERDO ET AL.

Note

1. OWL stands for Web Ontology Language.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

Yenier Torres Izquierdo is currently studying towards a D.Sc. degree in Informatics at the
Department of Informatics of the Pontifical Catholic University of Rio de Janeiro – PUC-Rio, in the
database area, with expected completion in 2021. He holds an M.Sc. in Informatics from PUC-Rio
(2017), in the area of the database, and had a scholarship “Student Grade 10” in 2016 and 2019 from
FAPERJ for his academic results during the M.Sc. and D.Sc. studies. He obtained a B.Sc. in Computer
Science from the University of Havana (2012). He is currently a software developer at the Tecgraf
Institute – PUC-Rio. His research topics are Process Mining, Data Mining, Databases, Compilation,
DSL, Programming Languages, and Artificial Intelligence.

Grettel Monteagudo García obtained a D.Sc. in Informatics from the Pontifical Catholic University of
Rio de Janeiro – PUC-Rio (2020), in the area of the database, an M.Sc. in Informatics from PUC-Rio
(2016), also in the area of the database, and a B.Sc. in Computer Science from the University of
Havana (2012), in the database management systems area. She had a scholarship “Student Grade
10” in 2018 and 2015 from FAPERJ for her academic results during the D.Sc and M.Sc. studies,
respectively. She won the HackPUC 2014, hackathon organized by PUC-Rio. She is currently a
researcher and software developer at the Tecgraf Institute – PUC-Rio. She worked at the
Department of Information Systems at the José A. Echeverría Polytechnic Institute (CUJAE) in
Havana, Cuba, in 2013, as a trainee professor and researcher. Her research interests include
ontological models, Semantic Web technologies, keyword search, and graph algorithms.

Marco A. Casanova is a Full Professor at the Department of Informatics and Coordinator of the
Central Planning and Evaluation Office of the Pontifical Catholic University of Rio de Janeiro – PUC-
Rio. He graduated in Electronic Engineering at the Military Institute of Engineering (1974), obtained
an M.Sc. in Informatics from PUC-Rio (1976), and an M.Sc. (1977) and a Ph.D. (1979) in Applied
Mathematics from Harvard University. He was Graduate Program Coordinator (2005-2007) and
Director (2007-2011) of the Department of Informatics of PUC-Rio. His research interests concentrate
on database conceptual modeling and the construction of database management systems. In July
2012, he received the Scientific Merit Award from the Brazilian Computer Society.Luiz André Portes
Paes Leme obtained a B.Sc. in Electrical Engineering from the State of Rio de Janeiro University
(1989), and an M.Sc. in Informatics (2006) and a D.Sc. in Informatics (2009), both from the Pontifical
Catholic University of Rio de Janeiro. He conducted postdoctoral research at the Consiglio Nazionale
delle Ricerche (2015). Currently, he is Associate Professor at the Federal Fluminense University. His
research interests include data integration, information retrieval, and mobile data analysis.

Luiz André P. Paes Leme obtained a B.Sc. in Electrical Engineering from the State of Rio de Janeiro
University (1989), and an M.Sc. in Informatics (2006) and a D.Sc. in Informatics (2009), both from the
Pontifical Catholic University of Rio de Janeiro. He conducted postdoctoral research at the Consiglio
Nazionale delle Ricerche (2015). Currently, he is Associate Professor at the Federal Fluminense
University. His research interests include data integration, information retrieval, and mobile data
analysis

Christos Sardianos is currently a Ph.D. candidate and research assistant at the Department of
Informatics & Telematics at Harokopio University of Athens. He also holds an MSc in the area of

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 23

Web Engineering and a BSc in Electronics Engineering. The research area of his Ph.D. is “Knowledge
Mining from Large Scale Social Networks”, under the supervision of Associate Professor Iraklis
Varlamis. His main research topics of interest include Recommender Systems, Data Mining,
Machine Learning, and Social Network Analysis. He has participated in numerous EU, international
and national funded projects including Fortissimo (FP7), EM3, TEACHING, Palo Analytics,
ICT4Growth, DemocracIT and MASTER (H2020).

Konstantinos Tserpes is an Assistant Professor at the Department of Informatics and Telematics of
the Harokopio University of Athens. He holds a Ph.D. in the area of Distributed Systems from the
school of Electrical and Computer Engineering of the National Technical University of Athens (2008).
His research interests revolve around distributed systems, software and service engineering, Big
Data analytics, and social systems. He has been involved in several EU and National funded projects
leading research for solving issues related to scalability, interoperability, fault tolerance, and
extensibility in application domains such as multimedia, e-governance, post-production, finance,
e-health, and others. He has served as the scientific or general coordinator in several ICT projects
such as +Spaces, SocIoS, Consensus, Fortissimo (FP7), and BASMATI (H2020) and the principal
investigator for the projects ACCORDION, TEACHING, COLLABS, MASTER and SmartShip (H2020).

Iraklis Varlamis is an Associated Professor of Data Management at the Department of Informatics
and Telematics of the Harokopio University of Athens. He holds a Ph.D. in Informatics from the
Athens University of Economics and Business, Greece, and an MSc in Information Systems
Engineering from UMIST, UK. He has been involved as a technical coordinator in a number of EU
funded projects concerning knowledge management, data mining, machine learning, and expert
systems. He has also coordinated several national R&D projects concerning data management and
personalized delivery of information. He has authored more than 130 articles concerning text and
graph mining and intelligent applications in social networks and the web and received more than
2200 citations. He has worked as a scientific coordinator or principal investigator in several
collaborative research projects funded by National, EU (e.g. H2020 TEACHING, SustAGE, MASTER,
FP7-Fortissimo) and International Funds (e.g. Qatar Funding-EM3).

Lívia C. Ruback Rodrigues obtained a D.Sc. in Informatics (2017) and an M.Sc. in Informatics (2013),
both from the Pontifical Catholic University of Rio de Janeiro – PUC-Rio, and a B.Sc. in Computer
Science from the Federal University of Juiz de Fora (2009). She currently is an Assistant Professor at
the Department of Computing of the Federal Rural University of Rio de Janeiro and a member of the
AI Inclusive Project. Her research interests include Linked Data, Semantic Web, Social Media, and
Social Computing.

Data and codes availability statement

The original TripBuilder dataset was not created by the authors of this article, but the data and
codes that support the findings of this study are available at https://doi.org/10.6084/m9.figshare.
11559090.

Funding

This work was partly funded by grants [CAPES/88881.134081/2016-01, CNPq/302303/2017-0 and
FAPERJ/E-26-202.818/2017]. This work was supported by the project “MASTER”. MASTER project has
received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement [No 777695]. The work reflects only the author’s
view and the EU Agency is not responsible for any use that may be made of the information it
contains.

24 Y. T. IZQUIERDO ET AL.

https://doi.org/10.6084/m9.figshare.11559090
https://doi.org/10.6084/m9.figshare.11559090

ORCID

Yenier Torres Izquierdo http://orcid.org/0000-0003-0971-8572
Grettel Monteagudo García http://orcid.org/0000-0001-9713-300X
Marco A. Casanova http://orcid.org/0000-0003-0765-9636
Luiz André P. Paes Leme http://orcid.org/0000-0001-6014-7256
Christos Sardianos http://orcid.org/0000-0001-7262-7310
Konstantinos Tserpes http://orcid.org/0000-0001-5183-1443
Iraklis Varlamis http://orcid.org/0000-0002-0876-8167
Lívia C. Ruback Rodrigues http://orcid.org/0000-0001-5000-2280

References

Alvares, L.O., et al. 2007a. Dynamic modeling of trajectory patterns using data mining and reverse
engineering. In: 26th international conference on conceptual modeling, poster session. Auckland,
New Zealand: ACM, vol. 83, 149–154.

Alvares, L.O., et al. 2007b. A model for enriching trajectories with semantic geographical
information. In: 15th annual ACM international symposium on advances in geographic information
systems. Auckland, New Zealand: ACM, 22.

Baader, F., et al. eds., 2003. The description logic handbook: theory, implementation, and applications.
USA: Cambridge University Press.

Baglioni, M., et al. 2008. An ontology-based approach for the semantic modelling and reasoning on
trajectories. In: International conference on conceptual modeling. LNCS. Berlin, Heidelberg:
Springer, vol. 5232, 344–353.

Bast, H., Buchhold, B., and Haussmann, E., 2016. Semantic search on text and knowledge bases.
Foundations and Trends® in Information Retrieval, 10 (1), 119–271. doi:10.1561/1500000032

Bergamaschi, S., et al. 2016. Combining user and database perspective for solving keyword queries
over relational databases. Information Systems, 55, 1–19. doi:10.1016/j.is.2015.07.005.

Bogorny, V., et al. 2014. Constant – a conceptual data model for semantic trajectories of moving
objects. Transactions in GIS, 18 (1), 66–88. doi:10.1111/tgis.12011

Brilhante, I., et al., 2014. TripBuilder: a tool for recommending sightseeing tours. In: 36th European
Conf. on Information Retrieval (ECIR’14). Springer, Cham, 771–774.

Fileto, R., et al. 2013. Baquara: A holistic ontological framework for movement analysis using linked
data. In: International conference on conceptual modeling. LNCS. Springer, Berlin, Heidelberg, vol.
8217, 342–355.

Fileto, R., et al. 2015. The baquara2 knowledge-based framework for semantic enrichment and
analysis of movement data. Data & Knowledge Engineering, 98, 104–122. doi:10.1016/j.
datak.2015.07.010.

Furtado, A.S., et al. 2016. Multidimensional similarity measuring for semantic trajectories.
Transactions in GIS, 20 (2), 280–298. doi:10.1111/tgis.12156

García, G.M., et al. 2017. RDF keyword-based query technology meets a real-world dataset. In: 20th
International Conference on Extending Database Technology, Venice, Italy. OpenProceedings.

Ghanbarpour, A. and Naderi, H., 2019. A model-based keyword search approach for detecting
top-k effective answers. The Computer Journal, 62 (3), 377–393. doi:10.1093/comjnl/bxy056

Han, S., et al. 2017. Keyword search on RDF graphs - A query graph assembly approach. In: ACM
Conference on Information and Knowledge, CIKM 2017, Singapore, Singapore. ACM Press, vol. Part
F1318, 227–236.

Hristidis, V. and Papakonstantinou, Y., 2002. Discover: keyword search in relational databases. In:
28th International Conference on Very Large Databases (VLDB’02). Hong Kong, China: VLDB
Endowment, 670–681. Available from: https://linkinghub.elsevier.com/retrieve/pii/
B9781558608696500652

Hu, Y., et al. 2013. A geo-ontology design pattern for semantic trajectories. In: International
Conference on Spatial Information Theory. LNCS. Cham: Springer, vol. 8116. 438–456.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 25

https://doi.org/10.1561/1500000032
https://doi.org/10.1016/j.is.2015.07.005
https://doi.org/10.1111/tgis.12011
https://doi.org/10.1016/j.datak.2015.07.010
https://doi.org/10.1016/j.datak.2015.07.010
https://doi.org/10.1111/tgis.12156
https://doi.org/10.1093/comjnl/bxy056
https://linkinghub.elsevier.com/retrieve/pii/B9781558608696500652
https://linkinghub.elsevier.com/retrieve/pii/B9781558608696500652

Izquierdo, Y.T., et al. 2018. QUIOW: A keyword-based query processing tool for RDF datasets and
relational databases. In: 30th International Conference on Database and Expert Systems
Applications (DEXA’18), Regensburg, Germany. Springer, vol. 11030, 259–269.

Le, W., et al. 2014. Scalable keyword search on large RDF data. IEEE Transactions on Knowledge and
Data Engineering, 26 (11), 2774–2788. doi:10.1109/TKDE.2014.2302294

Lin, X.Q., Ma, Z.M., and Yan, L., 2018. RDF keyword search using a type-based summary. Journal of
Information Science and Engineering, 34 (2), 489–504.

Oliveira, P.D., Silva, A.D., and Moura, E.D., 2015. Ranking Candidate Networks of relations to improve
keyword search over relational databases. In: 31st IEEE International Conference on Data
Engineering (ICDE’15), Seoul, S. Korea. IEEE, 399–410.

Parent, C., et al. 2013. Semantic trajectories modeling and analysis. ACM Computing Surveys (CSUR),
45 (4), 42. doi:10.1145/2501654.2501656

Petry, L.M., et al. 2019. Towards semantic-aware multiple-aspect trajectory similarity measuring.
Transactions in GIS, 23 (5), 960–975. doi:10.1111/tgis.12542

Renso, C., et al. 2013a. How you move reveals who you are: understanding human behavior by
analyzing trajectory data. Knowledge and Information Systems, 37 (2), 331–362. doi:10.1007/
s10115-012-0511-z

Renso, C., Spaccapietra, S., and Zimányi, E., 2013b. Mobility data. Cambridge: Cambridge University
Press.

Rihany, M., Kedad, Z., and Lopes, S., 2018. Keyword search over RDF graphs using wordnet. In: 1st
International Conference on Big Data and Cyber-Security Intelligence (BDCSIntell’18), Hadath,
Lebanon. CEUR-WS, vol. 2343, 75–82.

Santipantakis, G.M., et al. 2017. Specification of semantic trajectories supporting data transforma
tions for analytics: the datacron ontology. In: 13th International Conference on Semantic Systems.
Amsterdam, Netherlands: ACM, 17–24.

Spaccapietra, S., et al. 2008. A conceptual view on trajectories. Data & Knowledge Engineering, 65 (1),
126–146. doi:10.1016/j.datak.2007.10.008

Tran, T., et al., 2009. Top-k exploration of query candidates for efficient keyword search on
graph-shaped (RDF) data. In: 25th International Conference on Data Engineering, ICDE 2009,
Shanghai, China. IEEE, 405–416.

Wen, Y., Jin, Y., and Yuan, X., 2018. KAT: keywords-to-SPARQL translation over RDF graphs. In: 23rd
International Conference on Database Systems for Advanced Applications (DASFAA’18), Gold Coast,
Australia. Springer, vol. 10827, 802–810.

Yan, Z., et al. 2008. Trajectory ontologies and queries. Transactions in GIS, 12, 75–91. doi:10.1111/
j.1467-9671.2008.01137.x.

Zenz, G., et al. 2009. From keywords to semantic queries-Incremental query construction on the
semantic web. Journal of Web Semantics, 7 (3), 166–176. doi:10.1016/j.websem.2009.07.005

Zheng, W., et al. 2016. Semantic SPARQL similarity search over RDF knowledge graphs. 42nd
International Conference on Very Large Databases (VLDB’16), 9 (11), 840–851.

Zhou, Q., et al. 2007. SPARK: adapting keyword query to semantic search. In: 6th International
Semantic Web Conference (ISWC’07), Busan, Korea. Springer, vol. 4825, 694–707.

26 Y. T. IZQUIERDO ET AL.

https://doi.org/10.1109/TKDE.2014.2302294
https://doi.org/10.1145/2501654.2501656
https://doi.org/10.1111/tgis.12542
https://doi.org/10.1007/s10115-012-0511-z
https://doi.org/10.1007/s10115-012-0511-z
https://doi.org/10.1016/j.datak.2007.10.008
https://doi.org/10.1111/j.1467-9671.2008.01137.x
https://doi.org/10.1111/j.1467-9671.2008.01137.x
https://doi.org/10.1016/j.websem.2009.07.005

	Abstract
	1. Introduction
	2. Related work
	3. A keyword search over semantic trajectories use-case
	4. A formal framework for querying semantic trajectories
	4.1. A formal framework for semantic trajectories
	4.2. Query expressions over semantic trajectories
	4.2.1. Enrichment, stop and move queries
	4.2.2. Stop-and-move sequence expressions
	4.2.3. Intercalated stop-and-move sequence expressions

	5. An RDF framework for querying semantic trajectories
	5.1. SPARQL query expressions over semantic trajectories
	5.2. Processing of SPARQL stop sequence expressions
	5.3. Processing of SPARQL intercalated stop-and-move sequence expressions

	6. Keyword query expressions over semantic trajectories in RDF
	7. A proof-of-concept experiment
	8. Conclusions and future work
	Note
	Disclosure statement
	Notes on contributors
	Data and codes availability statement
	Funding
	ORCID
	References

