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Wiggins, Haley, Master of Science, May 2017     Resource Conservation 

Abstract 

Committee Chair: Dr. Cara Nelson 

Successful restoration of degraded forest landscapes requires reference models that 

adequately capture structural heterogeneity at multiple spatial scales. Field-based 

methods for assessing variation in forest structure are costly and inherently suffer from 

limited replication and spatial coverage. LiDAR is a more cost-effective approach for 

generating landscape-scale data, but it has a limited ability to detect understory trees.  

Increased understanding of appropriate height cut-offs for trees to be reliably included in 

LiDAR-based analysis could improve applications of LiDAR to assessments of landscape-

scale forest structure. Toward that end, I investigated the effect of varying tree-height 

criterion (minimum height cutoffs of 6, 9, 12, 15, and 18 m) on the accuracy of LiDAR for 

estimating forest structure and spatial pattern in forests of the Sierra de San Pedro Martir 

National Park, Baja, Mexico. In order to increase the utility of the analysis, LiDAR trees 

were identified using a widely-available processing tool (FUSION’s TreeSeg). Accuracy was 

measured as the similarity between field-measured and LiDAR-detected tree datasets and 

was assessed for overall number of trees, spatial tree density maps, and a set of variables 

related to forest structure and spatial pattern. I found that removing trees less than 12 m 

in height increased correlation between LiDAR- and field-based spatial maps of tree 

density and strongly reduced differences in estimates of forest structure and spatial 

pattern. Although the frequency of small, medium, and large tree clumps was always 

underestimated by LiDAR-detected trees, the 12 m minimum height cutoff detected more 

of the large tree clumps than taller height cutoffs and provided estimates of forest 

structure and spatial pattern that were more similar to those derived from field data. The 

12 m height cutoff also successfully captured structural variation across the study 

landscape:  canyons, shallow northerly, and shallow southerly slopes were structurally 

similar, having larger and more abundant trees than steep northerly slopes, steep 

southerly slopes, and ridges. Methods developed here should be useful to managers 

interested in using LiDAR to characterize distributions of large, overstory trees without 

the need for extensive complementary field data and specifically for the development of 

landscape-scale reference models for forest management and restoration. 
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Introduction 

Across the globe, forest management is increasingly focusing on restoration of highly degraded, 

ecologically vulnerable forest types (Schoennagel and Nelson 2011). Successful forest restoration requires 

reference models that adequately capture structural heterogeneity at multiple spatial scales (Hessburg et 

al. 2015, Larson and Churchill 2012).  Although current management recommendations call for planning 

and implementing restoration activities at the landscape scale (North et al. 2009, 2012), there is a lack of 

information on best practices for reference model development at that scale. LiDAR (light detection and 

ranging) allows for high-resolution characterization of forest structure over extensive areas (Stephens et 

al. 2015, Kane et al. 2013); however, directly translating complex LiDAR data into management-relevant 

descriptions of forest structure (i.e. size distributions and arrangements of individual trees and tree 

clumps) is challenging. A primary limitation is that LiDAR does not reliably capture understory trees 

(Falkowski et al. 2008, Kaartinen et al. 2012). Although it is well known that tall trees have higher detection 

rates than short trees (Richardson and Moskal 2011), there is little information about appropriate 

minimum height cutoffs for generating accurate structural estimates of taller trees. In this study, I assess 

how varying the minimum tree height cutoff affects the accuracy of LiDAR for characterizing forest 

structure in the Sierra de San Pedro Martir National Park, Baja, Mexico and determine whether the 

application of the relevant tree-height cutoff captures structural variation across an extensive, relatively 

undisturbed forested landscape. 

Successful restoration depends on ecological reference models, which approximate the set of conditions 

an ecosystem would be in if it had never been altered or degraded (McDonald et al. 2016). Creating 

reference models for forest restoration requires a large number of replicates within and among stands in 

order to capture inherent variability (SER 2016, Swetnam et al. 1999). Although recent field-based studies 

of reference conditions have included within-stand (e.g. Lydersen et al. 2013) or among stand (e.g. 

Sanchez Maedor et al. 2011, Abella and Denton 2009, Churchill et al. 2015) replication, none have used 

both types of replication and all are based on relatively small sample areas (1-4 ha plot sizes) with limited 

total spatial coverage (maximum = 52 ha (Abella and Denton 2009)). One reason for the lack of replication 

is that investigators rely on field-measured stem maps to capture fine-scale heterogeneity (Larson and 

Churchill 2012). Although field-measured stem maps provide precise location data for all individual trees, 

they are expensive to sample.  LiDAR, when used with Individual tree detection (ITD) processes, is 2 - 3 

orders of magnitude less expensive than field-measured stem maps (Jeronimo 2015). ITD methods, 

however, fail to detect overtopped (understory) trees and, therefore, the performance of ITD varies 

among forest types based on stand density, structural complexity and dominant tree height (Vauhkonen 

et al. 2012, Li et al. 2012, Kaartinen et al. 2012, Falkowski et al. 2008).  There are other methods of 

structural analysis using LiDAR, such as area-based methods, which quantify forest structure within 

discrete units that usually represent field plots or raster cells (Richardson and Moslak 2012). Area-based 

methods, however, often require costly and time-consuming complementary field data, are incapable of 

capturing fine-scale heterogeneity (i.e. the distribution of single trees), and have lower accuracy than ITD 

approaches (Richardson and Moslak 2012, Breidenbach 2010, Kaartinen et al. 2012).  

Identification of the locations of individual trees is critical for assessing forest spatial pattern (i.e. the 

arrangement of individual trees relative to one another). In the past, reference models for restoration 
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have included composition and structure but not spatial pattern, but today there is increasing recognition 

of the importance of including spatial pattern in these models, due to emerging ideas about links between 

pattern and ecosystem process (e.g. Churchill et al. 2015, Sanchez Maedor et al. 2011, Abella and Denton 

2009, Lydersen et al. 2013, Fry et al. 2014). Intact forests exhibit structural heterogeneity across multiple 

spatial scales; this heterogeneity depends upon pattern and process feedbacks, in which climate and 

disturbance effects are both reflected in and affected by current forest conditions (Larson and Churchill 

2012, North et al. 2009, Hessburg et al. 2015). For example, the spacing of trees and canopy openings in 

fire-adapted forests reflects resource availability and the local historic fire regime; in turn, patterns of 

trees and canopy openings affect resilience to future wildfires and pest outbreaks, as well as water and 

carbon cycling rates and the population dynamics of dominant tree species (Kane et al. 2015, Larson and 

Churchill 2012, North et al. 2009, 2012, Lydersen et al. 2014, Sanchez Maedor et al. 2011).  

Because overstory spatial pattern varies among forest stands across landscapes, it is necessary to describe 

pattern across the range of forest stands within a landscape (North et al. 2009). As aspect and slope 

position change, so do significant controls on forest structure, including substrate characteristics (e.g. soil 

depth, drainage, and erosion rates), disturbance histories (e.g. fire severity, time since last fire), and 

climatic water balance (e.g. actual evapotranspiration, water deficit) (Dobrowski 2011, Meyer et al. 2007b, 

Milodowski et al. 2014, Kane et al. 2013). Numerous studies relating forest structure to local physiography 

have been published to date (e.g. Taylor and Skinner 2003, Hessburg et al. 2007, Underwood et al. 2010, 

Lydersen and North 2012, Kane et al. 2015); however, variation in forest structure and spatial pattern 

across an extensive, modern reference landscape has not been quantified. Understanding how forest 

structure and spatial pattern varies across reference landscapes will allow managers to tailor restoration 

treatments to specific landforms within their project areas (North et al. 2009, 2012). 

Managers and scientists alike acknowledge the need for structural reference models to inform restoration 

activities in degraded, fire-dependent landscapes of western North America (North et al. 2009, 2012, 

Hessburg et al. 2015, Franklin and Johnson 2012). Limited spatial coverage precludes the ability of field 

data to capture landscape-scale structural variation, and LiDAR area-based methods fail to describe fine-

scale heterogeneity; LiDAR ITD approaches have the greatest potential to characterize structural variation 

at multiple spatial scales in management-relevant terms. While mid- and under-story trees are the 

primary source of ITD errors, reported detection rates for dominant trees are very high for a range of 

forest conditions (Vauhkonen et al. 2012, Kaartinen et al. 2012, Falkowski et al. 2008) . Richardson and 

Moskal (2011) produced accurate, unbiased density estimates of trees greater than 20 m tall  using ITD. 

These studies suggest that excluding trees below a specific height could significantly improve ITD-based 

characterizations of overstory structure and spatial pattern, and highlight the need to formally investigate 

the effect of minimum height cutoffs on the accuracy of structure and spatial pattern estimates. In order 

to maximize the accessibility of the approach, I used FUSION’s TreeSeg tool to detect individual trees; 

FUSION is a free, commonly-used, and widely-available software package for LiDAR processing developed 

by the USDA Forest Service. My specific research objectives were to:  

 

1) Determine a recommended minimum tree height cutoff for using TreeSeg to describe forest 

structure over extensive areas by removing incrementally taller trees from comparisons of 
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LiDAR-detected and field-measured tree distributions. Specifically, I assessed how varying the 

minimum tree height cutoff affects the accuracy of LiDAR (using FUSION’s TreeSeg tool) to 

characterize number of trees; spatial tree density maps (at three resolutions); and estimates of 

forest structure and spatial pattern.  

2) Test the ability of LiDAR-detected trees above the recommended minimum height cutoff to 

capture structural variation across forested landscapes in order to build reliable, large -scale 

reference models. Specifically, I quantified structure and spatial pattern using LiDAR trees above 

the recommended height cutoff within six distinct landforms (canyons, ridges, steep and shallow 

northerly slopes, and steep and shallow southerly slopes) and tested for statistical differences 

using multivariate and univariate analyses.  

 

Methods 

Study Area 

This study was conducted in the Parque Nacional Sierra de San Pedro Martir (SSPM) of Baja, Mexico (Fig. 

1), which is considered to be the most extensive remaining reference area for fire-adapted dry forests of 

western North America (Fry et al. 2014, Dunbar-Irwin and Safford 2016). Limited logging has occurred and 

although fire suppression began in the mid-1970s, this landscape has yet to exhibit the structural changes 

evident in most other frequent-fire forests of North America, probably because tree growth and mortality 

rates are low (Dunbar-Irwin and Safford 2016, Stephens and Fry 2008). In particular, the park has been 

proposed as a suitable reference area for forests of the eastern Sierra Nevada because of their high degree 

of similarity (Minnich et al. 2000, Stephens and Fule 2005, Dunbar-Irwin and Safford 2016). In the SSPM, 

Jeffrey pine (Pinus jeffreyi) is the dominant conifer and occurs in monocultures and with white fir ( Abies 

concolor) and sugar pine (Pinus lambertiana); other less common associates include incense cedar 

(Calocedrus decurrens) and lodgepole pine (Pinus contorta) (Minnich 2000). Jeffrey pine is closely related 

to ponderosa pine, and replaces it in drier, colder, and/or pedologically challenging s ituations (Safford and 

Stevens, in press). Soils are predominantly granitic, and climate is Mediterranean with summer monsoonal 

influences; ecologically significant climate trends (e.g. mean minimum temperature in January, mean 

maximum temperature in July, average total precipitation) in the SSPM have historically fallen within the 

range of variation observed in the eastern Sierra Nevada (Dunbar-Irwin and Safford 2016). The reference 

fire regime in the SSPM is also very similar to that described for the yel low pine and mixed conifer forests 

in California, with a median fire return interval of about 15 years (Stephens et al. 2003), compared to 7-

12 years in California (van de Water and Safford 2011); in both regions, intact fire regimes typically exert 

low and moderate severity fire effects are usually observed when f (Rivera et al. 2016). 

Objective 1 – Determining a Recommended Minimum Tree-height Cutoff  

Identifying Tree Locations 

Field Data:  Tree diameter, height, and location (UTM coordinates) data were measured in the field by Fry 

and others (2014) using state-of-the art stem mapping techniques on two 4-ha plots located within the 

SSPM LiDAR acquisition (Fig. 1). These precise, high-resolution datasets capture actual conditions and 

were used as the standard for accuracy assessments of LiDAR-based structural analyses. 
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LiDAR Data:  E W Wells Group, LLC collected discrete point-return LiDAR data over 6,440 hectares in the 

SSPM on November 28th, 2015 (acquisition boundary shown in Figure 1), using a Leica ALS80 system 

mounted on a Cessna 208B Caravan flying at 1800m altitude. The Leica ALS80 system emitted 8 pulses/m2, 

with an ability to receive unlimited return pulses; the acquisition achieved an average of 14.82 first returns 

and 3.34 ground returns per m2.  

To determine individual tree locations, a tree segmentation process was run on a canopy height model 

(continuous raster of the top layer of vegetation derived from the SSPM LiDAR point cloud) using FUSION’S 

TreeSeg tool (data processing performed by Dr. Van Kane). TreeSeg delineates distinct vegetation features 

from the canopy height model and applies a watershed segmentation algorithm to identify the highest 

point of each vegetation feature; high points are then interpreted as individual trees (McGaughey 2016). 

TreeSeg is a free, widely-available tool in FUSION’s software package and the watershed segmentation 

process is commonly used in ITD studies (Jeronimo 2015). For all trees detected by TreeSeg, I used location 

and height data to predict individual tree diameters. Predictions were based on a randomForest model 

(pseudo-R2 = 83.7%) built with diameter, height, and location data from more than 3,000 field-measured 

trees located across the study area (Liaw and Weiner 2002).  

Comparing Number of Remaining Trees, Spatial Maps, and Estimates of Structure and Spatial 

Pattern 

After extracting LiDAR-detected trees from within the Fry (field-measured) plots, I removed trees less than 

6 m, 9 m, 12 m, 15 m, and 18 m tall (i.e. increased minimum height cutoff of trees used in analyses)  from 

both field and LiDAR datasets. I compared the number of trees remaining, spatial tree density maps, and 

structural estimates between these five pairs of datasets, with the expectation that agreement between 

field and LiDAR data would improve as minimum height cutoff increased. There were only two field sites; 

the ridge plot, on metamorphic soils, supported nearly twice as many trees as the shallow southerly (SHS) 

plot. This extreme difference in stand density precluded a meaningful statistical comparison of the two 

and as a result, I analyzed the Fry plots separately. 

Number of Remaining Trees: Because most understory trees will not be identified by TreeSeg or other 

ITDs, we expect there to be fewer LiDAR-detected than field-measured trees within a given area (in this 

case, the 4-ha Fry plots). Although increasing the minimum height cutoff will reduce the number of trees 

remaining in both datasets, the extent of this reduction is probably different for LiDAR and field tree lists, 

and for low- and high-density stands. I tallied the number of field-measured and LiDAR-detected trees 

remaining in datasets and the differences between them as trees in lower height classes were removed.  

Spatial Tree Density Maps: I converted point pattern maps made using field and LiDAR tree location data 

into pairs of point density rasters such that the value of each pixel corresponded to the number of trees 

located within. I used the vegan package in R to apply partial Mantel tests to dissimilarity matrices 

quantifying (Euclidean) pairwise distances between all pixel pairs in each raster. Partial Mantel tests 

employ a third dissimilarity matrix of Euclidean pairwise distances between pixel coordinates; this matrix 

controls for potential effects of spatial autocorrelation, an important consideration when comparing two 

maps of the same geographical area. For the tests, field- and LiDAR-based matrices were separately 

regressed against the Euclidean distance matrix and the Mantel test score was calculated as the 

correlation between residuals of the two regressions. Partial Mantel tests were repeated for all five field 

and LiDAR pairs of 6 m, 9 m, 12 m, 15 m, and 18 m tree datasets.  
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In addition to assessing the relationship between height and spatial correlation, I investigated the effect 

of scale on agreement in the location and number of trees between the two data sources by comparing 

partial Mantel scores at different levels of pixel aggregation ( i.e. area on the ground). Very fine spatial 

scales were not assessed because a lack of vertical alignment between tree bases (coordinates measured 

at ground-level in the field) and crowns (coordinates measured by LiDAR from above) and spatial 

measurement error of each leads us to expect that LiDAR-detected and field measured trees will often be 

located 2m or more apart (Vauhkonen et al. 2012). Although increasing the spatial grain should improve 

partial Mantel correlations, areas larger than the average size of tree clumps in Fry plots (48.6 to 316.2 

m2; Fry et al. 2014) lack management relevance and were excluded from this analysis.  

Estimates of Forest Structure and Spatial Pattern: For all field-and LiDAR minimum height datasets, I 

generated estimates of five stand-level structure variables and 23 spatial pattern variables. By graphing 

the difference in estimates, I was able to visually assess the effect of minimum tree height on the accuracy 

of LiDAR-based forest structure estimates. 

Stand-level structure variables were calculated using all trees in each minimum height dataset and 

included basal area (BA; summed area of all tree cross-sections) per hectare, number of trees per hectare 

(TPH), average tree diameter, average tree height, and mean clump size (MCS) (average number of trees 

per clump). To assess spatial pattern, I identified tree clumps using Plotkin’s (2002) algorithm, which 

assigns trees within a defined distance of each other (i.e. inter-tree distance) to the same clump. Clump 

size classes (CSC’s) were defined as individual trees (trees lacking neighbors within the inter-tree distance), 

small clumps (2-4 trees), medium clumps (5-9 trees), and large clumps (10 or more trees). The average 

crown radius of mature ponderosa pine in western North America is 3 m; given the similarities among 

SSPM forests and those of western North America, I selected 6 m as the constant inter-tree distance 

(Lydersen et al. 2013; Churchill et al. 2015; Clyatt et al. 2015). Clumping analyses were carried out in R, 

using spatstat (Baddeley et al. 2015) and sp (Pebesma and Bivand 2005) packages. The variables analyzed 

for each CSC were basal area (BA) per hectare, BA per clump, tree density (number of trees per hectare), 

number of clumps per hectare (except for individual trees); average diameter; and average height.  

Objective 2 – Testing the Ability of LiDAR-Detected Trees Above a Minimum Height 

to Capture Structural Variation 

Landform Characterization 

Using the Land Management Unit tool (North et al. 2012), I divided the study area into six landforms: 

canyons, ridges, northerly and southerly slopes >30% steepness, and northerly and southerly slopes <30% 

steepness (Table 1; Figure 1). The 30% criterion was used because slopes steeper than this are often 

subject to higher severity fires than shallow slopes and are liable to be structurally distinct; in addition, 

thinning and other management activities are limited on steep slopes (North et al. 2012).  

For four of the six landforms (ridges, canyons, and shallow northerly and southerly slopes), I extracted 

contiguous areas greater than 10 ha in size. To accommodate processing limitations, I manually converted 

these areas into polygons with smooth boundaries up to 90 ha in size (Table 1; Figure 1). The other two 

landforms (steep northerly and southerly slopes) each comprise less than 5% of the study landscape; due 

to limited representation, the minimum size for polygons of these landforms was reduced to 4ha.  
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Within each polygon, I used LiDAR-detected trees above the recommended height cutoff to calculate 5 

stand-level average and 23 spatial pattern variables (methods described above). In addition to multi- and 

uni-variate statistical tests of differences among landforms, I constructed side-by-side boxplots depicting 

variation in the distributions of variable estimates according to landform and produced tables reporting 

the interquartile range and means of all variables for each landform. 

Multivariate Analyses 

I assessed structural differences among landforms using non-metric multidimensional scaling (NMDS) 

(McCune and Grace 2002). For this study, landforms were analogous to community types, sample areas 

were analogous to sites, and the 28 structure variables were analogous to species in community ecology 

studies, where NMDS is most commonly employed. I used the metaMDS function in the vegan package 

(Oksanen et al. 2016) in R to carry out the ordination with jaccard as the distance measure, 500 random 

starts, and a maximum of 200 iterations, then calculated and plotted the mean and the standard error of 

the axis scores for each landform. In ordination plots, structurally similar landforms are clustered while 

dissimilar landforms are separated (McCune and Grace 2002). 

To test for significant differences among landforms based on all variables, I used the vegan package in R 

to conduct a multi-response permutation procedure (MRPP) to compare variation within and among 

groups (groups = landforms, weighted by sample size), using a city-block distance matrix to calculate the 

weighted-mean within-group distance (δ). The test randomly assigned observations to groups over 999 

Monte Carlo permutations, calculating a new δ and comparing it to the observed δ for each permutation. 

Among-group differences are statistically significant if the observed δ is lower than δs of randomly 

permuted groups. The MRPP test statistic A describes within-group homogeneity; a score of 1 indicates 

all observations in groups are the same, while a score of 0 indicates perfect heterogeneity within groups 

(McCune and Grace, 2002).  

Univariate Comparisons 

Data were unbalanced, contained a mix of normal and non-normal distributions, and variances among 

variables and groups of variables were unequal.  I performed Dunnett’s modified Tukey-Kramer multiple 

pairwise comparisons (DTK package in R ((Lau 2013)) on all variables. These pairwise comparisons 

calculate confidence intervals for the difference between ranked me ans of all 15 landform pairs; if 

confidence intervals did not contain 0, landform pairs were considered to be significantly different.  

Results  

Objective 1 – Determining a Recommended Minimum Tree Height Cutoff  

Number of Remaining Trees: When no tree-height cutoff was applied, TreeSeg detected only 36% of the 

trees on the ridge plot. In contrast, TreeSeg detected 72% of field-measured trees on the shallow 

southerly (SHS) plot where tree density was much lower (757 vs. 1486 trees, respectively) (Table 2, Fig. 

2).  

In the denser ridge plot, increasing the minimum height cutoff by 3 m increments up to 15 m strongly 

reduced the difference in number of field-measured and LiDAR-detected trees (963 vs. 29, Table 2); at 

this height cutoff, the number of LiDAR-detected trees was 91% of the number of field-measured trees 
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(Fig. 2). On the SHS plot, there was a similar trend through the 12 m height cut off, where the difference 

in tree numbers was reduced from 211 to 14 and the number of LiDAR-detected trees was 97% of the 

number of field-measured trees (Table 2, Figure 2).  

Spatial Tree Density Maps:  Regardless of minimum tree-height cutoff, there was low agreement between 

field and LiDAR density maps at the smallest spatial scale considered (9.77 m2; 3.125 x 3.125 m); 

correlations coefficients were lower on the SHS than the ridge plot (< 0.06 and 0.23, respectively) 

(Supplementary Appendix Fig. 1; p-value for all correlations = 0.001). Aggregating pixels into larger areas 

increased correlation scores on both plots (Supplementary Appendix Fig. 1). In 6.25 by 6.25 m areas 

(39.0625 m2), correlation of local tree density estimates increased to almost 0.3 (for trees > 15 m tall) on 

the SHS plot and to just over 0.45 (for trees > 11 m) on the ridge plot; in 12.5 by 12.5 m areas (156.25 m2), 

correlations reached 0.57 (trees > 15 m) on the SHS plot and 0.62 (trees > 14 m) on the ridge plot. 

Correlation coefficients did not increase when the height cutoff increased from 15 to 18 m on either plot.  

Estimates of Forest Structure and Spatial Pattern: Increasing the minimum height cutoff reduced 

differences between LiDAR-and field-based estimates of spatial pattern (Fig. 3) and of stand-level forest 

structure in particular (Fig. 4). Estimate discrepancies remained large for the 6 and 9 m height cutoffs and 

were generally much smaller for the low-density (SHS) than the high-density (ridge) plot (Fig.’s 3 and 4).  

The 18 m height cutoff minimized the differences between LiDAR-and field-based estimates of tree 

density, mean clump size, and BA per hectare estimates on both plots (Fig. 4). However, no large clumps 

were identified using LiDAR or field data on either plot at the 18 m cutoff; large clumps were also absent 

from LiDAR datasets at the 15 m cutoff, which negatively affected the accuracy of large clump metrics 

(Fig. 3).  

For some metrics, the 12 m height cutoff was most accurate, while for others, the 15 m cutoff was 

superior.  In addition, the direction and magnitude of estimate differences at 12 and 15 m height cutoffs 

varied between plots (Fig. 3). For example, on the ridge plot, small clump density was slightly 

overestimated at the 12 m cutoff but was underestimated to a larger degree at 15 m (0.6 and -2.6 

clumps/ha, respectively) (Fig. 3a). In contrast, increasing the cutoff from 12 to 15 m on the SHS plot 

changed the estimate difference from 2 to -0.6 small clumps/ha (Fig. 3a). Similar trends are evident for 

estimates of the number of trees per hectare in each CSC; however, the density of individual trees was 

overestimated and the average diameter and height of individuals was underestimated on both plots at 

both height cutoffs (Fig. 3b, Supplementary Appendix Fig. 2a, 2b). Although the difference in estimates of 

BA/ha of each CSC were slightly lower at the 15 than the 12 m cutoff, BA per large clump (Fig. 3d) and 

average diameter and height of trees in large clumps (Supplementary Appendix Fig. 2) for the 15 m cutoff 

were strongly underestimated relative to the 12 m datasets.  

Estimate differences for nearly all structure and spatial variables on the SHS plot were minimally affected 

by increasing the height cutoff from 12 to 15 m, and at the 15 m cutoff, plot-level tree density on the SHS 

plot was overestimated. Multiple lines of evidence suggest that a 12 m height cutoff is appropriate for 

using LiDAR and ITD to characterize forest structure and spatial pattern in low-density, open-canopy forest 

types such as those of the Fry SHS plots. For these reasons, I selected 12 m height cutoff in the 

characterization of structural conditions across the reference landscape.  
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Objective 2 – Testing the Ability of LiDAR-Detected Trees Above a Minimum Height 

to Capture Structural Variation  

Multivariate Analyses 

Considering all variables simultaneously for trees > 12 m tall, there was significant variation among 

landforms (A = 0.15; observed δ = 76.07, less than the expected δ of 89.04; p-value = 0.001). Canyons, 

shallow northerly slopes, and shallow southerly slopes clustered together. While not nearly as close 

together, steep southerly slopes and ridges were separated along Axis 1 from the other landforms, while 

Steep northerly slopes were in between clusters of the other landforms (Fig. 5). 

Univariate Analyses 

Variables describing large clumps were not significantly different between any landform pairs (data not 

shown). The number of medium clumps and number of trees in medium clumps was slightly but 

significantly lower on steep and shallow southerly slopes than on steep northerly slopes, however, these 

and other medium clump variables were generally not statistically different between landforms. Mean 

clump size was only significantly different between steep northerly and steep southerly slopes (~ 0.42 

more trees per clump on steep northerly than southerly slopes) (Table 3). 

In contrast, the remaining structure and spatial pattern variables were usually significantly different 

between at least four (out of 15 total) landform pairs (Table 3). There were fewer trees and clumps, and 

the trees were smaller on steep southerly slopes and ridges than on the other four landforms (Fig.’s 6 and 

7). Structure and spatial pattern variables were generally not different among canyons, shallow northerly 

slopes, and shallow southerly slopes, or between ridges and steep southerly slopes. For example, BA/ha 

of all trees pooled was 8.7 m2 higher on canyons and shallow northerly slopes, 6 m2 higher on steep 

northerly slopes, and 7 m2 higher on shallow southerly slopes than on steep southerly slopes.  However, 

BA/ha of all trees pooled was not statistically different between steep southerly slopes and ridges, o r 

among shallow slopes, canyons, and steep northerly slopes (Table 3).  

Structure on steep northerly slopes did not follow a regular pattern: in some cases, variable estimates 

were statistically different from ridges and steep southerly slopes and not different from canyons and 

shallow slopes, and in other cases the opposite was true. For example, the average height of individual 

trees on steep northerly slopes was significantly lower than on canyons and shallow northerly slopes (by 

2.4 and 2 m, respectively), was not different from shallow or steep southerly slopes, and was significantly 

greater than on ridges (by 2.3 m) (Table 3).  

Discussion 

My study is one of the first to quantify variation in forest structure across a modern reference landscape 

at multiple spatial scales using widely-available methods. Despite LiDAR’s obvious benefits, including high 

resolution at multiple spatial scales, extensive spatial coverage, robust replication potential, and cost -

efficiency, managers and researchers have been reluctant to use it for structural characterizations of 

complex, heterogeneous forests, because sub-dominant trees are rarely detected and there is low 

confidence in ITD’s ability to approximate actual tree distributions (Kaartinen et al. 2012, Falkowski et al. 

2008). However, my results bolster a growing body of literature supporting the reliability of ITD-based 

stand-level structure and spatial pattern estimates when minimum height cutoffs are applied (Jeronimo 
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2015, Richardson and Moslak 2012). By applying minimum height cutoffs to LiDAR-detected trees, I 

captured fine-scale heterogeneity and accurately identified tree clumps of different sizes, structures that 

can be linked to forest resiliency and the integrity of ecological processes (Larson and Churchill 2012, 

Lydersen et al. 2013, Fry et al. 2014). In contrast to other LiDAR-based analyses, my approach provides 

explicit descriptions of overstory tree arrangements and directly applies to the development of 

management prescriptions (Kaartinen et al. 2012, Li et al. 2012). In addition, this method avoided biases 

(e.g. limited spatial extent, lack of representation, low replication) of the field-based historic stand 

reconstructions that are increasingly used for reference model construction (Stephens et al. 2015, Kane 

et al. 2014). Finally, my results indicate that considering landscape context is essential in the development 

of reference models for forest management and restoration, and that LiDAR can meet these needs if 

inherent weaknesses are addressed.  

ITD inaccuracies are well-documented and can be split into omission (failure to detect trees that are 

actually present) and commission (detecting trees that are not actually present) errors (Breidenbach 

2010). Omission rates increase significantly with relative tree height, canopy cover, stand density, and 

tree clustering, and are often greater than commission error rates; in contrast, false tree detections 

usually occur in low-density, open-canopy stands where older trees develop complex crown shapes with 

several high points (Jeronimo 2015, Falkowski et al. 2008, Vauhkonen et al. 2012).  For example, Falskowski 

et al. (2008) reported very low omission rates (4 – 8%) but increased commission rates (12 – 17%) in 

forests with low canopy cover (0 – 25%) relative to those with closed canopies. The same authors also 

found that excluding sub-dominant trees from assessments of ITD accuracy reduces omission but 

increases commission errors.   

In this study, omission rates declined as the minimum height cutoff increased, and the effect was stronger 

on the ridge than on the SHS plot. Commission error was evident on the SHS plot once the height cutoff 

exceeded 12 m; there were more LiDAR-detected than field-measured trees for 15 and 18 m cutoffs. For 

this low-density SHS plot, a 12 m height cutoff reduced omission errors while capturing more medium and 

large clumps than the 15 m dataset; in addition, estimate differences were not strongly affected by 

increasing minimum tree height from 12 to 15 m. The ridge and SHS plots varied starkly in terms of stand 

density but canopy cover was not significantly different (Fry et al. 2014) and a large body of research 

indicates that ITD will always perform poorly in closed-canopy stands (Falkowski et al. 2008, Vauhkonen 

et al. 2012). The 15 m cutoff may be more appropriate in higher density stands, however, it should be 

applied cautiously with the understanding that medium and large clump frequencies may be significantly 

underestimated and that success is unlikely in forests with high canopy cover.  

Along with density effects, the accuracy of stand-level versus spatial pattern and spatial tree density 

estimates varied with minimum height cutoff. Stand-level estimates of tree density, size, and basal area 

were most accurate for trees greater than 18 m tall. Richardson and Moskal (2011) also produced reliable 

density estimates for trees greater than 20 m tall using LiDAR and ITD. Increasing the height cutoff 

improved agreement between field and LiDAR tree density spatial maps up to a point; however, the 

effects of spatial scale were considerably stronger than those of minimum tree height , and the 

correlations did not improve when the height cutoff exceeded 15 m. It was surprising to find higher partial 

Mantel correlations on the high-density ridge than the SHS plot. One possible explanation is that 

differences in tree density were large but concentrated within few, relatively small areas on the ridge plot, 

but were widespread and frequent on the low-density SHS plot, leading to common and consistent 

disagreements in local tree density. 
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The 18 m height cutoff was better for stand-level characterizations, however, it was unable to accurately 

describe spatial pattern, because it eliminated large clumps from field and LiDAR datasets; spatial pattern 

estimates for the 12 and 15 m cutoffs were clearly more accurate.  However, omission errors limited 

LiDAR’s ability to produce reliable estimates of small, medium, and large clumps at all height cutoffs on 

both plots.  Even when datasets were trimmed and smaller tree size classes were removed, tall trees 

growing underneath the dominant canopy were captured in field stem maps but not by the TreeSeg 

algorithm. On the ridge plot, trees in small and medium clumps were misclassified as individuals , inflating 

LiDAR-derived estimates of individual tree BA/ha, as well as the number of individual trees. Similarly, 

LiDAR overestimated the frequency (and consequently, BA/ha) of small clumps on the SHS plot because 

understory trees of medium and large clumps measured in the field were not detected. Since the size of 

many trees misclassified as individuals was actually constrained by close neighbors and clump 

membership, the average diameter and height of individual trees was underestimated on both plots.  

Despite these shortcomings, I found strong evidence that LIDAR, with an appropriate tree-height cut off 

(in this case 12 m), can be used to accurately assess structural variation across the SSPM, a reference 

landscape dominated by open-canopy forest types. Average canopy cover in my reference landscape was 

25.3%, on the threshold for minimum omission rates observed by Falkowski et al. (2008). Canyons, shallow 

northerly slopes, and shallow southerly slopes appeared structurally similar to one another, as did steep 

southerly slopes and ridges; in contrast, steep northerly slopes exhibit structural distinctions. These 

findings were corroborated by the univariate analyses, which detected significantly fewer, smaller trees 

and clumps on steep southerly slopes and ridges than on the other four landforms. Previous studies in the 

Sierra Nevada and Klamath Mountains of the western US also have found that stand density, canopy 

cover, and basal area tends to be greatest in canyons and lowest on ridges (Taylor and Skinner 2003; 

Lydersen and North 2012; Underwood et al. 2010).   

Variation among landforms can be attributed to topographical control over forest structure (and fire 

regimes) in mountainous regions. Slope position, aspect, and steepness interact with climate to create 

moisture and temperature gradients that significantly affect vegetation and fire behavior (Perry et al. 

2011, Dillon et al. 2011). In mountainous landscapes, topography also controls the fine-scale distribution 

and combustibility of fuels; for example, ridges and steep slopes tend to have higher fire intensities, lower 

moisture availability, and shallower soils than other landforms (Beaty and Taylor 2001, Urban et al. 2000). 

Northerly aspects are more prone to high-severity fires because they support large fuel loadings, while 

southerly aspects are more exposed to radiation and heat, which are associated with high fuel drying 

rates, longer fire seasons, and increased fire likelihoods (Holden et al. 2009, Dillon et al. 2011, Miller and 

Urban 2000).  

In the SSPM, structure and spatial pattern on shallow northerly and southerly slopes was not significantly 

different. This region is drier than the western Sierra Nevada and the Klamath mountains, which may 

dampen the usual effect of slope aspect such that water balance, vegetation, and disturbance history is 

similar on shallow slopes of all aspects. However, on steep slopes, aspect does appear to be a significant 

driver of structural variation. For example, median BA/ha and TPH on steep northerly slopes was 13.7 m2 

and 56.3, compared to 7.9 m2 and 36.6 on steep southerly slopes, respectively (Supplementary Appendix). 

In addition to conforming to previous assessments of structural variation by landform, my findings are 

also consistent with those from other characterizations of reference conditions in yellow pine and mixed-

conifer forests of western North America. In my LiDAR estimates, average TPH and BA/ha across all 
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landforms was 48 and 13.2 m2, respectively (Supplementary Appendix). Also in SSPM, Stephens and Gill 

(2005) measured 145 TPH and 20 m2/ha BA in a locally intensive field-sampled dataset (all trees >2.5 cm 

dbh), and Dunbar-Irwin and Safford (2016) measured 187 TPH and 22.5 m2/ha in a spatially extensive field-

sampled dataset (all trees >7.5 cm dbh). In a review of the natural range of variation (NRV) in yellow pine 

and mixed conifer forests in the mountains of eastern California (southern Cascades, Modoc Plateau, 

Sierra Nevada, White and Inyo Mountains), Safford and Stevens (in press) report an overal l reference 

average of 159 TPH (range of means from many studies for trees >10 cm dbh = 60-328), and an overall 

reference average BA/ha of 35 m2 (range 20-54); reference data were from early settlement estimates, 

reference landscapes with intact fire regimes, and stand reconstructions. From the southwestern US, 

Stoddard (2011) reports a reference average BA/ha of 16 m2, and Reynolds and others (2013) write that 

historic TPH was 30-315 and 53-251 in ponderosa pine and mixed-conifer forests, respectively. Overall, 

my SSPM estimates fall below the lower range of estimates from both SSPM itself and the larger region. 

This is due to the exclusion of trees below 12 m height and underlines the challenges of using LiDAR to 

estimate standard forest structural conditions like TPH and BA, even in relatively sparse canopy stands. 

Management Implications 

Characterizing forest structure and spatial pattern in reference ecosystems for distinct landforms allows 

managers to tailor their restoration prescriptions according to the physical location of project areas. 

Restoring site-specific structure and spatial heterogeneity may increase landscape resiliency by re-

establishing feedbacks between disturbance and vegetation dynamics and other self-regulating processes 

that may have been broken down by long histories of logging and fire-suppression (Larson and Churchill 

2012; Parks et al. 2015). Landform classes used in this study successfully divided the SSPM into like units 

that were structurally distinct, indicating that this strategy is a viable framework for management. A digital 

elevation model is the only requirement for using the Landscape Management Tool to separate 

landscapes into landform classes; in addition, FUSION’s TreeSeg tool is widely available and this strategy 

can be adopted by managers everywhere. 

If managers are interested in using LiDAR and TreeSeg to describe current or reference structural 

conditions, increasing the minimum height cutoff of LiDAR tree datasets can generate reasonable 

estimates of overstory spatial pattern and forest structure. Most above-ground biomass in forests is 

generally contained in dominant, overstory trees; large trees are also significant forest carbon sinks and 

are crucial habitat components for a range of wildlife species (Jeronimo 2015). The arrangement of 

overstory trees may be a significant component of spatial heterogeneity in forested landscapes, and using 

trees > 12 m tall, I was able to accurately describe that arrangement and how it varies across landforms.  

However, LiDAR-detected trees will always underestimate the frequency of small, medium, and large tree 

clumps. This limitation will be more pronounced in high-density stands and, therefore, my approach is 

most suitable for use in open-canopy, low-density forest types. 

This research emphasizes the need for understanding structural variation at multiple spatial scales. 

Landforms are structurally distinct and applying reference information from forests of one landform to 

forests of another is unlikely to achieve management goals. In addition, stand-level averages are incapable 

of describing structural heterogeneity and their use in reference models should be avoided. The approach 

developed here overcomes many important limitations of forest reference models and the resu lts may be 

used to inform restoration in dry fire-dependent forests of western North America and similar forest types 

across the globe.   
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Table 1. Number of sample areas  (polygons), average size of sample areas, and the total area sampled in 

each landform. N stands for northerly, and S stands for southerly; shallow refers to slopes less than or 
equal to 30%, and steep refers to slopes greater than 30%. 

Table 2. Change in number (and percent) of trees in field and LiDAR datasets, and the difference in number of 
trees between field and LiDAR datasets, as trees below specific height cutoffs are removed. For example, 

refer to the bottom row of the ridge table, which summarizes the number of trees remaining in field and 
LiDAR datasets when trees less than 18m tall  were excluded. 14% (213) of trees remain in the field dataset 
compared to 36% (190) of trees remaining in the LiDAR dataset; at the 18m height cutoff, there were 23 
more trees in the field dataset than the LiDAR dataset. 
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Table 3. a) DTK pairwise comparisons of basal area per hectare variables. 

Table 3. b) DTK pairwise comparisons of basal area per clump variables. 
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Table 3 – continued. c) DTK pairwise comparisons of tree density variables. 

Table 3d. DTK pairwise comparisons of average diameter variables. 

Table 3e. DTK pairwise comparisons of average height variables. 



19 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 – continued. f) DTK pairwise comparisons of clump density variables and average clump size. 

Table 3. Dunnett’s-modified Tukey-Kramer’s pairwise comparison results. In these tests, each of the six landforms were 

compared to one another for a total of 15 pairwise comparisons. Variable estimates from landforms on the right side of 
the “-“ symbol were subtracted from landform estimates  on the left side; a negative difference means the variable 
estimate was higher on the landform after the “–“ symbol than the one before. Significant differences are indicated by a 
bolded “Y” in the “Significance?” column and es timated differences are provided in the “Difference” column (significant 

differences are also bolded); these difference values are the centers of 95% confidence intervals. If 95% confidence 
intervals contained 0, differences in variables estimates were deemed non-significant (non-bolded table entries). The 
table is split into sub-tables of six variable groups: a) basal area per hectare variables; b) basal area per clump variables; 
c) tree density variables; d) average diameter variables; e) average height variables; f) clump density variables and mean 

clump size. There were no significant differences between any pairs of landforms for large clump variables and these 
were not included in any sub-tables. 
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Figures 

 

 

  

Figure 1. Location of the study area in Mexico (upper-left inset) and the SSPM LiDAR acquisition area (~6,500 
hectares).  Colored polygons represent landforms: canyon = blue; shallow northerly slopes = red; steep northerly 

slopes = green; ridge = yellow; shallow southerly slopes = purple; and steep southerly slopes = orange. Shallow 
refers to slopes ‹ 30% in grade; steep refers to slopes › 30%; northerly refers to aspects from 316 – 135°; and 
southerly refers to aspects from 136 – 315°. The two hollow black squares  indicate the location of the Fry plots; 

the northernmost square bounds the ridge plot, and the southernmost square bounds the shallow southerly 
(SHS) plot. 
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Figure 2. Effect of minimum height cutoff (x-axis) on the percent of field-measured trees detected from LiDAR by TreeSeg on 

the high-density ridge (blue) and low-density shallow southerly (orange) plot. Above the 12m cutoff, LiDAR overestimated 
actual tree numbers on the shallow southerly plot, and agreement in tree number between data sources on the ridge p lot 
was maximized at the 15m cutoff. 
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Figure 3. Difference between field and LiDAR estimates of: number of small clumps (2-4 trees, red), medium clumps 
(5-9 trees, green), and large clumps (>10 trees, yellow) per hectare (panel A); number of trees per hectare as 

individuals (blue) or in small, medium and large clumps (panel B); basal area per hectare of all  clump size classes 
(panel C); and basal area of each clump size class (panel D). The ridge plot (R) is shown on the left and the shallow 
southerly (SHS) plot on the right. Negative bars indicate that the LiDAR estimate was lower than the field estimate. 
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Figure 4. Difference between field and LiDAR estimates of the number of trees per hectare for all  trees pooled (panel 

A); mean clump size (average number of trees in clumps) (panel B); and basal area per hectare of all  trees pooled 
(panel C). Negative bars indicate that the LiDAR estimate was lower than the field estimate. 

A. 
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Figure 5. NMDS ordination considering the relationship among six landforms (canyon = blue, shallow 

northerly = red, steep northerly = green, ridge = yellow, shallow southerly = purple, and steep southerly = 
orange) in ordination space based on 25 stand-level and spatial pattern structure variables. NMDS Axis 1 
accounts for primary sources of variation (a combination of variables) among landforms, and Axis 2 
represents secondary sources of variation among landforms. Horizontal l ines represent standard error of 

NMDS Axis 1 scores and vertical l ines represent standard error of NMDS Axis 2 scores. 
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Figure 6. Boxplots of spatial pattern variables for six landforms by clump size class (individual trees lack close neighbors, small 
clumps have 2-4 trees, medium clumps have 5-9 trees, and large clumps have 10 or more trees). Canyons (blue), shallow 

northerly slopes (red), and shallow southerly slopes (purple) tend to have more, taller trees than ridges (yellow) and steep 
southerly slopes (orange) across clump sizes; spatial pattern on steep northerly slopes (green) is often similar to canyons a nd 
shallow slopes but can also be similar to ridges and steep southerly slopes. A) basal area per hectare (m2); B) basal area per 

clump (m2); C) number of trees per hectare; D) number of clumps per hectare (does not include individuals); E) average 
diameter (cm); and F) average height (m). 
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Figure 7. Boxplots of stand-level structure variables (all trees pooled, regardless of membership in clumps) for six 

landforms. Canyons (blue), shallow northerly slopes (red), and shallow southerly slopes (purple) tend to have more, 
taller trees than ridges (yellow) and steep southerly slopes (orange); stand-level structure on steep northerly slopes 
(green) is often similar to canyons and shallow slopes but can also be similar to ridges and steep southerly slopes. A) 
basal area per hectare (m2); B) number of trees per hectare; C) average diameter (cm); and D) average height (m). 
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C. D. 
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Figure 1. Correlation between LiDAR- and field-based spatial maps of tree density as a function of minimum tree height at 
three grain sizes: 3.125 by 3.125 m (9.77 m2), 6.25 x 6.25 m (39.0625m2), and 12.5 x 12.5m (156.25m2) for the ridge (R) 

and shallow southerly (SHS) plots. 
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Figure 2. Difference in tree size estimates (average diameter and average height). Negative bars indicate that the 

LiDAR estimate was lower than the field estimate and positive bars indicate that the LiDAR estimate was greater than 
what was observed in the field. Panel A shows the difference in estimates of average diameter of individual trees 
(blue), small clumps (2-4 trees, red), medium clumps (5-9 trees, green), and large clumps (10+ trees, yellow); the 
ridge plot (R) is shown on the left and the shallow southerly plot (SHS) on the right. Panel B is the same except it 

shows the difference in estimates of average height. The difference in average diameter when all  trees are pooled is 
shown on the left in panel C and the difference in average height for all  trees pooled is shown on the right in panel D. 
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