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ABSTRACT
Assessment of vegetation biochemical and biophysical variables is useful
when developing indicators for biodiversity monitoring and climate
change studies. Here, we compared a radiative transfer model (RTM)
inversion by merit function and five machine learning algorithms trained
on an RTM simulated dataset predicting the three plant traits leaf
chlorophyll content (LCC), canopy chlorophyll content (CCC), and leaf
area index (LAI), in a mixed temperate forest. The accuracy of the
retrieval methods in predicting these three plant traits with spectral data
from Sentinel-2 acquired on 13 July 2017 over Bavarian Forest National
Park, Germany, was evaluated using in situ measurements collected
contemporaneously. The RTM inversion using merit function resulted in
estimations of LCC (R2 = 0.26, RMSE = 3.9 µg/cm2), CCC (R2 = 0.65, RMSE
= 0.33 g/m2), and LAI (R2 = 0.47, RMSE = 0.73 m2/m2), comparable to the
estimations based on the machine learning method Random forest
regression of LCC (R2 = 0.34, RMSE = 4.06 µg/cm2), CCC (R2 = 0.65, RMSE
= 0.34 g/m2), and LAI (R2 = 0.47, RMSE = 0.75 m2/m2). Several of the
machine learning algorithms also yielded accuracies and robustness
similar to the RTM inversion using merit function. The performance of
regression methods trained on synthetic datasets showed promise for
fast and accurate mapping of plant traits accross different plant
functional types from remote sensing data.
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1. Introduction

The assessment of plant functional diversity at ecosystem level is mainly addressed by examining
dynamic processes and evaluating plant traits (Gamon et al. 2019). Leaf traits and biophysical
characteristics are essential indicators in monitoring and assessing the functioning and structure
of terrestrial ecosystem biodiversity (Pereira et al. 2013; Skidmore et al. 2015). Traits such as leaf
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chlorophyll content (LCC), canopy chlorophyll content (CCC) and leaf area index (LAI) have been
long used in ecological and climate studies as input to biospheric models for the prediction of surface
energy balance and primary productivity, as well as the assessment of plant health conditions and
CO2 exchange rates (Myneni et al. 1997). Measurement of these traits based on field observations
at different spatiotemporal scales is labour-intensive and time-consuming. Remote sensing could
play a critical role by acquiring such data over broad spatial scales (Wang et al. 2010). The advance-
ment in remote sensing sensors regarding spatial, temporal and spectral resolutions enables us to
accurately measure fundamental plant traits using remote sensing data at local, regional, and global
level (Houborg, Fisher, and Skidmore 2015).

The Sentinel-2 multispectral imager is a constellation with two twin satellites, Sentinel-2A and
Sentinel-2B, that can be used to quantify biodiversity variables (Drusch et al. 2012). The efficient pro-
duction of high-quality plant trait maps from Sentinel-2 data requires evaluating the performance of
existing methods and developing new ones. Although many studies quantified different plant traits
using remote sensing data in the past four decades, to our knowledge, few studies have assessed the
retrieval of chlorophyll and LAI using Sentinel-2 data. Darvishzadeh et al. (2019) retrieved LCC of a
temperate forest through radiative transfer model (RTM) inversion, and Ali et al. (2020) compared
existing empirical and RTM inversion methods for predicting CCC from Sentinel-2 data. Also, veg-
etation indices optimized for Sentinel-2 were used for the estimation of crop LAI and chlorophyll
content (e.g. Clevers, Kooistra, and van den Brande 2017; Pasqualotto et al. 2019).

Popular techniques commonly used for prediction of plant traits and vegetation biophysical
characteristics from remotely sensed data are generally categorized as statistical-based, physically-
based (radiative transfer models), and hybrid approaches. The statistical-based approaches are para-
metric or non-parametric regression models that relate the variable(s) of interest to the remote sen-
sing spectral data or their derivative (e.g. vegetation indices) (Skidmore 2002; Darvishzadeh et al.
2008b; Atzberger et al. 2015). Vegetation indices are widely used to enhance the relationship between
a variable of interest and spectral data by utilizing only the most informative spectral feature, and
thus minimizing the effect of confounding factors such as topography, soil background and atmos-
pheric effects (Asner 1998; Thenkabail, Smith, and De Pauw 2000; Broge and Mortensen 2002; Dar-
vishzadeh et al. 2008a). There are a number of regression models (also commonly known as
statistical machine learning methods) in the literature that can be used to establish empirical
relationships between the variable of interest (e.g. chlorophyll, LAI) and remote sensing spectral
data, either directly through its derivatives, or using vegetation indices for accurate prediction.
The broadly used statistical machine learning methods include linear non-parametric models
such as Stepwise multiple linear regression (SMLR), Principal components regression (PCR), Partial
least squares regression (PLSR) and Ridge (regulated) regression (RR), and non-linear non-para-
metric regression methods such as decision tree learning (e.g. random forest regression (RFR)),
Artificial neural networks (ANNs), Kernel methods (e.g. support/relevance vector machines
(SVM), and kernel ridge regression (KRR)), Gaussian Process Regression (GPR), and Bayesian net-
works (Verrelst et al. 2015; Féret et al. 2018; Holloway and Mengersen 2018).

Statistical models are easy to apply and are readily available; thus, they are extensively used. How-
ever, statistical models developed for a specific site or sensor configuration lack transferability to
other locations with different vegetation types, to other sensor configurations, or to different
times of data acquisition (Vuolo et al. 2013). Their major pitfall emanates from their need for in
situ datasets for training and validation. The number, quality, and representativeness of the in
situ datasets determine the robustness of statistical models. Hence, a thorough test of the accuracy
and robustness of these predictive models depends on large data volumes and variability, which is
challenging and may lead to high costs being incurred when trying to obtain such data based on
merely in situ measurements.

The alternative is to use physical-based approaches, which allow simulating a large dataset that
can be used for training of the statistical models, thus reducing the dependency on field data or inver-
sion procedures to retrieve variables of interest. The physical approach involves the use of RTMs.
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RTMs simulate the surface reflectance that can be recorded by a sensor as a function of leaf prop-
erties, canopy structure (e.g. crown shape, forest stand density, and canopy heterogeneity), sensor
configuration, illumination geometry, and background (Houborg, Soegaard, and Boegh 2007; Jac-
quemoud et al. 2009). A large variety of canopy RTMs are currently available ranging from the
one-dimensional or turbid media models (e.g. Scattering by Arbitrarily Inclined Leaves (SAIL)
model) that assume horizontally homogeneous canopy structure (Huemmrich 2001) to Monte
Carlo ray tracing three-dimensional (3D) models (e.g. Discrete anisotropic radiative transfer
(DART) model), which simulate reflectance by stochastically calculating photon trajectories within
turbid or geometric canopies. For more information, an inter-comparison of canopy RTM models is
reported by Widlowski et al. (2015).

Complex models seem to be more realistic, but they have many variables and are therefore hard to
parameterize and invert, whereas simpler models may be less realistic but easier to invert (Verrelst
et al. 2015). Nevertheless, a study by Yanez-Rausell et al. (2015) demonstrated the comparable per-
formance of the computationally less intensive RTM-PARAS with the DART 3Dmodel. PARAS uses
a simplified forest structural description, whereas DART uses a detailed 3D structural forest parame-
trization coupled with a leaf radiative transfer model. Therefore, less intensive hybrid models, such as
the Invertible Forest Reflectance model (INFORM) (Schlerf and Atzberger 2006), which is a combi-
nation of the forest light interaction model (Rosema et al. 1992) and SAIL (Verhoef 1984) canopy
RTMs with the leaf PROSPECT (property spectra) model (Jacquemoud and Baret 1990) RTM,
seem to be particularly suitable and is the choice to be tested in this study.

The inversion of a canopy RTM is considered to be a physically sound approach for the retrieval
of bio-geophysical variables of terrestrial surfaces because the approach is generic and therefore has
more general applicability and transferability (Malenovský et al. 2008; Verrelst et al. 2010; Féret et al.
2011; Atzberger et al. 2013). Inversion of an RTM can be performed using techniques such as look-
up table (LUT) inversion, iterative numerical optimization methods, or hybrid approaches (Verrelst
et al. 2015) in which RTMs are used to simulate data for input to train machine learning regression
methods. LUT inversion of RTMs by using merit functions is computationally demanding and may
not be operationally feasible for large scale mapping.

Therefore, combining the generic capabilities of physically-based methods with flexible and com-
putationally efficient statistical methods, such as machine learning approaches, may best suit large-
scale mapping of plant traits. RTMs are used to simulate canopy reflectance based on the spectral
band specifications and configurations of a sensor, and are used to train parametric or non-para-
metric regression methods to link spectral information and canopy parameters (Jacquemoud et al.
2009). These hybrid inversion methods have the advantage of empirical method simplicity in
addition to physical model universality, while being able to estimate the properties of vegetation
accurately and quickly (Verrelst et al. 2015). A considerable amount of literature has been published
on the performance of such hybrid methods. Liang et al. (2016) compared the performance of three
hybrid methods namely curve-fitting, least squares support vector regression (LS-SVR) and RFR
algorithms for LCC and CCC retrieval, by using simulated Compact High-Resolution Imaging Spec-
trometer (CHRIS) datasets that were generated by the SAIL coupled with PROSPECT (PROSAIL)
radiative transfer model in crop fields. Their validation result demonstrated RFR to be the optimal
method for their modelling. Baret (2016) implemented ANN trained on PROSAIL simulated data for
regional and global prediction of biophysical variables, including CCC from Sentinel-2; their algor-
ithm is also implemented in the ESA Sentinel application platform toolbox. Retrieval of forest leaf
functional traits from HySpex imagery using the INFORM radiative transfer models inversion
and stepwise multilinear regression was evaluated by Ali et al. (2016b). Atzberger et al. (2015) com-
pared LUT based inversion of the PROSAIL RTM to second-order polynomial function, fitted on
wavelengths reflectance and vegetation indices calculated from the synthetic data, to retrieve LAI
in Mediterranean grassland from airborne imaging spectroscopy. To date, there has been little agree-
ment on which machine learning algorithm to implement for large scale mapping of plant traits.
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To the best of our knowledge, there have been no detailed studies assessing the accuracy of differ-
ent machine learning regression methods calibrated on RTM generated synthetic data to retrieve
multiple plant traits in a forest ecosystem. By evaluating the accuracy of the overarching machine
learning approaches available in the literature, we aim to increase the predictive power and robust-
ness of RTM inversions in the forest by combining the advantages of physical and statistical-based
models. With the objective to derive a fast and efficient RTM inversion scheme for predicting plant
traits in a forest ecosystem from freely available spaceborne data, this study presents a comparative
accuracy assessment of the results from five machine learning methods as well as LUT using the
merit function approach for the INFORM inversion on Sentinel-2 data to predict the plant traits
LCC, CCC and LAI in a mixed mountain forest.

2. Materials and methods

2.1. Study area

The test site for this study was the Bavarian Forest National Park (BFNP) in south-eastern Germany,
with the centre coordinates 13°12′9′′ E (longitude) and 49°3′19′′ N (latitude), along the border to the
Czech Republic. The BFNP has a mixed mountain forest with an approximate area of 240 km2 and a
temperate climate. Elevation varies from 600 m to 1453 m. Annual precipitation ranges from
1,200 mm to 1,800 mm, with annual temperature averages from 3° to 6° Celsius (Heurich et al.
2010).

The BFNP has valley, hillside, and highland ecological zones. Alluvial spruce forests are dominant
in the valleys, mixed mountain forests are found on the hillsides and mountain spruce forests in the
high areas (Heurich et al. 2010). European beech (Fagus sylvatica), Norway Spruce (Picea abies) and
Fir (Abies alba) are the three dominant tree species. Sycamore Maple (Acer pseudoplatanus L),
Mountain Ash (Sorbus aucuparia L), and Goat Willow (Salix caprea) are infrequently found in
deciduous stands in the park (Cailleret, Heurich, and Bugmann 2014). Due to massive disturbance
by bark beetles and wind storms in recent decades, the forest structure in the BFNP is very hetero-
geneous (Lehnert et al. 2013).

2.2. Data

2.2.1. In situ data
The field measurements were collected in July 2017. The study area was stratified into conifer, broad-
leaf, and mixed stands, and a random sampling technique was implemented to collect samples in
each stratum. Biophysical and biochemical variables were obtained in total from 32 square plots
with 30 m sides. Geographic coordinates of the plots were recorded at the centre using a handheld
Garmin Global Positioning System (GPS) that has a geometric accuracy of ±5 m. The structural vari-
able LAI was measured using Li-Cor LAI-2200 canopy analyzer equipment for each sample plot. We
followed a similar procedure of taking one reference (above the canopy) reading in the nearest open
field, and five below canopy measurements inside each plot in estimating LAI as described in Dar-
vishzadeh et al. (2019). A maximum effort was made to take the LAI-2200 measurements with con-
stant illumination conditions for the above and below canopy readings.

In each plot, a crossbow was used to collect sample leaves/shoots/needles from the mature sunlit
part of the top of the canopy (Ali et al. 2016a). These samples were collected from two to three
branches of the representative trees in each plot. Their chlorophyll content was immediately
measured using a Chlorophyll Content Meter (CCM-300) and weighed average by species biomass
to determine leaf chlorophyll content per plot (see Gara et al. (2019) for details). The CCC of each
plot was calculated by multiplying the plot’s average LCC and LAI. The summary of these field
measurements is presented in Table 1.
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2.2.2. Sentinel-2 data and pre-processing
The cloud-free Sentinel-2A image of the study area generated on 13 July 2017 was used to study the
three plant traits further. The Sentinel-2A level 1c product was downloaded from the ESA Copernicus
open access hub (https://scihub.copernicus.eu). Top-of-atmosphere (TOA) reflectance (level 1c pro-
duct) was processed into top-of-canopy (TOC) reflectance (level 2A product) and resampled to a
20 m spatial resolution using Sen2cor 2.5.5 stand-alone software, which is freely distributed under
the GNU general public license (http://step.esa.int/main/third-party-plugins-2/sen2cor). Spectral
information from ten bands (bands 2, 3, 4, 5, 6, 7, 8, 8a, 11, and 12) was utilized in this study. The
remaining three bands at 443, 945, and 1374 nm central wavelength (bands 1, 9, and 10, respectively)
serve mainly for atmospheric correction and were not relevant for our purpose. The TOC reflectance
data of the pixels containing the sample plots were extracted and used for validation of the perform-
ance of the different RTM inversion methods considered in predicting the three key plant variables.

2.3. Methods

2.3.1. Physical based modelling

(a) The INFORM radiative transfer model: INFORM mimics forest canopy optical property with
few input parameters compared to 3D RTMs (Atzberger 2000; Schlerf and Atzberger 2006).
The capacity of INFORM to simulate forest spectra in forward mode was compared to other
RTMs in Widlowski et al. (2015). Because of its simplicity and reliability in generating forest
canopy synthetic spectra, we found this model to be a feasible choice for the purpose of forest
canopy spectral simulation and as such it has successfully been inverted in several studies (e.g.
Ali et al. 2016b; Wang et al. 2017; Darvishzadeh et al. 2019).

(b) INFORM parameterization and LUT generation: RT models offer a chance to simulate look-up
tables (LUT) with large data volume and variability by incorporating a wide range of input par-
ameters to ensure a thorough test of the accuracy and robustness of the inversion methods. The
LUT should be extensive enough to achieve high accuracy (Combal et al. 2003) without becoming
computationally too expensive. To determine LUT size requires a compromise between compu-
tation time and the accuracy of the prediction. Investigation and previous studies (e.g. Vuolo et al.
2010; Atzberger et al. 2015) led us to decide on a LUT size of 100,000 parameter combinations.

In this study, INFORM was coupled with PROSPECT-4 and its input parameters were four leaf and
six canopy properties (Table 2), as well as sensor observation related parameters such as view zenith
(θo), sun zenith (θs) and relative azimuth angle (Φ) to simulate top of canopy spectral reflectance of
forest stands between the 400 and 2500 nm wavelengths. The ranges for input parameters were
determined using prior knowledge from the field observations, literature review, and sensor
configurations (Table 2). In INFORM, LAI is represented by single tree LAI (LAIs). Hence, LAIs
was computed from LAI and canopy closure (CC) as in equation 1 (Schlerf and Atzberger 2006).

LAIs = LAI
CC

(1)

Table 1. Basic statistics of the in situ measured variables: leaf chlorophyll content (LCC), leaf area index (LAI), and canopy
chlorophyll content (CCC).

Summary
LCC

(µg cm−2)
LAI

(m2 m−2)
CCC

(g m−2)

Minimum 33.62 1.33 0.58
Maximum 51.75 5.4 2.42
Mean 42.80 3.82 1.62
Std.dev 4.83 1.01 0.46

INTERNATIONAL JOURNAL OF DIGITAL EARTH 5

https://scihub.copernicus.eu
http://step.esa.int/main/third-party-plugins-2/sen2cor


High correlations among model input parameters have been reported in previous studies (e.g. Ali
et al. 2016b). Hence, leaf and canopy level input parameter combinations were determined using
a multivariate normal distribution function based on the mean and covariance matrix of their
ground truth values. Sensor configuration parameters were randomly drawn within their range
recorded in the metadata of the Sentinel-2 image, while others were fixed based on previous studies
(Schlerf and Atzberger 2006; Ali et al. 2016b). Field spectra of understory vegetation and the forest
floor elements were averaged and used as background reflectance during the simulation. The
reliability of the INFORMmodel to simulate Sentinel-2 image data has been shown in Darvishzadeh
et al. (2019) and was also checked here by comparing the INFORM simulated spectra of known
samples obtained from Sentinel-2 TOC reflectance. A random Gaussian noise value of 0.3% was
added to each simulated spectrum to account for model uncertainties.

2.3.2. INFORM inversion
RTM inversions are considered generic and robust methods to estimate vegetation variables from
remotely sensed data. The large data volume in an LUT can be used for a global search of a solution
when inverted using merit functions. It also enables to train machine learning algorithms with
sufficient samples and variability situations, thus improve the transferability of the algorithms.

In order to identify robust, accurate and reliable method(s) for the inversion of INFORM from
Sentinel-2 data, this study evaluated six different retrieval algorithms using training data of 85%
of the LUT generated by INFORM (85, 000 entries): (i) LUT inversion using a merit function, (ii)
a linear non-parametric regression method (SMLR) and (iii) four non-linear non-parametric
regression methods (ANN, GPR, RFR and SVM). The non-linear non-parametric methods were
selected because of their ability to perform adaptively, nonlinear data fitting for the estimation of
biophysical parameters from remote sensing data, and they are often used by the remote sensing
community as powerful predictive methods (e.g. Verrelst et al. 2012; Baret 2016; Liang et al. 2016;
Ali et al. 2016b). All analytical processes of the study were employed in Matlab (The Mathworks®).
The execution time for each algorithm to train and predict the three traits over the whole study area
was recorded. Descriptions of the simulation of training data using RTM and inversion methods are
detailed in the following subsections.

Predictions of all methods were validated using the remaining 15% of the INFORM simulated
dataset (15,000 entries) as well as the in situ measurements of the three variables as independent
observations. The accuracy of the retrievals was portrayed using root mean square error (RMSE),

Table 2. INFORM input parameters used to generate the LUT and their ranges, as defined on the basis of literature review and
sensor configuration (Sentinel-2 MSI).

Parameter Symbol Unit

Range

SourceMin Max

Leaf dry mass per area Cm g/cm2 0.005 0.03 Ali et al. (2016b)
Equivalent water thickness Cw g/cm2 0.006 0.035 Ali et al. (2016b)
Leaf structural parameter N NA 1 2.5 Ali et al. (2016a)
Leaf chlorophyll content LCC µg/cm2 20 65 Field measurement
Single-tree LAI LAIs NA 2 10 Field measurement
Understory LAI LAIu NA 0.2 1 Field measurement
Stem density SD n/hr 200 2000 Ali et al. (2016b)
Stand height SH m 5 40 Ali et al. (2016b)
Crown diameter CD m 3 10 Ali et al. (2016b)
Average leaf angle ALA degree 40 60 Ali et al. (2016b)
Sun zenith angle θs degree 25 35 Image metadata
Observation zenith angle θ0 degree 0 15 Image metadata
Azimuth angle Φ degree 50 210 Image metadata
Scale NA 0.5 1.5 Schlerf and Atzberger (2006)
Fraction of diffused radiation Sky1 fraction 0.1 Schlerf and Atzberger (2006)

Note: Leaf and canopy level input parameter combinations were determined using a multivariate normal distribution function,
whereas sensor configuration parameters were randomly distributed within their range.
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relative root mean square error (RRMSE), the coefficient of determination (R2), and bias (Equations
2–5) between the in situ data and the predictions. A paired t-test was applied to discern whether the
predictions were significantly different from the independent observations. Ranges and scatterplots
were utilized to reveal the similarities and differences between the predictions and in situ measure-
ments of the studied plant traits.

R2 = 1−
∑(yi−y′i) 2∑(yi−yi) 2

(2)

RMSE =
�����������∑(yi−y′ i) 2

n

√
(3)

RRMSE (%) =
�����������∑(yi−y′ i) 2

n

√
/yi∗100 (4)

Bias =
∑y

i −y′i
n

(5)

where yi and y′i are the actual and predicted values for sample i, yi is the mean value of actual samples
and n is the number of samples.

(a) LUT inversion using a merit function: Root mean square error (RMSE) between each measured
spectrum (i.e. Sentinel-2 data) and modelled (LUT) spectra (Equation 6) was used as a merit
function for spectrum matching to find the solution in the LUT.

RMSE =
��������������������∑(Rmeasured−Rmodelled) 2

n

√
(6)

where Rmeasured is Sentinel-2 reflectance at wavelength λ and Rmodelled is simulated reflectance at
wavelength λ in the LUT, and n is the number of wavelengths.

Darvishzadeh et al. (2008b) proposed an average absolute error threshold value (≤ 0.02) between
simulated spectra and measured (Sentinel-2) spectra to identify well-simulated bands. We applied
this criterion to determine the band subsets used during the retrieval. Therefore, the inversion
was carried out using those Sentinel-2 bands found between 650 and 750 nm, which satisfied the cri-
terion and were found in the red and NIR transition zone wavelength range where an increase in
chlorophyll content increased absorption. The solution to the inverse problem is the set of input par-
ameters corresponding to the reflectance in the database that provided the smallest RMSE. Because
of the potential insufficiency in model formulation and parameterization, and noise related to cali-
bration and pre-processing errors in the observed reflectance, the lowest RMSE might not necessarily
provide the best estimates of the solution (Combal et al. 2003). For each measured spectrum, there-
fore, the first 100 (q) were chosen as potential solutions. From the multiple available solutions (q),
the median value was taken as the final solution.

LUT Inversion using machine learning algorithms
(i) Artificial neural network (ANN): A feed-forward back-propagation neural network with

three layers (input, hidden, and output layers) in ©Mathworks was used for this study.
The INFORM-simulated spectral dataset, along with the corresponding model input par-
ameters (LCC and LAI) and their derivative (CCC), was divided into three parts of 70%,
15%, and 15%, respectively, for training, validation within the simulated dataset, and testing
of the ANN. The training (learning) was initiated with 70% of the LUT dataset to establish
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the relationship between the inputs (simulated spectra) and the three outputs (LCC, CCC,
and LAI). The performance of the ANN was tested and validated with the remaining data of
the LUT before applying the trained network to Sentinel-2 data.

After a series of preliminary tests, the architecture of the neural network was defined to be a single
hidden layer with ten nodes and tan-sigmoid transfer function along with three output layers with
linear transfer function. The network has been initialized many times to start from different error
surfaces. To overcome the overfitting problem of the network and to improve its generalizability,
we used early stopping with the scaled conjugate gradient (trainscg) optimization algorithm,
which combined the model-trust region approach (used in the Levenberg-Marquardt algorithm)
(Moré 1978). Finally, the trained network was used to predict the three variables from the Senti-
nel-2 L2A spectra and validated using the in situ data.

(ii) Gaussian process regression (GPR): GPR is becoming one of the alternatives to the state-of-the-art
regression methods in predicting biophysical and biochemical parameters from remotely sensed
imagery (Pasolli, Melgani, and Blanzieri 2010). GPR is a stochastic Gaussian probability distri-
bution based process, which formulates the learning of the regression by establishing a relation
between the input (spectra) and the output (plant traits) variables within a Bayesian framework
(Verrelst et al. 2015).

In this study 85% of the INFORM simulated spectral dataset, along with the corresponding model
input parameters (LCC and LAI) and their derivative (CCC), was used to train the GPR. The trained
GPR was then applied on the INFORM simulated testing dataset and Sentinel-2 L2A spectra. Its per-
formance was evaluated by computing RMSE, RRMSE (%) and bias to assess accuracy, and the
coefficient of determination (R2) to account for the goodness-of-fit among the predicted and field
measured plant traits. Different kernel functions and prediction methods have been tested. Conse-
quently, the square-exponential function with a subset of data points approximation fit method, and
the default block coordinate descent (BCD) prediction method, which provided relatively higher
accuracy and R2, was used.

(iii) Random forest regression (RFR): RFR is a regression tree based machine learning ensemble first
developed by Breiman (2001). It relies on the assumption that overall prediction accuracy can be
improved and can control over-fitting by combining different independent predictors (Liang
et al. 2016). Many studies demonstrated the higher efficiency of the random forest method com-
pared with the more conventional parametric and linear non-parametric methods (e.g.
Mutanga, Adam, and Cho 2012; Vuolo et al. 2013; Liang et al. 2016). RFR training needs setting
the number of trees, the number of random features, and the stop criteria. The model was
trained by using 85% of the INFORM simulated spectra as predictor and the corresponding
input variables (LCC, LAI and CCC) as response data. We used 100 regression trees boosted
by the ensemble-aggregation algorithm-LSBoost in Matlab. The grid search method was used
to determine the optimal values for the hyperparameters. Three RFR models were run for
each of the three response variables. The training process was terminated normally after com-
pleting the requested number of training cycles.

(iv) Stepwise multilinear regression (SMLR): SMLR fits an observed dependent data set (e.g. LCC,
CCC, LAI) using a linear combination of independent variables (e.g. reflectance spectral data
at specific bands). The result of this statistical method was that INFORM simulated spectra
at a number (N) of wavelengths (λi = 1, N) correlated to the dependent variables.

The stepwise regression was run separately for each of the three variables: LCC, CCC, and LAI.
Stepwiselm, a stepwise regression routine in ©Mathworks, was used.
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a Support vector machine learning (SVM): SVMs were first proposed by Vapnik, Lerner, and Cher-
vone (1965) as a linear classification method and later improved to solve regression problems
(Cortes and Vapnik 1995). The basic idea under the SVM method is to transform nonlinear
input features into linear regression by defining higher-dimensional space (Hilbert space) (Suy-
kens and Vandewalle 1999; Zeng et al. 2018). Of the INFORM simulated dataset 85% was used
for training and the remaining 15% was used for testing in order to examine the performance of
different kernel functions and optimization techniques available in the SVM toolbox in Matlab.
Finally, the SVM model with fitrsvm iterative support vector machine regression algorithm
based on the linear kernel function and sequential minimal optimization (SMO) training
method, which is recommended for limited number of predictor variables, was found suitable
for our purpose. Thus, this model was trained with the LUT dataset and its performance eval-
uated using our field data of the three variables.

3. Results

The red band (B4) and two red-edge bands (B5 and B6) of Sentinel-2, with central wavelengths of
665, 705, and 740 nm, respectively, showed low absolute error (≤ 0.02) between the INFORM simu-
lation and the Sentinel-2 sample plots reflectance data. Thus, training and validation of the machine
learning algorithms and inversion of LUT by merit function were performed using a band subset of
these three spectral bands. Other band subsets were tested but did not exhibit a strong correlation to
the three traits studied and those results have not been reported here.

Figure 1 presents ranges and means values of in situ measurements and predictions of the three
plant traits. The predicted and in situ LCC values fell between 30 and 55 μg/cm2. The CCC values fell
in the 0.5–3 g/m2 range, and LAI values ranged between 2 and 6 m2/m2. T-paired tests between in
situ measurements and predictions (Table 3) did not show a significant difference for many of the
tested algorithms. The differences between LCC predictions and in situ observations were not signifi-
cant for any of the methods. However, CCC and LAI predictions by SMLR showed a significant
difference with in situ observations at p = 0.05.

Accuracy assessments using RMSE, RRMSE and Bias for both the testing (INFORM simulated)
dataset and validation (in situ) dataset have been presented in Table 4 for comparison. Generally, the
RRMSE and Bias of the validation result showed a similar trend for many of the methods. All

Figure 1. Boxplots of range and mean values of in situ observations as well as predictions made using six different methods for leaf
chlorophyll content (LCC), canopy chlorophyll content (CC), and leaf area index (LAI). The predictions of the LUT method were based
on the median of multiple available solutions (q = 100).
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prediction methods exhibited a bias close to zero for the INFORM simulated testing dataset and a
slightly negative bias for the in situ dataset. ANN provided CCC predictions with the lowest
RMSE (0.31 g/m2) for the validation dataset. The SMLR algorithm was fastest in training and pre-
dicting the three traits across the whole study area of 1475 × 1510 pixels (Table 4). The LUT inver-
sion took the longest time (36 hrs) on a server computer to map the three traits.

The machine learning predictive models, in general, demonstrated a stronger correlation for the
INFOM simulated testing dataset than the in situ validation dataset (Table 5). The highest R2 was
observed for the INFORM simulated testing dataset of LCC (R2 = 0.96) using ANN, GPR, and

Table 3. Paired t-test statistics of traits predicted by different methods against in situ observations.

Trait Method h p

CI

stats sdlower limit upper limit

LCC ANN 0 0.2634 −2.4087 0.6823 −1.1391 4.2867
GPR 0 0.0836 −2.6054 0.1713 −1.7878 3.8508
RFR 0 0.2873 −2.2365 0.6854 −1.0827 4.0520
SMLR 0 0.1725 −2.5618 0.4795 −1.3964 4.2177
SVM 0 0.8218 −1.7568 2.1971 0.2272 5.4800
LUT 0 0.2315 −3.1723 0.7970 −1.2204 5.5047

CCC ANN 1 0.0476 −0.2137 0.0012 −2.0623 0.2948
GPR 0 0.0744 −0.2190 0.0109 −1.8466 0.3187
RFR 0 0.1412 −0.2132 0.0318 −1.5000 0.3397
SMLR 1 0.0306 −0.2482 0.0131 −2.2664 0.3261
SVM 0 0.6255 −0.2236 0.1365 −0.4930 0.4994
LUT 0 0.1857 −0.2296 0.0464 −1.3536 0.3827

LAI ANN 0 0.1254 −0.4738 0.0609 −1.5752 0.7415
GPR 0 0.1342 −0.4692 0.0658 −1.5379 0.7419
RFR 0 0.3384 −0.3974 0.1408 −0.9723 0.7465
SMLR 1 0.0446 −0.5229 −0.0068 −2.0933 0.7157
SVM 1 0.0075 −0.5173 −0.0868 −2.8615 0.5971
LUT 0 0.1329 −0.4484 0.0621 −1.5435 0.7080

Note: LUT refers to look-up table inversion by merit function, null hypothesis (h = 0), alternative hypothesis (h = 1), p-value (p), 95%
confidence interval (CI), T-statistics (stats) and standard deviation (sd). Significant p values (p = 0.05) are highlighted in bold.

Table 4. Root mean square error (RMSE), relative root mean square error (RRMSE) and bias of the six prediction models on the
INFORM simulated dataset (INFORM) and the validation dataset (in situ) for the three traits: leaf chlorophyll content (LCC),
canopy chlorophyll content (CCC) and leaf area index (LAI).

Method Accuracy

LCC CCC LAI

CPU TimeINFORM In situ INFORM In situ INFORM In situ

ANN RMSE 3.51 4.31 0.47 0.31 1.03 0.76 20.0 sec
RRMSE 10.01 10.03 27.07 17.83 21.04 19.05
Bias 0.01 −0.86 0.00 −0.11 0.00 −0.21

GPR RMSE 3.52 4.25 0.46 0.33 1.01 0.74 24.8 min.
RRMSE 10.02 9.90 26.46 19.24 20.50 18.80
Bias 0.00 −1.00 0.00 −0.08 0.00 −0.18

RFR RMSE 3.87 4.06 0.45 0.34 0.99 0.75 121.5 sec.
RRMSE 11.02 9.46 28.14 20.28 21.38 18.73
Bias −0.01 −0.78 0.00 −0.13 0.01 −0.13

SMLR RMSE 4.67 3.86 0.48 0.35 1.02 0.75 6.2 sec
RRMSE 13.33 8.86 27.67 19.93 20.76 18.90
Bias −0.04 −0.42 0.00 −0.13 0.01 −0.26

SVM RMSE 3.57 4.29 0.46 0.35 1.01 0.74 24 hrs
RRMSE 10.16 10.00 26.52 20.67 20.52 18.83
Bias −0.07 −1.27 −0.02 −0.07 −0.01 −0.14

LUT RMSE – 3.9 – 0.33 – 0.73 36 hrs
RRMSE – 9.16 – 19.37 – 18.16
Bias −0.69 −0.13 −0.21

Note: LUT in the method column refers to look-up table inversion by merit function (Equation 2). The time column indicates the
elapsed time in training and predicting the three traits for the whole study area. The analysis was performed using a 64 bit pro-
cessor (Intel® Xeon® CPU ES-2683 v4 @ 2.10 GHz, 512 GB RAM).
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SVM. However, when the trained models were applied to the actual image data (Sentinel-2), the pre-
dicted against the validation values portrayed a weaker correlation for LCC than for the other two
traits, CCC and LAI. The validation results of RFR elicited relatively higher R2 for all three plant
traits: LCC (R2 = 0.34), CCC (R2 = 0.65), and LAI (R2 = 0.47). The LUT inversion by merit function
showed similar performance to RFR, especially for CCC and LAI.

Scatter plots that compare predictions obtained by RFR and the in situ measured values of the
three traits are presented in Figure 2. As can be observed from the figure, the prediction was
more precise for LCC (RRMSE = 9.46%) than for CCC (RRMSE = 20.48%) and LAI (RRMSE =
18.73%), although the inverse is true for correlation. There was no tendency of under/overestima-
tion, and predicted values were scattered closely around the 1:1 relationship lines for all three traits.

4. Discussion and conclusion

Our study was designed to determine the effective INFORM inversion approach to retrieve LCC,
CCC, and LAI from Sentinel-2 top of canopy reflectance data. The results of this study indicated
that machine learning algorithms, which are flexible and computationally efficient, can predict the
three biodiversity traits (i.e. LCC, CCC, and LAI) with accuracies comparable to the generic but com-
putationally expensive LUT based INFORM inversion using merit function (Table 4).

Contrary to expectations, this study found generally higher RMSE for the INFORM simulated
dataset than the in situ validation dataset, particularly for CCC and LAI (Table 4). A possible reason
could be that the variability in the INFORM simulated dataset was higher than the variability in the
validation dataset. To ensure a thorough test of the accuracy and robustness of predictive models, the
INFORM dataset was simulated with a wide range of variability (Figure 2).

The most prominent finding to emerge from this study was that many of the tested inversion
algorithms yielded a relationship and accuracy of prediction that was similar for in situ and modelled
values regarding the three biodiversity traits. In general, LCC was retrieved with higher precision

Table 5. Coefficient of determination (R2) between predictions by the six methods for the testing dataset (INFORM) and the
validation dataset (in situ). Methods with better performance for each trait are in bold type.

Method

LCC CCC LAI

INFORM In situ INFORM In situ INFORM In situ

ANN 0.96 0.26 0.79 0.66 0.42 0.43
GPR 0.96 0.26 0.79 0.62 0.45 0.45
RFR 0.95 0.34 0.77 0.65 0.48 0.47
SMLR 0.93 0.28 0.78 0.59 0.44 0.39
SVM 0.96 0.24 0.78 0.64 0.44 0.45
LUT – 0.27 – 0.65 – 0.47

Figure 2. Scatterplots of estimated versus measured leaf chlorophyll content (LCC), canopy chlorophyll content (CCC), and leaf area
index (LAI) yielded by inversion of INFORM using the RFR method. Broken lines show the one-to-one relationship, and shaded areas
illustrate the range of the INFORM input parameter dataset and the corresponding prediction by RFR.
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(RRMSE) than the other two traits (Table 4). A possible explanation for this could be the higher
number of uncertainties in the in situ measurements of LAI (also indirectly affecting CCC) than
of LCC. Our findings were in agreement with the previous study by Verrelst et al. (2012), who
obtained a RRMSE of 7.1% and 23% for LCC and LAI, respectively, using a GPR algorithm on simu-
lated Sentinel-2 data. The lowest RMSE observed for LCC (RMSE = 3.86 µg/cm2) in our study were
far below those observed by Darvishzadeh et al. (2019), who obtained a RMSE of 8.6 µg/cm2 by
inversion of the INFORM model in the same study area using LUT based merit function. This dis-
crepancy could be attributed to INFORM parameterization. Darvishzadeh et al. (2019) used 500,000
LUT entries with a uniform distribution. Whereas, in this study, leaf and canopy level input par-
ameters were determined using a multivariate normal distribution function, which maintained the
actual relationship between input variables and thus removed unrealistic input variable combi-
nations that could have decreased accuracy. Another possible explanation could be that the field
data used in (Darvishzadeh et al. 2019) included only spruce samples, while we used samples
from both broadleaf and conifer stands. The uncertainties in measuring in situ chlorophyll might
be higher in conifer needles than in broadleaf leaves.

However, the explained variance (R2) between predicted and in situ measurement was lower for
LCC (R2 = 0.34) than CCC (R2 = 0.66) and LAI (R2 = 0.47) (Table 4). These results reflected those of
Liang et al. (2016), who found an R2 of 0.77 for CCC and an R2 of only 0.33 for LCC inversion from
hyperspectral remote sensing data in crop fields. Darvishzadeh et al. (2019) achieved the slightly
higher R2 of 0.39 in predicting LCC in the same study area. It is, therefore, likely that lower
RMSE and higher R2 combinations may not always exist.

Among the tested algorithms, RFR validation provided relatively higher R2 and lower RMSE com-
binations for all three traits compared to the performance of LUT inversion by merit function
(Tables 4 and 5). This finding suggests that the radiative transfer model inversion using machine
learning regression algorithms is a robust and fast approach when predicting biodiversity variables
of terrestrial surfaces from remote sensing data. The present results are significant in at least two
respects. One of the benefits is that the training of the algorithms is based on RTM simulation,
and thus, field measurements are only required for validation. Also, the trained algorithms are
equipped with the generic capability of RTMs and the simplicity of statistical approaches that over-
come the transferability, space, and time-specific limitations of statistical models in large scale map-
ping of plant traits from remote sensing data.

In our study, both the LUT inversion using merit function and the machine learning algorithms
revealed a similar precision in predicting LAI (Table 4). The LUT inversion using the merit function
produced marginally better accuracy (RMSE = 0.73 m2/m2) than the machine learning algorithms
(0.74–0.76 m2/m2), which did not show significant differences during the paired t-test. This
finding is contrary to that of Atzberger et al. (2015). The latter found significantly lower accuracy
(RMSE = 1.1 m2/m2) when training second-order polynomial function on the PROSAIL RTM syn-
thetic data than when training LUT inversion by merit function (RMSE = 0.53 m2/m2) to retrieve
LAI of Mediterranean grassland from airborne imaging spectroscopy. A possible explanation for
these contradicting results could stem from generating the LUT. RTM input parameters are naturally
cross-correlated (Ali et al. 2016b), and it is imperative to consider such correlation in parameterizing
RTMs and to generate LUTs. Neglecting such relationships may not affect LUT inversion by merit
function since the solution is found by searching matching spectra, but could profoundly affect the
performance of fitting equations, which depend on the relationship between input parameter and
simulated spectra. We used a multivariate normal distribution function based on the mean and
covariance matrix of in situ data in parametrizing the RTM, whereas Atzberger et al. (2015) gener-
ated their LUT using the random distribution of model input parameters. Hence, it could conceiva-
bly be hypothesized that RTM inversions can be performed interchangeably by machine learning
regression algorithms and LUT inversion by merit function, as long as the natural relationships
between input parameters are maintained during RTM parameterization. Besides, preserving
relationships between input parameters during LUT generation helps to circumvent ill-posed
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problems, since they minimize the chance of having unrealistic combinations of input parameters
that may result in multiple similar spectra.

A paired t-test of the predictions made by the machine learning methods, particularly RFR and
GPR, did not show a statistical difference with the corresponding in situ measurements of the
three traits (Figure 1 and Table 3). The predictions were unbiased and did not exhibit any tendency
to over/underestimate, as can be seen in Figure 2. This further supports our conclusion that training
machine learning regression methods using synthetic data can yield results that are as generic as LUT
inversion by merit function, and can confidently be used for large scale mapping of vegetation prop-
erties from remote sensing data.

In broad terms, our findings have showcased the potential of machine learning algorithms trained
on the INFORM simulated dataset to fast and accurately predict plant traits from Sentinel-2 data.
We examined the predictability of the three traits in mixed temperate forests. Further work is
required to establish the viability of the proposed methods in different vegetation types and for
other plant traits.
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