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ABSTRACT 
 
Reed, Charlotte, M.S., December 2017         Systems Ecology 
 
Limited evidence for CO2-related growth enhancement in northern rocky mountain Pinus contorta 
populations: Trends in growth and intrinsic water-use efficiency across climate gradients 
 
Chairperson: Dr. Ashley Ballantyne 
 
Forests sequester large amounts of carbon annually; however, the degree to which enhanced forest 
productivity is due to more conducive climate or CO2 fertilization remains uncertain. Increasing 
atmospheric CO2 may enhance photosynthesis and/or decrease stomatal conductance thereby 
enhancing intrinsic water use efficiency (iWUE).  While increasing iWUE has been observed in most 
trees globally, this increase does not necessarily translate into greater growth. This study aims to 
evaluate whether responses of radial growth and iWUE to increasing CO2 vary across climatic 
gradients. To investigate interactions between climate and CO2 and their impacts on tree physiology 
and growth, I used an environmental gradient approach as a natural global change experiment. I 
combined dendrochronology with carbon isotope analysis (δ13C) to assess the covariation of basal area 
increment (BAI) and iWUE for Pinus contorta over time. Stands were sampled at 18 sites spanning two 
climatically distinct 800 m elevation transects encompassing the majority of P. contorta’s regional 
elevational range. Trends in BAI and iWUE were analyzed for the past 65 years, and correlations with 
monthly temperature, precipitation and vapor pressure deficit (VPD) were assessed. Increases in iWUE 
were observed across all sites; however, concurrent BAI increases were only observed at the lowest 
elevation of the climatically warmer transect. All other sites experienced decreased or constant growth 
over the study period. The climatically warmer transect exhibited the strongest iWUE response, with 
the greatest increases (30-42%) observed at the low and mid elevations. In addition to being driven by 
rising CO2, strong increases in iWUE appear to be driven by long-term increases in summer VPD. 
Correlations between climate variables and growth indicate that late summer climate of the previous 
year is important for growth across sites. These results indicate that because late summer climate is a 
strong driver of P. contorta growth, greater increases in iWUE observed at low elevations of the 
warmer transect may effectively extend the growing season by ameliorating some of the negative 
effects of summer drought on growth. 
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INTRODUCTION 

Forested ecosystems sequester large amounts of carbon annually and are integral in helping to 

mitigate increases in global atmospheric CO2 concentrations (Bonan, 2008, Pan et al., 2011). The 

degree to which rising atmospheric CO2 concentrations are offset by forests is in part contingent on the 

stimulation of tree growth by this increase in CO2. Increased atmospheric CO2 can enhance 

photosynthesis (A) and/or decrease stomatal conductance (gs), thereby increasing intrinsic water use 

efficiency (iWUE ≈ A/gs) (Camarero et al., 2015, Feng, 1999, McCarroll &  Loader, 2004). Greater iWUE 

may indirectly increase growth by prolonging the growing season in moisture-limited environments, 

while elevated rates of photosynthesis may directly increase growth at the leaf and stand level 

(Ainsworth &  Rogers, 2007, Keenan et al., 2013, Morgan et al., 2004, Soulé &  Knapp, 2013).  

Despite a nearly ubiquitous increase in iWUE over time (Feng, 1999), tree radial growth 

(henceforth, growth) responses to concomitant increases in CO2 are not unequivocally positive 

(Andreu‐Hayles et al., 2011, Gómez-Guerrero et al., 2013, Nock et al., 2011, Tognetti et al., 2000, Wu 

et al., 2015). The extent of growth response to rising CO2 is likely site-specific (Camarero et al., 2015, 

Lévesque et al., 2014, Peñuelas et al., 2008). Experimental evidence from free-air CO2 enrichment 

(FACE) sites suggests that the positive effect of CO2 on growth may depend in part on plant age, and 

nutrient and water status (Ellsworth et al., 2012, Norby et al., 2010). Therefore, if variables other than 

CO2 are more limiting to plant growth, an increase in CO2 would likely have no direct fertilization effect 

on growth (Körner, 2000, Körner, 2003). Further investigation of site-specific growth trends in response 

to recent increases in CO2 is therefore necessary in order to better understand and accurately model 

regional variability in forest-growth dynamics in response to changes in CO2. 

While plants typically show a positive growth response to increasing atmospheric CO2 

concentrations in experimental settings, concomitant changes in regional temperature and 
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precipitation may modify the fertilization effect of CO2. Where cold temperatures limit tree growth, 

rising CO2 and corresponding temperature increases are expected to stimulate growth (Giammarchi et 

al., 2017, Huang et al., 2017, Salzer et al., 2009, Silva et al., 2016). In these situations, higher iWUE is 

likely a result of a strong increase in assimilation, rather than a decrease in stomatal conductance. 

Alternatively, at sites where moisture availability limits growth, increasing temperatures and 

evaporative demand may limit the potential for a fertilization effect of CO2 on growth (McLane et al., 

2011). However, increases in iWUE driven by a decline in stomatal conductance in response to 

enhanced atmospheric CO2, may help ameliorate moisture limiting effects, having an indirect influence 

on growth (Fatichi et al., 2016, Norby et al., 1999, Wall et al., 2001, Wayne et al., 1998). Temperature 

tends to vary with elevation (Körner, 2007), and consequently, in regions where seasonal snowfall 

occurs, higher elevations tend to retain soil moisture longer into the growing season. Elevation 

gradients therefore provide a natural laboratory in which to investigate the effects of climate and plant 

water status on growth and to better understand site-specific growth trends for species with broad 

ranges (McDowell et al., 2010). Relatively few studies, however, employ elevation as a tool to 

investigate long-term variability in the influence of climate and water availability on growth and iWUE 

responses to atmospheric CO2 concentration. 

Measurements of stable carbon isotope ratios (δ13C) and basal area increment (BAI) from tree 

rings have been used extensively to understand changes in iWUE and tree growth, respectively, in 

response to increasing CO2 (Lévesque et al., 2014, Linares et al., 2009, Soulé &  Knapp, 2015, Tognetti 

et al., 2014). With baseline knowledge of changes in atmospheric CO2 and its carbon isotopic 

composition (δ13Catm), iWUE can be approximated by measuring carbon isotopes in tree rings (Farquhar 

et al., 1982, Francy &  Farquhar, 1982). Investigation of elevational variability in past trends of radial 
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growth and iWUE may provide insight into how climate and water stress enhance or limit the effects of 

rising CO2 on future growth. 

The northern Rocky Mountains of the United States provide a useful region in which to examine 

the extent that growth response to CO2 is affected by concurrent climate changes. In this region 

growing season length and vapor pressure deficit (VPD) have significantly increased, and snowpack 

decreased in the past century (Pederson et al., 2010), having likely consequences for both tree growth 

(Lendzion &  Leuschner, 2008, Restaino et al., 2016) and water use efficiency (Andreu‐Hayles et al., 

2011). Previous studies of regional variability of tree growth and iWUE response to rising CO2 in the 

northern Rocky Mountains have been mainly limited to low-elevation treeline species (e.g. Pinus 

ponderosa, Pseudotsuga menziesii), and have shown substantial interspecific variability in trends and 

conflicting results in terms of iWUE response to increasing CO2 (Knapp &  Soulé, 2011, Marshall &  

Monserud, 1996, Soulé &  Knapp, 2015). Subalpine conifers with large elevational ranges such as 

lodgepole pine (Pinus contorta var. latifolia) have been largely absent from these studies, despite 

future climate change being expected to substantially impact lodgepole pine’s range in this region 

(Coops &  Waring, 2011, Hansen &  Phillips, 2015).  

In Montana, lodgepole pine spans an elevational range from approximately 800-2800 m a.s.l. 

and occurs on both the western (windward) and eastern (leeward) sides of the continental divide 

(USDA Forest Service 2012). Climate differs markedly across this range with the windward side 

generally experiencing less extreme seasonal temperature variability, wetter conditions and lower 

adiabatic lapse rates. In contrast, the leeward side is characterized by more extreme temperatures, 

drier conditions and higher lapse rates (Sweet et al. 2015, Z. Holden, pers. comm.). These climatic 

dynamics drive regional patterns of water balance that have important consequences for ecosystem 

assemblage and function. A comparison of BAI and iWUE trends across lodgepole pine’s elevational 
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and east-west range within Montana provides useful data for investigating the impacts of climate and 

plant water status on growth response to rising atmospheric CO2, and for improving our understanding 

of future growth and carbon uptake potential for this economically and ecologically important species. 

In this study, a dendrochronological approach is used to assess how lodgepole pine growth has 

varied temporally across climatic gradients, and I aim to understand whether changes in climate and 

atmospheric CO2 have affected tree growth differently across sites. This study explores whether certain 

climatic conditions are more conducive to a positive relationship between iWUE and BAI. Based on 

known climatic variability across sites and previous studies that also employ climatic gradient 

approaches (Peñuelas et al., 2008, Silva &  Anand, 2013, Wu et al., 2015), I hypothesize that (i) iWUE 

increases will be greatest at climatically drier sites, responding to both rising temperatures and 

changes in atmospheric CO2, and (ii) increases in iWUE will correspond to long-term growth increases 

only at the highest elevation sites where increasing atmospheric CO2 and temperature are more likely 

to act in concert to enhance tree growth over time. 

 

MATERIALS AND METHODS 

Study sites 

Lodgepole pine is a widespread subalpine conifer that occurs throughout western Canada and 

extends south through the northern and central Rocky Mountains of the United States across a wide 

elevational range (Lotan &  Critchfield, 1990). In additional to a broad elevational range, lodgepole pine 

experiences a range of climatic conditions driven by physical dynamics associated with the Continental 

Divide. Stands for this study occur across two elevational transects each spanning approximately 800 

m, and encompass the majority of lodgepole pine’s elevational range in the northern Rocky Mountains 

of the United States. Each elevational transect is comprised of nine plots occurring over three distinct 
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elevational bands. The west transect occurs in Lolo National Forest in the Lolo Creek drainage of the 

Bitterroot mountains on the west side of the Continental Divide, while the east transect is located in 

the Beaverhead-Deerlodge National Forest in the Bolder River drainage of the Boulder mountains on 

the east side of the Continental Divide. Soils across all sites originate from granitic batholith parent 

materials (NRCS, 2007). Stands in the west transect range from 1290 to 2130 m, whereas stands in the 

east transect range from 1830 to 2510 m (Table 1). Lodgepole pine typically co-occurs with Pinus 

ponderosa and Pseudotsuga menziesii at low elevations, P. ponderosa, P. menziesii, and Larix 

occidentalis at mid elevations, and Pinus albicaulis, Abies lasiocarpa, and Picea engelmanii at high 

elevations in this region. Understory is generally limited, with sparse grasses at low elevations and 

primarily Vaccinium scoparium at mid and high elevations. Initial transect and site selection was 

opportunistic and based on a combination of lodgepole pine presence and dominance or co-

dominance, similar edaphic conditions, slope, aspect, stand density, age, level of disturbance, and 

similar canopy cover in order to ensure constant ambient CO2 across sites (Hultine &  Marshall, 2000). 

There was a minimum of 100 m between plots within the same elevational band so as to limit spatial 

autocorrelation. The majority of lodgepole pine-dominant stands within the region are even-aged, fire-

regenerated stands, and are thus similar in structure (Anderson, 2003).  

 

Climate data 

While the study region as a whole experiences a semi-arid climate, forests on the west side of 

the Continental Divide generally experience a warmer, wetter climatic regime than sites on the east 

side of the Divide (Sweet et al., 2015). Lapse rates additionally drive variability in temperature across 

elevations, with higher elevations having cooler temperatures that result in higher snowfall and later 

seasonal snowmelt (Minder et al., 2010). In order to quantify lapse rates and their variability from west 
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to east across the Continental Divide, temperature loggers (LogTag Recorders, Auckland, New Zealand) 

were installed in each plot for the 2016 growing season (June-September). Data loggers also recorded 

relative humidity, and these data were used in conjunction with temperature data to calculate vapor 

pressure deficit (VPD) as part of an assessment in variability in potential for water stress across sites 

(Buck, 1981). Long-term climate data corresponding to each transect were obtained from the regional 

meteorological station closest to each transect with records dating back to 1950 (NCDC-CDO, 

https://www.ncdc.noaa.gov/cdo-web/). Monthly data for the west transect were obtained from the 

Missoula International Airport, MT station at an elevation of 973 m, while data for the east transect 

were gathered from the Boulder, MT station at an elevation of 1495 m. Climate stations were within 

20-45 km of study sites. Vapor pressure deficit was calculated using temperature and relative humidity 

(RH) data from climate stations. Relative humidity data were not available from the Boulder, MT 

station, so values from the Helena, MT station (approx. 40 km north) were instead used. Climatic water 

deficit (CWD), a measure of available water for plants, is a biologically relevant climate variable that 

incorporates both precipitation and temperature (Dobrowski et al., 2013). Gridded, 800 m resolution, 

data were additionally obtained for further analysis of how this climate variable influences elevational 

variability in relationships between BAI and iWUE, and more generally, how this climate variable differs 

across both transects and elevations. 

 

Tree-ring sampling and radial growth  

Within each 10 m circular plot, increment cores were obtained from the 15 most dominant 

trees. Dominance was established by assessing stem diameter, height, and visual health. Two cores per 

tree were sampled using a 5 mm increment borer at approximately 1.4 m height. Cores were sanded, 

master chronologies were developed for each elevational band, and cores were crossdated and 
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measured using standard dendrochronological techniques (Stokes &  Smiley, 1968). Ring width 

measurements were obtained using the program CooRecorder (Larsson, 2014). Crossdating accuracy 

was quantitatively checked with COFECHA (Holmes, 1983) for each elevation-specific chronology of the 

two transects. Individual cores that correlated poorly with master chronologies were eliminated from 

further analyses, with no more than 5 cores eliminated from each site. 

Radial growth was determined by calculating basal area increment (BAI). By converting ring 

widths to BAI the decrease in ring width that occurs with increasing tree size can be overcome (Biondi 

&  Qeadan, 2008). BAI was calculated via the following formula: 

BAI = π(r2
t – r2

t-1) (Eq. 1) 

where rt is the tree radius at the year (t) of tree ring formation, and rt-1 is the tree radius at year t-1. BAI 

was calculated for each core using the ‘dplR’ package in R (Bunn, 2008), and then averaged by tree 

(n=429 cores, 240 trees). In order to calculate BAI, tree radius at each annual growth ring must be 

determined. When increment cores did not include pith, distance from the inner-most dated ring to 

the pith was determined based on growth in the earliest observed years and curvature of the earliest 

observable rings (Larsson, 2014). Basal area increment chronologies for the west transect spanned 

from 1950-2015, while the east transect encompassed 1950-2010. The east transect was cut off at 

2010 due to a widespread regional mountain pine beetle (Dendroctonus ponderosae) outbreak that 

began in 2009 and resulted in a strong growth release the following year (Gannon &  Sontag, 2009). 

Complete BAI chronologies averaged 89.5 (± 9.9) years for the west transect and 113.0 (± 36.1) years 

for the east transect (Supplemental Figure 1). It is worth noting that trees from the high elevation plots 

of the east transect were generally approximately 50 years older than at the mid and low elevation 

plots. 
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Carbon isotope data and determination of iWUE 

Intrinsic water use efficiency (iWUE) is representative of the ratio between photosynthetic 

assimilation (A) and stomatal conductance (gs) and can be assessed through the carbon isotope ratio 

(δ13C) of tree rings. At each plot, two trees were selected for stable carbon isotope analysis that were 

the most site-dominant. Two increment cores (henceforth, isotope cores) per tree were taken 5-10 cm 

below the location of the radial growth cores from the same tree. The isotope cores were crossdated 

based on radial growth chronologies, then planed, and separated into 5-year segments using a scalpel. 

Five-year, plot-aggregated changes in isotopic composition were analyzed by pooling the 5-year 

segments for the four cores from each plot. The first 25 years of tree growth were excluded from 

analysis to remove a possible “juvenile effect” on carbon isotope signatures from respired CO2 within 

the canopy during initial tree growth (McCarroll &  Loader, 2004). Pooled samples were homogenized 

and coarsely milled with a 40 mesh Wiley Mill (Thomas Scientific, Swedesboro, NJ, USA) before 

processing to remove extractives. Samples were batch processed to lignin, cellulose and hemicellulose 

in commercial digestion pouches (ANKOM Technology, Boston, MA, USA) in order to remove the 

possible contribution of extractives such as resins, waxes and oils to δ13C variability between the 

heartwood and the sapwood (Steven Leavitt, personal communication; Leavitt & Danzer, 1993). 

Processed samples were then ground to a fine powder and weighed prior to δ13C analysis at 

Washington State University’s Stable Isotope Core Laboratory (Pullman, WA, USA). 

Results of isotopic analysis were combined with atmospheric δ13C records to determine 13C 

discrimination between atmospheric CO2 and plant carbon (Δ13C), which accounts for the atmospheric 

decline in δ13C due to fossil fuel emissions (Francey &  Farquhar, 1982, McCarroll &  Loader, 2004). 

Discrimination was determined from (Farquhar &  Richards, 1984, Farquhar et al., 1982): 
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Δ13C = 
(δ13C𝑎− δ13C)

(1+
δ13C

1000
)

     (Eq. 2) 

where δ13Ca is the atmospheric carbon isotope signature and δ13C is the signature of the wood. Δ13C 

can also be related to the ratio of intercellular (ci) to atmospheric (ca) CO2 by: 

Δ13C ≈ 𝑎 + (𝑏 − 𝑎)
C𝑖

𝐶a
       (Eq. 3) 

where a is the constant fractionation during diffusion through stomata (4.4‰) (O'Leary, 1981), and b is 

the fractionation during carboxylation by Rubisco and PEP carboxylase (approximately 27‰) (Farquhar 

&  Richards, 1984). Values obtained from Equation 2 can be used in Equation 3 to solve for ci. 

Atmospheric CO2 values and its isotopic composition were obtained from published data (McCarroll & 

Loader, 2004, NOAA-ESRL, https://www.esrl.noaa.gov/gmd/dv/data/).  

According to Fick’s law [A = gc(ca – ci), where gc = stomatal conductance for CO2 and A = net 

assimilation], the ratio of ci/ca reflects the ratio of assimilation and stomatal conductance for CO2. 

Because iWUE is the ratio of assimilation (A) to stomatal conductance for water vapor (gw) and gw = 

1.6gc, the relationship between ci/ca (or pi/pa) and Δ13C can be used to calculate iWUE: 

iWUE ≈ (𝑐𝑎 − 𝑐𝑖)(
1

1.6
)            (Eq. 4) 

In order to account for elevational differences in CO2 partial pressures, ca and ci were converted 

to pa and pi in accordance with Hultine and Marshall (2000). pa-pi was used as a proxy of iWUE in this 

study as it constitutes the numerator in the elevation-corrected iWUE equation. The west transect 

isotope chronologies spanned from 1951-2015, while the east transect ranged from 1951-2010. The 

east transect isotope chronology was also cut off at 2010 to eliminate any possible isotopic effects 

resulting from the strong growth release corresponding to the regional mountain pine beetle outbreak. 

 

Data analysis 
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Basal area increment, pa-pi, and monthly climate variable trends over time and their 

significance were assessed using Mann-Kendall trend analysis. Pearson’s correlations were used to test 

the influence of monthly temperature (tmin, tmax), precipitation (prcp) and leaf-to-air vapor pressure 

deficit (VPD) on BAI. For growth-climate analyses both climate and BAI were detrended using a spline 

method in order to remove long-term changes and isolate interannual drivers of BAI variability (Bunn, 

2008, Millar et al., 2012). Maximum temperatures were used with BAI due to overall stronger 

correlations of the specific temperature variable. Lodgepole growth has previously been shown to 

respond particularly to climatic conditions of the previous growing season (Case &  Peterson, 2007, 

Chhin et al., 2008). Therefore, correlations were assessed from July of the previous growing season to 

September of the current growing season.  

Pentadal values of BAI were additionally regressed with pa-pi to determine whether changes in 

pa-pi are associated with elevation-specific radial growth responses. Slopes of BAI~pa-pi regressions 

were further regressed with 30-year (1981-2010) normals of CWD in order to assess whether observed 

variability in BAI-pa-pi relationships may be a function of this biologically relevant climate variable. One-

way ANOVA was used to assess differences across elevations and transects in percent change of BAI 

and pa-pi between the 1950s and 2000s. Post-hoc Tukey’s HSD tests were used to further assess 

differences between elevations. To account for differences in site specific growth rates log-

transformation of BAI was necessary to ensure normality of residuals across all sites. All analyses were 

assessed using a p < 0.05 level of significance.  

Linear mixed effects modeling (LMM) was used to assess the relative importance of CO2 and 

climate on elevational differences in pa-pi (Fernández‐de‐Uña et al., 2016). LMMs with a random 

intercept associated with plot and a first-order autocorrelation structure were fit to model pa-pi as a 

function of atmospheric CO2, precipitation, temperature and VPD. Growing season (June-Sept) 
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averages were used for each variable as prior correlation analysis had shown the strongest influence of 

climate on pa-pi during growing season months. Long term trends were not removed from these data 

as I was interested in how long term environmental variability influences long term trends in pa-pi. The 

Akaike information criterion (AIC) was used to assess the strength of each fitted model. Lower AIC 

values indicate a better model fit, and when the difference in AIC between two models was equal to or 

greater than 2, the model with the lower AIC was considered superior (Burnham &  Anderson, 2003). 

Variance inflation factors (VIFs) were also calculated for each model to assess collinearity. VIF values 

greater than 10 are indicative of high collinearity among response variables (Dormann et al., 2013). 

Predictive power of the best-fit model for each transect-elevation combination was assessed by 

plotting observed versus predicted values. All analyses were conducted in R version 3.1.2 (R Core Team 

2014). Mann-Kendall analyses were carried out in the package ‘Kendall’ (McLeod, 2005), and LMMs 

were fit using the package ‘nlme’ (Pinheiro et al., 2014). 

 

RESULTS 

Site characteristics 

As anticipated, temperatures, VPD, and CWD tended to decrease with elevation (Table 1). I 

expected that climate would be warmer and wetter across the west transect due to regional 

orographic effects of the Continental Divide. However, results from the 2016 growing season and 30-

year CWD normals across our sites indicate that although temperatures may be warmer across the 

west transect, any greater precipitation received by the this transect does not translate into lower 

water deficits. On the contrary, the low elevation of the west transect had by far the greatest CWD of 

all sites, likely driven by the site’s lower elevation and subsequently higher temperatures (Table 1). 
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Average growing season tmin recorded from temperature loggers ranged from 3.7 (± 0.1) °C at 

the low elevations to 7.8 (± 1.4) °C at the high elevations for the west transect, reflecting a tendency 

for cool air pooling in valley bottoms to occur over night in this area during summer months. Average 

growing season tmin across the east transect was similar at low and high elevations. Average growing 

season tmax across the west transect ranged from 24.9 (± 0.2) °C at the low elevations to 17.9 (± 0.3) °C 

at the high elevations, reflecting a lapse rate of approximately 8.3 °C/1000 m. Average growing season 

tmax across the east transect ranged from 22.5 (± 0.3) °C at the low elevations to 17.6 (± 0.5) °C at the 

high elevations, reflecting a lapse rate of approximately 7.2 °C/1000 m (Table 1). Calculations of VPD 

based on RH and temperature data from plot data loggers indicated lower VPD at high elevations 

across both transects, as anticipated, indicating lower atmospheric demand for water than at the lower 

elevations. Average growing season VPD of the lowest elevation was slightly higher for the east 

transect than the west. Thirty-year CWD normals indicated decreasing water deficit with elevation, and 

variability of CWD across elevations was higher for the west transect (Table 1). 

 
BAI and intrinsic water-use efficiency  

 Over the study period, BAI only increased significantly at the low elevation of the west transect 

(τ=0.37, p<0.001; Figure 1). Significantly negative BAI trends were observed at all other elevations, with 

the exception of the low and high elevation of the east transect, which experienced negative, but non-

significant changes in BAI over the period of study. Contrary to expectations, the strongest decrease in 

BAI was observed at the highest elevation (τ=-0.63, p<0.001; Figure 1). Percent change of BAI over the 

study period varied across elevations for the west transect and the east transects (F=46.12, p<0.001; 

F=4.36, p<0.05, respectively). However, while differences between all elevations were observed at the 

west transect, differences were non-significant at the east (Figure 2b).  
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 Temporal changes in isotopic discrimination and pa-pi varied across elevations and transects 

(Figure 1). Discrimination remained constant at all elevations except the low and mid elevations of the 

east transect, where it increased. As anticipated, pa-pi increased at all elevations of both transects 

(Figure 1). The low and mid elevations of the west transect experienced the greatest change in pa-pi 

with increases of 28.7 (±4.5) % and 25.0 (±0.8) %, respectively. Increases across all other sites ranged 

from 10.6 (±2.0) % to 14.9 (±3.1) %. Variability among elevational bands in pa-pi was greatest across the 

east transect. However, differences in percent change of pa-pi over the study period were far greater 

across elevations for the west transect (Figure 1; Figure 2a).  

 Correlations between pa-pi and BAI were strongest across the wester transect where they 

varied from strongly negative to positive from high to low elevations, respectively (Figure 3). The low 

elevations of the west transect were the singular example of a positive correlation between BAI and pa-

pi (r = 0.5, p < 0.01). Across the east transect, all correlations between the two variables were negative, 

and were weakly, or non-significantly correlated (Figure 3). Further exploration revealed that variability 

in the relationships between the correlation of BAI and pa-pi and may in part be driven by 

environmental variability in climatic water deficit (Figure 4). 

 

Effect of environmental variables on pa-pi 

 The response of pa-pi to environmental variables (i.e. climate, CO2) differed across elevations 

and transects (Table 2). Linear mixed-effects models indicated that temporal changes in pa-pi were 

generally most responsive to changes in atmospheric CO2 alone across elevations and transects, with a 

few exceptions. Models that considered growing season VPD as a fixed effect in addition to CO2 were 

superior for modeling pa-pi response at the low and mid elevations of the west transect where 

temporal changes in pa-pi were greatest. Additionally, the best-fit model at the mid elevation of the 



 
 

18 
 

east transect included growing season precipitation in addition to CO2 (Table 2; Supplemental Figure 

2).  

 

Interannual climatic influences on BAI 

 Radial growth responds to different climate variables at different elevations. Interannual 

responses of BAI to monthly climate variables differed across both elevations and transects (Figure 5). 

In general, BAI across the west transect was more responsive to all climate variables than at the east 

transect. For the west transect, BAI was weakly negatively, but significantly, associated with higher 

summer tmax and lower precipitation of the current growing season at the mid elevation. Basal area 

increment for all elevations was strongly negatively associated with late summer (August, September) 

drought (i.e. higher tmax, lower precipitation, and higher VPD) of the previous growing season. 

Additionally, BAI at the highest elevation was negatively associated with November precipitation of the 

previous year and positively associated with April tmax of the current year. Across the east transect, BAI 

was strongly negatively associated with August tmax of the previous year at all elevations, and positively 

associated with December tmax of the previous year at the high elevation. Precipitation was generally 

positively associated with BAI across elevations, but particularly at the low and mid sites. Vapor 

pressure deficit for August of the previous year was weakly negatively associated with BAI (Figure 5). 

 

Regional climatic changes 

Long-term regional changes in climate varied between the two transects (Figure 6). The west 

transect has experienced regional increases in January, March, July and August tmax, increasing January, 

March, and June through September tmin, as well as increasing July VPD. However, the west transect 

has not experienced any significant changes in monthly precipitation. The east transect has also 
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experienced increases in January and March tmin and tmax, as well as increasing July tmin, and increasing 

March VPD. In addition, December, January and March precipitation declined, and May precipitation 

increased over the study period for the east transect (Figure 6). 

 

DISCUSSION 

 Consistent with other studies (Feng, 1999, Peñuelas et al., 2011, Silva &  Anand, 2013, Soulé &  

Knapp, 2015), I found that pa-pi (i.e. iWUE) increased over time at all sites (Figure 1). Increases were 

strongest at the warmest site with the highest CWD, in agreement with our first hypothesis. However, 

strong increases were also observed at the mid elevation of the same transect where CWD was 

substantially lower. I show that strong increases in pa-pi are likely a response of trees to concurrent 

increases in CO2 and summer VPD. Despite increasing pa-pi over time across all sites, growth increases 

were only related to greater pa-pi at the lowest elevation of the west transect where temperature and 

CWD were greatest and increase of pa-pi most substantial (Table 1; Figure 3). Variability in the 

relationship between BAI and pa-pi is likely in part driven by environmental variability in water deficit, 

where a positive relationship between BAI and pa-pi is more likely where CWD is greater (Figure 4). I 

therefore posit that strong increases in pa-pi may be driven in part by a strong decrease in stomatal 

conductance, which may have indirect benefits for tree growth via an effective amelioration of late 

summer drought conditions and an extension of the growing season, particularly in seasonally water-

limited systems and where water deficits are relatively high. 

 

Widespread increases of pa-pi do not translate to greater growth 

This study finds that increases in pa-pi (i.e. iWUE), driven in part by increasing atmospheric CO2, 

are spatially variable and may only have the potential to benefit growth in limited situations. These 
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results are consistent with previous studies demonstrating that increases in iWUE are highly site-

specific and do not necessarily result in increased productivity (i.e. BAI) at the tree level (Andreu‐

Hayles et al., 2011, Gómez-Guerrero et al., 2013, Knapp &  Soulé, 2011, Lévesque et al., 2014, Linares 

et al., 2009, Peñuelas et al., 2011, Wu et al., 2015). Growth declines despite increasing iWUE have also 

been observed for the arid and semi-arid systems of the Mediterranean (Andreu‐Hayles et al., 2011, 

Lévesque et al., 2014), central Mexico (Gómez-Guerrero et al., 2013) lower elevation forests in 

northwestern China (Wu et al., 2015), as well as in the more mesic Tropics (Nock et al., 2011, van der 

Sleen et al., 2015). Particularly in semi-arid systems, such as our study system, concurrent increases in 

water limitation over the study period may override any benefit of greater iWUE for growth (Andreu‐

Hayles et al., 2011, Gómez-Guerrero et al., 2013).  

In contrast to our second hypothesis and the assumption that the combination of elevated CO2 

and temperature will increase the productivity of higher elevation forests (Salzer et al., 2009, Silva et 

al., 2016, Silva &  Anand, 2013), I found a particularly strong decrease of growth over time at the 

higher elevation of the west transect, while growth remained consistently low at the east transect 

(Figure 1). These results are not consistent with those of previous studies showing that increasing 

iWUE is more likely to lead to growth increases at higher elevations (Giammarchi et al., 2017, Huang et 

al., 2017, Peñuelas et al., 2008, Wu et al., 2015).  

Growth trends may partly reflect ageing processes. Lodgepole pine generally experience a 

natural decline in stem growth around 30 years, with fairly consistent, but lower growth maintained 

from a stand age of about 50 until reaching ages greater than 200 years when growth again declines 

substantially (Ryan et al., 1997, Smith &  Resh, 1999). Stands in this study were generally between 95-

130 years old, with the exception of the trees at the high elevation of the east transect that were often 

over 200 years. While some degree of the observed growth trend may therefore be a result of a 
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natural growth decline, the variability of that decline across sites, and the clear increase in growth at 

the low elevation of the west transect despite a stand age of approximately 100 years, indicate that 

the stands in our study are likely responding to additional factors other than age. Further, if lodgepole 

pine growth generally declines substantially after roughly 200 years, the absence of a growth decline at 

the high elevation sites of the east transect may actually be indicative of some realized benefit to 

growth (e.g. warmer temperatures) as has been found previously (Peñuelas et al., 2008, Salzer et al., 

2009, Wu et al., 2015). 

  

Strong pa-pi increases driven by CO2 and temperature 

The increases in pa-pi observed were generally weaker than has been reported in previous 

studies. Increases in iWUE of around 10 to 60% over the past 50 years have been observed globally, 

with the majority of observations being greater than 20% (Silva &  Anand, 2013). However, our results 

are fairly consistent with the approximately 14 and 20% increases found for Pseudotsuga menziesii and 

Pinus ponderosa, respectively in the same region over a similar time period (Soulé &  Knapp, 2015). 

Relatively weak increases in iWUE have additionally been reported for alpine sites in China (Liu et al., 

2007), boreal sites in Finland and Russia (Gagen et al., 2008, Sidorova et al., 2008), and tropical sites in 

Thailand (Nock et al., 2011). Two exceptions to the relatively weak increase in pa-pi were the low and 

mid elevation sites of the west transect, where increases were nearly double those of other sites 

(Figures 1, 2). The increases at these sites were far more in line with observations of temporal changes 

in iWUE globally (Keller et al., 2017, Peñuelas et al., 2011, Silva &  Anand, 2013).  

Differences in iWUE are driven by the balance of stomatal conductance to photosynthetic rate, 

which is driven, in part, by environmental conditions like CO2 concentration and climate (Fernández‐

de‐Uña et al., 2016). Although other factors, like age, height and/or competition may contribute to 
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temporal variability in iWUE, these factors have been found to be less important than environmental 

variables like CO2 and climate in other conifers (Copenhaver-Parry &  Cannon, 2016, Fernández‐de‐Uña 

et al., 2016, Giammarchi et al., 2017, McDowell et al., 2006). Elevated CO2 has been shown to result in 

decreasing stomatal conductance as well as increasing photosynthetic assimilation, two conditions that 

result in greater iWUE (Battipaglia et al., 2013). Warming temperatures, when associated with higher 

VPD, may also result in lower stomatal conductance, additionally contributing to long term trends in 

iWUE (Lewis et al., 2002, Saurer et al., 2014). Conversely, smaller increases in iWUE over time may be a 

result of relatively less stimulation of photosynthesis by higher CO2 due in part to some other 

environmental factor constraining photosynthesis more than CO2 (Körner, 2003), or a less pronounced 

decrease in stomatal conductance due to relatively minor increases in water limitation over time. 

 Results from LMMs indicate that changes in summer climate, particularly VPD, combined with 

temporal changes in CO2 over the study period may contribute to the relatively strong increases in pa-pi 

observed at the low and mid elevations of the west transect, while pa-pi at other sites is primarily being 

driven by changes in CO2 alone (Figure 2a; Table 2). These results are consistent with those found for 

Quercus and Pinus species in the Mediterranean (Fernández‐de‐Uña et al., 2016), Picea in northern 

Europe (Giammarchi et al., 2017), and temperate forests across central Europe (Saurer et al., 2014). 

Correlations of pa-pi with monthly climate variables also indicate a particularly strong importance of 

summer temperature and VPD on pa-pi across the west site, and specifically at the low elevation 

(Supplemental Figure 3). 

 

Site-specific growth enhancement may be in part driven by amelioration of late summer drought 

conditions 
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 Growth is limited by different climate variables across elevations (Case &  Peterson, 2007, Lo et 

al., 2010). Understanding how specific growth-climate relationships vary across elevations and 

transects may provide a link for interpreting why increases in pa-pi at some sites are or are not related 

to a growth enhancement. I analyzed the relationship of monthly climate variables to annual radial 

growth across our sites. Radial growth is most strongly correlated with late summer climate of the 

previous growing season, supporting the notion that late summer soil moisture is particularly 

important for radial growth (Dougherty et al., 1994) (Figure 5). This result is consistent with findings for 

lodgepole pine across a range of elevations in the North Cascades (Case &  Peterson, 2007), Alberta 

(Chhin et al., 2008), and British Columbia (Cortini et al., 2010, Lo et al., 2010). Annual ring width for 

conifers is primarily driven by earlywood formation (Dougherty et al., 1994, Ziaco et al., 2014). 

Earlywood formation occurs during the start of the growing season when water is less limiting, and is in 

part a result of the utilization of carbohydrates stored from the previous growing season (Kagawa et 

al., 2006, Litton et al., 2007, Lo et al., 2010). A warmer and drier late summer climate therefore has 

implications for carbon storage, in that earlier cessation of growth due to late summer drought allows 

for less carbon to be stored for the following growing season.  

 In general, I found stronger growth-climate correlations and a greater importance of late 

summer climate of the previous growing season across the west transect (Figure 5). Contrary to 

expectations, there was not much variability in the growth-climate relationships across elevations at 

either transect, with the exception, to some degree, of precipitation. Summer precipitation in 

particular appears to become less influential for growth as elevation increases, as has been found in 

lodgepole pine systems in interior British Columbia (Lo et al., 2010). Physiological variability (i.e. pa-pi, 

13C) across elevations is more apparent at the east transect, although this does not appear to 

translate to variability in growth (Figure 1). This may suggest that a historically cooler and drier climate 
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on the east side of the Continental Divide results in those lodgepole pine populations being generally 

more adapted to climatic conditions unfavorable to growth. 

 One of the benefits, in terms of increasing carbon gain, of higher iWUE may be an extension of 

the growing season longer into the late summer drought period (Fatichi et al., 2016, Soulé &  Knapp, 

2013, Wullschleger et al., 2002). In systems that are typically limited by seasonal drought, like those of 

lodgepole pine in the northern Rocky Mountains of the United States, an increase in iWUE that is 

driven by lower stomatal conductance may decrease water loss and allow trees to accumulate carbon 

later in the growing season (Fatichi et al., 2016). The strong increases of pa-pi observed at the low 

elevation of the west transect may therefore effectively extend the growing season and enhance 

growth by ameliorating some effects of late summer drought. The observed relationship between CWD 

and the slope of the BAI~pa-pi regressions further supports this hypothesis, as a positive relationship 

between BAI and pa-pi appears increasingly likely where CWD is greater (Figure 4). However, further 

testing of this hypothesis is necessary, and the isolation of earlywood and latewood growth-climate 

relationships may be helpful to explore this to a greater degree. 

 There are additionally some inherent uncertainties with a study of this nature. Some of the 

elevational variability observed in temporal BAI and pa-pi trends is probably moderated to some degree 

by site-specific factors like soil nutrient availability or species interactions. Although I chose sites with 

similar parent material, changes in nutrient availability and species interactions that are not a response 

to climate cannot be determined in retrospect from a study of this type. The absence of a growth 

increase at most sites could additionally be a result of greater partitioning of carbon to belowground or 

reproductive processes with age, although, partitioning of above ground net primary productivity to 

wood generally increases with stand age (Litton et al., 2007). Decreasing water availability driven by 
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higher temperatures and greater evaporative demand, however, may increase carbon partitioning to 

belowground pools, and decrease partitioning to wood (Litton et al., 2007). 

 

Implications and conclusions 

 Despite ubiquitous increases in photosynthetic assimilation with elevated CO2 in experimental 

settings, the realized effects of rising atmospheric CO2 on forests are less certain and spatially variable 

(Babst et al., 2014, Peñuelas et al., 2011, Saurer et al., 2014, Silva &  Anand, 2013). I also find limited 

evidence for a fertilizing effect of CO2 on individual tree growth, although our results do suggest that 

elevated CO2 may provide some benefit to tree growth via increased iWUE in sites where water deficits 

are greater and growth is especially limited by late summer drought. This indirect benefit of greater 

iWUE to growth has not been explicitly explored in the majority of studies with similar objectives and is 

an exciting avenue for further research. This study adds to a growing body of literature showing that 

there are limited instances in which increasing atmospheric CO2 precipitates any benefit to tree 

growth. If growth increases are indeed less common than growth decreases and modulated by climate, 

the assumption that forests will continue to sequester greater amounts of carbon as atmospheric CO2 

increases may not be realized. However, elevated CO2 may alternatively be beneficial to carbon 

dynamics in forest systems by increasing regeneration or forest density (Kauppi et al., 2010, Pan et al., 

2011), effects that cannot be quantified by a study of this nature. The realization of increasing 

productivity of forest systems on a regional scale, however, may ultimately be spatially heterogeneous 

even within a species, and depend on the interacting effects of increasing atmospheric CO2 on 

phenology, climate and physiology. 
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TABLES AND FIGURES 

 

Table 1. Transect and elevational climatic characteristics. Values are means of three sites at each elevation; 

values in parentheses are one SE. Temperature and RH values were measured for the 2016 growing season, 

and VPD was calculated from these values. CWD are 30-year normals from 800 m resolution gridded data 

corresponding to individual study plots. 

 
 
 
 
 
 
 
 
 
 

 
 Elevation (m a.s.l) Tmin (⁰C) Tmax (⁰C) Tavg (⁰C) VPD (kPa) CWD (mm) 

West Low 1290 (3.2) 3.7 (0.1) 24.9 (0.2) 14.3 (0.1) 0.63 (0.06) 419.03 (0.9) 

 Mid 1630 (29.4) 8.4 (1.4) 23.1 (1.4) 14.4 (0.9) 0.48 (n/a) 276.11 (13.2) 

 High 2130 (28.3) 7.8 (1.4) 17.9 (0.3) 12.2 (0.2) 0.55 (0.01) 118.66 (11.5) 

        

East Low 1830 (19.9) 4.6 (0.6) 22.5 (0.3) 13.3 (0.1) 0.75 (0.02) 324.87 (7.6) 

 Mid 2170 (17.8) 3.5 (0.5) 19.3 (0.2) 10.9 (0.1) 0.54 (n/a) 183.61 (n/a) 

 High 2510 (23.7) 4.6 (0.2) 17.6 (0.5) 10.1 (0.1) 0.59 (0.01) 137.78 (2.2) 
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 Figure 1. Trends in discrimination (Δ13C), pa-pi, and BAI across elevations from 1951-2015 (west) and 1951-2010 

(east). Data points are 5-yr means (BAI) and 5-yr pooled values (Δ13C, pa-pi). Trend lines indicate significant (p < 0 

.05) changes over time and % indicates percent increase over the study period (± 1 S.E). 
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Figure 2. Percent change for pa-pi (A) and BAI (B) between the 1950s and the 2000s. Error bars are  SE; 

letters in panel B indicate significant differences between elevations (p<0.05). 
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Figure 3. Relationships between BAI and pa-pi across elevations. Pearson’s correlation coefficients are indicated 

by r-values, and equations for the regression lines are included. Significance levels: *p < 0.05, **p < 0.01, ***p < 

0.001. 
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Figure 4. Relationships between the slope of the BAI~pa-pi regressions and CWD normals (1981-2010) 

corresponding to individual plots (n=18). East and west transects are combined. Pearson’s correlation coefficient 

is indicated by r-value, and regression equation is included. Significance levels: **p < 0.01.  
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Table 2. Differences in AIC for the pa-pi LMMs; calculated as the difference between AIC of the model and that 

with the lowest AIC. Models with differences <2 and fewer parameters are considered superior (bold). Climate 

variables are growing season (Jun-Sep) means. 

 

 Low  Mid  High  

Model fixed effects west east west east west east 

CO2 6.15 0 11.38 15.11 0.73 0.01 

Temperature 37.25 25.08 45.59 19.9 28.41 9.40 

Precipitation 91.57 45.57 99.87 36.08 59.46 29.15 

VPD 64.06 25.15 71.25 2.13 36.49 8.4 

CO2 + Temp 3.70 3.83 8.42 15.65 5.08 1.91 

CO2 + Prcp 15.78 10.24 18.93 0.10 10.30 1.23 

CO2 + VPD 0 1.95 0 0.97 0.71 0 

CO2 + Temp + Prcp 15.45 14.85 20.20 0.71 17.2 4.31 

CO2 + Temp + VPD 3.02 5.86 4.25 5.29 0 3.12 

CO2 + Prcp + VPD 7.81 10.44 12.66 3.31 12.87 7.42 

CO2 + Temp + Prcp + VPD 11.57 16.76 16.88 0 11.61 4.57 
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 Figure 5. Relationships between interannual climatic variability and radial growth. Colors correspond to 

Pearson’s correlation coefficients between detrended BAI and monthly climate variables (Tmax, prcp, VPD) across 

transects and elevations. Black boxes indicate significance (p < 0.05).  
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Figure 6. Trends in monthly climate variables from climate stations corresponding to the west and east 

transects. Colors correspond to Mann-Kendall tau statistics for trends in climate variables over time. 

Positive values indicate increases in the variable over time, while negative values indicate decreases. Black 

boxes indicate significant trends (p < 0.05). 
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Supplemental Figure 1. Mean basal area increment (mm2) for Pinus contorta across the east and west 

transects from 1900 to 2010. Shading indicates years post-1950. East transect sites (A) consist of nine sites 

across three elevations: 1830 m (n=67 cores, 38 trees), 2170 m (n=76 cores, 39 trees), 2510 m (n=67 cores, 

40 trees). West transect sites (B) consist of nine sites across three elevations: 1290 m (n=65 cores, 39 

trees), 1630 m (n=80 cores, 44 trees), 2130 m (n=74 cores, 40 trees). Error bars are +/- SE. 
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Supplemental Figure 2. Predictive power of pa-pi linear mixed models (LMMs). Observed versus predicted 

values using the LMM that was selected as superior (Table 2) for each transect-elevation combination. 
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Supplemental Figure 3. Pearson’s correlation coefficients between detrended iWUE and monthly climate 

variables across transects and elevations. Black boxes indicate significance (p < 0.05).  
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