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Along with fluctuating precipitation and temperatures in the form of climate change, 

whitebark pine (Pinus albicaulis) has seen a territory wide increase in mortality leading to a 

decline in population. While the most direct influences on whitebark pine health and mortality 

are mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the 

spread of white pine blister rust (Cronartium ribicola), climate change can impact the intervals 

and severity of such beetle, rust, and fire disturbances, and may affect the growth and health of 

whitebark pine directly. The objectives of this study were to identify whitebark pine stands 

within the northern US Rocky Mountains exhibiting low or no impacts of beetle attack and 

blister rust, to document the regeneration levels and structural components of these stands, and to 

examine the climatic controls on radial growth of the mature whitebark pine over the last 100 

years. Across the high elevation forests of Montana, Idaho, and Wyoming, 92 minimally 

disturbed stands were identified.  While free of blister rust and pine beetle damage, these stands 

still contained a high proportion of standing dead trees (24% of standing mature trees (>4.5” 

DBH) were dead on average). These stands also contained a high proportion of subalpine fir (on 

average, 14.4% of the mature tree density), but nonetheless exhibited high levels of whitebark 

pine regeneration (on average 1,195/acre below 4.5” DBH and 1,044/acre <4.5’ in height).  Tree 

ring growth analyses of the mature whitebark pine did not show any long-term trends, but inter-

annual variations were positively correlated with growing season precipitation and negatively 

correlated with growing season temperatures. Tree ring indices also show that more recent radial 

growth rates are still within the range of variability for the 100 years sampled and do not appear 

to be decreasing with the increasing stress predicted by ongoing climate change. Over the same 

100 years, yearly mean climate averages calculated using PRISM data attributed to the individual 

sites showed a range of 30.7° F for maximum temperatures, 40.2° F for minimum temperatures, 

and 97.03” for total precipitation.  
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1 Introduction 

Whitebark pine (Pinus albicaulis Engelmann) primarily occurs in subalpine environments in 

7 US states and 2 Canadian provinces, encompassing about 18˚of latitude and 21˚ longitude 

(Arno and Hoff 1990, Tomback and Achuff 2010).Within the Rocky Mountains, whitebark pine 

comprises 10-15% of the forested landscape and 25-50% of wilderness landscapes (Arno 1986, 

Keane 2000), and ranges in elevation from 1100 to 3660 meters (Arno and Hoff 1990). 

Whitebark pine is currently undergoing a widespread decline throughout its territory as a result 

of interacting factors (Keane and Arno 1993, Kendall and Keane 2001, Goeking and Izlar 2018). 

Severe mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks, fire exclusion 

policies, and the spread of white pine blister rust (Cronartium ribicola Fischer) have greatly 

impacted whitebark populations across the Rocky Mountains (Keane and Arno 1993, Kendall 

and Keane 2001, Murray and Rasmussen 2003, Schwandt 2006, Tomback and Achuff 2010) . 

There is also growing concern over the role climate change will have in the longevity of the 

species, as many believe that whitebark pine will experience reduced growth and survival with 

the changing conditions and will be pushed to the tops of the mountains or further northward in 

latitude (Warwell, Rehfeldt et al. 2007, Schrag, Bunn et al. 2008). Attempts at assisted migration 

further northward have begun, as the rate of whitebark pine reproduction may be too slow to 

allow range expansion to keep place with climate change (McLane and Aitken 2012). Species 

distribution models (SDMs) have predicted suitable territory for whitebark pine expansion in 

northern British Columbia; they have also shown that whitebark pine does not presently inhabit 

all currently predicted suitable habitat (Hamann and Wang 2006, McLane and Aitken 2012). 

This may be due to lack of seed caching area for the mutualist disperser, Clark’s nutcracker 

(Nucifraga columbiana Wilson), low snowpack, and early snowmelt (McLane and Aitken 2012). 
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Paleoecological records show that whitebark pine has maintained and even spread in warmer 

and drier climates in the past (Tausch, Wigand et al. 1993, Whitlock and Bartlein 1993, Iglesias, 

Krause et al. 2015). Arno (1990) demonstrated that in the Bitterroot Mountains of Montana, 

whitebark pine extended another 500 feet below the species’ current elevational range when 

there have been frequent historic disturbances, such as fire or insect kill, that eliminated less 

tolerant conifer species (Arno and Hoff 1990, Arno 1990, Keane and Arno 1993). Whitebark 

pine is tolerant of a variety of growing conditions, although it is primarily climax only at the 

higher elevations where there is little competition and successional relationships with other 

species. Changing fire regimes have had the greatest effect on habitat suitability, and many 

higher elevation whitebark pine stands have been supplanted with late seral subalpine fir (Abies 

lasiocarpa (Hooker) Nuttall) (Tomback, Arno et al. 2001). Whitebark pines’ low to moderate 

fire severity tolerance (Ryan and Reinhardt 1988) and specialized seed dispersal technique 

involving its mutualistic relationship with the Clark’s nutcracker allow for the pine species to 

thrive in areas with mixed severity fire regimes, which have decreased since the implementation 

of fire suppression (Tomback, Arno et al. 2001, Wood 2015). 

The elimination or reduction of this species on the landscape will have broad reaching 

consequences for ecosystem services and biodiversity (Tomback, Arno et al. 2001, Tomback and 

Achuff 2010). Whitebark pine cone seeds are higher in fat and protein content than other conifer 

seeds and are an important food source for the Clark’s nutcracker, the grizzly bear (Ursus 

arctos), and other small mammals. Whitebark pine also provides significant habitat for many 

animal species. As whitebark pine are able to grow under harsher conditions, they are often the 

first to inhabit an area as a pioneer species, and provide shade and other services to less hardy 

vegetation and conifer species, acting as nurse trees and resulting in “island” growth formations 



3 

 

(Callaway 1998). Whitebark pines also reduce soil erosion and regulate snow melt rates through 

root structure and shade effects (Tomback, Arno et al. 2001). 

Despite the consequences from the potential loss of this species from the landscape and its 

recent inclusion as a candidate species under the Endangered Species Act (USFWS 2011), there 

have been few studies of the effect of climate change on whitebark pine growth and ecology. 

Speculation has anticipated that whitebark pine could foreseeably be “pushed” off the tops of 

mountains as climate related habitat expansion ascends upwards in elevation, while statistical 

modeling has predicted everything from dramatic decreases to sustained populations as a result 

of factors such as high genetic diversity, increasing fire on the landscape, blister rust resistance, 

and other key adaptive traits (Keane 2001, Loehman, Clark et al. 2011). High genetic diversity, 

as is typical of long-lived trees such as whitebark pine, is predicted to make species more 

resilient to drought, while increasing fire on the landscape would increase potential cache sites 

for the nutcracker as well as destroy less fire-tolerant competitor species (Mitton 1995, Hamrick 

2004, McDowell, Pockman et al. 2008, Keane, Holsinger et al. 2017). Case and Lawler (2016) 

looked at 11 different conifer species’ vulnerabilities to climate change and listed whitebark pine 

as highly sensitive to climate change based on its relationship with interacting non-climatic 

stressors (habitat loss or degradation, dispersal limitations, invasive species etc.), and indicated it 

should be considered vulnerable. Population dispersion and sustainability are dependent on a 

wide variety of variables; thus it is hard to predict the species’ future with a high degree of 

certainty. There are currently no ecophysiological models that accurately predict whitebark pine 

mortality and spread, and consequently the current study relies on direct empirical observation of 

tree and plot dynamics as well as current generation climate data products.   
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With mixed concerns over the projected success of whitebark pine under a changing climate, 

stand composition and regeneration is of interest. Whitebark pine has historically inhabited harsh 

environments near the upper tree line. These areas carried the heavier snowpack with a later melt 

date, giving any established seedlings a shorter growing season. Climate change is lengthening 

the growing season, and this combined with fire suppression policies implemented by the U.S. 

Forest Service in the early 1900’s has increased the success rate of competitor conifer species 

seedlings, which frequently have faster growing rates than whitebark pine (Arno 1989, 

Alexander, Shearer et al. 1990, Easterling 2002, Linderholm 2006, Karl, Melillo et al. 2009, 

Levine, Krivak-Tetley et al. 2016). Goeking and Izlar (2018), using national forest inventory 

data, identified that as of 2016, 51% of all standing whitebark pine within the United States were 

dead (292 million live and 308 million dead). Other work identified that whitebark pine habitats 

had upwards to 74% mortality in the Northern Divide Ecosystem within the Rocky Mountains, 

and concerns have been raised about the presence of enough healthy, cone bearing adults to 

maintain the viability of the species (Fiedler and McKinney 2014, Leirfallom, Keane et al. 2015, 

Miles 2016, Goeking and Izlar 2018). Also, climatic conditions that encourage mature tree stem 

development are different than those that may encourage seedling growth, and seedlings, with 

their more sensitive response to daily conditions, may not survive at historic rates under novel 

climates (Day, Greenwood et al. 2002, Körner 2012, Dolanc, Westfall et al. 2013, Millar, 

Westfall et al. 2015).  

As most of the models predicting future whitebark pine range are calling for a continuing steep 

decline in population, it is critical to understand and document current patterns of mortality and 

regeneration in stands undisturbed by beetles, rust, or fire. Moreover, at such undisturbed sites it 

is important to understand the relationship between historical climate and the vigor of mature trees. 
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As such, the objectives of this study were to identify undisturbed whitebark pine sites across the 

US Rocky Mountains, quantify current mortality and regeneration levels, and use 

dendrochronological methods to identify relationships between mature tree growth and climate 

over the period for which temperature and precipitation can be estimated.   

2 Study Area and Methods 

2.1 Study Area and Data Collection 

For this project, the study area encompassed a series of mountain ranges across Montana, 

Idaho, and Wyoming in which whitebark pine is found (Figure 1). Local knowledge through 

communications with Forest Service district personnel as well as GIS methodology were used to 

identify sites within this area that had not been subject to multiple wildfires or high mortality 

from insects or disease. Sites also needed to be within 2 miles of a road to facilitate access, to 

exhibit no signs of heavy agricultural or human use (such as intense cattle grazing or soil 

compaction from human recreation), and to show no sign of harvesting for timber or firewood. 



6 

 

 

Figure 1: Range of whitebark pine (Pinus albicaulis) in the northern US Rocky Mountains. 

 

At the selected minimally disturbed sites, a nested plot design was used to collect vegetation 

data. The circular plots each had a radius of 37.2 feet, comprising 1/10th acre of land. The center 

was temporarily marked with a chaining pin and cloth tapes were spread out in cardinal 

directions for sampling distances. Plot information was recorded using the FIREMON methods 

(Lutes, Keane et al. 2006). GPS coordinates were taken, and aspect, slope, and elevation noted. 

Mature trees, sampled on the full 1/10th acre plot, were considered such if they were larger than 

4.5 inches in diameter at breast height (DBH, taken at 4.5 feet distance from ground on uphill 

side of tree). For mature trees, DBH, species, height, health, percent live crown, and live crown 
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distance from ground were recorded. For dead trees, the above details were recorded as well as 

decay class and visual assessments of mortality agent. Decay classes ranged from a 1 to 5, with 1 

being recently dead and possessing needles, fine twigs, and bark, and 5 having no branches or 

bark, and frequently missing the top of the snag. Saplings, considered to be anything taller than 

4.5 feet but less than 4.5 in DBH, were measured as well on the 1/10th acre plot, with species, 

height class, and distance from ground to live crown being recorded. Seedling plots of 1/300th 

acre in size and comprised of trees shorter than 4.5 feet were also installed. Vegetation and 

ground cover data were recorded within the plot using FIREMON (Lutes, Keane et al. 2006) and 

Photoload methods (Keane and Dickinson 2007). Descriptive statistics of mortality rates and 

regeneration levels were calculated from the plot data. Patterns in mortality and regeneration 

levels were examined on a stand and regional level and in relation to site characteristics. 

2.2. Climate Data Products 

Data products from the Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) Climate Group were obtained for monthly maximum and minimum temperatures, and 

monthly precipitation, from 1915  to 2015, using R-Studio and ARCGIS (Daly 2004, ArcGIS 

2012, Team 2015). As historical PRISM data products had to be used, the spatial resolution of 

the climate variables was limited (4 km x 4 km grid database) (Daly 2004). Palmer Modified 

Drought Index (PDMI) data products were also downloaded for the individual sites (Cook, 

Seager et al. 2010). 

2.3. Core Sampling and Data Extraction 

From the mature trees measured on each site, core samples were taken 1 foot from the 

ground from 2-3 of the mature whitebark pine, as well as from one other mature tree if a 
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different species was available. Cored trees were selected based on health, presence of cones as 

an indicator of maturity, and accessibility to stem for coring. Sapling and seedlings were also 

cored if available on the plot.  

The cores that were taken were brought back to the lab and stored in a warm, dry place until 

they could be processed. Cores were mounted and sanded down to 9 micron or until rings were 

clearly visible. Using a high-resolution scanner, the individual cores were scanned in at 3600 

dots per inch (DPI) and an image saved for each. Using the images, ring widths were then 

measured to the pith or last ring available using the program CooRecorder (Larsson 2014). Some 

cores were unable to be used due to factors such as breakage or rot.   

Cores measured within the program CooRecorder were grouped by site for cross dating 

within the program CDendro (Larsson 2014). Cross dating is generally done using a master 

chronology for comparison, but there are very few relevant published chronologies within the 

areas sampled. The ring width data were normalized within CDendro for crossdating purposes, 

and the raw data then read into R-studio using the package “dplR” (Bunn 2008, Team 2015). 

Raw ring widths were then detrended using a modified negative exponential approach, which 

attempts to remove any biological growth difference attributable to tree age or size, and then the 

detrended ring widths were saved as individual ring width index (RWItree) files. The chronologies 

for each site were then built using the detrended RWItree files with Tukey’s robust mean, and a 

site-level ring width index (RWIsite) chronology saved for each (Tukey 1977). The indices for the 

sites are created by dividing the observed value by the predicted ring width value, resulting in 

homogenous variance around a mean of 1. RWIsite chronologies with interseries correlation 

values ≥0.30 were combined into an overall mean RWI chronology, RWIregion.  
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Following the ring width work, a growth-climate variable analysis was performed using the 

function “dcc” from the R package “treeclim” on the individual RWIsite chronologies to examine 

the relationship between the climate product variables and growth on the sites (Zang and Biondi 

2015). This carried out a stationary bootstrapped correlation analysis and calculated Pearson’s 

correlation coefficient values for each site and the site specific climate variables, which were 

monthly precipitation, maximum temperature, and minimum temperature from prior year June to 

current year September (Pearson 1895, Politis and Romano 1994).  
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3 Results 

3.1 Distribution of study sites 

 

Figure 2: Map of numbered sites and their locations used for study. 
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 Ninety-two minimally disturbed whitebark pine sites were located throughout the 

northern Rocky Mountains (Figure 2). Sites were distributed across varying aspects and slopes, 

but the majority of sites were between 8,001 and 9,500 feet in elevation (65 of the 92 sites). 

Mature tree basal area (BA) when all species were combined encompassed a range of 25 to 400 

ft²/acre. Of the sites sampled, 36 were a subalpine fir habitat type (Pfister 1977), although in only 

21 sites were whitebark pine not the dominant species in the canopy. Located sites had not 

experienced fire in at least 40 years and had no current white pine blister rust indicators or sign 

of mountain pine beetle attacks. They also had no recent disturbance from humans, although 

several sites had scattered stumps from trees that had been harvested decades ago (identified as 

such by decomposition assessments) or signs of cattle grazing in the undergrowth. Sites ranged 

from open growth grassy stands that had only 20 mature (> 4.5 inches at DBH) trees per acre 

with no sampled regeneration, to sites that were heavily mixed conifer types of predominantly 

subalpine fir and lodgepole pine, to higher elevation whitebark pine climax stands, with 

undergrowth of Carex geyeri and/or Vaccinium scoparium and other commonly associated 

species (Figure 3, Table 1, Table A1). Spatially, the sites were located from just outside the 

north-west corner of Glacier National Park, only a few miles from Canada, to the southern end of 

the Wind River Range in Wyoming. While the sites themselves had minimal disturbance, they 

were frequently located very near, or within, larger stands that had experienced disturbance, 

mostly commonly white pine blister rust.  
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Figure 3: Photo series from sampled sites showing the variety among stand types. A) Site 81- 

Open growth, low basal area stand with grass dominant undergrowth. B) Site 48- Mixed conifer 

stand with moderate shrub undergrowth. C) Site 32- Pure whitebark pine stand with Vaccinium 

scoparium undergrowth 

  
Mean Minimum Maximum Standard 

deviation 

Elevation (ft) 8402 6342 10090 812 

Mature tree total BA 

(ft2/acre)  
144 25 400 71 

Mature whitebark BA 

(ft2/acre)  

100 8 309 66 

Mature tree density (# per 

acre) 

287 40 790 132 

Mature whitebark pine 

density (# per acre) 

187 20 770 133 

All seedling density (# per 

acre) 

4754 0 29268  7311 

Whitebark pine seedling 

density (# per acre) 

1054 0 9756 1699 

Mature whitebark pine 

height (ft) 

36 19 62 10 
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Table 1: Descriptive range of site characteristics. Basal area (BA) and density counts include 

both live and dead combined.  

3.2. Mortality on Sites Sampled 

There were no spatial patterns in the snag density. When snag data was split into visually 

estimated decay classes (1 being recently dead, 5 having no bark and no limbs or limb stubs), 

whitebark pine snags were further decayed than other conifer species present, suggesting they 

had been dead longer (Table 2). When the density data for whitebark pine snags was plotted 

against live basal area of the sites there was not an increased number of dead with increasing 

basal area (Figure 4). When the density of standing dead whitebark pine for each site were 

plotted against non-whitebark pine live basal area of the sites, there was no positive correlation 

in the number of whitebark pine snags, suggesting that regardless of the basal area of faster 

growing conifer species, mature whitebark pine on these minimally disturbed sites sampled are 

not experiencing an increase in mortality numbers due to competition.  



15 

 

 

Figure 4: Density of whitebark pine snags against live mature basal area (all conifer species 

combined).  

 

Sites chosen for the study had minimal disturbance from blister rust or beetle epidemics. A 

Welch’s t-test found there to be a difference in the average snag counts (p-value=0.002, t=3.176) 

when separated into whitebark and “other conifers” categories. Of the 92 sites, 20 had no snags 

at all, and decay class data was only available for the snags on 40 of the residual 72 plots due to a 

change in sampling technique. Number of total snags on each site, when all conifer species were 

combined, ranged from 0 up to 49 snags. 
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Species Total # 

sampled 

snags 

Ave. # 

dead 

per 

site  

Ave. 

BA/acre 

dead 

(ft²) 

% in 

decay 

classes 

1-2 

Ave. # 

live 

trees 

per 

site 

Ave. % 

dead 

within 

site 

SE 

for % 

dead 

each 

site 

SE 

for # 

dead 

per 

site 

SE 

for 

# 

live 

per 

site 

Whitebark 357 3.88 32 51% 16 24% 1.6 0.7 1.11 

Other 

conifers 

137 1.16 23 88% 9 16%  0.68 0.24 0.91 

 

Table 2: Sites sampled were 1/10th acre in size. Species refers to whitebark pine or a grouping of 

other conifers sampled within the 92 plots (subalpine fir, lodgepole pine, Engelmann spruce, 

Douglas fir). Counts and percentages are from all 92 plots combined. Decay class is from 1-5, 

with 1 being the most recently dead and 5 has been dead the longest. % decay class on snags is 

from 40 out of the 72 sites with snags.  

 

3.3. Stand Composition and Regeneration 

While mature whitebark pine are still the most prevalent species on the sites, their relative 

representation within the sites decreased through the structural stages of saplings and seedlings. 

At the same time, there is a relative increase in the abundance of subalpine fir in the structural 

stages of sapling and seedlings. When the data were examined among all structural stages 

(Figure 5), whitebark pine was the most abundant species in the mature stage, however, there 

were fewer seedlings of whitebark pine than of subalpine fir. Over the 92 sites, whitebark pine 

seedlings were found on 47 and subalpine fir seedlings on 46. On sites that had subalpine fir 

seedlings, increasing mature whitebark pine basal area was negatively related to subalpine fir 

seedling counts.     
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Figure 5: Boxplot showing the log10 density per acre (live only) of the 5 most prevalent species 

found within the sites sampled. Numbers were calculated for every site individually, within the 

type of species and structural stage (mature, sapling, seedling).  

 

Correlation matrices using seedling and sapling totals for each site and the biophysical site 

characteristics revealed no relationships when all species were combined. Total mature tree 

density, all species included, was significantly correlated at an α<0.05 level with increasing 

elevation and latitude. When the data were separated by species and structural stage and mapped 

to examine any potential spatial trends, whitebark pine showed more of a proportional presence 

among all structural stages the further south the plots were within the sampled region, and when 
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structural stages were combined was significantly correlated with latitude, longitude, and 

elevation at α≤0.05. Sites further north tended to have more subalpine fir, though the relationship 

was not significant at an α≤0.05 level. When whitebark pine regeneration density (seedlings and 

saplings combined) was plotted against mature live basal area from all species combined (as well 

as against only non-whitebark pine species), whitebark pine regeneration density showed a 

tendency to increase with mature live basal area (Figure 6).  However, there was substantial 

variability in whitebark pine regeneration levels and this relationship to live basal area density 

was not significant. 

 

Figure 6: Log10 whitebark pine regeneration (seedlings and saplings combined) plotted against 

log10 live basal area (ft2/ac) when all mature conifers were combined. 
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For this study, structural stages were defined by their height and DBH. Using data from all 

sites combined, mean number per acre of whitebark pine by height class were calculated and 

plotted (Figure 7). The figure reveals the overall high density of whitebark pine seedlings, 

particularly those under 4 feet in height. Saplings and mature trees, distinguished by DBH, share 

height class categories from 6 to 28 feet in height, and there is a decline in abundance as the 

height classes increase.  

 

Figure 7: Height (ft) distribution of whitebark pine across all sites by structural class.  

Across all sites, 98 whitebark pine seedlings and saplings above 6 inches in height were 

cored to examine the relationship between height and establishment date. This was done to 
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examine whether the seedlings and saplings were actually young trees or whether they had 

persisted in these structural stages over longer periods, as whitebark pine can have extremely 

slow growth (Figure 8) (Tomback, Sund et al. 1993, Campbell and Antos 2003, Leirfallom, 

Keane et al. 2015). Figure 8 shows the distribution of seedling and sapling establishment dates 

and highlights that 58% of these trees below 4.5 inches in DBH are more than 50 years old.  The 

apparent decrease in numbers established over the most recent two decades is likely a result of 

the fact that only seedlings and saplings greater than 6 inches in height were cored for age.  

 

 

Figure 8: Histogram plot of establishment dates for subsampled whitebark regeneration 

(seedlings and saplings above 6 inches in height)  

 

3.4. Climate and Ring Width Growth 

Examining the climate data products used for the sites sampled, minimum temperatures 

fluctuated considerably from 1915-1990, but show both an increase in level and a decrease in 
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inter-annual variability after 1990 (Figure 9). No such pattern is evident in maximum 

temperature, precipitation, or Palmer Modified Drought Index (PDMI).  Precipitation appears to 

have been declining for the prior 30 years from sampling date but is still within levels similar to 

the period from 1920-1950. There was a larger decline in RWIregion (the mean of all site 

chronologies) growth starting in 1998 and running through 2004 than any period prior, but in 

2004 growth began to increase again.  When visually comparing RWIregion against the climate 

variables, RWIregion does appear to respond to the recently warming minimum temperatures and 

dropping precipitation. The cores sampled for this study also had mostly high first-order 

autocorrelation scores in their raw ring widths, ranging from 0.17 to 0.94 with a mean of 0.7 

(Fritts 1976).  
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Figure 9: Mean values for annual maximum temperature (°F), annual minimum temperature (°F), 

total annual precipitation (inches), annual ring-width index (RWIregion) and annual Palmer 

Modified Drought Index (PDMI). All variables have been averaged across all 92 sites. 

 

 When the ring-width index data (RWIsite) for sites with interseries correlation values of 

>0.3 were plotted, there was no apparent trend over the 100 years of growth data available 

(Figure 9). As noted above, beginning in 1998 there is a sustained decrease in ring-width index 

values, but RWIsite value and the overall RWIregion value begin to increase again around 2004, 

with one plot showing greatly increased growth, for which a cause has yet to be determined.  
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Figure 10: Distribution of ring width indices 1915-2014 by site (points); red line traces the 

regional average (RWIregion).  Only data from sites with interseries correlations >0.3 were used. 

 

Dendroclimatic calibration between monthly climate variables and RWIsite demonstrated that 

precipitation was positively correlated with RWIsite on average 67% of the 16 months used in the 

analysis, in particular during the prior and current year growing season months. Temperature 

data was mostly negatively correlated with RWIsite (on average, 78% of the time), with stronger 

correlations during the growing season (Figure 10). Overall, previous and current year July 

climate data products had the strongest correlations with radial growth (both RWIsite and 

RWIregion), with current year March showing stronger correlation values with radial growth as 

well. 

 



25 

 

Figure 11: Correlations between RWIsite and monthly climate variables averaged over all sites 

and years (1916-2014).  Shown are correlations for monthly climate variables running from the 

previous year’s June through the current year’s September. 

 

Monthly climate data products were also plotted individually in an effort to determine how 

they may have changed over time. Generally, they showed temporal trends similar to the annual 

climate variables (Figure 9), with increasing minimum temperatures of 4-7 °F and an overall 

decrease in precipitation since the 1980s. Monthly maximum temperatures increased only a few 

degrees in all months except for in March, in which maximum temperatures among the sites 

sampled increased almost 5°F over the 100 years examined. Averaged monthly precipitation 

totals for the sites decreased in the last several decades through the months of February and 

March, as well as mid-summer, while increasing in the late fall and early winter months.   

 

4 Discussion 

 Whitebark pine is continuing to see drastic population declines over much of its habitat, 

but there are sites and stands that have remained relatively undisturbed through recent mountain 

pine beetle epidemics and persistent blister-rust spread. Over a range of habitat types, climate, 

and biophysical site characteristics within the northern Rocky Mountains, whitebark pine 

populations with lower stand mortality exist on these minimally disturbed sites. Whether they 

have maintained their status due to location, luck, or some unmeasured phenological attribute 

could not be determined in this study, but they do provide a potential seed source for surrounding 

areas experiencing higher mortality. However, Table 2 represents the fact that even on these sites 

with lesser mortality, that the average percent dead is still roughly 25%. While there is no 
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existing snag dynamic information available for whitebark pine, the visual decay estimations 

performed for this study quantified 49% of the snags subsampled for extra data as being a decay 

class 3 or higher, which is attributed in general to snags not recently dead. This data presents the 

possibility that many of the snags present on the sites may be remnants of mortality decades past. 

Climate conditions that promote the growth of mature trees may be different than those that 

promote seedling growth, thus seedlings may not survive microsite environmental conditions that 

have no effect on the ring production of mature trees. If the soil temperatures are too high, 

mortality rates increase, as the roots are sensitive, especially immediately post-germination 

(Rochefort, Little et al. 1994). Warming temperatures may not ensure sufficiently long cold 

stratification periods for germination, and may result in lower survival rates for those that do 

germinate (Arno and Hoff 1990). Prior studies have found that whitebark pine seedlings show 

improved growth and survival with higher precipitation amounts through March and April, and 

in fire disturbed areas (Tomback, Sund et al. 1993, Day, Greenwood et al. 2002, Körner 2012, 

Dolanc, Westfall et al. 2013, Millar, Westfall et al. 2015, Perkins 2015). Knowing these 

specifications, within the sites sampled, climate data products and projections indicate that 

minimum temperatures are increasing and the favorable spring precipitation decreasing (Leung, 

Qian et al. 2004, Iglesias, Krause et al. 2015).  

The proportion and number of subalpine fir seedlings and saplings measured on the sites 

are higher than whitebark pine (Figure 5). Others research has found a similar relationship when 

both species were present, with whitebark pine seedling numbers decreasing with increased 

subalpine fir presence (Larson and Kipfmueller 2010). Changing climate and fire disturbance 

regimes to eliminate the quickly growing, more shade tolerant competition conifer species may 

be assisting in declining whitebark pine presence. As well, fire severity and scope may be 
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resulting in fewer of the Clark’s nutcracker preferred seed caching sites, and high mortality 

related to white pine blister rust and mountain pine beetle may provide for poorer seed sources. 

These combined factors lend to future predictions of decreasing regeneration of whitebark pine. 

However, the broad distribution of whitebark pine among varying habitat types and biophysical 

site characteristics (Figure 1, Table A1), as well as the species’ long lifespan, may allow it to 

continue as part of mixed-conifer stands. A recent study examining occurrence of whitebark pine 

seedlings found that within the US Rocky Mountains, whitebark pine seedlings were located in 

lodgepole pine forest types 35% of the time (as well as 20% within subalpine fir forest type, 23% 

in Engelmann spruce/subalpine fir forest type, 6% in Douglas-fir forest type, and <1% in other 

forest type), compared to only 16% of the time within whitebark pine forest types, and thus 

regeneration location is not just dependent on an overstory of mature whitebark pine or a 

whitebark pine forest type (Goeking, Izlar et al. 2018). There are also studies that show potential 

for increased whitebark pine regeneration following a disturbance, such as white pine blister rust 

or mountain pine beetle attacks, as the resulting mortality opens up gaps in stands with denser 

canopies (Larson and Kipfmueller 2010, Meyer, Bulaon et al. 2016). Many of the sites sampled 

for this study were considered to be mixed-conifer stands. Despite the lack of a dominant 

overstory canopy of mature whitebark pine or disturbance that would encourage seed caching 

from Clark’s nutcrackers, the results demonstrate that in undisturbed stands with even limited 

seed sources, whitebark pine continue to establish, in agreement with several recent studies 

(Clason, Macdonald et al. 2014, Goeking and Izlar 2018). The establishment date data showed 

that while 51% of the subsampled whitebark pine regeneration above 6 inches in height were 

older than 50 years, that many of them were more recently established, and not just suppressed 

due to abiotic stress. Whitebark pines’ slow growth patterns can make for uncertainty in age 
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classes of recorded regeneration numbers, but the results for this study demonstrate continuing 

establishment of whitebark pine rather than a height suppressed population. Goeking and Izlar et 

al, 2018, used data from 1,217 FIA (Forest Inventory and Analysis plots) to assess whitebark 

pine seedlings densities throughout the US Rocky Mountains. They found that despite 83% of 

the sites where whitebark pine seedlings occurred being in non-whitebark pine forest types that 

densities were frequently higher in whitebark pine forests. However, the highest density 

(6,447/acre) of whitebark pine seedlings did occur within a lodgepole pine forest type. These 

results contrasted with my findings in which the highest whitebark pine seedling densities were 

found in whitebark pine/subalpine fir forest types(Goeking, Izlar et al. 2018). The same study, 

using FIA plot data from all stand types, not just those with a whitebark pine component, found 

that out of 7,018 FIA plots included in the analysis, 1,217 (17%) had whitebark presence and 795 

(11%) had whitebark pine seedlings present (Goeking, Izlar et al. 2018). Despite the high 

numbers of subalpine fir seedlings recorded in this study, given their lack of fire resistance and 

nutrient availability needs, as well as simple space demands, it is not possible for them to grow 

to maturity in the high density they stock themselves as seedlings. A study in Colorado, taking 

place from 1961-1975, showed that as many as 14 one-year old subalpine fir seedlings were 

required to have one seedling that survived till at least 4-13 years of age (7% survival rate)  

(Noble and Ronco Jr 1978, Alexander, Shearer et al. 1990). While there are no published studies 

on long term seedling survival of whitebark pine in a naturally planted setting,  intentionally 

planted seedlings were found to have a survival rate over a eleven year period ranging from 2-

47%, dependent on the physiographic location of the site, with other datasets showing up to an 

86% survival rate on dry sites near Cooke City, Montana (Scott and McCaughey 2006). While 

the age of every recorded seedling is unknown within this study, when comparing the average 
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sampled density of whitebark pine seedlings (1,054 per acre) to mature density (187 per acre), 

the seedling survival rate for these minimally disturbed stands would need to be 5.6% to replace 

the mature.  

Interseries correlations in dendrochronology represent the similarity in long-term growth 

patterns between a sampled core or tree and the associated ring width data when compared to 

other sampled trees within the selected region. Yearly radial growth and growth patterns are a 

product of the environment and climate a tree exists in. Ring width data can be used to recreate 

past climates and fire history events, and higher interseries correlations allow for greater 

confidence in climate and corresponding radial growth interpretations (Fritts 1976, Fritts and 

Swetnam 1989). While sites used within this study were located throughout the range of 

Northern Rockies whitebark pine habitat, radial growth patterns from sites that are located near 

the outside edge of a species’ ecological niche frequently have higher correlations with climate 

data. The outer edges of habitats exist as a result of the limiting factors of moisture or 

temperature stress, and radial growth patterns become more variable as a result of this stress, 

which then results in higher correlations to the limiting climate variable. Interseries correlation 

levels differ by species, size of sampled area, site disturbance history, and homogeneity of area 

sampled. While the 1/10th acre plots used in this study had minimal disturbance, many still had 

low interseries correlations (considered to be <0.3). The sites with low interseries correlations 

are likely the result of very pale, narrow or missing rings (as can occur under severe abiotic 

stress), broken cores with missing sections, sample depth, or simply a divergent population. 

Other studies of high elevation conifer species have also found low interseries correlations 

(RWIsite) when correlating ring widths by site. These studies also showed positive correlations 

with winter and spring precipitation and negative correlations with spring to summer 



30 

 

temperatures, although the correlation values of those studies are stronger than some of the 

correlation values of this study (Perkins and Swetnam 1996, Frank and Esper 2005, Kipfmueller 

and Salzer 2010, Dolanc, Westfall et al. 2013). The lower climate correlation values found in this 

study are attributed to the large region sampled (northern Rocky Mountains), the range of habitat 

types and biophysical site characteristics, and correlating ring width growth (RWIregion) with 

individual months rather than seasonally. The coarse climate data used (each grid cell covering 

of 16 square kilometers) likely led to lower correlations with the monthly climate data, as within 

such a large area, climate and site characteristics can range greatly across topographically 

dynamic regions. The sites used within the study for the RWI and climate correlation work had 

interseries correlations ranging from 0.3-0.73, although the sites with higher interseries 

correlations had lower numbers of cores used. However, there are study results showing that 

same species chronologies are not necessarily similar in their response to climate and one species 

site chronology should not be expected to have the same response as another spatially distinct 

group of the same species (Schuster and Oberhuber 2013, Salzer, Larson et al. 2014, Shrestha, 

Chhetri et al. 2017, Holz, Hart et al. 2018). Studies have shown that conifer species are limited 

by different variables within their location within their habitat. Given similar spatial area and site 

characteristics, trees lower along the elevational gradient of their habitat are often limited by 

moisture, while the trees at the higher elevations are more limited by growing season 

temperatures (King, Gugerli et al. 2013, Salzer, Larson et al. 2014, Shrestha, Chhetri et al. 2017, 

Liu, Liang et al. 2018). Differing elevation and aspect, and therefore climate and microsite 

variation, are the most common contrasts when the same species provide differing responses and 

limitations to climate, suggesting that future predictions for species should be made considering 

niche locations as much as regional or climate based predictions (Peterson and Peterson 1994, 
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Hughes and Funkhouser 2003, Kipfmueller and Salzer 2010, Carrer 2011, van de Gevel, Larson 

et al. 2017).  

 Climate projections for the Northern Rockies for the next hundred years suggest an 

increase in mean annual temperatures from 3.6 to 7.2 °F (Running 2008). Having available 

moisture during the summer months ensures that whitebark pine can keep growing, rather than 

close their stomatal openings and shut down growth due to drought stress. It also allows the tree 

to develop next year’s buds within the stems and produce sugars and proteins that will be used in 

the next few years of the trees life. Whitebark pine depend on lingering snowpack and moist 

soils to do such, but the warming temperatures and decreasing annual precipitation suggested by 

Figure 9 from this study, as well as from other published studies, could affect both variables  

(Pederson, Graumlich et al. 2010, Pederson, Gray et al. 2011, Pederson, Betancourt et al. 2013). 

Despite this, the data from this study do not show greatly modified growth, although certainly 

climate growth-response thresholds may be reached with increasing drought stress in the future. 

While the ring-width growth patterns do correlate most strongly with growing season 

precipitation variations, whitebark pines’ continued growth in these sampled sites suggest that 

they may be responding to other unmeasured factors, such as CO2 fertilization or the increase in 

growing degree days associated with steadily warming temperatures. Continuing drought stress 

may also affect the other species found on the sites first, such as subalpine fir, as they are much 

less drought-tolerant and often rely on whitebark pine to establish and to act as shade for their 

encroachment.  

Results from other studies focusing on high-elevation conifer species radial growth to 

climate change are mixed. Within the United States, bristlecone pine (Pinus aristata Engelmann 

and Pinus longaeva D.K. Bailey) are frequently used for dendrochronology work due to their 
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long lifespans. Recent studies involving them have found both unprecedented growth within 

their upper elevational band (Salzer, Hughes et al. 2009), to both a lack of a trend or a negative 

trend in growth (Kipfmueller and Salzer 2010). Kipfmueller and Salzer, 2010, compared 66 five-

needle pine chronologies from 1896 to the end of their individual records and found that 42% of 

them had a significant positive growth trend, while 23% had a significant negative growth trend, 

and 35% showed no significant trend at all. This same study showed that 65% of the 

chronologies exhibiting significant positive trends were located near treeline. However, 

whitebark pine represented 47% of the chronologies with significant negative trends in radial 

growth (Kipfmueller and Salzer 2010). Other studies focusing on upper elevation tree species, 

however, show a steady increase in radial growth over time (Rolland, Petitcolas et al. 1998, 

Dolanc, Westfall et al. 2013). However, changing growth-climate responses are also leading 

some scientists to hypothesize that climate-response thresholds are varying within species as well 

as spatially as predictions based on growth-climate response outcomes are not capturing the 

actual responses (Andreu, GutiERrez et al. 2007, Oberhuber, Kofler et al. 2008, Fajardo and 

McIntire 2012, Salzer, Larson et al. 2014) .  

5 Conclusions 

Minimally disturbed stands with a mature whitebark pine component can still be found 

throughout the US Rocky Mountains. Within the sites sampled in this study, whitebark pine 

populations still averaged 25% standing dead. While this is much lower than the overall US Rocky 

Mountains averaged standing dead percentage of 51%, it is still higher than the standing dead rate 

for the other conifer species within these sampled stands, which only averaged 16%. However, the 

whitebark pine seedling and sapling density and establishment data from this study showed that 
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within these stands there is continuing regeneration. While densities of seedling and sapling 

whitebark pine are frequently lower than subalpine fir in stands that contain both species, 

predictions for increased fire on the landscape may help eradicate the competition species. As well, 

ring width index data from the mature whitebark pine did not show an overall change over the 100 

years sampled, even though the monthly climate variables with the highest correlation coefficients 

are mostly showing hotter and drier trends, which should have a negative effect on radial growth. 

The fact that there has not been a pronounced change in ring width growth allows for the 

hypothesis of increased growing degree days or another unmeasured variable potentially making 

up for the predicted loss of growth from drought stress. The continuing radial growth and 

regeneration of whitebark pine among the sampled sites, despite their broad differences in both 

spatial and biophysical characteristics, implies there may be room for interpretation of negative 

predictions of future whitebark pine presence and growth.  While white pine blister rust and 

mountain pine beetle are still a formidable presence on the landscape, there may still be the 

potential for successful re-establishment by managers under the current climate conditions. 

 

 

 

 

 

 



34 

 

6 Literature Cited 

References 

 

Alexander, R. R., R. C. Shearer and W. D. Shepperd (1990). "Abies lasiocarpa (Hook.) Nutt." Silvics of North 
America 1: 60-70. 
Andreu, L., E. GutiERrez, M. Macias, M. Ribas, O. Bosch and J. J. Camarero (2007). "Climate increases 
regional tree‐growth variability in Iberian pine forests." Global Change Biology 13(4): 804-815. 
ArcGIS, E. (2012). "10.1." Redlands, California: ESRI. 
Arno, S. F. (1986). "Whitebark pine cone crops—a diminishing source of wildlife food?" Western Journal 
of Applied Forestry 1(3): 92-94. 
Arno, S. F. and R. J. Hoff (1990). "Pinus albicaulis Engelm. whitebark pine." Silvics of North America 1: 268-
279. 
Arno, S. F. H., J. R. (1989). "Silvics of whitebark pine (Pinus albicaulis)." USDA Forest Service: General 
Technical Report INT: 253-264. 
Arno, S. F. W., T (1990). "Whitebark pine community types and their patterns on the landscape." General 
Technical Report INT, USDA Forest Service, Bozeman, MT., USA 270. 
Bunn, A. G. (2008). "A dendrochronology program library in R(dplR). ." Dendrochronologia 26: 115-124. 
Callaway, R. M. (1998). "Competition and facilitation on elevation gradients in subalpine forests of the 
northern Rocky Mountains, USA." OIKOS 82: 561-573. 
Campbell, E. M. and J. A. Antos (2003). "Postfire succession in Pinus albicaulis Abies lasiocarpa forests of 
southern British Columbia." Canadian Journal of Botany 81(4): 383-397. 
Carrer, M. (2011). "Individualistic and time-varying tree-ring growth to climate sensitivity." PLoS One 6(7): 
e22813. 
Clason, A. J., S. E. Macdonald and S. Haeussler (2014). "Forest response to cumulative disturbance and 
stress: Two decades of change in whitebark pine ecosystems of west-central British Columbia." Ecoscience 
21(2): 174-185. 
Cook, E. R., R. Seager, R. R. Heim, R. S. Vose, C. Herweijer and C. Woodhouse (2010). "Megadroughts in 
North America: Placing IPCC projections of hydroclimatic change in a long‐term palaeoclimate context." 
Journal of Quaternary Science 25(1): 48-61. 
Daly, C. (2004). "PRISM Climate Group." Oregon State University, Corvallis, OR. 
Day, M., M. Greenwood and C. Diaz-Sala (2002). "Age-and size-related trends in woody plant shoot 
development: regulatory pathways and evidence for genetic control." Tree Physiology 22(8): 507-513. 
Dolanc, C. R., R. D. Westfall, H. D. Safford, J. H. Thorne and M. W. Schwartz (2013). "Growth–climate 
relationships for six subalpine tree species in a Mediterranean climate." Canadian journal of forest 
research 43(12): 1114-1126. 
Easterling, D. R. (2002). "Recent changes in frost days and the frost-free season in the United States." 
Bulletin of the American Meteorological Society 83(9): 1327-1332. 
Fajardo, A. and E. J. McIntire (2012). "Reversal of multicentury tree growth improvements and loss of 
synchrony at mountain tree lines point to changes in key drivers." Journal of Ecology 100(3): 782-794. 
Fiedler, C. E. and S. T. McKinney (2014). "Forest structure, health, and mortality in two Rocky Mountain 
whitebark pine ecosystems: Implications for restoration." Natural Areas Journal 34(3): 290-299. 
Frank, D. and J. Esper (2005). "Characterization and climate response patterns of a high-elevation, multi-
species tree-ring network in the European Alps." Dendrochronologia 22(2): 107-121. 
Fritts, H. (1976). "Tree rings and climate, 567 pp." Academic, San Diego, Calif. 



35 

 

Fritts, H. C. and T. W. Swetnam (1989). Dendroecology: a tool for evaluating variations in past and present 
forest environments. Advances in ecological research, Elsevier. 19: 111-188. 
Goeking, S. A. and D. K. Izlar (2018). "Pinus albicaulis Engelm.(Whitebark Pine) in Mixed-Species Stands 
throughout Its US Range: Broad-Scale Indicators of Extent and Recent Decline." Forests 9(3): 131. 
Goeking, S. A., D. K. Izlar and T. C. Edwards (2018). "A landscape-level assessment of whitebark pine 
regeneration in the Rocky Mountains, USA." Forest Science. doi: 10.1093/forsci/fxy029. 
Hamann, A. and T. Wang (2006). "Potential effects of climate change on ecosystem and tree species 
distribution in British Columbia." Ecology 87(11): 2773-2786. 
Hamrick, J. L. (2004). "Response of forest trees to global environmental changes." Forest ecology and 
management 197(1-3): 323-335. 
Holz, A., S. J. Hart, G. J. Williamson, T. T. Veblen and J. C. Aravena (2018). "Radial growth response to 
climate change along the latitudinal range of the world's southernmost conifer in southern South 
America." Journal of Biogeography 45(5): 1140-1152. 
Hughes, M. K. and G. Funkhouser (2003). Frequency-Dependent Climate Signal in Upper and Lower Forest 
Border Tree Rings in the Mountains of the Great Basin. Climate Variability and Change in High Elevation 
Regions: Past, Present & Future. H. F. Diaz. Dordrecht, Springer Netherlands: 233-244. 
Iglesias, V., T. R. Krause and C. Whitlock (2015). "Complex response of white pines to past environmental 
variability increases understanding of future vulnerability." PloS one 10(4): e0124439. 
Karl, T. R., J. M. Melillo, T. C. Peterson and S. J. Hassol (2009). Global climate change impacts in the United 
States, Cambridge University Press. 
Keane, R. E. (2001). "Can the fire-dependent whitebark pine be saved." Fire Management Notes 61: 17-
20. 
Keane, R. E. and S. F. Arno (1993). "Rapid decline of whitebark pine in western Montana: evidence from 
20-year remeasurements." Western Journal of Applied Forestry 8(2): 44-47. 
Keane, R. E. and L. J. Dickinson (2007). The photoload sampling technique: estimating surface fuel loadings 
from downward-looking photographs of synthetic fuelbeds, US Department of Agriculture, Forest Service, 
Rocky Mountain Research Station. 
Keane, R. E., L. M. Holsinger, M. F. Mahalovich and D. F. Tomback (2017). Restoring whitebark pine 
ecosystems in the face of climate change, US Department of Agriculture, Forest Service, Rocky Mountain 
Research Station. 
Keane, R. E. A., S. F.; Stewart, C. A (2000). "Ecosystem-based management in the whitebark pine zone. 
Pages 36-40 in The Bitterroot Ecosystem Management Research Project: what we have learned: 
symposium proceedings, Missoula, Montana, May 18-20." Fort Collins Colo. U.S. Dept. of Agriculture 
Forest Service Rocky Mountain Research Station  
Kendall, K. C. and R. E. Keane (2001). "Whitebark pine decline: infection, mortality, and population 
trends." Whitebark pine communities: ecology and restoration. Edited by DF Tomback, SF Arno, and RE 
Keane. Island Press, Washington, DC: 221-242. 
King, G. M., F. Gugerli, P. Fonti and D. C. Frank (2013). "Tree growth response along an elevational 
gradient: climate or genetics?" Oecologia 173(4): 1587-1600. 
Kipfmueller, K. F. and M. W. Salzer (2010). "Linear trend and climate response of five-needle pines in the 
western United States related to treeline proximity." Canadian Journal of Forest Research 40(1): 134-142. 
Körner, C. (2012). Alpine treelines: functional ecology of the global high elevation tree limits, Springer 
Science & Business Media. 
Larson, E. R. and K. F. Kipfmueller (2010). "Patterns in whitebark pine regeneration and their relationships 
to biophysical site characteristics in southwest Montana, central Idaho, and Oregon, USA." Canadian 
Journal of Forest Research 40(3): 476-487. 
Larsson, L. (2014). CooRecorder and Cdendro programs of the CooRecorder/Cdendro package version 7.7. 



36 

 

Leirfallom, S. B., R. E. Keane, D. F. Tomback and S. Z. Dobrowski (2015). "The effects of seed source health 
on whitebark pine (Pinus albicaulis) regeneration density after wildfire." Canadian Journal of Forest 
Research 45(11): 1597-1606. 
Leung, L. R., Y. Qian, X. Bian, W. M. Washington, J. Han and J. O. Roads (2004). "Mid-century ensemble 
regional climate change scenarios for the western United States." Climatic Change 62(1-3): 75-113. 
Levine, C. R., F. Krivak-Tetley, N. S. van Doorn, J.-A. S. Ansley and J. J. Battles (2016). "Long-term 
demographic trends in a fire-suppressed mixed-conifer forest." Canadian Journal of Forest Research 46(5): 
745-752. 
Linderholm, H. W. (2006). "Growing season changes in the last century." Agricultural and Forest 
Meteorology 137(1-2): 1-14. 
Liu, B., E. Liang, K. Liu and J. J. Camarero (2018). "Species-and Elevation-Dependent Growth Responses to 
Climate Warming of Mountain Forests in the Qinling Mountains, Central China." Forests 9(5): 248. 
Loehman, R. A., J. A. Clark and R. E. Keane (2011). "Modeling effects of climate change and fire 
management on western white pine (Pinus monticola) in the northern Rocky Mountains, USA." Forests 
2(4): 832-860. 
Lutes, D. C., R. E. Keane, J. F. Caratti, C. H. Key, N. C. Benson, S. Sutherland and L. J. Gangi (2006). 
"FIREMON: Fire effects monitoring and inventory system." Gen. Tech. Rep. RMRS-GTR-164-CD. Fort 
Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station 1. 
McDowell, N., W. T. Pockman, C. D. Allen, D. D. Breshears, N. Cobb, T. Kolb, J. Plaut, J. Sperry, A. West and 
D. G. Williams (2008). "Mechanisms of plant survival and mortality during drought: why do some plants 
survive while others succumb to drought?" New phytologist 178(4): 719-739. 
McLane, S. C. and S. N. Aitken (2012). "Whitebark pine (Pinus albicaulis) assisted migration potential: 
testing establishment north of the species range." Ecological Applications 22(1): 142-153. 
Meyer, M. D., B. Bulaon, M. MacKenzie and H. D. Safford (2016). "Mortality, structure, and regeneration 
in whitebark pine stands impacted by mountain pine beetle in the southern Sierra Nevada." Canadian 
Journal of Forest Research 46(4): 572-581. 
Miles, P. (2016). Forest Inventory EVALIDator web-application Version 1.6. 0.03. St. Paul, MN: US 
Department of Agriculture, Forest Service, Northern Research Station. 
Millar, C. I., R. D. Westfall, D. L. Delany, A. L. Flint and L. E. Flint (2015). "Recruitment patterns and growth 
of high-elevation pines in response to climatic variability (1883–2013), in the western Great Basin, USA." 
Canadian Journal of Forest Research 45(10): 1299-1312. 
Mitton, J. B. (1995). Genetics and the physiological ecology of conifers. Ecophysiology of coniferous 
forests, Elsevier: 1-36. 
Murray, M. P. and M. C. Rasmussen (2003). "Non-native blister rust disease on whitebark pine at Crater 
Lake National Park." 
Noble, D. L. and F. Ronco Jr (1978). "Seedfall and establishment of Englemann spruce and subalpine fir in 
clearcut openings in Colorado." USDA For Serv Res Pap RM US Rocky Mt For Range Exp Stn. 
Oberhuber, W., W. Kofler, K. Pfeifer, A. Seeber, A. Gruber and G. Wieser (2008). "Long-term changes in 
tree-ring - climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid 1980s." Trees (Berl 
West) 22(1): 31-40. 
Pearson, K. (1895). "Note on regression and inheritance in the case of two parents." Proceedings of the 
Royal Society of London 58: 240-242. 
Pederson, G. T., J. L. Betancourt and G. J. McCabe (2013). "Regional patterns and proximal causes of the 
recent snowpack decline in the Rocky Mountains, US." Geophysical Research Letters 40(9): 1811-1816. 
Pederson, G. T., L. J. Graumlich, D. B. Fagre, T. Kipfer and C. C. Muhlfeld (2010). "A century of climate and 
ecosystem change in Western Montana: what do temperature trends portend?" Climatic change 98(1-2): 
133-154. 



37 

 

Pederson, G. T., S. T. Gray, T. Ault, W. Marsh, D. B. Fagre, A. G. Bunn, C. A. Woodhouse and L. J. Graumlich 
(2011). "Climatic controls on the snowmelt hydrology of the northern Rocky Mountains." Journal of 
Climate 24(6): 1666-1687. 
Perkins, D. L. and T. W. Swetnam (1996). "A dendroecological assessment of whitebark pine in the 
Sawtooth–Salmon River region, Idaho." Canadian Journal of Forest Research 26(12): 2123-2133. 
Perkins, J. L. (2015). "FIRE ENHANCES WHITEBARK PINE SEEDLING ESTABLISHMENT, SURVIVAL, AND 
GROWTH." Fire Ecology 11(2). 
Peterson, D. W. and D. L. Peterson (1994). "Effects of climate on radial growth of subalpine conifers in the 
North Cascade Mountains." Canadian Journal of Forest Research 24(9): 1921-1932. 
Pfister, R. D. K., B. L.; Arno, S. F.; Presby, R. C. (1977). "Forest habitat types of Montana." USDA Forest 
Service General Technical Report INT 1977 43: 174. 
Politis, D. N. and J. P. Romano (1994). "The stationary bootstrap." Journal of the American Statistical 
association 89(428): 1303-1313. 
Rochefort, R. M., R. L. Little, A. Woodward and D. L. Peterson (1994). "Changes in sub-alpine tree 
distribution in western North America: a review of climatic and other causal factors." The Holocene 4(1): 
89-100. 
Rolland, C., V. Petitcolas and R. Michalet (1998). "Changes in radial tree growth for Picea abies, Larix 
decidua, Pinus cembra and Pinus uncinata near the alpine timberline since 1750." Trees 13(1): 40-53. 
Running, S. (2008). Impacts of climate change on forests of the Northern Rocky Mountains, University of 
Montana. 
Ryan, K. C. and E. D. Reinhardt (1988). "Predicting postfire mortality of seven western conifers." Canadian 
journal of forest research 18(10): 1291-1297. 
Salzer, M. W., M. K. Hughes, A. G. Bunn and K. F. Kipfmueller (2009). "Recent unprecedented tree-ring 
growth in bristlecone pine at the highest elevations and possible causes." Proceedings of the National 
Academy of Sciences 106(48): 20348-20353. 
Salzer, M. W., E. R. Larson, A. G. Bunn and M. K. Hughes (2014). "Changing climate response in near-
treeline bristlecone pine with elevation and aspect." Environmental Research Letters 9(11): 114007. 
Schrag, A. M., A. G. Bunn and L. J. Graumlich (2008). "Influence of bioclimatic variables on tree-line conifer 
distribution in the Greater Yellowstone Ecosystem: implications for species of conservation concern." 
Journal of Biogeography 35(4): 698-710. 
Schuster, R. and W. Oberhuber (2013). "Age-dependent climate–growth relationships and regeneration 
of Picea abies in a drought-prone mixed-coniferous forest in the Alps." Canadian journal of forest research 
43(7): 609-618. 
Schwandt, J. W. (2006). Whitebark pine in peril: a case for restoration, US Department of Agriculture, 
Forest Service, Forest Health Protection. 
Scott, G. L. and W. W. McCaughey (2006). "Whitebark pine guidelines for planting prescriptions." In: Riley, 
LE; Dumroese, RK; Landis, TD, tech. coords. 2006. National Proceedings: Forest and Conservation Nursery 
Associations-2005. Proc. RMRS-P-43. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky 
Mountain Research Station. p. 84-90 43. 
Shrestha, K. B., P. K. Chhetri and R. Bista (2017). "Growth responses of Abies spectabilis to climate 
variations along an elevational gradient in Langtang National Park in the central Himalaya, Nepal." Journal 
of Forest Research 22(5): 274-281. 
Tausch, R. J., P. E. Wigand and J. W. Burkhardt (1993). "plant community thresholds, multiple steady 
states, and multiple successional pathways: legacy of the Quaternary?" Journal of Range Management: 
439-447. 
Team, R. (2015). "RStudio: integrated development for R." RStudio, Inc., Boston, MA URL http://www. 
rstudio. com. 

http://www/


38 

 

Tomback, D. F. and P. Achuff (2010). "Blister rust and western forest biodiversity: ecology, values and 
outlook for white pines." Forest Pathology 40(3-4): 186-225. 
Tomback, D. F., S. F. Arno and R. E. Keane (2001). Whitebark pine communities: ecology and restoration, 
Island Press. 
Tomback, D. F., S. K. Sund and L. A. Hoffmann (1993). "Post-fire regeneration of Pinus albicaulis: height–
age relationships, age structure, and microsite characteristics." Canadian Journal of Forest Research 23(2): 
113-119. 
Tukey, J. W. (1977). "Exploratory Data Analysis." Reading, MA: Addison-Wesley. 
USFWS (2011). "Whitebark pine species profile." Environmental conservation online system. http://ecos. 
fws. gov/speciesProfile/profile/speciesProfile. action. 
van de Gevel, S. L., E. R. Larson and H. D. Grissino-Mayer (2017). "Separating Trends in Whitebark Pine 
Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, 
USA." Forests 8(6): 195. 
Warwell, M. V., G. E. Rehfeldt and N. Crookston (2007). Modeling contemporary climate profiles of 
whitebark pine (Pinus albicaulis) and predicting responses to global warming. Proceedings of the 
conference whitebark pine: a Pacific Coast perspective, Citeseer. 
Whitlock, C. and P. J. Bartlein (1993). "Spatial variations of Holocene climatic change in the Yellowstone 
region." Quaternary Research 39(2): 231-238. 
Wood, J. (2015). "Assisted Migration and Latitudinal Limitations of Whitebark Pine." The Arbutus Review 
6(1): 17-24. 
Zang, C. and F. Biondi (2015). "treeclim: an R package for the numerical calibration of proxy-climate 
relationships." Ecography 38(4): 431-436. 

 

 

 

 

 

 

A. 

http://ecos/


39 

 

 

Canopy Sub-Canopy Understory Elevation Aspect Live Dead Live Dead

Absaroka MT 33 PIAL ABLA VASC 9090 86 35 41 0 24

Absaroka MT 34 PIAL PIAL VASC 9655 216 0 50 0 50

Absaroka MT 35 PIAL PIAL VASC 9125 80 6 50 6 38

Anaconda MT 86 PIAL ABLA VASC 8171 262 0 66 0 34

Anaconda MT 92 PIAL ABLA VASC 8329 39 0 60 0 40

Beartooth MT 29 ABLA ABLA VASC 8943 150 0 79 0 21

Beartooth MT 30 PIAL PIAL POCU 9708 230 0 70 0 30

Beartooth MT 31 ABLA ABLA ARCO 9175 220 8 19 0 73

Beartooth ID 32 PIAL PIAL ARCO 10090 260 3 97 0 0

Beaverhead MT 18 PIAL PIAL ARLA 8896 82 0 22 25 53

Beaverhead MT 19 PIAL PIAL CARU 8982 117 0 100 0 0

Beaverhead MT 20 PIAL PIAL LUSE 8521 160 0 74 9 17

Beaverhead MT 21 PICO PIAL VASC 8570 130 0 30 3 67

Beaverhead MT 39 PIAL PICO VASC 7929 256 6 20 20 54

Beaverhead MT 40 PIAL PIAL XETE 8519 110 0 100 0 0

Beaverhead MT 41 PIAL ABLA XETE 8425 4 3 47 0 50

Beaverhead MT 42 PIAL ABLA XETE 8540 110 14 52 5 29

Beaverhead MT 85 PIAL PIAL FEID 9022 284 30 70 0 0

Beaverhead MT 93 PIAL PIAL FEID 8879 86 0 100 0 0

Beaverhead MT 94 PIAL PIAL FEID 8995 117 11 89 0 0

Bitterroots MT 1 PIAL MEFE MEFE 6347 264 7 34 3 55

Bitterroots MT 27 PIAL PIAL CAGE 8359 162 16 79 0 5

Bitterroots MT 28 PICO ABLA XETE 8249 280 3 19 0 77

Bitterroots MT 36 PIAL PIAL CAGE 8271 212 24 55 0 21

Bitterroots MT 37 PICO ABLA VASC 8038 242 10 17 5 69

Bitterroots MT 38 PIAL ABLA VASC 7999 84 8 48 8 36

Bitterroots MT 51 PIAL PIAL XETE/VASC 7985 112 33 42 3 21

Bitterroots MT 54 PIAL ABLA VASC/XETE 7155 80 28 30 5 37

Bitterroots MT 65 PICO VASC/VAGL 6769 175 2 12 0 86

Crazy MT 61 PIAL VASC 8356 320 33 64 0 3

Flathead MT 2 ABLA XETE 6742 188 29 29 0 43

Flint Creek MT 74 PICO ABLA VASC 7842 210 2 41 10 46

Flint Creek MT 87 PIAL ABLA VASC 8171 262 14 25 7 54

Gallatin MT 55 ABLA VASC 7950 50 35 13 2 51

Gallatin MT 56 PICO VASC 8519 205 25 40 4 31

Gravelly MT 6 PIAL FEID 8653 220 16 84 0 0

Gravelly MT 8 PIAL ARTR 8294 258 0 100 0 0

Gravelly MT 9 PIAL TAOF 8164 346 5 60 0 35

Gravelly MT 10 PIAL PIAL ACME 9290 358 20 80 0 0

Gravelly MT 11 PIAL ABLA CHAN 8373 82 50 17 6 28

Gravelly ID 83 PIAL FESTUCA 8692 178 7 93 0 0

Little Belt MT 62 PIAL VETCH/GABO 7956 280 12 87 0 2

Little Belt MT 63 PIAL LUAR/GABO 7235 180 0 100 0 0

Little Belt MT 64 PIAL VASC 8198 280 54 43 0 2

Madison MT 57 PIAL THOC 8482 120 0 38 0 63

Madison MT 58 PIAL ARLA/CARU 9080 300 63 36 0 1

Madison MT 59 PIAL GEVE/CAGE 8255 210 5 95 0 0

Madison MT 60 PICO THOC/SYAL 8052 240 24 40 12 24

Pioneer MT 43 PICO PIAL VASC 8109 320 0 19 9 72

Pioneer MT 44 PIAL VASC 8564 60 21 28 0 52

Pioneer MT 45 PIAL VASC 9124 248 22 78 0 0

Pioneer MT 46 PIAL FEID 8263 246 0 83 0 17

Salmon River ID 22 PIAL ABLA ABLA 8934 358 3 30 19 48

Salmon River ID 23 PIAL PIAL VASC 9301 250 37 47 0 16

Salmon River ID 24 PIAL ABLA VASC 8617 350 6 14 17 63

Salmon River ID 25 ABLA ABLA CARU 8736 290 2 19 15 65

% Other Conifer Species
Mtn. Range Site IDState

Dominant Species (if  > 10%) Site Descriptors % Whitebark Presence
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Table A1: From left to right, mountain range that site is located within, identifying plot number, dominant 

canopy species, dominant sub-canopy species, dominant understory species, elevation at site, aspect, 

percent dead whitebark, percent live whitebark, percent dead all other conifer species, and percent live all 

other conifer species. Data extends only to area sampled, and for a species to be considered dominant, it 

must have at least 10% cover on the plot.  

 

 

Sapphire MT 52 PIAL ABLA VAGL 7329 290 0 26 11 63

Sapphire MT 53 ABLA ABLA XETE 7393 310 4 20 0 76

Sapphire MT 88 PIAL ABLA VASC 7958 148 8 25 20 48

Sawtooth ID 26 PIAL ABLA CAGE 8846 260 26 39 13 23

Sawtooth ID 66 PIAL PIAL CAGE 9302 180 15 78 0 7

Sawtooth ID 67 PIAL PIAL FEID 9386 170 33 67 0 0

Sawtooth ID 68 PIAL PIAL Antennaria spp 9485 16 0 100 0 0

Sawtooth ID 69 PIAL PIAL CAGE 9381 90 14 86 0 0

Sawtooth ID 70 PIAL PIAL ARTR/CAGE 9192 140 0 100 0 0

Sawtooth ID 71 PIAL ARTR/FEID 8300 220 0 91 0 9

Sawtooth ID 72 PIAL ABLA CAGE/LUSE 9221 200 0 82 0 18

Sawtooth ID 73 PIAL CAGE 9237 180 0 67 13 20

Sawtooth ID 90 PIAL ABLA VASC 8543 12 0 33 0 67

Snowcrest MT 91 PIAL ARTR 8348 200 8 92 0 0

Swan MT 3 ABLA MEFE MEFE 6436 280 21 13 13 54

Swan MT 4 ABLA MEFE MEFE 6342 328 18 12 18 53

Swan MT 5 PICO ABLA VAGL 6580 200

Swan MT 7 PSME PSME VAGL 6827 180 0 20 0 80

Swan MT 47 ABLA ABLA XETE 7518 88 13 20 13 53

Swan MT 48 PIAL ABLA XETE 7308 240 50 12 0 38

Swan MT 49 PIAL ABLA VASC 7332 37 19 31 19 31

Tobacco Root MT 12 PIAL ABLA ARLA 8892 120 0 39 3 58

Tobacco Root MT 13 PIAL ABLA ARLA 8573 116 44 40 4 12

Tobacco Root MT 14 PIAL ABLA FEID 8431 116 25 75 0 0

Tobacco Root MT 15 PIAL PIAL PIAL 8056 218 55 38 0 7

Tobacco Root MT 16 PIAL ABLA VASC 8825 130 0 59 2 39

Tobacco Root MT 17 ABLA ABLA VASC 8398 62 0 14 7 79

Wind River WY 50 PICO ABLA VASC 8515 240 21 21 12 45

Wind River WY 75 PIAL POTR 6992 144 2 32 9 57

Wind River WY 76 PIAL PIAL RIBES 8189 246 10 44 10 37

Wind River WY 77 PIAL PIAL ARTR 8252 246 0 90 0 10

Wind River WY 78 PIAL PIAL 9372 18 6 88 0 6

Wind River WY 79 PIAL 9386 26 0 100 0 0

Wind River WY 80 PIAL 9678 337 9 87 0 4

Wind River WY 81 PIAL ARTR 9519 262 15 85 0 0

Wind River WY 82 PIAL 8972 222 5 42 16 37
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