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ABSTRACT 

Breeding habitat selection influences reproductive outcomes. Habitat selection may be 

adaptive and benefit populations, but it can also be maladaptive with negative 

consequences for populations. Understanding habitat selection and its influence on 

reproductive success, especially in species of concern, is critical for effective 

management. Lewis’s Woodpecker (Melanerpes lewis) is a Species of Concern that has 

experienced national population declines. We studied its abundance and reproductive 

success in two commonly selected breeding forest types (i.e., cottonwood floodplain and 

mixed-conifer burned), and nest-site characteristics (nest availability, food availability, 

and vegetation attributes) that have the potential to yield strong differences in abundance 

and reproductive success. We analyzed abundance estimates from valley-wide surveys, 

and computed nest success from 217 nests monitored in floodplain and burned forest. We 

found densities 2.5 to 5.5 times higher in floodplain than in burned forest, despite lower 

nest success in floodplain (73%) versus burned forest (86%). We found that Lewis’s 

chose to nest in tall trees, areas with low canopy cover, and in mature tree stands. Insect 

abundance did not explain differences in attrition or nest success across forest types, but 

phenology of insect availability and suitable tree density for nesting correlated with 

differences in abundances. Our research suggests management strategies aimed at 

conserving Lewis’s Woodpecker habitat need to focus on the retention of large diameter 

snags in both floodplain forest and mixed-conifer burned forest, as well as protecting 

recruitment of cottonwoods in the floodplain. 
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INTRODUCTION 

Habitat selection refers to a hierarchical process of behaviors that results in organisms 

disproportionately using one habitat over others (MacArthur 1965, Rosenzweig 1981, 

Hutto 1987, Jones 2001, Morris 2003, Sergio et al. 2003). In particular, environmental 

attributes of habitats affect reproduction and survival (Fretwell 1972, Cody 1985). 

Understanding the habitat attributes that underlie habitat quality (i.e., environment’s 

ability to provide conditions for individual and population persistence; Johnson 2007) 

and allow greatest reproductive success is important for managing populations, especially 

for species showing population declines. Abundance is often used as an indicator of 

habitat quality under the assumption that more individuals choose higher quality habitat. 

However, abundance can be a misleading indicator of habitat quality (Van Horne 1983, 

reviewed in Chalfoun and Schmidt 2012). Consequently, studying both abundance and 

reproductive success is important for assessing habitat quality. 

 Abundance may be an appropriate indicator of habitat quality when habitat 

selection is adaptive and more individuals choose the breeding habitat type with highest 

reproductive success among available habitats (Fretwell 1972, Martin 1998). Density-

dependent effects from increased population density in the higher quality habitat may 

cause average reproductive success to equal levels in lower quality habitat with lower 

population density (Fretwell 1972). For example, bank vole (Myodes glareolus) females 

will lower their own reproductive success and share territories with their offspring when 

at high population density to maintain offspring survival (Mappes et al. 1995). The 

adaptive selection hypothesis (Martin 1998, Chalfoun and Schmidt 2012) predicts higher 

abundance or density in the habitat type with higher or equal reproductive success. 
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 Alternatively, the mismatch hypothesis (Arlt and Pärt 2007, Chalfoun and 

Schmidt 2012) predicts disproportionate use of a habitat associated with low reproductive 

success (i.e., “Habitat Selection Mismatch Hypothesis”; Table 1a). Mismatched selection 

may occur in fast-changing environments or where cues have been decoupled from 

habitat quality, such as in human-modified landscapes (Weldon and Haddad 2005, 

Chalfoun and Martin 2007, Chalfoun and Schmidt 2012). Human modification of habitats 

is particularly important in current times because habitat loss and degradation is driving 

an increase in species extinction rates (Wilcox and Murphy 1985, Fahrig 2003). Negative 

population consequences can arise when more individuals choose habitats with low 

survival and reproductive success (i.e., ecological traps; Robinson et al. 1995, Fahrig 

2003, Weldon and Haddad 2005, Martin 2014, Padilla and Rodewald 2015). Hence, 

understanding the relationship between habitat selection with respect to abundance and 

reproductive success is critical for proper habitat management. 

 Understanding the environmental features that influence habitat choice further 

facilitates management and is especially important for species in decline (Martin 1992a). 

Environmental features can include nesting or territory availability (Pöysä and Pöysä 

2002, Saab et al. 2004), food availability (Smith et al. 2007), vegetative cover from 

predators (Martin 1992a), and other biotic and abiotic cues (Fretwell 1972, Martin 2001). 

Under the adaptive selection hypothesis, characteristics associated with preferred nest 

sites for instance, should convey highest reproductive success. In the case of nest-site 

mismatch, these nest choices will not convey higher reproductive outcomes (i.e., “Nest 

Site Selection Mismatch Hypothesis”; Table 1b). Determining if these choices lead to 
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low reproductive success may help managers identify nest-site characteristics important 

to conserving species in decline.  

 Lewis’s Woodpecker (Melanerpes lewis) is declining across North America 

(Sauer et al. 2014) and evidence for potential mismatch between habitat selection and 

reproductive success calls for testing the mismatch selection hypothesis (Table 1a). On 

one hand, abundance estimates for this species are derived from nationwide surveys 

(Sauer et al. 2014) but may not depict regional or landscape trends (Abele et al. 2004). 

On the other hand, reproductive success in Lewis’s Woodpecker varies across habitat 

types and study systems but habitat attributes influencing reproductive success remain 

unclear (Vierling et al. 2013). Lewis’s Woodpecker commonly nests in cottonwood 

floodplain and burned-conifer forests (Bock 1970, Linder 1994, Vierling 1997, Saab and 

Vierling 2001, Vierling et al. 2009, Zhu et al. 2012, Fylling 2013). Reproductive success 

may be lower in cottonwood floodplain than burned-conifer forest (Saab and Vierling 

2001), despite Lewis’s Woodpecker being historically associated with floodplain forests 

(Bock 1970, Vierling et al. 2013). Conifer forests that burned 10-15 years previously 

appear to have highest nest success (78-90%; Linder 1994, Saab and Vierling 2001, 

Gentry and Vierling 2007, Vierling et al. 2009). In contrast, Saab and Vierling (2001) 

found that cottonwood floodplain forest in Colorado appeared to have relatively low nest 

success. However, this floodplain study was limited to a highly disturbed forest with 

intensive grazing practices (Saab and Vierling 2001). If abundance is higher but 

reproductive success is lower in floodplain forest than burned, the cues used by Lewis’s 

Woodpecker to identify high quality habitat may no longer be strongly linked to habitat 

quality (Saab and Vierling 2001). Additionally, if floodplain forest yields lower nest 
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success, but is occupied at higher densities, then it may be negatively impacting 

populations. However, floodplain forest generally has higher primary productivity and 

associated food resources (Hansen et al. 2009) that may allow production of more young 

per nest and offset any reduction in nest success. As of 2018, comparisons of Lewis’s 

Woodpecker nest success across cottonwood floodplain and conifer-burned forests with 

moderate or varying levels of anthropogenic disturbances are lacking. The potential for 

the mismatch selection hypothesis in Lewis’s Woodpecker may contribute to this species 

decline, and identifying such mismatch is essential to its management. 

 The influence of nest-site characteristics on Lewis’s Woodpecker reproductive 

success remains unclear particularly due to anthropogenic perturbations in prior studies 

(Vierling et al. 2013). Lewis’s Woodpecker selects nesting in open canopy, with low 

density of small trees, and high density of large decaying trees near forest edges (Bock 

1970, Linder 1994, Vierling 1997, Saab and Vierling 2001, Vierling et al. 2009, Zhu et 

al. 2012, Fylling 2013, Vierling et al. 2013). Mature stands in cottonwood floodplains 

provide edge habitat and open canopy important for foraging of flying insects (Bock 

1970, Linder 1994, Vierling 1997, Saab and Vierling 2001, Vierling et al. 2009, Zhu et 

al. 2012, Fylling 2013). Both floodplain and burned forests offer high insect diversity and 

shrubs important for Lewis’s Woodpecker foraging of fruits and insects (Saab and 

Vierling 2001, Vierling et al. 2013). However, anthropogenic disturbances can negatively 

impact foraging or nesting availability and negatively influence reproductive success 

(Vierling et al. 2013). Floodplain forest has been heavily impacted by urbanization, 

agriculture, logging, and river channelization (National Research Council 2002). Human 

impacts in the floodplain forest may be detrimental to Lewis’s Woodpecker nest-site 
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selection due to lower tree recruitment and lower availability of large-diameter snags for 

nesting (Vierling et al. 2013). In burned forests, Lewis’s Woodpeckers select 

predominantly nests at low-elevation, high density of large mature snags, and prefer 

stands burned 4-17 years since fire (Abele et al. 2004, Gentry and Vierling 2007, Saab et 

al. 2009). Fire suppression and logging activities in burned forests may also reduce snag 

availability for nesting (Abele et al. 2004, Saab et al. 2009). Yet, comparisons across 

burned forests can be difficult due to differences in fire intensity, age since fire, 

elevation, and forest structure before fire (Saab et al. 2004, Saab et al. 2009). 

Anthropogenic disturbances in floodplain and burned forests may impact nest-site 

characteristics available to Lewis’s Woodpecker (Saab and Vierling 2001, Abele et al. 

2004, Saab et al. 2004, Saab et al. 2009, Vierling et al. 2013). Thus, Lewis’s 

Woodpeckers may select for habitat characteristics that may equal or lower their 

reproductive success (“Nest-site Selection Mismatch Hypothesis”; Table 1b). This nest-

site selection mismatch may contribute to overall population declines in either floodplain 

or burned forests, but careful comparisons of abundance and nest success among each 

habitat type are lacking due to the diversity of forest structures, ages, and human 

disturbances on the landscape. 

 Food availability may influence Lewis’s Woodpecker habitat selection (i.e., 

“Food Availability Hypothesis”; Table 1c). Lewis’s Woodpeckers primarily forage on 

flying insects during the nesting period (Bock 1970, Vierling et al. 2013). Phenological 

shifts in food availability rather than food abundance per se, could also contribute to a 

mismatch between habitat selection and reproductive success. Lewis’s Woodpecker may 

attempt to time their nesting to match the peak of insect abundance when feeding their 
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young (Bock 1970, Saab and Vierling 2001, Zhu et al. 2012). Furthermore, attrition and 

clutch size covary with food availability (Martin 1987). Lewis’s Woodpecker may lay 

smaller clutch sizes in response to lower insect availability at the onset of the nesting 

season, thus we would expect to find smaller clutch sizes in the habitat type that has 

lower insect availability at the onset of the nesting season (i.e., “Clutch Size Hypothesis; 

Table 1d). Alternatively, if insect availability decreases throughout the season, Lewis’s 

may experience greater loss (i.e., attrition) of young from starvation, and we would 

predict greater loss of young in the habitat type with great declines in insect availability  

(i.e., “Attrition Hypothesis”; Table 1e). Therefore, if either absolute levels or 

phenological impacts on insect availability were a limiting factor to nest success, we 

would expect high attrition and small clutch sizes with low insect availability.   

 Investigating abundance in relation to nest success and habitat characteristics 

selected for nesting (i.e., vegetation characteristics, food availability and timing of food 

resources) is therefore needed to understanding habitat features important to Lewis’s 

Woodpecker. This study will provide detailed biological information on Lewis’s 

Woodpecker nesting biology relevant to future management concerns in the face of 

declining populations. Additionally, calculating relative adult densities in each habitat 

will allow us to scale habitat selection differences between floodplain and burned forest. 

For instance, we will consider whether the density of trees and snags suitable (>23cm in 

diameter; Saab and Vierling 2001) to Lewis’s Woodpeckers for nesting differs between 

floodplain and burned forest to correlate variation in Lewis’s densities with snag densites 

(i.e., “Nesting Availability Hypothesis”; Table 1f). Lewis’s choose larger diameter trees 

to locate their nest sites but may select against small diameter trees (Saab and Vierling 
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2001, Zhu et al. 2012). Therefore the availability of snag and tree densities across habitat 

types may explain why Lewis’s are more abundant in one habitat type than others, 

despite limited influence of nest-site selection on nest success.  

 The Bitterroot Valley holds the highest density of known breeding Lewis’s 

Woodpeckers in the state of Montana (eBird 2012, MASCR 2016). This valley has long 

provided local economic opportunities through farming and logging.  However, the 

valley now faces residential development pressure, particularly in the valley bottoms. The 

ubiquitous nature of Lewis’s Woodpecker nesting habitat in the Bitterroot Valley offers 

an exemplary study system to identify drivers of reproductive success across two 

commonly used habitat types at low to moderate risk of human perturbations. 

 We tested multiple hypotheses on the relationship and mechanisms between 

Lewis’s Woodpecker density, nest success, and nest-site characteristics in floodplain 

versus burned forest. First, we tested for the habitat selection mismatch hypothesis (Table 

1a). Finding further evidence for mismatch selection would highlight the importance into 

further research on adult survival rates and productivity to calculate whether mismatch 

selection is causing negative population growth (i.e. ecological trap) and participates in 

this species broad population declines. Furthermore, we investigated the nest-site 

selection mismatch hypothesis (Table 1b) to identify the mechanisms influencing nest 

success variation in both floodplain and burned forest. We tested whether food 

availability was an important habitat characteristic that explained differences in Lewis’s 

density across forest types (Table 1c), and if it influenced variation in clutch size (Table 

1d) or attrition (Table 1e). Prior studies assumed food availability was important for the 

timing and success in Lewis’s Woodpecker nesting, yet these hypotheses remained 
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untested (Bock 1970, Saab and Vierling 2001, Zhu et al. 2012, Vierling et al. 2013). 

Finally, we considered the nesting availability hypothesis (Table 1f). We measured the 

density of suitable nest trees between habitats, as a measure for nesting availability, to 

explain differences in Lewis’s density across floodplain and burned forest. Our results 

suggest that mismatch selection may be general across this species of concern’s breeding 

range, and point to implications for future research and management directives. 

STUDY AREA 

This study took place in the Bitterroot Valley (1000-2600 m in elevation) in southwestern 

Montana, USA (Figure 1) from 2015 to 2017. The valley runs approximately 160 km (95 

miles) south to north along the Bitterroot River from the border of Idaho to the city of 

Missoula. The valley has experienced an increasing human population that radiates from 

the city of Missoula. Human population growth has caused significant loss of floodplain 

forest and reduction of low-severity forest fires (Hartwell et al. 2000, Theobald and 

Romme 2007). Despite a history of fire suppression on National Forest surrounding the 

Bitterroot Valley, fires of varying scales and severities occur annually, resulting in a 

patchwork of burned forests of various ages covering thousands of acres. 

 We compared the nesting habits of Lewis’s Woodpecker in burned forests and in 

floodplain forests. The floodplain forest along the Bitterroot River is characterized by 

valley bottom or lower montane riparian woodlands and shrublands dominated by Black 

Cottonwood (Populus balsamifera ssp. trichocarpa). The burned forest is considered as 

Rocky Mountain Ponderosa Pine (Pinus ponderosa) woodland and savanna  (MF Guide 

2016) in secondary regeneration stage since fire. This habitat is dominated by Ponderosa 

Pine and often occurs in warm, dry and exposed foothills mixed with grassland or 
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shrubland openings, dominated by a  graminoid understory. Burned sites also have 

regenerating riparian areas at the base of many foothills. Shrub species in these riparian 

areas included alder (Alnus spp.), red-osier dogwood (Cornus stolonifera), bunchberry 

(Cornus canadensis), willows (Salix spp.), thimbleberry (Rubus parviflorum), etc. 

 Aspect and slope vary greatly in burned forest compared to the flat floodplain 

forest. The Sapphire Mountains on the east side or the valley consists of low rolling 

mountains, while the Bitterroot Mountains to the west consists of steep terrain. 

Floodplain forests are relatively flat, with their limited topography related to historical 

changes in river channels and streambank erosion.  

  Nest-monitoring field sites were chosen to cover a wide spatial extent of the 

available nesting habitat found in the Bitterroot Valley but to compare similar conditions 

within each habitat type. All nest-monitoring field sites were separated by a minimum of 

5 km (Figure 1). Floodplain sites were selected at least 1 km from any burned forest and 

occurred within the 100-year Bitterroot River floodplain. All burned sites were located at 

least 1 km from any floodplain, and were created by the Skalkaho fire of 2000. These 

burned sites represented forest burned 15-17 years prior to our study, which exceeds the 

generally known burned forest age preferred by Lewis’s Woodpeckers (i.e., 5-18 years 

since fire; Abele et al. 2004, Saab et al. 2009, Vierling et al. 2013). Most sites that we 

studied burned at moderate or high severity. In 2015 we monitored 3 floodplain and 2 

burned field sites. In 2016 we added two additional field sites in burned forest and one in 

floodplain forest. In 2017 we added one last floodplain field site, totaling nine field sites 

across habitat types in the last year of the study. 
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METHODS 

Data Collection 

Point counts. —We conducted point counts to investigate potential variation in 

abundance estimates of Lewis’s Woodpeckers across floodplain and burned forests (i.e., 

mismatch hypothesis; Table 1a). In 2016 and 2017 we conducted point counts across the 

entire Bitterroot Valley to assess Lewis’s Woodpecker adult abundance in floodplain and 

burned forests. We created two habitat layers for both burned and floodplain forests, and 

generated an equal number of random points in each habitat using ArcGIS (ESRI, 

Redlands, CA). We used a floodplain layer (USFS) within 1 km maximum distance from 

the Bitterroot River high-water mark. We used forest fires from 2000 to 2011 under 2300 

m elevation to adequately represent 5-18 years old burned forests (USFS) that Lewis’s 

Woodpeckers select for nesting (Abele et al. 2004). Within each habitat layer we selected 

60 random points using a random number generator in ArcGIS (ESRI, Redlands, CA). 

Furthermore, we divided the floodplain in a northern portion from the towns of Missoula 

to Hamilton corresponding to an area of higher urban pressure and higher human activity, 

with a southern portion from Hamilton on south, corresponding to narrower valley 

bottoms with less anthropogenic disturbance. 

We conducted point counts in early July at the middle of the nestling stage yet 

before peak fledging, corresponding with optimum adult activity feeding young (Vierling 

et al. 2013) to maximize detectability of adults. All point counts lasted 10 min. We 

recorded visual and auditory cues to confirm detection, and recorded time and distance to 

evaluate two types of detection probabilities: availability and perceptibility. Using time-

removal methods, we set equal availability probability among our habitat types to 
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represent the average detection probabilities linked to small scale (e.g., foraging) 

movements adult make during our counts, or whether Lewis’s were available to be 

detected due to temporary emigration. Perceptibility probability was defined for each 

habitat type as the detection probability assessing count biases from our distance 

measurements (i.e., how likely are we to detect Lewis’s Woodpeckers when present 

during our counts). We estimated distance using two types of rangefinders (Nikon 

ProStaff Rangefinder, and Bushnell The Truth Rangefinder). We limited visual detections 

to 500 m from point counts. We kept track of all woodpecker locations and movement to 

minimize the likelihood of double counting. Differentiating between adults and juveniles 

at a distance was difficult. Therefore, after July 10, when some nests in the floodplains 

had already fledged young; we decided to truncate floodplain observations of Lewis’s of 

unknown age. 

Nest searching and monitoring. —We monitored nests to investigate variation in 

nest success leading to the mismatch hypothesis (Table 1a) and factors influencing 

potential variation in success. Monitoring nests until each fledged young or failed, also 

provided information about clutch size variation for the clutch size hypothesis (Table 1d), 

and to monitor productivity and loss of young for the attrition hypothesis (Table 1e). We 

studied the nesting habits of Lewis’s Woodpecker from 2015 to 2017 at multiple field 

sites in both floodplain and burned habitat types. We monitored core-breeding activity 

from May 1-15, when Lewis’s Woodpeckers were arriving from spring migration, 

looking for mates, and establishing territories. We ended monitoring in August, once all 

known nesting activities were complete.  
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We searched for nests using behavioral and visual cues (e.g., calls, copulation 

events, adult going to cavity, etc.), and monitored cavities used in past years by Lewis’s 

Woodpeckers. We monitored all nests two to three times per week for the entire nesting 

season until we determined the fate of each nest (i.e., failed or successful) using protocols 

adapted from Martin et al. (1997). We considered nests successful if they fledged at least 

one young from the nest (binary outcome: 0 or 1). For nests that we were able to access, 

we also recorded clutch size, brood size, and number of fledglings to assess attrition (i.e., 

percent of young lost in each nest between the number of eggs layed and the number of 

nestlings that fledge) and nest productivity. We used wifi-equipped miniature cameras 

with LED lights mounted to a telescopic fiberglass pole to observe nest contents, 

determine nesting stage, and count number of young (RTC Rick Wi-Fi Rigid Inspection 

Camera IOS/Android Compatible www.techtoolsupply.com; and IBWO’s Wireless 

Inspection Camera www.ibwo.org).  

We considered a nest active once it laid an egg or was found at a later nesting 

stage during incubation or nestling period. Additionally, we documented nesting activity 

at a subset of nests using video cameras (Sony HandyCam). Video cameras were set-up 

near the nest tree for 6-hr minimum per day to assess whether nests with unknown 

activity levels were active. These videos allowed us to determine whether nests too high 

to reach with our telescopic poles and peeper cameras were actually in incubation or 

nestling stage (e.g., adults bringing food to the nest corresponded to nestling stage). 

Nest characteristics.— We collected data on nest tree and cavity features 

associated with each nest to assess factors influencing nest success. These nest-related 

covariates included nest height (m), nest orientation (degrees), nest tree species, tree 

http://www.techtoolsupply.com/
http://www.ibwo.org/
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health (live, partially dead, or dead), cavity code (newly excavated, expanded, old, or 

natural cavity), and cavity depth (cm).  

Vegetation and habitat covariates. —We measured habitat characteristics to 

explore factors influencing nest-site selection (Table 1b) and nest success variation 

within each habitat type. After the breeding season in 2016 and 2017, we collected 

vegetation measurements by combining and modifying two schemes based on passerine 

nesting and woodpecker vegetation collection methods (Li and Martin 1991, Martin et al. 

1997).  

We used each nest tree as the center of an 11.3 m plot to collect various 

vegetative and habitat characteristics (Table 3). All “nest” plots were paired with two 

additional plots to measure available habitat characteristics not used for nesting. Random 

plots consisted in a close (20-120 m away), and far plot (120-250 m away) from the nest 

tree. These plots represented available nesting or foraging substrate at random distances, 

but systematic direction, from the nest. We selected a close plot because the nature of the 

floodplain and open nature of burned forests did not always provide available habitat 

beyond 120m. Far plots at 120-250m were originally chosen to represent daily foraging 

distances seen by Lewis’s to and from their nests (WMB observations). We generated a 

list of random distances in Excel. The “close plots” were chosen systematically down 

stream and parallel to the river or bottom of draw from the nest tree. The “far plots” were 

systematically located directly away from the river or bottom draw and perpendicularly 

away from the nest (Figure 2). We prioritized finding the closest dead or partially dead 

tree suitable to Lewis’s nesting (dbh >23 cm; Saab and Vierling 2001), containing at least 

one cavity with an entrance of at least >4 cm in diameter to establish the center of each 
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random plot. However, if we did not find a suitable nest tree within 15 m of the 

designated Global Positioning System [GPS] location, we recorded all other vegetation 

measurements without nest-tree specific information and used this vegetation data in our 

analysis for available foraging habitat.  

 We measured variables known or thought to influence Lewis’s Woodpecker nest-

site selection from past studies and field observations. Within the 11.3 m vegetation plots, 

we recorded elevation (m), aspect (0-360 degrees), slope (%), average canopy cover (%), 

dominant canopy species, maximum and average shrub heights (m), branch touching nest 

tree (yes or no), nest tree height estimation (m), average canopy height (m), nest tree dbh 

(cm), nest tree species, heart rot (present or absent), nest tree burned class (unburned, 

trunk charred, branches lightly scorched, heavy scorch but alive, or totally burned or 

dead), nest tree condition (dead or alive), and live tree count per tree species and per 

diameter category (i.e., small = 8-23 cm, medium = 23-38 cm, large = 38-50 cm, and 

extra-large =>50 cm at dbh). We used these same live tree categories to count snags. 

Finally, we measured shrub cover class within the immediate 5 m from a used or 

available nest tree. All shrubs were identified to closest genus or species, and cover 

classes were categorized (1 = 0-1%, 2 = 2-5%, 3 = 6-25%, 4 = 26-50%, 5 = 51-75%, 6 = 

76-95%, 7 = 96-100%).  

Insect abundance. —We measured insect availability as part of our nest-site 

selection analyses (Table 1b), to ask whether Lewis’s Woodpecker variation in density 

across habitat types correlated with food availability (Table 1c), and to assess the 

influence of insect availability on attrition and clutch size (Table 1d and 1e). We sampled 

aerial insects to assess temporal and geographical variation in arthropod communities 



 15 

within each habitat type because Lewis’s Woodpecker primarily forage on aerial insects 

during the breeding season (Bock 1970, Vierling et al. 2013). We collected aerial insects 

at all field sites once in 2016, and 3 times in 2017. These sampling events corresponded 

to the relative peaks in incubation, nestling, and fledging periods. We made 3 250-m 

transects on all 9 field sites. Because many aerial insects are aquatic dependent for at 

least one developmental stage (i.e., egg, pupa, larva or adult), we used a sampling design 

that accounted for the distance from the nearest stream or drainage bottom. All bottom 

draws at burned sites were narrow and contained a small creek bed except for one site: 

Sula Peak Ranch. We determined the location of all three transects at each field site by 

systematically dividing the study areas in thirds. To place the first trap, we located the 

bottom of the draw in burned forest, or the edge to the Bitterroot River in floodplain 

forest. Each transect contained four insect sticky traps (Arbico Organics, Oro Valley, 

Arizona, USA) placed at increasing distance from the stream or bottom draw (Figure 3). 

The first sticky trap was placed above the stream or bottom draw. Then we walked 

directly away from the stream or draw and placed the second, third, and fourth traps, at 

25 m, 100 m, and 250 m respectively away from the first sticky trap. We set-up all sticky 

traps 3-5 m high in the canopy (Figure 4) to dissociate from the forest boundary layer 

known to affect ground versus aerial insect communities (Kaimal and Finnigan 1994), 

and to represent the open canopy mimicking as best as possible the foraging habitat of 

Lewis’s Woodpeckers. 

 We did not set up sticky traps if the weather forecast for the upcoming 72 hrs 

predicted more than a 50% chance of precipitation with more than 1 inch of total rain 

accumulation to maximize trap efficiency and reduce weather biases (i.e., colder weather 
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and high wind days; Whitaker et al. 2000). We used sticky traps that had a blue side and 

yellow side because color of traps may attract different types of insects and choosing one 

single color may bias results. We left traps out at all sites for 3 days and counted and 

identified insects to taxonomic Order. Based on personal observations and prior research 

(Bock 1970), we assumed that foraging woodpeckers did not depend on extremely small 

insects such as Culicoides midges (<2 mm). Hence, we did not count trapped insects 

smaller than 2mm in length. All other insects were grouped by Order and counted.  

Data Analysis 

All analyses were conducted in RStudio (RStudio Team 2015) using the most current 

version update to R (R-3.3.3) core software (R Core Team 2017).  

Population density. —We assessed population density from our abundance 

estimates to address our hypothesis about adaptive or mismatch habitat selection (Table 

1a). We used our point count data to assess population densities in burned and floodplain 

forests. Perceptibility differences from distance biases may vary significantly across two 

habitat types due to differences in topography, forest structure, canopy enclosure, and 

bird behavior (Amundson et al. 2014, Kéry and Royle 2015). Hence, we used a 

hierarchical distance-sampling and time-removal N-mixture model in a Bayesian 

framework (Kellner 2017) to detect relative abundance in each habitat accounting for 

availability and perceptibility detection biases using time-removal and distance methods 

(Amundson et al. 2014, Kéry and Royle 2015). We integrated point count data into a 

multistate (i.e., four level) model and used Markov Chain Monte Carlo (MCMC) 

simulations to estimate northern floodplain abundance, southern floodplain abundance, 

burned forest abundance, and habitat associated perceptibility and availability 
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probabilities. We set detection probability for availability, from the time-removal 

equations, as equal between habitats. We allowed detection probability for perceptibility 

to vary between habitats.  

Nesting phenology. —We monitored the timing of important nesting stages to 

include nest phenology in our nest success calculations. We used hatch date for assessing 

variation in the timing of nest initiation. Choosing hatch date as the reference point in the 

nesting of Lewis’s Woodpecker was biologically relevant because it marked the 

transition between incubation and nestling stages when adult activity and food 

requirements increase dramatically. We also had more accurate estimates for hatch date 

than laying or fledgling dates. All hatch dates were compared across years.  

Nest success. —We calculated nest success and factors influencing nest success to 

test the mismatch habitat selection hypothesis (Table 1a) and to investigate causes for 

such variation. We used Shaffer’s (2004) logistic exposure method to calculate daily nest 

survival rates (DSR). First, we analyzed nest success in one general model for both 

habitat types to compare the effects of year, field site (i.e., study plot), habitat, and date at 

hatching (DOY hatch date). We also used this approach between incubation stage (i.e., 

egg DSR) and nestling stage (i.e., nestling DSR), because survival estimates can vary 

with nesting phenology. Secondly, we investigated the influence of habitat characteristics 

on nest success (Table 1b) in two separate analyses for each habitat type, to assess the 

influence of nest-site characteristics on the variation in Lewis’s nest success. 

 For each of these analyses, we explored possible interactions between categorical 

and continuous covariates measured from the habitat characteristics using prior 

knowledge and personal observations. We included any significant (P < 0.05) 



 18 

interactions into the full models. The full model represented all hypothesized covariates 

that may influence nest success. For both the general, and separate habitat analyses, we 

conducted a “backward” stepwise Akaike’s Information Criterion [AIC] selection on this 

full model, using the stepAIC function in package “MASS” (Venables and Ripley 2002). 

We selected the model with the lowest AIC value, as the top model to predict nest 

success. To determine if site-level insect availability influenced nest success estimates, 

we calculated the mean number of insect per Order, captured per trap at each field site. 

We were then able to include these estimates in nest success models and use insect counts 

per site as a covariate influencing nest success. 

 Nest-site selection. —We conducted two separate analyses for floodplain and 

burned forest to identify which factors within each habitat type were associated with 

choice in nest sites. We also included the mean number of insect counts per site as a 

covariate to our nest-site selection models. Due to multicollinearity issues (Appendix A), 

we removed maximum shrub height, canopy height, dbh, and extra-large diameter trees, 

from the full model in floodplain forest. In burned forest, we found multicollinearity 

between several covariates (Appendix B), and removed from the full model maximum 

shrub height, dbh, and total snag counts. 

We used a Generalized Linear Model (GLM) approach with a binomial logistic 

regression link function to model Lewis’s Woodpecker nest site use versus availability.  

We compared used plots from available vegetation plots in a resource selection function 

(RSF; Manly et al. 2002). The dependent variable was the “used or available” covariate 

(binary outcome: 1 or 0). Then, to assess all potential combinations of covariates we built 

a full model for both floodplain and for burned forest. We again proceeded with variable 
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selection using the stepAIC function (Venables and Ripley 2002). For each habitat type, 

we chose the model with the lowest AIC value as the top model of nest-site selection. 

Finally, we compared the number of trees and snags suitable for Lewis’s Woodpecker 

nesting (i.e., tree or snag dbh >23 cm) at both: used nest, and random available plots 

among floodplain and burned forest to estimate the importance of large diameter trees in 

Lewis’s Woodpecker nest-site selection (Table 1f). We compared tree and snag densities 

by conducting studentized t-tests between habitats to assess if tree and snag density was 

associated with nest-site selection across habitat type. 

Nest success versus nest-site selection. —To determine whether factors associated 

with nest-site selection influenced nest success (Table 1b) we combined the variables in 

both top models for nest-site selection in floodplain and burned forest and analyzed nest 

success with this combination of covariates.  

Attrition and clutch size. —To assess nestling attrition in relation to insect 

availability (Table 1e) we calculated attrition as the percentage of nestlings that survived 

by dividing the number of fledged young per successful nest (i.e., nests that fledged at 

least one young) by the number of eggs initially laid in that nest. We assumed attrition to 

be normally distributed across our study area. We conducted a studentized t-test between 

floodplain and burned forest to evaluate the difference in attrition between habitat types. 

We also analyzed whether clutch size varied with timing of nesting as a function of insect 

availability (Table 1d) in a separate GLM analysis. We ran one model with clutch size as 

the dependent variable by using covariates previously shown to affect nest success. 

 Insect availability. —We assessed the influence of insect availability on nest-site 

selection (Table 1b), on Lewis’s Woodpecker differences across habitats (Table 1c), to 
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measure food influence on clutch size and attrition (Table 1d-e), and to investigate causes 

for variation in insect availability between sites. We calculated mean number of insects 

caught per trap at each field site and included this estimate in our nest-site selection 

analyses. Secondly, we conducted a separate GLM analysis to investigate which factors 

influence insect availability between floodplain and burned forest. We used the following 

covariates: insect Order, sampling date, distance from water (i.e., categories: 1-4), habitat 

type, and site. We also included any interaction between covariates that was significant.  

RESULTS 

Abundance Estimates 

Mean abundance was highest in the southern floodplain, and 2.5 to 5.5 times greater in 

floodplain compared with burned forest (Figure 5). Availability probability (i.e., Lewis’s 

availability to be counted during our counts) across our entire study area was 71.8 ± 

7.2%. Perceptibility probability (i.e., detection probability for Lewis’s present within our 

counts) was significantly different between floodplain and burned habitat types. Not 

surprisingly, perceptibility was highest (41.0 ± 6.5%) in burned forest where visibility is 

often better due to more open vegetation, whereas both southern and northern floodplain 

forests had lower associated perceptibilities (19.3 ± 2.6%; 15.7 ± 1.5%, respectively) 

(Figure 6).  

Nest Success Across Habitat Type 

We monitored a total of 150 nests in floodplain, and 108 in burned forest over the course 

of three seasons (Table 2) and were able to determine the fate of 217 nests. In floodplain 

forest, predation accounted for 17 of 33 nest failures, with an additional 8 unknowns that 

were likely predation, versus 11 of 16 failures and 4 unknowns in the burned. Mean hatch 
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date differed between habitat types (t = -3.876, P < 0.001). With a mean hatch date of 

June 18th (SD = 7.4 days) in floodplain forest, versus June 22 (SD = 6.0 days) in burned 

forest. These hatch dates reflect an earlier start in floodplain forest, with the earliest nest 

initiated on May 31, versus June 10 in burned forest. 

The best-supported model for nest success included habitat type, hatch date and 

nesting stage (Table 4; Figure 7). Floodplain forest had lower (P = 0.013) overall nest 

success (i.e., 73.3%, CI = 68.3-77.6%) than burned forest (86.2%, CI = 81.6-89.7%). 

Nest success declined later in the summer in both habitat types (Table 4; Figure 7); nest 

success in the nestling stage (floodplain: 79.0%, CI = 74.9-82.5%, vs. burned: 91.6%, CI 

= 88.5-93.7%) was consistently higher (𝛽 = 0.061; P < 0.001) than in the incubation stage 

(floodplain: 65.7%, CI = 60.6-70.3%, vs. burned: 85.5%, CI = 81.6-88.6%). 

Habitat Influences on Nest Success 

In floodplain forest, the top model for nest success included: heart rot, dead or alive nest 

tree, nest entrance orientation, hatch day, nest height, canopy cover, and heart rot*nest 

height interaction (Table 5a). However, only hatch day (negative influence on nest 

success with increasing hatch date) and the interaction of heart rot with nest height were 

significant (Table 5a). This interaction indicated that in the absence of heart rot (i.e., tree 

fungal disease), nest height did not influence nest success, but when heart rot was present 

nest success declined with increasing nest height (Figure 8). Our data suggests that most 

nests that failed in trees with heart rot were depredated. 

 In burned forest, all nests but 4 were found in trees with the highest burn class (4 

= totally burned), so we were not able to include burn class as a covariate. Our top model 

included a significant influence of average shrub height and a marginal effect of nest 
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height (Table 5b). The next two models were within 2 ∆AIC and included the addition of 

branches touching the nest tree and elevation (Table 5b), but the addition of these 

covariates had no significant effect on nest success. 

Insect Availability 

Overall insect counts did not differ between habitats (t = -0.094, P = 0.925). However, 

Diptera (i.e., flies: t = 2.464, P = 0.014), Ephemeroptera (i.e., mayflies: t = 2.789, P = 

0.008), and Thrichoptera (i.e., caddisflies: t = 2.880, P = 0.008) were more abundant, and 

Coleoptera (i.e., beetles: t = -2.278, P = 0.025) were less abundant in floodplain than in 

burned habitat (Figure 9). 

The top model predicting insect availability included: site, julian date, distance 

from water, Order of insect, and two interactions. The interaction of distance*site 

reflected a consistent effect of distance*habitat among sites. This interaction showed that 

burned sites had significantly more insects than floodplain sites at the stream edge 

(Figure 10a). However, insects decreased with increasing distance from water in the 

burned forest, while staying relatively stable in the floodplain forest such that insect 

abundance was greater in floodplain than burned with increasing distance from water 

(Table 6a). 

The interaction of date*site again reflected a consistent effect of date*habitat 

whereby field sites in floodplain forest showed a significant increase in insects over the 

summer and a decreased over the summer in burned sites (Figure 10b). By August 1st 

floodplain sites had significantly higher insect availability than burned sites (Table 6b). 
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Attrition Levels And Clutch Size 

Despite differences in insect abundance between habitats (Figure 9), clutch size did not 

differ between habitats (t = 1.539, P = 0.128). Clutch size did not follow temporal 

patterns of insect availability in each habitat and instead decreased over the season in 

both habitat types (𝛽 = -0.092, SE = 0.013, P < 0.001).  We found 10% higher (t = -

2.240, P = 0.028) attrition in floodplain forest than in burned forest. 

Nest-Site Selection 

Lewis’s Woodpeckers in floodplain forest primarily chose nest sites that differed from 

available sites in nest tree height, reduced canopy cover, and marginally for extra-large 

snags, and large trees (Table 7a). In burned forest our top model (AIC= 123.30) indicated 

Lewis’s Woodpecker preferred to nest in taller trees, avoided smaller snags, and 

marginally preferred medium snags (Table 7b). Extra-large snags in the next model 

(AIC=124.09), elevation in the third model (AIC=124.67), or average shrub height 

included in the fourth model (AIC=124.90), were not significant additions in burned 

forest. 

 Lewis’s Woodpecker nest trees differed between floodplain and burned forest (t = 

2.475, P = 0.015). Lewis’s chose on average, extra-large cottonwood trees averaging 73.0 

± 19.1 cm in diam (CI = 36-145 cm) in floodplain forest, versus dbh of 66.2 ± 17.2 cm in 

ponderosa snags in burned (CI = 36-102 cm). 

Habitat Differences 

Tree and snag density of dbh >23cm suitable to Lewis’s Woodpecker differed (P < 

0.001) between floodplain (132 ± 100 stems/hectare) and burned (60 ± 43 stems/hectare) 

forests (Figure 11).  
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DISCUSSION 

Adaptive habitat selection theory predicts greater or equal density in the habitat that 

provides higher fitness compared to other available habitats (Fretwell 1972). However, 

many recent studies have found evidence for mismatched habitat selection, in which a 

species found at higher density in one habitat has lower reproductive success than in 

other habitats it occupies (reviewed in Chalfoun and Schmidt 2012). This pattern was 

also observed in Lewis’s Woodpecker in cottonwood floodplain forest in Colorado 

compared to burned forest in Idaho (Saab and Vierling 2001), where nest success was 

lower in floodplain forest than burned forest. Yet, the lack of precise abundance estimates 

have so far limited a clear testing of the habitat selection mismatch hypothesis for 

Lewis’s Woodpeckers (Table 1a), and there has not been additional testing of this pattern 

in other parts of this species range. Hence, the influence of habitat selection on Lewis’s 

Woodpecker reproductive success remains unknown, limiting applicable management 

recommendations.  

 We found 2.5 to 5 times higher Lewis’s Woodpecker densities in floodplain forest 

than burned forest, but lower nest success in cottonwood floodplain forest than in burned 

conifer forest, supporting the mismatch selection hypothesis (Table 1a). Anthropogenic 

pressure may explain density differences between the southern portion and the northern 

portions of our study. In the northern floodplains human density and urbanization is much 

higher than in the southern part. Increased residential development encroaches on 

floodplain forest and there is higher control of river flow regimes that disrupts cyclical 

flooding of valley bottoms and limits recruitment of cottonwoods. The lower nest success 

found in floodplain than in burned forest may reflect anthropogenic disturbances in these 
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habitats as well. Floodplain systems are commonly subjected to grazing, as was our 

system, and to the conversion of adjacent habitats to agriculture or pasture systems 

(National Research Council 2002, Tockner and Stanford 2002). Differences in 

reproductive success among floodplain forest may reflect different grazing and farming 

pressures (Abele et al. 2004). A prior study in cottonwood floodplain forest included 

more intensive agricultural systems (i.e., heavy grazing and pesticide use, Saab and 

Vierling 2001) than at our site. Reproductive success was substantially lower in this 

heavily perturbed floodplain system (46%, Saab and Vierling 2001) than in our Bitterroot 

floodplains (73%). Presumably, nest success is even higher in pristine floodplain forest, 

although studies of demography in such conditions are needed. Given that pristine 

floodplain systems would have been the standard conditions over evolutionary time, then 

high reproductive success in such conditions would make their preference evolutionarily 

adaptive. Habitat cues that were adaptive over evolutionary time can cause high densities 

and low reproductive success when these cues are embedded in anthropogenically 

disturbed habitat in current time (Martin 1992b). Such effects could explain the higher 

densities of Lewis’s Woodpecker on floodplain forest despite low nest success, although 

studies across floodplain forests with differing levels of anthropogenic disturbance are 

needed to understand their impacts on nest success of Lewis's Woodpeckers. 

Understanding the habitat cues that influence habitat preference and nest success 

are needed (i.e., nest-site selection hypothesis; Table 1b). In both habitat types, Lewis’s 

Woodpeckers chose tall nest trees, open habitat (i.e., selection against dense canopy 

cover or small snags), and an added presence of larger trees and snags near the nest sites 

(also Vierling et al. 2013). In both habitats, Lewis’s Woodpecker nested in trees or snags 
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>55 cm in dbh 75% of the time. We found Lewis’s Woodpecker to nest in larger trees 

and snags in floodplain than in burned forests, which correlates with the increased 

availability of extra-large diameter stems in floodplain forest. This increased density of 

habitat cues (i.e., large snags and trees) can explain why Lewis’s Woodpeckers are more 

abundant in floodplain forest (Table 1f).  

Nest success may benefit indirectly from greater tree and snag density, due to 

increased cover and choice of optimal cavities for nesting. Wider cottonwood corridors 

along the floodplains of the Bitterroot River, compared to fragmented and degraded 

floodplain forest in intensive farmland landscapes (e.g., Saab and Vierling 2001), may 

provide enhanced nesting availability and protection from predators. Predation was the 

leading cause for nest failure in both floodplain and burned forest, similar to prior studies 

(Vierling et al. 2013). We found limited evidence to suggest that nest-site selection in 

both floodplain and burned forest influenced nest success. In our system, predation 

occurred during the transition period from incubation to hatching of eggs (WMB personal 

obs.). Nest success was lower earlier in the nesting stage (i.e., incubation vs. nestling 

stage; Figure 7), compared to prior studies (Saab and Vierling 2001, Zhu et al. 2012). 

Early nest failure may have allowed time for Lewis’s Woodpeckers to initiate a second 

nest but we found minimal evidence of renesting (9 of 217 nests) similar to other studies 

(Saab and Vierling, 2001, Newlon and Saab 2011, Zhu et al. 2012).  

Across our study system, temporal patterns in insect availability more closely 

matched offspring demand in floodplain than in burned forest. Insect availability during 

Lewis’s Woodpecker nestling and fledgling periods peaked in late summer and were 

greater in floodplain than burned habitat (Figure 10b). Insect availability abundance also 
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did not explain differences in Lewis’s Woodpecker densities (Table 1c), clutch size 

(Table 1d), or attrition (Table 1e). First, woodpecker abundances result from habitat 

selection after returning from migration, which occurs in May when insects were more 

abundant in burned than floodplain (Figure 10b) and opposite to woodpecker densities. 

Second, clutch size did not differ between habitats despite large differences in insect 

abundance between habitats at the beginning of nesting. Finally, the increased insect 

abundance in floodplain forest during the nestling period might predict reduced attrition 

of young, but attrition was higher in floodplain forest. Thus, food abundance did not 

seem to explain habitat selection or reproductive success. 

Several environmental stresses may influence the differences in nest success 

between our two habitats. Nest competition with other secondary cavity-nesters may 

prevent Lewis’s Woodpeckers from selecting optimal cavities in floodplain forest (Zhu et 

al. 2012). For instance, European Starling (Sturnus vulgaris) is an invasive species from 

Europe and is found ubiquitously throughout the floodplain forest, but rarely in burned 

forest (WMB and KRS obs.). Starlings are fierce secondary cavity-nest-competitors, and 

are known to compete with Lewis’s Woodpeckers (Vierling 1997), and other 

woodpeckers (Ingold 1994). Starlings can initiate nesting several weeks prior to Lewis’s 

Woodpeckers arrival to the breeding grounds (Ingold 1994). Hence, burned forest may 

allow Lewis’s Woodpeckers to colonize areas of low density with minimal competition.  

Lewis's Woodpeckers have shown regional-wide, and long-term declines in their 

population sizes (Sauer et al. 2014), causing them to be designated a species of national 

management concern in the U.S. (Abele et al. 2004), and Canada (Zhu et al. 2012). The 

greater abundance in floodplain forest with lower reproductive success may contribute to 
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this population problem. Yet, the extent to which the preference for floodplain forest 

contributes to the population problem depends on general rates of reproductive success in 

floodplain forest.  Our estimates of nest success in floodplain (73.0%) were not as low as 

found in other floodplain  (i.e., 46.0%; Saab and Vierling 2001) and other habitat types 

(Zhu et al. 2012). This difference can yield critical differences in population trends. 

Lewis's Woodpecker produced an average 2.19 ± 1.67 fledglings (n = 67) per successful 

nest in our floodplain forest. Fledgling and adult survival have not been estimated for 

Lewis's Woodpecker. However, fledgling survival of a congener (M. carolinus) for the 

first 3 weeks after fledging was found to be 0.92 (Cox and Kesler 2012), which is typical 

of species with long nestling periods (Martin 2014, Martin et al. 2018). Adult survival 

was estimated for two congeneric species: Red-bellied Woodpecker (M. carolinus), and 

Red-headed Woodpecker (M. erythrocephalus) at 0.62 and 0.68 (Ingold 1989, Karr et al. 

1990). If we assume that Lewis's has a similar adult survival rate as its congeners, or an 

average of 0.65, and juvenile survival is 2/3 of adult survival given high fledgling 

survival, then nest success of 0.73, and production of 2.19 fledglings per successful nest 

could yield a stable or slightly increasing population (λ = 1.00, calculated as: adult 

survival + nest success*fledgling productivity). On the other hand, the nest success of 

0.46 found by Saab and Vierling (2001) would lead to a declining population given the 

same assumptions (λ = 0.82). Also, while populations in Montana may be currently 

stable, our estimates of nest success suggest that they are on the edge of turning negative 

(λ = 1.00) if nest success declines any further in this floodplain forest. Thus, 

anthropogenic disturbance of preferred floodplain forests may contribute substantially to 

population declines of this species. 
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MANAGEMENT IMPLICATIONS 

Our research suggests Lewis’s Woodpecker density is higher in floodplain forest despite 

anthropogenic pressures associated with this habitat. Provided that cottonwood floodplain 

forests are in global threat and anthropogenic activities are increasing in this system, we 

advocate for fencing cottonwood patches. Fencing especially in areas of high grazing 

practices with heavy damage to young cottonwoods, or in areas where there is low 

seedling survival and recruitment, will enhance cottonwood stand persistence. To this 

date, no or limited urban laws restrict development in floodplain or riparian buffer zones, 

hence residential development is increasing in floodplain forest. 

 Our results suggest burned forests provided limited snag availability to nesting 

Lewis’s Woodpeckers despite higher reproductive success and no apparent difference in 

insect availability. Burned-forest monitored for Lewis’s Woodpecker nest success in our 

study was 15-17 years-of-age since fire. Most studies point out that Lewis’s 

Woodpeckers prefer burned forests 4-11 years since fire. Our results suggest that 

moderate intensity fires remain important to Lewis’s Woodpecker nesting beyond this 4-

11 years since fire (Abele et al. 2004, Saab et al. 2009). In addition, the importance of 

snag retention to Lewis’s Woodpecker nest-site selection is known to increase with 

burned age (Saab et al. 2009). Post-fire logging had limited effect on Lewis’s 

Woodpecker nest-site selection in burned forest at 1-4 years since fire, but salvage 

logging negatively impacted Lewis’s Woodpeckers in older burns from 4-11 years since 

fire (Saab et al. 2009). Hence, burned forests of older age (in our study: 15-17 years since 

fire) may be more important than previously documented, and delineate importance of 

implementing salvage logging recommendations. The ubiquity of salvage logging 
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throughout the Bitterroot National Forest and private lands, and the increased age of post-

fire habitat monitored in our study may explain the lack for Lewis’s Woodpecker nest 

availability in our study area. 

Ultimately, human perturbation to the landscape infringes on natural habitat 

important to woodpecker foraging and nesting. In both floodplain and burned forests, the 

importance of large diameter trees and snags is multifold for this species and 

communities of cavity nesters and excavators. To this date, we found no forestry 

guidelines implementing snag retentions for the nesting of Lewis’s Woodpeckers. Most 

recommendations focus on the year immediately after a fire to control for erosion, benefit 

highest economical revenue from logging ‘green trees’ and in rare instance to preserve 

nesting habitat of the Black-backed Woodpecker (Picoides arcticus). Several local 

initiatives do however exist within The Department for Natural Resources, which 

commonly retains one or two large-diameter trees per acres of logging and can 

implement stricter thinning projects (e.g., DNRC Huntley Butter Timber Sale 2018). 

However, we found no statewide agency guidelines for increasing woodpecker habitat in 

timber sales or salvage programs. Yet wildlife habitat remains of lowest priority for 

timber sales on public land. The logging industry generally associates wild fires with a 

loss in economic value on the stands of timber. Public land snag retention programs, 

especially for large diameter snags at low elevation ideal to Lewis’s Woodpecker nesting, 

do not exist and timber sales for salvage logging of burned forest provide a delicate 

balance between public opinion, local financial revenue and wildlife habitat.  

We recommend managing post-fire burned forests and floodplain corridors to 

enhance retention of large trees and snags (i.e., dbh >55 cm) to enhance Lewis’s 
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Woodpecker nest availability for long-term population persistence (>15-18 years). 

Retention of large-diameter snags does not inhibit all options for salvage-logging 

operations. Salvage logging of large-diameter snags in the first year after fire can exert an 

additive effect on snag limitation for Lewis’s Woodpeckers (Saab et al 2009) and most 

cavity nesters (Hutto and Gallo 2006). Salvage logging however, especially in dense 

forest patches can increase openness of habitat and may be beneficial in the first 1-4 

years since fire to Lewis’s Woodpeckers if large-diameter snags are preserved (Abele et 

al. 2004, Saab et al. 2009). 

However, the occurrence of fire on the landscape more than post-fire management 

is important to many species including Lewis’s Woodpeckers (Hutto and Gallo 2006). 

Fire suppression or managing for no fire, likely would have negative consequences for 

Lewis’s Woodpeckers since floodplain forest is at higher risk of anthropogenic 

disturbances and conducive to lower reproductive success of Lewis’s Woodpeckers than 

in burned forest. Additionally, the amount of acres of potential Lewis’s Woodpecker 

habitat in burned forest far exceeds the extent of floodplain habitat across the species 

range. Management of national forests to include wildfires as a recurrent natural 

disturbance on the landscape is likely to impact Lewis’s Woodpecker nesting availability 

and future population projections far more than the acts of individual private landowners 

along the floodplain forest. Managing for wildfires is crucial to Lewis’s Woodpecker 

persistence on the landscape if mismatch habitat selection is a general pattern across the 

species range. 
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TABLES 

Table 1. Summary table for our main study hypotheses comparing density, nest success 

and nest-site characteristics in Lewis’s Woodpecker in floodplain versus burned forest. 

 

 

 

Hypothesis 

 

Study Predictions 

 

a) 

 

Habitat Selection 

Mismatch 

 

The habitat associated with the highest Lewis’s Woodpecker 

density (or relative abundance) will have lowest reproductive 

success. 

b) Nest-site 

Selection 

Mismatch 

Habitat characteristics selected for nest-site selection will not 

covary with reproductive success. 

c) Food availability The habitat associated with highest insect availability will 

have highest Lewis’s Woodpecker density. 

d) Clutch size The habitat with earlier peak in insect availability will be 

associated to larger clutch sizes. 

e) Attrition The habitat with lower insect availability will be associated 

with greater attrition rates. 

f) Nesting 

Availability 

The habitat with highest density of available trees and snags 

suitable for nesting will be associated with higher Lewis’s 

Woodpecker density. 
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Table 2. List of field sites and number of monitored Lewis’s Woodpecker nests per year. 

 

 Habitat Type Site  Active Nests  

  2015 2016 2017 Total 

Floodplain Forest     150 

 Kelly Island - 8 5  

 Sapphire Ranch 8 17 12  

 MPG Ranch 15 12 8  

 Lee Metcalf NWR 20 17 8  

 CBR Ranch - - 20  

Burned Forest     108 

 Skalkaho Creek 

Ranch 

12 9 10  

 North Rye Creek - 5 10  

 Sula Peak Ranch - 13 10  

 Laird Creek 16 12 11  

 Total 71 93 94  
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Table 3. Vegetation characteristics recorded during vegetation surveys at the end of the 

breeding season. 

 

Plot Level Covariate Method 

Nest Tree Longitude and longitude GPS unit reading 

 Elevation From GPS unit or from lat/long 

 Canopy cover 

 (above nest tree) 

Using 4 densiometer readings 

 Branches touching nest tree Yes/no 

 Nest tree dbh Using a dbh tape 

 Nest tree height (m) Using a clinometer 

 Average canopy height 

(above nest tree) 

Using a clinometer 

 Burn Class 0=unburned, 1=trunk charred, 2=branches 

lightly scorched, 3=heavy scorch, alive 

4=totally burned, dead 

 Nest tree dead or alive Dead=0, alive=1 

 Heart rot presence Yes/no 

5m Plot Average shrub height (m) Using measuring tape: 0= none, 1= 0-0.5m, 2= 

0.6-1m, 3= 1.1-3m, 4= >3m 

 Maximum shrub height (m) Same as average shrub height (above). 

 Shrub cover listed for each 

shrub species 

Classes 1: 0-1%, 2: 2-5%, 3: 6-25%, 4: 26-

50%, 5: 51-75%, 6: 76-95%, 7: 96-100% 

11.3m Plot Live tree count by species 

and size categories 

Using dbh tape: small: 8-23 cm; medium: 23-

38 cm; large: 38-50 cm; extra-large: >50 cm. 

 Snag count by species and 

size categories 

Using dbh tape: small: 8-23 cm; medium: 23-

38 cm; large: 38-50 cm; extra-large: >50 cm. 

 Dominant canopy species  

 Ecosystem class  

 Additional ecosystem class  

 Slope (of general area) Using a compass 

 Aspect (of general area) Using a clinometer 
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Table 4. Top model in the analysis of Lewis’s Woodpecker nest success in the Bitterroot 

Valley between floodplain and burned habitat. 

 

 

 

 

 

 

 

 

 Estimate Standard Error Z value P value  

(Intercept) 10.40 3.210 3.239 0.0012 ** 

Burned habitat 1.20 0.304 3.932 8.44 e-5 *** 

Hatch day -0.04 0.019 -2.120 0.0340 * 

Nestling stage 1.23 0.260 4.742 2.11e-6 *** 
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Table 5. Top models for our Lewis’s Woodpecker nest success analyses describing the 

influence of environmental factors on nest success in a) floodplain and b) burned forests. 

 

 a) Floodplain forest 

 

 b) Burned forest 

 

 

 

 

 Estimate Standard 

Error 

Z value P value  

(Intercept) 14.40 5.348 2.693 0.00709 ** 

Heart rot 2.97 2.066 1.439 0.15007  

Dead or alive -0.45 0.534 -0.842 0.39954  

Nest orientation 0.01 0.002 0.930 0.35239  

Hatch day -0.06 0.031 -1.986 0.04701 * 

Nest height 0.01 0.056 0.152 0.87903  

Canopy cover 0.02 0.010 1.605 0.10859  

Heart rot* nest height -0.27 0.131 -2.042 0.04113 * 

(Intercept) 6.41 1.063 6.028 1.66e-9 *** 

Nest height -0.11 0.064 -1.703 0.0885 . 

Average shrub height 0.80 0.387 2.072 0.0383 * 
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Table 6. Model summaries for the two significant interactions of habitat characteristics 

influencing insect availability across floodplain and burned forest, by a) habitat and 

distance, and b) habitat and date. 

 

 a) Interaction of habitat and distance on insect availability 

 

 b) Interaction of habitat and date on insect availability 

 Estimate Standard Error Z value P value  

Distance 2 -1.17 0.828 -1.409 0.159141  

Distance 3 -0.02 0.835 -0.026 0.979305  

Distance 4 0.40 0.823 0.484 0.628518  

Burned Habitat 3.07 0.837 3.672 0.000256 *** 

Distance2*burned -3.17 1.261 -2.517 0.012016 * 

Distance3*burned -5.12 1.338 -3.827 0.000139 *** 

Distance4*burned -4.98 1.340 -3.715 0.000216 *** 

      

Date 7/7/17 1.88 0.732 2.574 0.01022 * 

Date 8/1/17 1.71 0.776 2.210 0.02738 * 

Burned Habitat 2.20 0.928 2.374 0.01780 * 

7/7/17*burned -1.54 1.188 -1.295 0.19566  

8/1/17*burned -3.91 1.261 -3.104 0.00197 ** 
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Table 7. Lewis’s Woodpecker nest-site selection top resource selection function models 

in: a) floodplain forest and b) burned forest. 

 

 a) Floodplain forest 

 

 b) Burned forest 

 

 Estimate Standard Error Z value P value  

Canopy cover -0.03 0.010 -2.958 0.00310 ** 

Nest tree height 0.10 0.033 3.067 0.00216 ** 

Large trees 0.23 0.138 1.690 0.09107 . 

Extra-large snags 0.42 0.230 1.822 0.06853 . 

Nest tree height 0.13 0.035 3.706 0.00021 *** 

Small snags -0.53 0.201 -2.630 0.00854 ** 

Medium snags 0.42 0.227 1.846 0.06493 . 
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FIGURES 

Figure 1. Bitterroot Valley Lewis’s Woodpecker study area with floodplain nest 

monitoring field sites (    ) and burned field sites ( ). 
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Figure 2. Systematic “use-available” vegetation sampling design, for each Lewis’s 

Woodpecker nest. The “nest plot” centered around the nest tree consists in two circles 

including an inner 5m radius circle for immediate shrub cover, and an 11.3m radius circle 

for all other vegetation characteristics. Two random plots associated with the nest, are 

represented here, as two other available snags. One available plot chosen within 20-120m 

from nest tree named “close plot” found parallel and downstream from river or creek 

flow. One other available plot chosen within 120-250m from nest tree, named “far plot” 

in the opposite direction from the from the stream’s location. Each of these two snags 

will also contain 5m and 11.3 m radius plots. 
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Figure 3. Systematic insect transect sampling design. All Lewis’s Woodpecker nest 

monitoring field sites were divided in three general areas from the river or main bottom 

drainage, and we established 3 transects within. Each transect started above the creek or 

river, and projected in the direction furthest from the stream bed. On each transect four 

sticky traps were deployed on previously set trap lines. The first trap was set-up above 

the stream, and the remaining three traps at 25m, 100m and 250m away.  
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Figure 4. Trap line design for sampling insect availability using sticky traps. Zoomed-in 

sticky trap picture below is an example of sticky trap “KEL 1-1-17”, which is the trap on 

Transect 1 above the river at Kelly Island field site. This schematic shows the line set-up 

going over prominent branch 3-5 m above ground. All trap lines are flagged with orange 

flagging at base of tree in order to relocate lines with ease in subsequent visits. 
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Figure 5. Mean Lewis’s Woodpecker abundance estimates per habitat type, calculated per 

point count. 
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Figure 6. Mean perceptibility probabilities to detect Lewis’s Woodpeckers per habitat 

type, calculated via our Lewis’s Woodpecker abundance analysis. 
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Figure 7. Predicted Lewis’s Woodpecker nest success per nest stage, and number of nests 

in each habitat type with increasing hatch date. Regression lines represent the predicted 

nest success for either incubation or nestling stages for each corresponding hatch date. 

For instance, we found one nest in the floodplain that hatched on May 31 (i.e., day=151), 

from which we plotted the predicted nest success for the associated incubation stage and 

nestling stage. The histograms represent the number of nests found per hatch date. 
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Figure 8. Predicted Lewis’s Woodpecker nest success in floodplain forest after 

accounting for the significant interaction of nest height with heart rot.  
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Figure 9. Insect availability by Order between floodplain and burned forest. Stars (i.e., *) 

on the x-axis in front of any insect name, indicate insect Orders where we found 

abundance differences between the two habitats.  

 

 

 

* 
* * 

* 
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Figure 10. Interaction of a) habitat type and distance to water and b) interaction of habitat 

and date as influences on insect availability. 

 a) Interaction of habitat type and distance. 

 

  

 b) Interaction of habitat and date with incubation and nestling periods. 
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Figure 11. Comparison of mean trees and snag counts (i.e., stems/plot) with dbh>23cm 

suitable to Lewis’s Woodpecker nesting, between floodplain and burned forest. Each plot 

was 11.3m radius plots, so y-axis corresponds to stem density per 401m2 (i.e., Area= 

radius*radius*pi). 
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APPENDIX A. COLLINEARITY OF FLOODPLAIN FOREST COVARIATES  

Matrix of standard error of coefficients for all continuous covariates originally considered 

for the nest-site selection analysis in floodplain forest. Multi-collinearity was resolved 

through AIC comparisons when R2>0.6 (dark red or blue colors). 
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APPENDIX B. COLLINEARITY OF BURNED FOREST COVARIATES  

Matrix of standard error of coefficients for all continuous covariates originally considered 

for the nest-site selection analysis in burned forest. Multicollinearity was resolved 

through AIC comparisons when R2>0.6 (dark red or blue colors). 
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