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ABSTRACT 

 

Watts, Jennifer, D., Ph.D., January 2017    Systems Ecology 

 

Potential Contrasts in CO2 and CH4 Flux Response under Changing Climate Conditions: 

A Satellite Remote Sensing Driven Analysis of the Net Ecosystem Carbon Budget for 

Arctic and Boreal Regions 

 

Chairperson:  John S. Kimball 

 

The impact of warming on the net ecosystem carbon budget (NECB) in Arctic-

boreal regions remains highly uncertain.  Heightened CH4 emissions from Arctic-boreal 

ecosystems could shift the northern NECB from an annual carbon sink further towards 

net carbon source.  Northern wetland CH4 fluxes may be particularly sensitive to climate 

warming, increased soil temperatures and duration of the soil non-frozen period.  

Changes in northern high latitude surface hydrology will also impact the NECB, with 

surface and soil wetting resulting from thawing permafrost landscapes and shifts in 

precipitation patterns; summer drought conditions can potentially reduce vegetation 

productivity and land sink of atmospheric CO2 but also moderate the magnitude of CH4 

increase.    

The first component of this work develops methods to assess seasonal variability 

and longer term trends in Arctic-boreal surface water inundation from satellite 

microwave observations, and quantifies estimate uncertainty.   The second component of 

this work uses this information to improve understanding of impacts associated with 

changing environmental conditions on high latitude wetland CH4 emissions.  The third 

component focuses on the development of a satellite remote sensing data informed 

Terrestrial Carbon Flux (TCF) model for northern wetland regions to quantify daily CH4 

emissions and the NECB, in addition to vegetation productivity and landscape CO2 

respiration loss.  Finally, the fourth component of this work features further enhancement 

of the TCF model by improving representation of diverse tundra and boreal wetland 

ecosystem land cover types.  A comprehensive database for tower eddy covariance CO2 

and CH4 flux observations for the Arctic-boreal region was developed to support these 

efforts, providing an assessment of the TCF model ability to accurately quantify 

contemporary changes in regional terrestrial carbon sink/source strength.  
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Chapter 1: Introduction and overview 

 

 Arctic-boreal ecosystems have been strongly affected by recent climate warming 

(Kaufman et al. 2009), an intensifying freshwater cycle (Rawlins et al. 2010, Kopec et al. 2015) 

and shifts in the terrestrial carbon balance (McGuire et al. 2012, Schuur et al. 2015).  Over 50% 

of the global soil organic carbon (SOC) pool remains held within the northern high latitude 

regions (Hugelius et al. 2012, Olefeldt et al. 2016).  Yet soil warming, a deepening permafrost 

active layer and a lengthening of the annual non-frozen period (Romanovsky et al. 2010, Schuur 

& Abbott 2011, Kim et al. 2014) could heighten the microbial mineralization of stored SOC and 

associated greenhouse gas release (Schuur et al. 2009, Sistla et al. 2013).  Although warming 

generally increases SOC decomposition, the magnitude of CO2 production is constrained by wet 

conditions that favor CH4 emissions and decrease methantrophy (Turetsky et al. 2008, Olivas et 

al. 2010, Watts et al. 2014b, Treat et al. 2015).  Regional wetting has been observed throughout 

the Arctic and sub-Arctic zones (Mekis & Vincent 2011, Watts et al. 2012, Zhang et al. 2013, 

Watts et al. 2014a), influenced by permafrost thaw, sub-surface ice melt, and the enhanced 

transport of atmospheric moisture (Kopec et al. 2015).  These changes could increase wetland 

CH4 emissions (Kirschke et al. 2013, Meng et al. 2016) which have a radiative warming 

potential at least 25 times more potent than CO2 over a 100 year time period (Boucher et al. 

2009).  

Ecosystem greening in the Arctic (Zhang et al. 2008, Hudson & Henry 2009, Macias-

Fauria et al. 2012, Berner et al. 2013, Myers-Smith et al. 2015) following lessening cold 

temperature constraints could potentially increase the northern carbon sink.  In contrast, boreal 

regions have suffered severe drought stress and lower annual uptake of CO2 (Zhang et al. 2008, 

Beck & Goetz 2011, Bond-Lamberty et al. 2012).  Vegetation browning is also being observed 

in tundra, attributed to extreme winter and summer warming events, ground disturbances, and 

changes in soil hydrology and winter snowpack characteristics (Phoenix & Bjerke 2016). 

Recent net CO2 exchange in the northern high latitudes varies from a carbon sink of 291 

TgC yr
-1

 to a source of 80 TgC yr
-1

, and largely depends on the balance between carbon uptake 

by vegetation and losses from soil mineralization and respiration in plants (MacDougall et al. 

2012, McGuire et al. 2012).  Soil warming accelerates carbon losses due to the exponential 

effects of temperature on soil respiration (Kutzbach et al. 2007) whereas wet and inundated 
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conditions shift microbial activity towards anaerobic consumption pathways that are relatively 

slow, but can result in substantial CH4 production (Moosavi & Crill 1997, Treat et al. 2015).  

Northern wetland CH4 fluxes may be particularly sensitive to climate warming, increased soil 

temperatures and duration of the soil non-frozen period (Olefeldt et al. 2013, Zona et al. 2016).  

The northern latitudes already contain over 50% of the global wetlands (Matthews & Fung 

1987), with an abundance of vegetation communities capable of direct soil-to-atmosphere CH4 

transport (Davidson et al. 2016).  Even more concerning is that recent increases in atmospheric 

CH4 concentrations have been attributed to heightened gas emissions in these northern areas 

during periods of intense summer warming (Dlugokencky et al. 2009).   

Satellite and long term flask sampling networks have improved the monitoring of 

atmospheric CO2 and CH4 concentrations (Butz et al. 2011, Karion et al. 2013).  However, it 

remains difficult to quantify the regional variability in northern carbon fluxes using top-down 

inversion modeling (McGuire et al. 2012, Bergamaschi et al. 2013) given the geographic sparsity 

of atmospheric sampling by tall towers, airborne measurements, and the sensitivity of 

optical/near-infrared carbon observing satellites (e.g. GOSAT) to cloud cover and minimal or 

absent sunlight during long Arctic winters (Parazoo et al. 2016).   

In consequence, regional studies of terrestrial carbon budgets rely heavily on chamber 

and eddy covariance methods to assess ecosystem fluxes (Baldocchi et al. 2012, Mastepanov et 

al. 2013).  Extrapolating local CH4 fluxes to regional scales has proven difficult and is severely 

constrained by sparse in-situ monitoring networks and the large spatial heterogeneity in surface 

vegetation, soil temperatures and wetness across northern ecosystems (Tagesson et al. 2013, 

Sturtevant & Oechel 2013, Davidson et al. 2016).  Terrestrial CH4 studies continue to rely on 

biogeochemical models to assess the magnitude and spatiotemporal variability of regional carbon 

emissions.  Model based bottom-up emission estimates of CH4 from northern peatland and 

tundra range between 8 and 79 TgC yr
-1

 (Spahni et al. 2011, McGuire et al. 2012, Watts et al. 

2014a, 2014b) and have been difficult to constrain due to uncertainty in model parameterization 

and the regional characterization of wetland extent and seasonal to daily variability in soil 

wetness (Petrescu et al. 2010, Riley et al. 2011, Wania et al. 2013). The impact of warming and 

changing surface and soil wetness on the net ecosystem carbon budget (NECB) in the Arctic-

boreal regions remains highly uncertain (McGuire et al. 2012).  Heightened CH4 emissions from 

Arctic-boreal ecosystems could shift the northern NECB closer towards net carbon source 
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(Merbold et al. 2009, Huemmrich et al. 2010, Yu et al. 2012, Dolman et al. 2012, Sturtevant & 

Oechel 2013, Watts et al. 2014a & 2014b).  

 

Hypotheses and objectives  

 

This study considers the following science questions:  

 

(i)  How are recent changes in temperature, surface water inundation and soil moisture, and the 

annual non-frozen period affecting the Arctic-boreal net ecosystem carbon budget (NECB)? (ii)  

How well can a remote sensing based model approach quantify seasonal and daily terrestrial CO2 

and CH4 exchange within the Arctic and boreal regions relative to tower eddy covariance flux 

observations?  (iii) Where are changes in the NECB most pronounced within northern high 

latitude ecosystems, and to what extent are CH4 fluxes from wetlands driving these changes 

relative to shifts in GPP and CO2 emissions?  

 These questions coincide with the following objectives: 

(i) Validate the use of satellite passive microwave retrievals of fractional terrestrial surface water 

inundation to detect seasonal and inter-annual changes in surface hydrology and impacts to 

wetland CH4 emissions.  (ii) Develop a satellite remote sensing informed Terrestrial Carbon Flux 

(TCF) model with enhanced vegetation functional type characterizations for boreal and tundra 

communities, improved thermal and moisture regulation of vegetation productivity and soil 

carbon mineralization in permafrost affected ecosystems, and a new wetland CH4 production and 

emissions module to provide more complete estimates of NECB.  (iii) Use the enhanced TCF 

model to provide longer-term (yrs. 2003-2015) estimates of daily CO2 and CH4 flux activity for 

the Arctic-boreal region at a 1-km spatial resolution.  Use these model records, in conjunction 

with a compiled database of tower eddy covariance records, to inform the state of regional 

terrestrial NECB (carbon sink vs. carbon source).   

The above objectives address the overarching goal: 

 

To provide the Arctic-boreal research community with new datasets for surface water 

inundation and TCF model estimates of daily changes in vegetation primary productivity 

(atmospheric CO2 assimilation), ecosystem CO2 respiration, wetland CH4 emissions and near 

surface (< 10 cm depth) SOC stocks.  This research advances carbon cycle science applications 
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for clarifying the northern NECB and impacts of changing environmental conditions, including 

ecosystem moisture and thermal constraints, on terrestrial carbon sink or source activity.   

 

Summary overview 

 

The six chapters of this dissertation address the above objectives and are the subject of 

several peer-reviewed papers and manuscripts in preparation.   

Chapter 1 introduces the research topic and the primary hypotheses and objectives of this 

work, that are presented in detail in Chapters 2 through 5.  An overall summary, conclusions and 

recommendations for future study is provided in Chapter 6.   

In Chapter 2, I introduce the land fractional open water (Fw) database developed using 

satellite microwave observations from the Advanced Scanning Microwave Radiometer on the 

NASA Earth Observing System (AMSR-E).  This work is described in Watts et al. (2011) and 

reports on recent (yrs. 2003–2010) surface inundation patterns across the Arctic-boreal region (≥ 

50°N). This chapter provides a validation of the 25-km AMSR-E Fw dataset using alternative, 

higher spatial resolution observations from Landsat, MODIS and SRTM radar data. A regional 

trend analysis finds widespread surface Fw wetting occurring within continuous and 

discontinuous permafrost zones, and Fw drying in the more degraded sporadic/isolated 

permafrost areas.  

In Chapter 3, I present a satellite data driven model investigation of the combined effects 

of surface warming and moisture variability on high northern latitude (> 45° N) wetland CH4 

emissions, by considering sub-grid scale changes in Fw and the impact of recent (2003-2011) 

wetting/drying on northern CH4 emissions (Watts et al. 2014a). The satellite Fw record reveals 

continued widespread wetting across the Arctic continuous permafrost zone, contrasting with 

surface drying in boreal Canada, Alaska and western Eurasia.  Arctic wetting and summer 

warming increased wetland emissions by 0.48 Tg CH4 yr
-1

, but this was mainly offset by 

decreasing emissions (-0.32 Tg CH4 yr
-1

) in sub-Arctic areas experiencing surface drying or 

cooling.  

  In Chapter 4, I introduce a modified Terrestrial Carbon Flux (TCF) model developed for 

satellite remote sensing applications to evaluate wetland CO2 and CH4 fluxes over six pan-Arctic 

region eddy covariance flux tower sites (Watts et al. 2014b). The TCF model response is 
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investigated using in-situ data and coarser 250-m satellite (MODIS) and 0.5 reanalysis 

(MERRA) records.  This investigation find that although the estimated annual CH4 emissions 

were small (< 18 g C m
-2

 yr
-1

) relative to Reco (> 180 g C m
-2

 yr
-1

) they reduced the across-site 

NECB by 23% and contributed to a global warming potential of approximately 165 + 128 g CO2 

eq m
-2

 yr
-1

.  The model evaluation indicates a strong potential for using the TCF model approach 

to document landscape scale variability in CO2 and CH4 fluxes for northern peatland and tundra 

ecosystems.    

In Chapter 5, I present an analysis of CO2 and CH4 fluxes across an extended Arctic-

boreal flux tower network featuring 36 tower sites.  Here I examine recent (yrs. 2003-2015) 

wetland carbon budgets and corresponding changes in carbon flux components using an 

enhanced TCF model that represents additional tundra and boreal wetland functional types 

(Watts et al. In prep).  The resulting daily 1-km TCF model simulations indicate a net ecosystem 

carbon sink in tundra and boreal wetlands with respective average NEE values of -4 and -96 gC 

m
-2

 yr
-1

.  Accounting for NECB (NEE + CH4) reduced the overall boreal wetland carbon sink by 

20% and shifted tundra from carbon sink to carbon source (NECB = 1.6 gC m
-2

 yr
-1

).  Trend 

analysis for the 13-yr TCF model flux records did not show significant ( = 0.05) change in 

annual GPP, Reco, NEE and NECB when the tower sites were grouped according to boreal or 

tunda ecotype.  However, boreal wetlands experienced a significant increase in CH4 flux with 

higher increases occurring in non-forested boreal wetlands.  

Chapter 6 summarizes the findings of each chapter in relation to the initial objectives and 

hypotheses presented in Chapter 1.  This chapter includes discussion of research outcomes and 

recommendations for future research.   
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Chapter 2: Validation of pan-Arctic surface fractional water inundation database with high 

temporal frequency using satellite observations from the advanced scanning microwave 

radiometers (AMSR-E/AMSR-2)  

Corresponding publication: 

Watts J D, J S Kimball, L A Jones, R Schroeder, K C McDonald (2012) Satellite microwave 

remote sensing of contrasting surface water inundation changes within the Arctic-Boreal Region. 

Rem. Sens. Environ., 127: 223-236. 

 

 

2.1 Abstract 

Surface water inundation in the Arctic–boreal region is dynamic and strongly influences 

land-atmosphere water, energy and carbon (CO2, CH4) fluxes, and potential feedbacks to climate 

change. Here we report on recent (2003–2010) surface inundation patterns across the Arctic-

boreal region (≥ 50°N) and within major permafrost (PF) zones detected using satellite passive 

microwave remote sensing retrievals of daily fractional open water (Fw) cover from the 

Advanced Microwave Scanning Radiometer for EOS (AMSR-E). The AMSR-E Fw (25-km 

resolution) maps reflect strong microwave sensitivity to sub-grid scale open water variability and 

compare favorably (0.71≤R2≤0.84) with alternative, static Fw maps derived from finer scale (30-

m to 250-m resolution) Landsat, MODIS and SRTM radar (MOD44W) data. The AMSR-E 

retrievals show dynamic seasonal and annual variability in surface inundation that is unresolved 

in the static Fw maps. The AMSR-E Fw record also corresponds strongly (0.71≤R≤0.87) with 

regional wet/dry cycles inferred from basin discharge records.  An AMSR-E algorithm 

sensitivity analysis shows a conservative estimate of Fw retrieval uncertainty (RMSE) within 

±4.1% for effective resolution of regional inundation patterns and seasonal to annual variability. 

A regional trend analysis of the 8-year AMSR-E record shows no significant Arctic–boreal 

region wide Fw trend for the period, and instead reveals contrasting inundation changes within 

different PF zones. Widespread Fw wetting is detected within continuous (92% of grid cells with 

significant trend; p < 0.1) and discontinuous (82%) PF zones, while sporadic/isolated PF areas 

show widespread (71%) Fw drying trends. These results are consistent with previous studies 

showing evidence of contrasting regional inundation patterns linked to PF degradation and 

associated changes to surface hydrology under recent climate warming. 
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2.2 Introduction 

Surface hydrology in the Arctic-boreal region is closely linked to permafrost and the 

balance between precipitation and evapotranspiration. Permafrost, soil frozen for two or more 

years, underlays approximately 64% (19.6×10
6
 km

2
) of regions above 49°N (Brown et al. 1998). 

Although permafrost is widespread at high latitudes due to low mean annual temperatures, it also 

occurs in the sub-Arctic where localized conditions such as poor drainage, dense vegetation and 

thick organic litter layers reduce surface warming (Shur & Jorgenson 2007).  Extensive wetland 

and lake systems exist throughout the Arctic-boreal region, despite the characteristically arid 

climate, where permafrost or strata with low permeability impedes vertical soil infiltration and 

subsurface drainage (van Huissteden et al. 2011, Woo et al. 2006). However, the relative 

stability of permafrost within the Arctic-boreal is uncertain given continued climate warming 

(Graversen et al. 2008, Hinzman et al. 2005, Kaufman et al. 2009). Changes in precipitation and 

evapotranspiration (Rawlins et al. 2010, Zhang et al. 2009) will also affect surface water extent.  

Permafrost thaw has been observed throughout the Arctic-boreal region (Camill 2005, 

Frauenfeld et al. 2004, Payette et al. 2004). Ice melt within the frozen soil layer initially 

increases inundation, but continued thawing is purported to reduce surface water extent through 

drainage pathway expansion (Smith et al. 2007, White et al. 2007). A concern in the Arctic-

boreal region is the potential for large global methane (CH4) emissions resulting from regional 

thaw lake and wetland expansion (Anisimov 2007, Anisimov & Reneva 2006, Avis et al. 2011, 

Walter et al. 2007) because permafrost affected areas hold a large portion of the global soil 

organic carbon pool (Tarnocai et al. 2009). Better information regarding permafrost thaw and the 

spatial extent and duration of surface inundation is needed to improve ecosystem carbon dioxide 

(CO2) and CH4 emission estimates (Avis et al. 2011, O'Connor et al. 2010).  

In Siberia, lake area has reportedly increased in continuous permafrost zones (Walter et 

al. 2006) and has decreased substantially (Smith et al. 2005) where permafrost degradation is 

more advanced (i.e. discontinuous, sporadic, isolated zones). Similar trends have also been 

documented in Alaska (Jones et al. 2011a, Yoshikawa & Hinzman 2003). These regional 

observations provide critical insight regarding the influence of permafrost thaw on surface 

hydrology, but are specific to point-in-time conditions for a small portion of the Arctic-boreal 

landscape. Satellite remote sensing-based assessments using optical-infrared (IR) sensors are 
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regionally extensive but prone to signal degradation from persistent clouds, smoke and other 

atmosphere aerosol effects, and seasonal decreases in solar illumination at higher latitudes (Fily 

et al. 2003, Jones et al. 2007).  

Alternatively, satellite microwave remote sensing is well-suited to monitor surface 

inundation owing to its strong sensitivity to surface water presence, reduced sensitivity to solar 

illumination and atmosphere contamination, and the deployment of microwave sensors on polar 

orbiting satellites that enable daily observations in northern land areas (Kaheil & Creed 2009). 

Satellite-based microwave radiometry has been used to analyze global inundation patterns (Papa 

et al. 2010).  Arctic-specific studies have also examined regional inundation (Fily et al. 2003, 

Mialon et al. 2005) and associations between surface water extent and river discharge (Papa et 

al. 2008, Schroeder et al. 2010). However, satellite-based microwave remote sensing has yet to 

be utilized to examine spatiotemporal relationships between surface inundation and permafrost 

zones across the Arctic-boreal region.  

In this study, we examine regional patterns, temporal variability and recent trends in 

surface inundation across the Arctic-boreal zone and within sub-regions characterized by 

continuous, discontinuous and sporadic/isolated permafrost. Daily fractional open water cover 

(Fw) was derived from 18.7 and 23.8 GHz frequency brightness temperature (Tb) series from the 

Advanced Microwave Scanning Radiometer for EOS (AMSR-E), where the Fw retrievals 

represent the proportional surface water cover within 25-km equal area grid cells (Jones et al. 

2010). Fractional open water is defined as standing surface water and saturated soils that are 

unmasked by overlying vegetation biomass and moist organic debris, including plant litter and 

moss layers. Upwelling microwave radiance at 18.7 GHz frequency has a limited ability to 

penetrate overlying vegetation biomass and moist organic debris, so that most of the Fw signal 

originates from standing water emissions within open areas and under low density vegetation 

cover.  

This approach differs from previous studies (Fily et al. 2003, Papa et al. 2010) because 

Fw and associated temperature, atmosphere and vegetation factors are determined synergistically 

using multi-frequency and polarization Tb records from a single sensor, AMSR-E (Jones et al. 

2010, 2011). This approach allows independence from other ancillary data for determining 

microwave scattering effects from intervening atmosphere and vegetation layers.  An algorithm 
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sensitivity analysis was first performed to estimate AMSR-E Fw retrieval uncertainty. The daily 

AMSR-E Fw record was then temporally composited to mean monthly and maximum annual 

values; these data were compared against available static open water maps derived from the 

UMD Global 250-m Land Water Mask (MOD44W) for the Arctic-boreal domain and regional 

Landsat-based (30-m res.) land cover classifications. The AMSR-E Fw data were also compared 

against dynamic river discharge records for major Arctic river basins to evaluate Fw response to 

climate variability and periodic wet/dry cycles inferred from the basin discharge records. The Fw 

results were evaluated both regionally and on a per grid-cell basis to document recent (2003–

2010) inundation changes across the Arctic-boreal domain and within the major permafrost 

zones. 

 

2.3 Methods 

2.3.1 AMSR-E Fw estimates 

 

The daily Fw retrievals were derived from AMSR-E Tb records using the algorithm 

described by Jones et al. (2010). The AMSR-E microwave radiometer was launched in 

December 2002 on the polar orbiting (1:30 AM/PM equatorial crossings) EOS Aqua satellite, 

which has orbital swath convergence and sub-daily temporal sampling for northern (≥ 50°N) 

regions. The AMSR-E sensor measures horizontal (H) and vertical (V) polarized Tb values at six 

(6.9, 10.7, 18.7, 23.8, 36.5, 89.0 GHz) frequencies (Kawanishi et al. 2003). The AMSR-E 

instrument ceased effective operations in October 2011, but a follow-on mission (AMSR-2; Oki 

et al. 2010) was launched in May 2012 aboard the Global Change Observation Mission-Water 

(GCOM-W1) satellite. The retrieval algorithm uses AMSR-E 18.7 and 23.8 GHz H- and V 

polarized Tb values to estimate Fw, which is the effective open water fraction in the sensor field 

of view, surface (~2 m height) air temperature (Ta), vegetation optical depth (τ), and atmosphere 

(total column water vapor; Vp) parameters simultaneously (Jones et al. 2010). The nomenclature 

associated with these algorithms and the corresponding Fw analysis is presented in Table 1.  

While the algorithm is applicable for surface inundation it was not designed to detect soil 

moisture conditions (where surface water is not present) because only higher (18.7 and 23.8 

GHz) frequency Tb data are used for the Fw retrieval. Prior to algorithm input, the Tb data are 

screened for precipitation, radio frequency interference (18.7 GHz only), and frozen or snow-

covered conditions (Jones & Kimball 2011, Kim et al. 2011). However, ice and wet snow can 
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persist well above the freezing point during spring onset and winter warm periods, which 

sometimes co-occur with the rapid expansion of inundated area from ice and snowmelt. 

Additionally, lake ice can persist for many days after thaw has occurred in surrounding 

landscape and lake edges. These mixed-phased situations, where liquid water, ice and wet snow 

co-occur, tend to be classified as non-frozen conditions by the screening algorithm and result in 

strong Fw seasonality coinciding with annual freeze-thaw cycles. Grid cells with ≥ 50% (~314 

km
2
) permanent ice or open water cover were identified and screened (masked from further 

analysis) using the 0.25° gridded UMD MODIS land cover product obtained from the Global 

Land Data Assimilation System (GLDAS; Jones et al. 2010). This screening removes 2% 

(~4.2×10
5
 km

2
) of non-ocean open water cells associated with larger inland water bodies within 

the Arctic-boreal region and is consistent with the terrestrial focus of the AMSR-E global land 

parameter database (Jones et al. 2010); the remaining Arctic-boreal domain spans roughly 

2.29×10
7
 km

2
, post-screening. 

The retrieval algorithm uses a simplified forward radiometric Tb model to estimate Fw, 

Ta, and τ. The forward model is a set of simultaneous equations expressed in terms of Tb ratios 

to reduce their dependence on temperature (Jones et al. 2010, Njoku & Li 1999), leaving 

quantities that are influenced primarily by Vp and emissivity (ε). Surface emissivity (εs) in turn 

depends upon Fw and τ. The resulting system of ratio equations (Jones et al. 2010) is then 

iteratively solved for Vp, Fw, and τ. Jones et al. (2010) report a 3.5 K root mean square error 

(RMSE) uncertainty across time and space for the temperature retrievals relative to surface 

station network air temperature measurements, a statistic which incorporates biases from one 

station to another. The amount of Fw in the landscape is the primary factor influencing estimated 

εs and Tb sensitivity to Vp, which in turn impact Ta retrieval accuracy. Favorable Ta retrieval 

accuracies therefore provide indirect verification of Fw retrieval accuracy. The error sensitivity 

analysis presented in the following section quantifies the relationship between Ta and Fw 

retrieval accuracy, and examines algorithm sensitivity to surface soil moisture variability on the 

Tb ratios, which is assumed to have negligible impact on the Fw calculations. 

 

2.3.2 Error sensitivity analysis 

 

An algorithm error sensitivity analysis was conducted to determine Fw retrieval 

uncertainty by performing Fw retrievals on a simulated Tb dataset. The analysis is based on 
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forward and inverse models for 18.7 and 23.8 GHz, H and V polarization Tb data (Jones et al. 

2010) provides a detailed description of the algorithms). The inverse model summarized below 

(Eqs. 1–2) uses polarization and frequency (p, f) dependent Tb values received by a space borne 

sensor to estimate landscape surface characteristics (Section III C in Jones et al. 2010), where 

Tbu and Tbd are the respective upwelling and downwelling atmospheric brightness temperatures 

and Tbs is the upwelling surface brightness temperature. Atmospheric attenuation of the 

microwave signal by Vp is characterized by its transmissivity (ta); Ω is a surface roughness 

parameter that is assumed to be unity at the AMSR-E incidence angle (55° from nadir) and 

frequencies considered by the algorithm (Matzler 2005). 

𝑇𝑏(𝑝,𝑓) = 𝑇𝑏𝑢(𝑓) + 𝑡𝑎(𝑓)[𝑇𝑏𝑠(𝑓,𝑝) + Ω (1 − 𝑒𝑠(𝑓,𝑝))𝑇𝑏𝑑(𝑓)]      Eq. 1 

 

Atmospheric absorption and emission are temperature dependent and primarily occur in 

the lower atmosphere for the 18.7 and 23.8 GHz channels, allowing the approximation that 

𝑇𝑏𝑢(𝑓) ≅ 𝑇𝑏𝑑(𝑓) ≅ (1 − 𝑡𝑎(𝑓))𝑇𝑎 (Weng & Grody 1998). The sensor observed Tbs (Eq. 2) is 

assumed to represent a mixture of Tb emissions from land (Tbl) and surface water body (Tbw) 

components; Tbl from a vegetated surface is described as a layer of semi-transparent vegetation 

over smooth, bare soil. The calculation of canopy τ in terms of vegetation water content is 

described elsewhere (Jones et al. 2010 Section III; Jones et al. 2011b). The characteristically 

high dielectric constant of water strongly impacts Tbs and allows for significant microwave 

sensitivity to even relatively low Fw levels. 

𝑇𝑏𝑠(𝑓,𝑝) = 𝐹𝑤𝑇𝑏𝑤(𝑓,𝑝) + (1 − 𝐹𝑤)𝑇𝑏𝑙(𝑓,𝑝)                Eq. 2 

The forward model (Section III A in Jones et al. 2010) simulates the land surface as a 

mixture of open water and single scattering vegetation overlain by a plane-parallel non-scattering 

atmosphere. The forward model is summarized below (Eqs. 3–5) and describes Tb emission by 

land surface components and its upward propagation and interaction with intervening vegetation 

canopy and atmosphere layers, whereas the inverse model (Eqs. 1–2) uses Tb values received by 

a space borne sensor to estimate landscape surface characteristics (Section III C in Jones et al. 

2010). The simplified forward model describes Tb as a linear function of ta and a tc parameter 

that represent the attenuation of upwelling soil emissions by the intervening vegetation canopy 

and litter layer. This simplified linear function ignores the surface reflection terms included in 

the inverse model by assuming that reflection is low for land surfaces with relatively 
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high emissivity and that the sub-grid scale emissions are averaged by antenna gain (Jones et al. 

2010). 

𝑇𝑏(𝑝,𝑓) =  𝑇𝑠 [𝑡𝑎(𝑓)𝜀(𝑝,𝑓) + (1 − 𝑡𝑎(𝑓))𝛿]   𝛿 ≈𝑇𝑠

𝑇𝑎             Eq. 3 

𝜀𝑠(𝑝,𝑓) = 𝐹𝑤𝜀𝑤(𝑝,𝑓) + (1 − 𝐹𝑤)𝜀𝑙(𝑝,𝑓)                            Eq. 4 

𝜀𝑙(𝑝,𝑓) =  𝜀𝑜𝑠(𝑝,𝑓)𝑡𝑐 + (1 − 𝜔)(1 − 𝑡𝑐)                            Eq. 5 

Surface emissivity is a function of both land (εl) and open water (εw) components; δ is the 

ratio of Ta to surface temperature (Ts), which compensates for a vertical gradient between the two 

temperature components. Vegetation single scattering albedo (ω) and emissivity for open water, 

bare soil (εos) are parameter constants (Table II in Jones et al. 2010). The Fw, tc, andVp (which 

influences ta) parameters are estimated iteratively using temperature insensitive Tb ratios and are 

described elsewhere (Jones et al. 2010; Section III C). 

For the Monte-Carlo error analysis, Tb values were first simulated with the forward model 

using specified geophysical input parameters. Monte Carlo forward simulations were used to 

generate the resulting Tb dataset. Geophysical parameter space was sampled by drawing from 

uniform distributions of each of the following input parameters over specified ranges: >0–0.5 for 

volumetric (m
3
 m

-3
) soil moisture; 273-303 K for Ta; > 0-60 mm for Vp; and vegetation opacity 

corresponding to canopy water content of 0–10 kg m
-2

. The impact of cloud liquid water for the 

considered frequencies is assumed to be small relative to other sources of uncertainty for high-

latitude regions and subsequently was not considered. Water ε is treated as a constant because the 

algorithm was developed for land-dominated scenes and does not consider in detail the effect of 

waves, foam and salinity, which can be substantial for large water bodies (Jones et al. 2010, 

2011b). 

The simulated Tb data were used as inputs to the inverse algorithm to estimate Fw and 

errors were calculated by comparing the intermediate geophysical parameter estimates with those 

initially specified. The potential error contributions from three primary sources were evaluated 

including: (1) systematic bias from the simplified emission model, (2) random radiometer noise, 

assumed to follow a Gaussian distribution with standard deviation of 0.5 K and uncorrelated 

across Tb channels, and (3) parameter uncertainty. Parameter uncertainty originates primarily 

from ω and δ. To represent parameter uncertainty in the forward model, the two parameters are 

perturbed with Gaussian noise (standard deviation=0.02) about their respective nominal values of 
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0.05 and 0.95. Additionally, δ is intended as a calibration parameter to adjust the overall 

temperature retrieval bias of the inverse model relative to the forward model, and was therefore 

assigned a slightly higher value of 0.96 for the inverse algorithm (Jones et al. 2010).  

Simulations were conducted first with all random error sources evaluated separately to 

examine the effects of each individual source. The individual error sources were then combined 

to estimate the total overall Fw retrieval error.  For each combination of errors, we performed 30 

simulation sets each with 1000 realizations of Fw varying from 0 to 0.5 in 0.05 increments for a 

total of 3.3×10
5
 simulations. The accuracy for each Fw increment was determined by averaging 

across the RMSE differences obtained in each of the 30 sets of realizations. The standard 

deviation of the RMSE across each set is < 0.0015, indicating that the Monte Carlo sampling 

density was sufficient to produce stable, repeatable results. To partition the relative contribution 

of error from each source, four combinations of error sources were considered, including 

systematic bias from the simplified emission model, random error from radiometer noise (termed 

“Tb noise”), random error from ω, random error from δ, and total error from all sources. Each 

random error source term necessarily includes the bias source from the simplified emission 

model, but the terms are otherwise independent of one another. The surface Ta retrievals serve as 

an important indirect check on surface emissivity retrievals, and hence Fw accuracy. Therefore, 

estimated Ta and Fw retrieval uncertainties are reported together (Figure 1). 

 

2.3.3 Fw verification  

 

The daily AMSR-E Fw retrievals from the AM (descending) overpass were used to 

generate monthly mean (Fwavg) and maximum (Fwmx) inundation records for the 2003-2010 

period. Image composites were derived from the AMSR-E Fwavg and Fwmx records by taking the 

period mean from 2003 to 2010. The Fwavg and Fwmx composites were verified against 

alternative static Fw (Fws) classification maps, including those derived from the 250-m 

resolution UMD Global Land Water Mask (MOD44W) for the Arctic–boreal domain, and finer 

(30-m) resolution Landsat-based maps for Alaska, North Central Canada and Northern European 

sub-regions. The AMSR-E record for 2010 was not included in the comparison against the Fws 

maps because it was still being processed.  The MOD44Wproduct is derived from a compilation 

of the Shuttle Radar Topography Mission (SRTM) Water Body dataset for regions < 60°N, 
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which was created using SRTM radar and digital terrain data with Landsat-based Geocover data. 

The SRTM data is unavailable for land areas ≥ 60°N and the MOD44W product was derived 

solely from the MODIS (MOD44C) Collection 5 (2000-2008) open water classification product 

in these regions (Carroll et al. 2009). The MOD44W product effectively replaces the Global 

Lakes and Wetlands Database, which only incorporates data prior to the mid-1990s (Lehner & 

Doell 2004). Although the MOD44C data were used to gap-fill some regions < 60°N in the 

MOD44W product, the extent of this substitution is minimal.  

Finer (30-m) resolution data were obtained from the Landsat-based 2001 National Land 

Cover Dataset (Homer et al. 2004) for Alaska, which used Landsat Enhanced Thematic Mapper 

Plus (ETM+) imagery collected during the 2001 growing season.  Similar Landsat-based open 

water data were provided by a subset (~1×10
6 

km
2
) of the Circa-2000 Land Cover of Canada 

Database (Geobase Canada 2009) for the Canada sub-region and a regional land cover 

classification (Potapov et al. 2011) of the Northern European sub-region. The Geobase land 

cover map used cloud/snow-free Landsat Thematic Mapper (TM) and ETM+ imagery from 1996 

to 2005 (80% of imagery was collected between 1999 and 2001). Land cover data obtained from 

Potapov et al. (2011) were derived from cloud-free ETM+ imagery collected during the 2003–

2007 growing season.  

The Fws maps were aggregated to the coarser spatial scale of the AMSR-E Fw record by 

determining proportional open water cover within overlying 25-km equal area scalable earth grid 

cells (EASE-grid) consistent with the approximate spatial resolution of the AMSR-E Fw 

retrievals. The Fws map grid cells corresponding to ≥ 50% permanent ice or open water within 

the GLDAS land cover map were excluded from the analysis for consistency with the AMSR-E 

Fw retrievals. Vegetated wetland classes in the Alaska and Canada land cover maps were 

excluded from the Fws calculations due to relative greater susceptibility of these areas for open 

water misclassification (omission and commission) and inconsistencies in wetland class types 

between different land cover products (Ozesmi & Bauer 2002, Selkowitz & Stehman 2011). The 

Landsat-based maps also had a “Snow/Ice” class; frozen water bodies within this class were not 

incorporated into Fws calculations due to difficulty separating these areas from other frozen 

surfaces. 
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A 3×3 cell (AMSR-E grid) weighted box-car filter was applied for spatial aggregation of 

the Fws data to represent the effective AMSR-E footprint, whereby antenna side lobe gain and 

variability of the sensor orbital track cause spatial smearing of the AMSR-E ellipsoidal swath Tb 

footprints (Amarin et al. 2010). The resulting MOD44W and Landsat-based Fws datasets were 

compared against AMSR-E Fwavg and Fwmx composites over a 7 year (2003–2009) period to 

determine the correspondence between the AMSR-E results and Fws estimates. Metrics included 

the coefficient of determination (R
2
) to evaluate the percent of variability in the Fws maps 

explained by the AMSR-E Fwavg and Fwmx composites, and regional wet or dry biases as 

compared to the Fws maps. The Fw monthly minimums (Fwmn) were also evaluated but are not 

presented, as they did not show improved correspondence with Fws relative to the Fwavg and 

Fwmx results. 

The AMSR-E Fw data were compared with monthly mean river discharge (Q; m
3
 s

-1
) 

measurement records for the major Arctic-boreal basins to evaluate Fw inundation sensitivity to 

seasonal and inter-annual climate variability, and periodic wet/dry cycles indicated by the 

discharge records. Available monthly Q records from 2003 to 2010 were obtained from 

downstream stations (indicated in parentheses) for the Yukon (Pilot Station; 61° 55′ N, 162° 52′ 

W), Mackenzie (Arctic Red River; 67° 27′ N, 133° 44′ W), Ob (Salehard; 66° 37′ N, 66° 35′ E), 

Yenisei (Igarka; 67° 25′ N, 86° 28′ E) and Lena (Polyarnaya; 72° 24′ N, 126° 20′ E) river basins 

(http://rims/unh.edu). Correlation between Q and basin-averaged AMSR-E Fwavg results were 

examined using bi-monthly non-frozen season anomalies for April–May (AM), June–July (JJ) 

and August–September (AS) periods. Tri-monthly (MAM, JJA, SON) parameter anomalies were 

compared for the Ob to account for a longer characteristic lag between basin inundation and river 

discharge for this region (Schroeder et al. 2010). 

 

2.3.4 Fw trend analysis 

 

Regional AMSR-E Fw trends were examined for the Arctic-boreal domain (≥ 50°N) and 

within three major permafrost zones defined by the International Permafrost Association (IPA) 

Circum-Arctic Map of Permafrost and Ground Ice Conditions (Brown et al. 1998). The 

continuous permafrost zone includes regions where permafrost covers > 90% of the landscape; 

the discontinuous permafrost zone is characterized by 50-90% permafrost coverage within the 

landscape; the sporadic/isolated permafrost zone represents areas with high spatial patchiness (< 
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50% permafrost coverage) and greater seasonal soil thaw depth.  

Inundation trends were examined by applying the Mann–Kendall trend test (Kendall rank 

correlation to the annual scale data; a value of 1 (0) indicates perfect (no) correlation with time) 

to AMSR-E annual means for Fwavg and Fwmx records from 2003 to 2010.  Mann–Kendall (MK) 

is a non-parametric statistical test that determines trend direction and significance, and is often 

used for hydrological applications because it does not assume a specific population distribution 

(Chandler & Scott 2011). Normal approximations are used to determine test significance (p-

value) with larger sample sizes, whereas exact tests are used when the sample size is small 

(Hipel & McLeod 2005, Sheskin 2004).  Mann–Kendall analysis can be influenced by serial 

correlation, unless the magnitude of trend is large (Zhang et al. 2006). As a precaution against 

serial correlation, the Yue–Pilon method was used prior to applying the trend test (Yue et al. 

2002). The Yue–Pilon method first applies the non-parametric Theil–Sen estimator that 

determines the median slope of all possible paired sample points; the slope and lag-1 

autocorrelation are removed if autocorrelation is detected (Yue et al. 2002). The slope and 

resulting uncorrelated residuals are then merged to create a blended series to which the MK test 

is applied.  

The total AMSR-E Fw inundation extent (km2) was obtained for the Arctic-boreal 

domain and North American and Eurasian sub-regions (not limited to permafrost regions) daily 

and aggregated to monthly and annual intervals. We expect these area estimates (km2) to be scale 

dependent, reflecting observations originally obtained at a 22-km native resolution; 

consequently, those obtained from finer scale satellite retrievals might differ from these 

estimates. Annual Fw extent was also determined regionally for continuous, discontinuous, and 

sporadic/isolated permafrost zones. The annual number of grid cells with Fw present (Fw > 0) 

was obtained for each region, as was the mean annual Fw duration (the number of days per year 

that Fw was detected). These records were examined for trends using the MK analysis and trend 

significance was assessed at a minimum 90% (p < 0.1) probability level. The Fw trends were 

evaluated on a per-grid cell basis across the Arctic-boreal domain because of spatial 

heterogeneity in climate, permafrost condition, and surface characteristics. The relative 

proportions of significant (p < 0.1) cells with positive and negative trends were determined for 

each permafrost zone. Trends in Fw duration were also examined on a per-grid cell basis to 
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ascertain the potential influence of changes in non-frozen season length and the corresponding 

period of Fw retrievals on surface inundation trends. Areas with significant (p < 0.1) trends in 

Fw inundation and Fw duration were also compared against regions identified as having 

significant changes in non-frozen period length (Kim et al. 2012). Trends in Fwmn, which may 

reflect relatively stable lake bodies, are not statistically significant and are not presented in the 

study results.  

Evaluating trends on a per grid-cell basis can substantially increase the false discovery 

rate (Wilks 2006), which is the expected proportion of Type I error (false positives) among all 

significant hypotheses. For example, α= 0.1 indicates that there is a 10% chance that a trend will 

be falsely detected per test or that 10% of all tests will be false positives. Adjusting p-values for 

false discovery can substantially reduce the number of expected Type I errors because α will 

instead correspond to tests showing significant results, rather than the total number of tests 

considered. In addition to per-cell p-values (indicating local significance) we also estimated q-

values (adjusted p-values) for each grid cell using the False Discovery Rate (FDR) approach 

which evaluates characteristics of the p-value distribution. This conservative approach can be 

used to address multiple hypothesis testing and is more robust to spatial dependence (Wilks 

2006).  

 

2.4 Results 

2.4.1 Error sensitivity analysis 

 

The Monte Carlo error sensitivity analysis indicates total Fw uncertainty within ±0.041 

(RMSE) with a positive dependence on Fw (Figure 1). The positive dependence between 

retrieval uncertainty and Fw extent indicates that the simplified emission (forward) model biases 

become more prevalent as εs decreases with higher Fw. As εs decreases, the emission model 

becomes more sensitive to atmospheric factors because the intervening atmosphere contrasts 

more with a radiometrically dark water background than it does against relatively bright land 

(Chang & Milan 1982). In addition, the land fraction decreases as Fw increases and the emission 

model becomes proportionally less sensitive to εl factors. Minimal Fw retrieval error at lower 

inundation levels indicates that surface soil moisture variability does not significantly degrade 

results relative to other Tb model error sources.  
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In contrast to Fw, the Ta retrieval is more sensitive to εs error, which flattens the Ta 

retrieval uncertainty response at higher Fw levels. For Ta, the error contributions of ω and δ show 

opposing trends with Fw, resulting from the previous trade-off between εl and atmospheric 

sensitivities at higher Fw levels. This tradeoff is more evident for the ω and δ components 

because model bias is relatively low (b | ± 1| K) for Ta as a result of algorithm calibration 

(discussed in Section 2.2). The overall Ta errors from the sensitivity analysis range from 3.7 to 

4.1 K, compared to the observed 3.5 K Ta error relative to Northern Hemisphere weather station 

records (Jones et al. 2010). This discrepancy indicates that ω and δ are not as variable as 

specified and that the simplified emission model adequately represents surface Ta and Tb 

observations; these results also indicate that the reported overall Fw error is a conservative 

estimate.  

2.4.2 Fw verification and regional analysis 

The AMSR-E Fw results compare favorably with the MOD44W and Landsat-based Fws 

maps for the respective Arctic-boreal and regional domains. The Fwavg map composite (AMSR-

E Fwavg averaged over the 2003-2009 period) accounts for 71-84% (R2) of variability in the 

Fws maps, while the Fwmx composites account for a lower 39-80% (R2) of Fws variability 

(Table 1). The mean RMSE difference between the AMSR-E Fwavg and Fwmx products, and 

Fws is ≤ 5%. The strongest regional correspondence (R2 = 0.84) is observed between AMSR-E 

Fwavg and lower latitude ( < 60°N) Fws regions where the MOD44W product is partially 

derived from radar (SRTM) imagery. The lowest correspondence (R2 = 0.39) occurs in western 

Russia where the Fwmx retrievals are higher than corresponding Landsat-based Fws levels in the 

largely agricultural and wetland dominated areas. A small negative (dry) bias (i.e. - 8.21% ≤ 

MRE ≤ - 0.56%) is observed for AMSR-E Fwavg relative to Fws (Table 2; Figure 2), whereas 

the Fwmx results show a small positive (wet) bias (- 0.96 ≤ MRE ≤ 5.48%) (Table 2; Figure 3). 

Regionally, Fwavg and Fwmx are lower than Fws along major rivers and in glaciated areas 

characterized by lakes surrounded by shallow, rocky substrate (e.g. portions of the Northwest 

Territories and North Central Canada). In contrast, Fwavg and Fwmx are predominately higher 

than the Fws results in wetland-dominated regions (e.g. Canadian Shield, Yenisey and Lena river 
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basins).  

The summer Fwavg and Q anomalies for the five Arctic river basins show favorable 

correlations (R ≥ 0.71; Figure 4) despite other hydrological influences on Q, including direct 

runoff contributions from snowmelt and groundwater (Papa et al. 2008, Syed et al. 2007). 

Relatively strong correlations (R ≥ 0.82) are observed for basins with lower mean summer 

Fwavg extent, including the Yukon (Fwavg represents 2.07% of the basin area or 1.72 × 104 

km2), Lena (1.77% or 4.44 × 104 km2), and Yenisey (1.85% or 4.51 × 104 km2).  

Lower correlations are observed for the Ob and Mackenzie (R = 0.71 and 0.76, 

respectively) basins where the proportional Fwavg extent is relatively larger (3.16% or 7.87 × 

104 km2; 11.26% or 1.89 × 105 km2). This lower correspondence is likely due to extensive Q 

regulation by basin reservoirs along the Ob and Mackenzie rivers (McClelland et al. 2004, Yang 

et al. 2004). Similarities in relative dry (negative) and wet (positive) year anomalies between 

Fwavg and Q indicate that the Fw retrievals capture regional wet and dry cycles reflected in the 

discharge observations (Figure 4). Negative Fw and Q anomalies in 2004 for the Yukon, 

Mackenzie and Yenisey basins coincide with regional drought (Alkama et al. 2010, Zhang et al. 

2009), while strong positive anomalies in 2007 for the Ob and in 2009 for the Yukon, 

Mackenzie, Lena and Yenisey basins coincide with documented wet periods (Arndt et al. 2010, 

Rowland et al. 2009).  

The Fw inundation extent in the Arctic-boreal region is highest within large wetland 

complexes of the major watersheds, including the Canadian Shield, Yukon River Delta, the 

Kolyma, Indigirka, Lena, Ob-Yenisey, Volga lowlands and Scandinavia (Figure 5).  Seasonal Fw 

variability is also greatest within these regions, and in the agricultural areas of southwestern 

Russia, southern Alberta and Saskatchewan CN relative to other areas in the domain (Figure 5). 

On a seasonal basis region-wide Fw inundation (Fig. 6) is lowest in January–February (2.9×105 

km2 Fwavg; 4.16×105 km2 Fwmx) and highest in July (2.78×106 km2 Fwmx) and August 

(1.94×106 km2 Fwavg).  

Maximum inundation extent in Eurasia occurs in June–July and precedes the August 

maximum in North America (Figure 6). On an annual basis, the largest Fw inundation year 
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(based on total annual inundation extent) for the Arctic-boreal domain during the 2003-2010 

observation period coincides with above-average precipitation in North America and Eurasia in 

2005 (Shein et al. 2007), whereas the lowest inundation year (2004) coincides with relatively 

warm summer conditions in North America and a multi-year (2001-2003) drought in the Arctic–

Boreal region (Parker et al. 2006, WMO 2005, Zhang et al. 2008). Similarly, the wettest Fw 

years for Eurasia (2007) and North America (2010) coincide with relatively warm winters and 

wet summers (Kennedy et al. 2008, WMO 2011). The lowest Fw years observed for North 

America (2004) and Eurasia (2010) reflect anomalous dry summer conditions in Alaska and 

western Canada (Kochtubajda et al. 2011,Wendler et al. 2010) and a severe summer drought in 

Russia (Wegren 2011, WMO 2011). The comparison be- tween AMSR-E Fw and MOD44W 

Fws inundation extent for the Arctic-boreal, Eurasia and North America regions indicates that 

the MOD44W estimates are considerably larger than the Fwavg retrievals and closer to the 

summer Fwmx retrievals (Figure 6). This difference occurs because Fw seasonal variability is not 

resolved in the static open water product.  

2.4.3 Fw trends 

 

A strong positive (increasing) trend in the annual number of grid cells with Fw present 

(Fw count) is observed for all permafrost zones (Table 3), at a rate of roughly 140 cells yr−1 

(~73,910 km2 or roughly 0.67% per year; Table 3) when considering Fwmx. This trend is 

influenced primarily by Fw changes within Eurasian continuous and sporadic/isolated permafrost 

zones, and discontinuous permafrost areas in North America as these areas show larger (and 

significant; p < 0.1) increases in Fw counts relative to other regions. An increase in Fw presence 

is observed for all three permafrost zones, with the rate of expansion ranging from roughly 33 

cells yr− 1 (discontinuous zone) to 65 cells yr− 1 (continuous zone) (Table 4). The strong positive 

trend in Fw duration observed for the Arctic-boreal region is primarily driven by the continuous 

and discontinuous permafrost zones in North America (Table 3). Changes in Fw duration within 

these areas (increasing at 0.76 days yr−1 for the Arctic-boreal zone; Table 4) may reflect an 

overall increase in precipitation and lengthening of the non-frozen season (Kim et al. 2012, 

McClelland et al. 2006). A positive, moderate trend in total Fw inundation (Fw area) is observed 

only in Fwmx and is primarily influenced by the Eurasian continuous and North American 
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discontinuous permafrost zones. Although not significant, a weak (p ~ 0.13) positive Fwavg 

trend is observed for the continuous permafrost zone and for North American discontinuous 

permafrost areas. Overall, significant regional trends in the Fw count and Fw area metrics are not 

observed when the Arctic-boreal, North American and Eurasian sub-regions are considered 

(Table 3). Significant decreasing trends in Fw count, Fw duration and Fw area are not observed 

in the regional analyses.  

Areas of widespread Fw inundation increase are observed through- out the continuous 

permafrost zone when the MK trend test is applied on a per grid-cell basis (Figure 7). The 

continuous permafrost zone has the highest proportion (92%; 91-94% is the 95% confidence 

interval for proportions) of grid cells with locally significant Fwavg wetting trends, followed by 

82% (79-86%) of cells in discontinuous permafrost regions. Conversely, sporadic/isolated 

permafrost regions show widespread Fw inundation decrease (71%; 66-74%). The overall 

contrast between inundation patterns within the three permafrost zones is similar for Fwmx, but 

the overall trend extent is weaker compared to the Fwavg results, with 63% (61-65%) and 59% 

(55-63%) of grid cells showing Fwmx wetting trends within respective continuous and 

discontinuous permafrost zones. In the sporadic/isolated permafrost zone, 48% (44–52%) of 

Fwmx grid cells having significant trends show drying. Although widespread wetting occurs 

within the continuous permafrost zone, large regions of drying are also observed in northern 

Québec and Newfoundland, the Canadian Baffin and Banks islands, north of the Seward 

Peninsula in Alaska, and the Panteleikha River wetlands in Siberia (Figure 7).  

In the discontinuous permafrost zone the largest regions of drying occur directly south of 

the Alaska Seward Peninsula and in northern Saskatchewan CN. Although 71% of grid cells with 

significant Fwmx trends within the sporadic/isolated permafrost zone show drying, areas of 

wetting are observed in northern British Columbia, northern Saskatchewan and Manitoba, east of 

James Bay in Québec CN, in the Scandinavian Lapland and southern Siberia (Figure 7). These 

grid cells are not significant (q < 0.1) when controlled for false discovery rate, which is not 

surprising given the small percentage of grid cells within permafrost zones that show local trend 

significance (p < 0.1) and the large number of grid cells to which the trend test was applied. 

Furthermore, the resulting q-values (~0.45–0.58) are relatively lower in areas that are locally 

significant (p < 0.1) compared to those that are not (~ 0.68–0.90). Given the conservative nature 
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of the FDR correction, the relatively lower q-values in areas with local significance (p < 0.1), 

and indication of area-wide changes in the regional trend analysis it appears that areas having 

locally significant MK trend reflect physical changes in surface inundation characteristics.  

Only a small portion of grid cells having locally significant wetting trends coincide with 

an increase in Fw duration. Approximately 9% (2,831 grid cells) of the Arctic-boreal permafrost 

zone shows a significant increase in AMSR-E Fwavg over the 8 year period (Figure 7), with a 

mean inundation increase of 0.16% (0.98 km2) per cell yr−1. Approximately 2.6% (74 grid cells) 

also show a significant (p < 0.10) increasing trend in annual Fw duration (within the Eurasian 

continuous permafrost zone). Only 19 of the 74 grid cells with positive Fw duration trends 

correspond with a significant increase in non-frozen season length (Kim et al. 2012) and are 

located mainly in southeastern Russia. Similarly, 2.2% (712 grid cells) of the Arctic-boreal 

permafrost zone shows a significant decrease in Fwavg inundation (Figure 7) and corresponds to 

an average Fw decline of 0.17% (1.05 km2 per cell yr− 1); 2.5% of these (18 grid cells, within the 

sporadic/isolated zone in Québec) are associated with a significant decrease in Fw duration but 

do not correspond to documented trends in non-frozen period length (Kim et al. 2012).  

 

2.5 Discussion 

2.5.1 Fw verification and surface water patterns 

 

The regional inundation patterns derived from the AMSR-E Fw retrievals are similar to 

alternative open water maps derived from the finer scale MOD44W and Landsat products despite 

the inherent coarser spatial resolution of the AMSR-E footprint. The favorable accuracy of   

AMSR-E Fw retrievals is attributed to the strong sensitivity of micro- wave emissivity to 

landscape variations in surface dielectric constant caused by the presence of even a small fraction 

of surface water relative to a non-inundated land surface. Differences between the static open 

water maps (Fws) and dynamic Fw retrievals are primarily due to differences in the seasonal 

timing and duration of the sensor retrievals. Stronger similarities between AMSR-E Fwavg and 

MOD44W Fws results occurred at lower (< 60°N) latitudes where the MOD44W results are 

largely derived from SRTM, which has microwave characteristics like AMSR-E, including 

relative insensitivity to atmosphere effects (e.g. clouds), enhanced sensitivity to surface water 

cover and insensitivity to surface water signal contamination by vegetation (Pietroniro & 
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Leconte 2005). The stronger regional similarity may also be influenced by differences in wetland 

type and characteristic inundation patterns between lower and higher latitude regions.  

The general Fwavg dry bias reflects the tendency for higher Fws in temporally dynamic 

inundation regions due to limited (e.g. summer-only) satellite optical-IR image collection 

periods. The AMSR-E Fw results indicate large seasonal and inter-annual variability in Arctic–

Boreal zone inundation, with respective Fwavg variability (SD) on the order of ±60% (± 6.4 × 

105 km2) and ± 3% (± 3.1 × 104 km2); this dynamic variability is not adequately represented by 

the static open water maps. The AMSR-E Fwavg retrievals are also lower than the Fws results in 

characteristically dynamic inundation areas along major river corridors and in other areas where 

inundation is largely absent during dry periods but abundant following seasonal snowmelt or rain 

events (Brown & Young 2006).  

Although the AMSR-E Fw dry bias is effectively eliminated or reversed (wet bias) for the 

Fwmx results, it remains evident along river systems and seasonally varying lakes and wetlands. 

In contrast, the AMSR-E Fwavg and Fwmx results are predominately wetter than the Fws results 

in wetland dominated landscapes (e.g. Canadian Shield, Yenisey and Lena river basins). The 

lower Fws inundation levels within these regions may be due to reduced open water detection by 

optical-IR satellite sensors in areas with higher vegetation density (Kaheil & Creed 2009, 

Ozesmi & Bauer 2002). Excluding vegetated wetland and frozen lake bodies from the Landsat-

based Fws calculations may have contributed to differences between the AMSR-E Fw and Fws 

results in the Alaska and North Central Canada sub-regions. However, similar areas of relatively 

higher AMSR-E Fw inundation, including the Ob-Yenisey lowlands and Canadian Shield, are 

evident in the MOD44W comparison where the exclusion of wetland and frozen classes is not an 

issue.  

The AMSR-E Fw sensitivity to seasonal and annual surface water variability is also 

demonstrated in the comparison against river Q. Severe, multi-year (2001-2003) boreal drought 

conditions (Alkama et al. 2010, Zhang et al. 2008) are manifested as large negative Fw and Q 

anomalies for the Yukon, Mackenzie and Yenisey rivers in 2004. Large positive Fw and Q 

anomalies coincide with major flooding events in 2007 for the Ob (Schroeder et al. 2010), and 

2009 for the Yukon, Mackenzie, Lena and Yenisey due to a combination of river ice jams, rapid 

snowmelt and precipitation (Arndt et al. 2010, Rowland et al. 2009). These findings are like 
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prior studies reporting strong correlations between satellite microwave Fw retrievals and Q over 

Arctic river systems (Papa et al. 2010, Schroeder et al. 2010). Linkages between basin Fw and Q 

response can be complex and do not always show direct correspondence (Papa et al. 2008), as is 

observed for the Mackenzie basin in 2004 and 2010. These differences are driven by the timing 

and duration of spring snowmelt and groundwater contributions, river ice jams, precipitation 

events, reservoir outflow and other changes in hydrological connectivity and Q that may not 

correspond directly to Fw changes (McClelland et al. 2011). Furthermore, the Fw parameter 

corresponds directly to surface water area, whereas Q can vary independently in response to 

additional water storage (e.g. soil, snow, and groundwater) fluctuations (Landerer et al. 2010).  

The AMSR-E Fw patterns for the Arctic–boreal (≥ 50°N) domain are consistent with 

previous regional observations (Schroeder et al. 2010, Smith et al. 2007). In North America, the 

AMSR-E Fwavg results reveal widespread inundation within the Canadian Shield region, a 

landscape characterized by expansive peatlands, lake systems and large soil organic carbon pools 

(Tarnocai 2006). In Eurasia, Fw inundation is relatively extensive within the major Arctic river 

basins (particularly along the Yenisey and in the Okrug-Yugra Ob river region), southern Finland 

and the Russian Republic of Karelia. More extensive inundation occurs along the Volga river 

system and in peatlands of the southern West Siberian lowlands (Kremenetski et al. 2003). 

Inundation extent is lowest in the January-February period when much of the landscape is 

frozen, and is highest in July (Fwmx) and August (Fwavg) following seasonal thawing and 

summer precipitation.  

The earlier seasonal maximum observed in Fwmx likely reflects extensive overland flow 

following snowmelt and rain events on still-frozen surfaces (Woo et al. 2006). The seasonal 

inundation variability observed in the AMSR-E Fw retrievals reflects strong correspondence 

between surface inundation and regional temperature and precipitation patterns in northern 

landscapes (Rouse 2000). This is particularly evident in Eurasia where a sharp decline in 

inundation extent following the summer Fw maximum coincides with characteristic high 

evaporation rates and low precipitation in late summer and fall (Landerer et al. 2010, Serreze & 

Etringer 2003). The temporal Fw variability observed in the major wetland and agricultural 

regions is also consistent with similar seasonal changes in precipitation and evaporation for these 

areas (Rouse 2000).  
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2.5.2 Fw trends 

 

The per-grid cell analysis indicates widespread Fwavg increase within continuous 

permafrost areas and overall decline within the sporadic/ isolated permafrost zone. These 

inundation trends concur with reports from localized field studies throughout the Arctic-boreal 

region (Jones et al. 2011a, Smith et al. 2005, Walter et al. 2006, Yoshikawa & Hinzman 2003). 

The high proportion of grid cells showing positive Fw inundation trends in the discontinuous 

permafrost zone appears to contradict previous reports of declining lake numbers within 

discontinuous permafrost areas in Siberia and Alaska (Smith et al. 2005, Yoshikawa & Hinzman 

2003). A few key differences account for this apparent discrepancy. First, our study evaluated a 

continuous daily Fw record in permafrost zones across the entire Arctic-boreal domain over an 

eight-year period, which enabled a relatively precise assessment of dynamic inundation changes, 

whereas previous studies were constrained by a limited number of observation days and involved 

relatively small spatial domains.  

Additionally, the AMSR-E Fw retrievals provide a measure of the proportional surface 

water cover within a relatively coarse (25-km) resolution grid cell, rather than specific lake 

number counts.  The Fw retrievals do not resolve individual water bodies, but are insensitive to 

signal degradation from low solar illumination and atmosphere (clouds, smoke) contamination, 

and have enhanced microwave sensitivity to surface inundation in vegetated areas. These 

attributes are particularly relevant in Arctic-boreal landscapes, which have characteristically low 

solar illumination, short non-frozen seasons and frequent cloud cover, and in the continuous 

permafrost zone where lateral drainage from primary lakes can increase the number of smaller 

water bodies without an overall change in surface water extent (Jones et al. 2011a, White et al. 

2007).  

The re-distribution of surface water through lateral drainage could have contributed to the 

observed expansion in the annual number of grid cells with Fw present within permafrost 

regions. Satellite optical-IR remote sensing analyses might detect an overall decrease in total 

water body area where lateral drainage is occurring if smaller water bodies (e.g. ponds, small 

streams, wetlands) are obscured by vegetation, or if only primary lakes are examined. This may 

account for an apparent discrepancy between a recent MODIS-based study indicating an 

extensive reduction in surface lake area over northern Canada (Carroll et al. 2011), and this 
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study which shows a general Fw increase in many of the same regions, particularly in the 

northwestern Canadian Shield. The timing of the MODIS retrievals used by Carroll et al. (2011) 

may have also influenced the resulting lake trends as bedrock-underlain water bodies within this 

region depend on precipitation recharge and therefore show strong seasonal and annual 

variability (Spence & Woo 2008). Because our evaluations incorporate daily AMSR-E Fw 

observations during the non-frozen period, some of the observed increase in Fw inundation may 

be artifacts of a lengthening non-frozen season trend (Kim et al. 2012). However, only a small 

proportion (2.6%) of grid cells with significant Fw inundation increase also show a significant 

in-crease in annual Fw duration, and less than 0.7% of these cells coincide with an increase in 

the non-frozen season. Likewise, only 2.5% of grid cells having a significant decreasing Fw 

inundation trend also show a significant change in Fw duration, and none of these cells indicate a 

significant trend in non-frozen season length.  

Although the per-grid cell analysis shows areas of significant Fw wetting and drying 

trends within Arctic-boreal permafrost zones, results from the regional analysis are less clear but 

indicate that Fw presence and annual duration are increasing. Only the regional Fwmx (monthly 

maximum) results indicate increasing trends in inundation area, although a weak (p = 0.13) 

positive Fwavg trend is detected for continuous permafrost areas. The overall lack of significant 

inundation trends in the regional Fwavg results is likely due to the large spatial variability in Fw 

patterns where areas with positive Fw trends are offset by regions with declining inundation, and 

the characteristically large temporal variability in inundation and relatively short (8 year) 

AMSR-E Fw record. The Fwmx trend is likely more sensitive to surface inundation extremes 

following spring thaw, snowmelt and precipitation related wetting events, whereas Fwavg is 

temporally smoothed and provides a better measure of overall mean inundation state. Smaller, 

palustrine wetlands are especially affected by changes in wetting events. Water bodies are also 

influenced by changes in precipitation (Rawlins et al. 2010), in addition to recharge from 

localized ice melt or lateral drainage (Jones et al. 2011a, White et al. 2007), human-related 

activities and erosional processes (Hinkel et al. 2007), changes in water table position and 

disturbance from wildfires (Riordan et al. 2006).  

The significant increase in regional Fw duration, primarily for the continuous and North 

American discontinuous permafrost zones, indicates an expanding non-frozen season and 
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corresponding longer inundation period influenced by rainfall (Woo et al. 2006). Increased 

evapotranspiration could also affect Fw duration in regions where lakes and wetlands are 

influenced by the seasonal water balance (Adam & Lettenmaier 2008, Riordan et al. 2006). 

However, the overall water balance in the Arctic-boreal remains largely positive, as indicated by 

generally increasing trends in regional river discharge (McClelland et al. 2006, Peterson et al. 

2002, Rawlins et al. 2010) and the increase in Fw area reported in this study.  

The variability in Fw trends throughout the Arctic-boreal region reflects large spatial 

heterogeneity in climate, surface conditions and permafrost state. The continuous permafrost 

zone is particularly susceptible to degradation due to rapid warming following sub-surface ice 

melt (Romanovsky et al. 2010). Spatial differences in surface temperature and snow thickness 

also influence variability in permafrost thaw (Rigor et al. 2000, Stieglitz et al. 2003).  

Ecosystem characteristics have allowed permafrost to persist under climatic conditions no 

longer conducive to its formation (Shur & Jorgenson 2007). Plant canopies reduce understory 

snow accumulation (winter ground insulation) and summer radiative warming; surface organic 

layers maintain cool, moist conditions that provide additional thermal buffering (Smith & 

Riseborough 2002). These environmental factors allow relatively less degraded permafrost to 

persist within discontinuous and sporadic/isolated permafrost zones. Thaw within these regional 

pockets influences inundation expansion, as was observed in Québec CN near Hudson Bay 

where an abundance of thaw lakes has been documented (Watanabe et al. 2011). In some areas, 

climate warming may overwhelm ecosystem buffering, as was observed in Québec and Labrador 

CN where surface drying has resulted from increased summer warming trends (Mekis & Vincent 

2011) in addition to thaw depth and sub-surface drainage expansion. Extensive peat 

accumulation on thawed surfaces and thermokarst ponds can also decrease open water 

inundation area and may be responsible for the observed Fw decrease in northeastern Canada 

(Filion & Begin 1998, Minayeva & Sirin 2010).  

 

2.6 Conclusions 

We conducted an analysis of fractional surface water (Fw) inundation for the Arctic-

boreal region using daily satellite passive microwave remote sensing retrievals from the AMSR-

E sensor record. The daily Fw retrievals were temporally aggregated to monthly mean (Fwavg) 
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and maximum (Fwmx) temporal intervals and represent the proportion of surface water 

inundation within an approximate 25-km resolution footprint. Our results indicate large seasonal 

and inter-annual variability in Arctic-boreal regional inundation, with respective Fw variability 

(SD) on the order of ± 60% (± 6.4 × 105 km2) and ± 3% (± 3.1 × 104 km2). The total annual 

inundation extent (km2) for the domain was largely stable over the 2003-2010 observation 

period; this finding concurs with an earlier assessment covering the 1993-2000 period (Papa et 

al. 2010). However, our results also indicate locally significant, contrasting Fw wetting and 

drying trends in permafrost affected areas.  

Regions of widespread inundation increase are observed throughout the continuous 

permafrost zone, while Fw drying is predominant within sporadic/isolated permafrost areas. 

Methane emission levels are strongly influenced by open water extent (Walter et al. 2007). Areas 

showing increased Fw wetting are of concern as atmospheric CH4 is a potent greenhouse gas and 

recent increases from Arctic wetlands have been reported (Bloom et al. 2010). In lieu of climatic 

conditions favorable to permafrost development and continued surface wetting, an overall 

decline in Fw inundation area appears likely (Avis et al. 2011, van Huissteden et al. 2011). 

Nevertheless, total Arctic-boreal zone inundation will remain stable if Fw expansion continues to 

offset regions of inundation decline.  

Surface water inundation changes captured by the AMSR-E Fw retrievals provide an 

indicator of recent climate variability within northern landscapes, though the spatiotemporal 

distribution and underlying drivers of open water change need to be better understood to 

adequately separate longer term inundation trends from characteristically large seasonal and 

inter-annual Fw variability (Prowse & Brown 2010). A forward model sensitivity analysis 

indicated that the AMSR-E Fw retrievals are relatively accurate (conservative RMSE uncertainty 

within ± 4.1%), and that the Fw results effectively detect sub-grid surface inundation relative to 

finer scale (30-m to 250-m resolution) static open water maps. The relative consistency in 

resolving regional patterns and enhanced microwave sensor capabilities for continuous 

monitoring provide for improved resolution of characteristic dynamic seasonality and periodic 

wet/dry cycles in surface inundation across the Arctic-boreal domain.  

The combination of frequent Fw monitoring from satellite passive microwave sensor 

records and finer scale open water maps available from satellite optical-IR and radar sensor 
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records may enable improved resolution of spatial patterns and seasonal to annual variability in 

regional water bodies that can be used in context with available climate data to improve 

understanding of regional climate change impacts to surface hydrology, energy and carbon 

cycles in Arctic-boreal regions. More detailed information concerning the temporal variability in 

inundation extent and the separation of Fw into wetland and lake area components will benefit 

carbon modeling efforts, especially for CH4 emissions, which are strongly influenced by the 

extent and duration of surface inundation.  
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Tables 

 

Table 2.1 Commonly used nomenclature. 

Nomenclature               

Symbol Explanation             

Fw Fractional open water cover 

    Fwavg AMSR-E Fw, monthly mean  

    Fwmx AMSR-E Fw, monthly maximum 

    Fws Fw derived from static classification maps 

   Tb AMSR-E brightness temperature, 18.7 and 23.8 GHz  

  Tbu Upwelling atmospheric brightness temperature  

  Tbd Downwelling atmospheric brightness temperature  

  Tbs Upwelling surface brightness temperature  

   Tbl Tb emissions from land components 

   Tbw Tb emissions from water components 

   Ta Air temperature (~ 2 m height) 

    Ts Surface temperature 

     

δ 

Ratio of Ta to 

Ts 

      τ Vegetation optical depth 

     Vp Total column water vapor in atmosphere 

   ε Emissivity  

      εs Emissivity, surface  

     εl Emissivity, land surface  

     εos Emissivity, bare soil  

     εw Emissivity, open water  

     ta Transmissivity  

      tc Attenuation of upwelling Tbs by canopy and litter  

  Ω Surface roughness  

     ω Vegetation single scattering albedo 
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Table 2.2 Summary of statistical comparisons for AMSR-E monthly means (Fwavg) and 

maximums (Fwmx) against the MOD44W static open water (Fws) map for the pan-Arctic domain, 

and regional (Northern Europe, Alaska, North Central CN) Fws maps from Landsat.  Measures of 

similarity include coefficient of determination (R
2
), mean residual error (MRE) for AMSR-E Fw 

- Fws, and RMSE.  The relationships are significant at a 0.05 probability level. 

Region 

 

            R
2
 % MRE % RMSE 

Fwavg         Fwmx  Fwavg          Fwmx    Fwavg         Fwmx 

pan-Arctic (all) 0.77       0.72     -0.82   4.92  5.55    6.01 

pan-Arctic (< 60°N) 0.84       0.75     -0.92   4.43  3.90         4.86 

pan-Arctic (> 60 °N) 0.71       0.69     -0.70   5.48  6.90    7.01 

N. Europe 0.78       0.39     -0.56   5.34  1.86        3.15 

Alaska 0.81       0.80     -1.87   3.00  6.27    6.42 

N. C. Canada 0.75       0.75     -8.21  -0.96  4.53         4.51 

 

 

Table 2.3 Summary of statistical comparisons for AMSR-E monthly means (Fwavg) and 

maximums (Fwmx) against the MOD44W static open water (Fws) map for the pan-Arctic domain, 

and regional (Northern Europe, Alaska, North Central CN) Fws maps from Landsat.  Measures of 

similarity include coefficient of determination (R
2
), mean residual error (MRE) for AMSR-E Fw 

- Fws, and RMSE.  The relationships are significant at a 0.05 probability level. 

Region 

 

            R
2
 % MRE % RMSE 

Fwavg         Fwmx  Fwavg          Fwmx    Fwavg         Fwmx 

pan-Arctic (all) 0.77       0.72     -0.82   4.92  5.55    6.01 

pan-Arctic (< 60°N) 0.84       0.75     -0.92   4.43  3.90         4.86 

pan-Arctic (> 60 °N) 0.71       0.69     -0.70   5.48  6.90    7.01 

N. Europe 0.78       0.39     -0.56   5.34  1.86        3.15 

Alaska 0.81       0.80     -1.87   3.00  6.27    6.42 

N. C. Canada 0.75       0.75     -8.21  -0.96  4.53         4.51 
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Table 2.4 Mann Kendall tau trend strength for AMSR-E Fw in the pan-Arctic domain, individual 

permafrost (PF) zones and associated sub-regions.  Regional trends (yrs. 2003-2010) were 

evaluated for the total annual number of grid cells with Fw present (Fw Count), the mean annual 

duration of Fw inundation (Fw Duration), and percent change in mean annual inundation area 

(Fw Area) derived from Fw monthly means (Fwavg) and maximums (Fwmx).  The sub-regions 

evaluated include North America (NA) and Eurasia (EA), continuous (C), discontinuous (D), and 

sporadic/isolated (S) PF zones.  The possible range for tau is -1 to 1 and the sign indicates trend 

direction; |1| indicates a perfect rank agreement with time.  Trend significance (in bold) is 

denoted by asterisks * and ** for respective 0.1 and 0.05 probability levels.  

Region 
  Fw 

Count 

    Fw 

Duration 

        Fw Area 

Fwavg                   Fwmx 

Pan-Arctic (> 50°N) 0.34   0.71**  0.33  0.24 

NA 0.24   0.71**  0.14  0.33 

EA 0.33   0.52 -0.05  0.14 

All PF zones 0.81**   0.71**  0.43  0.62* 

C 0.71**   0.90**  0.53  0.71** 

D 0.62*   0.71**  0.24  0.43 

S 0.62*   0.52 -0.14  0.42 

C-NA 0.24   0.90**  0.42  0.52 

C-EA 0.62*   0.90**  0.43  0.61* 

D-NA 0.62*   0.71**  0.52  0.62* 

D-EA 0.52   0.52 -0.33 -0.05 

S-NA 0.05   0.52 -0.05  0.14 

S-EA 0.62*   0.43  0.33 -0.04 
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Table 2.5 Trend slope estimates for AMSR-E Fw in the pan-Arctic domain, individual 

permafrost (PF) zones and associated sub-regions.  The slope estimates (yrs. 2003-2010) were 

evaluated for the total annual number of grid cells with Fw present (Fw Count), the mean annual 

duration of Fw inundation (Fw Duration), and percent change in mean annual inundation area 

(Fw Area) derived from Fw monthly means (Fwavg) and maximums (Fwmx).  The sub-regions 

evaluated include North America (NA) and Eurasia (EA), continuous (C), discontinuous (D), and 

sporadic/isolated (S) PF zones.  Trend significance (in bold) is denoted by asterisks * and ** for 

respective 0.1 and 0.05 probability levels.  

Region Fw Count 

(cells yr
-1

) 

Fw Duration 

(days yr
-1

) 

Fw Area                                     

(% yr
-1

) 

       Fwavg                          Fwmx 
  

Pan-Arctic (> 50°N)   218.69   0.76**    25,000      98,293 

NA     10.28         0.80**      4,648      43,787 

EA   186.78     0.61    -2,938      18,047 

All PF zones  140.52**    0.64**    36,929        73,910* 

C    65.34**    0.82**    16,179          16,907** 

D  33.65*    0.26**      4,583      12,493 

S  53.39*         0.78      8,285       31,573 

C-NA      -4.59    0.91**    13,375            966 

C-EA  51.90*    0.76**     -1,127        19,772* 

D-NA  15.97*    0.43**      4,591        10,101* 

D-EA      16.54          0.11     -3,410          494 

S-NA  0.85 0.65      5,438      12,287 

S-EA  38.68* 0.71      7,992          184 
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Figures 

 

 

 
Figure 2.1 Simulated RMSE uncertainty for AMSR-E algorithm retrievals of Fw (a) and surface 

temperature (T) (b) expressed over a range of Fw variability.  All data series contain both 

random errors from various sources denoted in the legend (See Section 2.2 for explanation) and 

systematic errors resulting from the simplified emission model (denoted as “Model bias” for the 

series without random error sources).  Symbols represent mean RMSE values calculated across 

30 simulation sets (1000 model runs per set) with Fw varying from 0 to 0.5 in 0.05 increments.  

The RMSE standard deviations for each group of sets are within the symbol bounds (≤ 0.0015 

for Fw and ≤ 0.15 K for T). 
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Figure 2.2 Difference maps between mean annual Fw determined from AMSR-E mean monthly Fw (Fwavg) values minus 

corresponding static Fw (Fws) values from the MOD44W product for the pan-Arctic domain and Landsat based land cover 

classifications for three sub-regions: Northern Europe (a), Alaska (b) and North Central CN (c).  Red hues show regions where 

MOD44W or Landsat-based Fws estimates are greater than AMSR-E Fwavg, while blue hues indicate regions where AMSR-E Fwavg 

values are higher than Fws.  
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Figure 2.3 Difference maps between mean annual Fw determined from AMSR-E monthly maximum Fw values (Fwmx) minus 

corresponding static Fw (Fws) values derived from the MOD44W product for the pan-Arctic domain and Landsat based land cover 

classifications for three sub-regions:  Northern Europe (a), Alaska (b) and North Central CN (c).  Red hues show regions where 

MOD44W or Landsat-based Fws estimates are greater than AMSR-E Fwmx, while blue hues indicate regions where AMSR-E Fwmx 

values are higher than Fws. 
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Figure 2.4 Mean river discharge (Q, m

3
/s) and corresponding basin-averaged Fwavg (km

2
) 

anomalies for the Yukon, Mackenzie, Ob, Lena and Yenisey river basins over the 8 year 

(2003-2010) AMSR-E record.  To minimize temporal lag effects between basin surface 

water storage and discharge, anomalies were calculated from bi-monthly means during 

the northern summer months (AM, JJ, AS), except for the Ob basin where the anomalies 

were derived from tri-monthly (MAM, JJA, SON) means.  The temporal Q gaps in the 

Ob, Lena, and Yenisey records are due to missing station observations.  Sample sizes for 

the correlation coefficients (R) range from 17 to 24 anomaly observations.  Basin R 

values range from 0.71 to 0.87 and are significant at the 0.01 probability level. 
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Figure 2.5 Study period (2003-2010) Fw means (left) and corresponding standard deviations (right) for the pan-Arctic domain (> 

50ºN) as determined from AMSR-E Fw monthly means (Fwavg).  The Yukon, Mackenzie, Ob, Lena and Yenisey river basins are 

outlined in red.
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Figure 2.6 Seasonal progressions in AMSR-E Fw area (km
2
) for selected regions within the pan-

Arctic domain (> 50 ºN) as determined from Fw monthly means (Fwavg, in gray) and monthly 

maximums (Fwmx, in black) for the study period (2003-2010).  Static Fw estimates (Fws) from 

the MOD44W open water map (black, dashed) are presented for the same regions. 
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Figure 2.7 Significant (p < 0.10) Fw trend areas within permafrost (PF) regions for mean annual 

Fw (Fwavg) determined from AMSR-E mean monthly Fw values from 2003-2010.  The blue, 

light blue-gray and light green areas represent continuous (C), discontinuous (D) and 

sporadic/isolated (S) PF zones, respectively.  The blue areas indicate significant positive Fw 

trends, while red areas indicate significant negative Fw trends.  The relative proportion (%) of 

grid cells having significant positive or negative trends within each PF zone is summarized in the 

corresponding bar graph; error bars indicate 95% confidence intervals for the PF area 

proportions. 
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Chapter 3: Surface water inundation in the Arctic-boreal zone: potential impacts on regional 

methane emissions  

Corresponding publication: 

Watts J D, J S Kimball, A Bartsch, K C McDonald (2014) Surface water inundation 

in the boreal-Arctic: potential impacts on regional methane emissions. Environ. Res. 

Lett., 9: 1-13 

 

 

3.1 Abstract 

Northern wetlands may be vulnerable to increased carbon losses from methane (CH4), a 

potent greenhouse gas, under current warming trends.  However, the dynamic nature of open 

water inundation and wetting/drying patterns may constrain regional emissions, offsetting the 

potential magnitude of methane release.  Here we conduct a satellite data driven model 

investigation of the combined effects of surface warming and moisture variability on high 

northern latitude (> 45° N) wetland CH4 emissions, by considering (1) sub-grid scale changes in 

fractional water inundation (Fw) at 15-day, monthly and annual intervals using 25-km resolution 

satellite microwave retrievals, and (2) the impact of recent (2003-2011) wetting/drying on 

northern CH4 emissions.  The model simulations indicate mean summer emissions of 55 Tg CH4 

yr
-1

 from Arctic-boreal wetlands.  Approximately 12% and 16% of the emissions originate from 

open water and landscapes with emergent vegetation, respectfully, determined from 15-day Fw 

means or maximums, and significant increases in regional CH4 emissions were observed when 

incorporating inundated land fractions into the model simulations at monthly or annual time 

scales.  The satellite Fw record reveals widespread wetting across the Arctic continuous 

permafrost zone, contrasting with surface drying in boreal Canada, Alaska and western Eurasia.  

Arctic wetting and summer warming increased wetland emissions by 0.48 Tg CH4 yr
-1

, but this 

was mainly offset by decreasing emissions (-0.32 Tg CH4 yr
-1

) in sub-Arctic areas experiencing 

surface drying or cooling.  These findings underscore the importance of monitoring changes in 

surface moisture and temperature when assessing the vulnerability of Arctic-boreal wetlands to 

enhanced greenhouse gas emissions under a shifting climate.  
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3.2 Introduction 

Wetlands and lakes cover approximately 2-8% of the Arctic-boreal region (Watts et al. 

2012), with large fluctuations in surface water extent resulting from seasonal melt cycles, 

summer precipitation and drought events (Schroeder et al. 2010, Bartsch et al. 2012, Helbig et 

al. 2013).  Wet surface conditions and characteristically colder temperatures greatly reduce the 

rate of organic carbon decomposition in northern wetland environments (Harden et al. 2012, 

Elberling et al. 2013).  As a result, over 50% of the global soil organic carbon pool is stored in 

these regions (Turetsky et al. 2007, Hugelius et al. 2013).  Landscapes with inundated or moist 

surfaces are particularly vulnerable to carbon loss as methane (CH4) (Turetsky et al. 2008, Fisher 

et al. 2011, Olefeldt et al. 2013).  Contemporary estimates of methane source contributions from 

northern wetlands range between 12 and 157 Tg CH4 yr
-1

 (Petrescu et al. 2010, McGuire et al. 

2012, Meng et al. 2012, Gao et al. 2013), and may double over the next century if surface 

temperatures continue to rise (Koven et al. 2011, Schneider von Deimling et al. 2012).   

Various wetland maps have been used to define the extent of methane emitting area 

(Matthews & Fung 1987, Aselmann & Crutzen 1989, Reeburgh et al 1998, Lehner & Döll 2004, 

Schneider et al. 2009, Glagolev et al. 2011), but their static nature fails to capture dynamic 

spatiotemporal variations in surface wetness within Arctic-boreal environments.  Modeling 

studies are increasingly using satellite based inundation data to characterize the impact of 

changing surface water coverage on regional methane emissions (Petrescu et al. 2010, Riley et 

al. 2011, Zhu et al. 2011, Meng et al. 2012, Bohn et al. 2013, Wania et al. 2013).  These datasets 

include the GIEMS (Global Inundation Extent from Multi-Satellites) record (Prigent et al. 2007, 

Papa et al. 2010) that estimates monthly inundation within 0.25° resolution grid cells using 

microwave observations from the Special Sensor Microwave/Imager (SSM/I) and ERS Synthetic 

Aperture Radar (SAR).  However, the GIEMS record only spans from 1993 to 2004 and relies on 

visible (0.58-0.68 μm) and near-infrared (0.73-1.1 μm) Advanced Very High Resolution 

Radiometer (AVHRR) data to account for vegetation canopy effects on microwave retrievals 

(Papa et al. 2010).  An alternative method, described by Schroeder et al. (2010) and integrated 

into methane studies for western Siberia (Bohn et al. 2013, Wania et al. 2013), avoids the use of 

optical/infrared information by incorporating QuikSCAT scatterometer and 6.9 GHz passive 
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microwave data from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) to 

determine 25 km grid fractional water coverage at 10 day intervals.   

A recent approach introduced by Jones et al. (2010) uses AMSR-E 18.7 and 23.8 GHz, 

H- and V- polarized brightness temperatures to retrieve 25-km resolution daily fractional open 

water (Fw) inundation, and does not require ancillary information (e.g. AVHRR optical or 

QuikSCAT radar) to account for microwave scattering effects from intervening atmosphere and 

vegetation.  The Jones et al. (2010) AMSR-E Fw data have been used to evaluate recent seasonal 

and inter-annual inundation variability across the northern high latitudes and permafrost regions, 

with a demonstrated sensitivity to changes in the surface water balance, and a relatively low 

observation spatial uncertainty of approximately 4% (Watts et al. 2012).  Although satellite 

optical and radar remote sensing can characterize wetland and open water distributions at finer (< 

150 m resolution) scales (Bartsch et al. 2012, Rover et al. 2012, Bohn et al. 2013, Muster et al. 

2013) this information is often constrained to localized analyses with minimal repeat 

observations and is not yet conducive for the pan-Arctic wide monitoring of surface inundation.  

This study examines the potential implications of recent (2003 to 2011) variability in 

surface wetness on methane efflux from northern high latitude (≥ 45ºN) wetlands, and the 

contrasting influence of regional changes in moisture and temperature on summer (May through 

September) emission budgets using recent satellite remote sensing and reanalysis information.  

We postulate that seasonal and inter-annual fluctuations in surface inundation can greatly limit 

the magnitude of methane release from wetland environments, particularly if summer warming 

coincides with periods of drought.  Conversely, northern wetlands may be more susceptible to 

methane emissions when the extent and duration of surface wetness is sustained or increasing.  

We conducted a series of carbon and climate sensitivity simulations using the Joint UK Land 

Environment Simulator (JULES) methane emissions model (Clark et al. 2011, Bartsch et al. 

2012), with input Fw means and maximums at 15-day, monthly, and annual intervals as derived 

from an AMSR-E global daily land parameter record (Jones et al. 2010, 2011a).  In this study, 

Fw is defined as the proportional surface water cover within 25 km equal area AMSR-E grid 

cells (Watts et al. 2012), and includes inundated soils, open water (e.g. lake bodies) and areas 
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with emergent vegetation.  We then evaluated the impact of recent temperature variability and 

wetting/drying on methane emission budgets for the northern wetland regions.  

 

3.3 Methods 

3.3.1 Study region 

The land area considered in this analysis was determined using Arctic-boreal peatland 

maps (i.e.  Gunnarsson & Löfroth 2009, Yu et al. 2010, Franzén et al. 2012), and the REgional 

Carbon Cycle and Assessment Processes (RECCAP) tundra domain (McGuire et al. 2012).  To 

coincide with the spatial extent of AMSR-E Fw coverage, we also removed 25-km grid cells 

having > 50% permanent ice or open water cover using the UMD MODIS land cover product 

(described in Jones et al. 2010).  The resulting study region spans approximately 2 x 10
7
 km

2
 

(Figure 1), and contains 72% of northern continuous and discontinuous permafrost affected 

landscapes (Brown et al. 1998).   

3.3.2 Model description and calibration 

The JULES model approach (Clark et al. 2011, Bartsch et al. 2012) accounts for the 

major factors (i.e. temperature, carbon substrate availability, landscape wetness) that control 

global methane emissions (Bloom et al. 2010, Olefeldt et al. 2013).  Albeit relatively simple and 

lacking in detailed physical processes, this method is useful for pan-Arctic simulations because it 

avoids extensive parameterization requirements that can substantially increase estimate 

uncertainty (Riley et al. 2011).  The model regulates methane emissions per available carbon 

substrate (C, kg m
-2

) and an efflux rate constant (kCH4, d
-1

) that is modified by a temperature 

dependent Q10 factor (Gedney et al. 2004, Clark et al. 2011).  The temperature effects on 

methane production are controlled using daily input surface soil temperature (Ts, in kelvin) and a 

thermal reference state (T0, 273.15 K):    

 FThwQkCF
TT

CH
s

CH


 10/)(

104
0

4
                                                                               (1) 

For this analysis, we limit our investigation to non-frozen surface conditions defined 

using daily satellite passive microwave sensor derived binary (0 or 1) freeze/thaw (FThw) 

constraints (Kim et al. 2013).  The resulting daily grid cell fluxes (FCH4, tonne CH4) were 
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averaged over a 15-day time step and scaled (α) using AMSR-E Fw information to regulate 

methane emissions according to volumetric soil moisture (θ) conditions for non-inundated 

surface fractions.  The daily input Ts and θ (< 10 cm soil depth) records were obtained from the 

NASA GEOS-5 MERRA (Modern Era Retrospective-analysis for Research and Applications) 

Land reanalysis archive with native 0.5° x 0.6° resolution (Reichle et al. 2011) and posted to a 25 

km resolution polar equal-area scalable earth (EASE) grid consistent with the AMSR-E Fw data.  

The MERRA Land parameters have been evaluated for high latitude regions, with favorable 

correspondence in relation to independent satellite microwave and in-situ observations (Yi et al. 

2011).   

Soil metabolic carbon (Cmet) pools obtained from a Terrestrial Carbon Flux (TCF) model 

(Kimball et al. 2009, Yi et al. 2013) were used as the substrate for methanogenesis.  The TCF 

carbon estimates reflect daily changes in labile plant residues and root exudates, and have been 

evaluated against existing soil organic carbon inventory records for the high latitude regions 

(described in Yi et al. 2013).  The Cmet inputs (kg C m
-2

 d
-1

) were generated for the study region 

by a 1000 year spin-up of the model using a ten year (2000-2009) record of Moderate Resolution 

Imaging Spectroradiometer (MODIS) 1 km resolution NDVI (Normalized Difference Vegetation 

Index) and MERRA daily surface meteorology and soil moisture inputs.   

The JULES model kCH4 and Q10 parameters were calibrated using mean monthly eddy 

covariance methane fluxes (mg CH4 m
-1

 d
-1

) from five northern wetland tower sites (Figure 1) 

that are described in the published literature (i.e. Rinne et al. 2007, Sachs et al. 2008, Wille et al. 

2008, Zona et al. 2009, Long et al. 2010, Parmentier et al. 2011), in conjunction with mean 

MERRA reanalysis Cmet and Ts climatology over the 2003-2011 summer (May through 

September) period.  A resulting Q10 value of 3.7 and a kCH4 rate of 3.7 x 10
-5

 d
-1

 minimized the 

root-mean-square-error (RMSE) differences between the model and flux tower observations at 

17.62 mg CH4 m
-2

 d
-1

.  A Q10 of 3.7 was also used by Clark et al. (2010) and is similar to those 

reported in other studies (Ringeval et al. 2010, Waldrop et al. 2010, Lupascu et al. 2012).  

Further model verification was also obtained by evaluating summer flux chamber measurements 

(see Supplementary Table S3.1) from tundra (n = 15 site records), boreal wetland (n = 11) and 

lake (n = 17) locations.   
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3.3.3 Regional simulations 

Grid-scale (25 km) wetland methane emissions were obtained using dynamic 15-day, 

monthly and annual summer AMSR-E Fw means or maximums from 2003 to 2011.  Methane 

simulations were also examined using a static mean summer Fw map derived from the 2003-

2011 record.  The regional simulations were evaluated against NOAA ESRL atmospheric 

methane flask measurements (Dlugokencky et al. 2013) from Barrow, AK, Lac LaBiche, CAN, 

and Pallas Sammaltunturi, FI, to assess the ability of the model to capture between-year changes 

in methane concentrations that may correspond with fluctuations in wetland methane emissions 

(Lelieveld et al. 1998).  For Barrow and Sammaltunturi, the dry air mole fractions were available 

from 2003 through 2011; the Lac LaBiche data were available from 2008 onward.   

A Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT; Draxler & Rolph 

2013, Rolph 2013) model, with a 100 m receptor point altitude and input GDAS-1 meteorology 

(Rodell et al. 2004), was used to obtain backward (30 day) atmospheric trajectories for each 

flask site, and showed the dominant source contributions at Barrow to originate primarily from 

northern Alaska, the Yukon, and eastern Siberia.  For the respective Lac LaBiche and 

Sammaltunturi locations, the major source regions were from northern Canada, or extending 

from Scandinavia eastward into western Russia.  To determine the relative correspondence 

between modeled annual methane emission contributions and observed mean summer dry air 

mole fractions, Pearson product-moment correlation coefficients (r) were derived using spatial 

means from a 3 x 3 grid cell window centered on each flask location.  Regional point correlation 

maps (Ding & Wang 2005) were also obtained by evaluating r (ej, ak) for each grid cell within 

the methane source regions, where ej is the modeled mean summer emissions time series at a 

given cell location and ak is the atmospheric methane concentration time series at a flask 

sampling site.   

Regional changes in surface water coverage, soil moisture and temperature were 

evaluated using a non-parametric Mann-Kendall trend analysis that accounts for serial 

correlation prior to determining trend significance (Yue et al. 2002, Watts et al. 2012).  The 

Kendall rank correlations were applied to the mean summer AMSR-E Fw, and MERRA Ts and θ 

records on a per-grid cell basis from 2003 to 2011.  Trend significance was determined at a 
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minimum 95% (p < 0.05) probability level.  The Kendall trend analysis was also applied to the 

modeled cumulative annual methane emissions to identify regions that may be vulnerable to 

increasing anaerobic carbon losses.  

3.4 Results and discussion 

3.4.1 Model evaluation against in situ methane flux observations 

The model simulations captured overall temporal variability (r
2
 = 0.65, p < 0.05) 

observed in the monthly tower eddy covariance records, with a RMSE value of 17.6 mg CH4 m
-2

 

d
-1

 that is similar to other regional studies (Meng et al. 2012, Zhu et al. 2013).  Significant 

differences (α = 0.05; two-sample t-test with unequal variance) were not observed (figure S1) 

between the model estimates and mean monthly tower eddy covariance (t = 1.45, p = 0.15), 

boreal chamber (t = 0.05, p = 0.96), and northern lake (t = 0.79, p = 0.45) fluxes.  However, the 

modeled fluxes were significantly smaller (t = 3.67, p < 0.01) than the tundra chamber 

observations and did not adequately capture larger (> 140 mg CH4 m
-2

 d
-1

) eddy covariance 

fluxes from a peatland site in northern Sweden (Jackowicz-Korczyński et al. 2010).  These 

discrepancies may reflect the presence of tall sedges (e.g. E. angustifolium), which can 

substantially increase emission rates through aerenchymateous tissue pathways (Joabsson et al. 

1999), or the limited representation of landscape scale emissions by chamber measurements 

given the potentially large contrasts in methane fluxes from dry and wet vegetation communities 

(Parmentier et al. 2011) and functional groups (Kao-Kniffin et al. 2010).   

The modeled methane fluxes were within the 5-140 mg CH4 m
-2

 d
-1 

range observed in the 

lake measurements (Zimov et al. 1997, Laurion et al. 2010, Desyatkin et al. 2009, Sabrekov et 

al. 2012), although these observations primarily reflect diffusive gas release and background 

bubbling instead of episodic ebullition events.  As a result, the model simulations may 

underestimate ebullition release from open water bodies, particularly in carbon-rich thermokarst 

regions characterized by methane seeps (Walter et al. 2006).  However, the fraction of lake 

bodies exhibiting this seep behavior is not well quantified, and a recent analysis of sub-Arctic 
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lakes reported that summer ebullition events averaged only 13 mg CH4 m
-2

 d
-1

, with a low 

probability of bubble fluxes exceeding 200 mg m
-2

 d
-1

 (Wik et al. 2013).  

3.4.2 Regulatory effects of surface water and temperature on regional methane emissions  

3.4.2.1 Wetland inundation characteristics 

Approximately 7% (1.4 x 10
6
 km

2
 + 3%) of the Arctic-boreal domain was inundated with 

surface water during the non-frozen summer season, as indicated by the 2003-2011 AMSR-E Fw 

retrieval means.  Over 60% of the wetlands were located in North America, primarily within the 

Canadian Shield region, and the majority of inundation occurred above 59° N within major 

wetland complexes, including the Ob-Yenisei and Kolyma Lowlands in Siberia (Figure 2).  A 

strong seasonal pattern in surface water was observed across the high latitudes, with an abrupt 

increase in May or early June following surface ice and snow melt, and the onset of spring 

precipitation (Figure 3).  In Eurasia, peak inundation occurred in June, followed by a gradual 

decline with summer drought and increased evaporative demand (Rawlins et al. 2009, Schroeder 

et al. 2010, Bartsch et al. 2012, Watts et al. 2012).  In North America, the seasonal expansion of 

surface water continued through July, before beginning to subside with the onset of surface 

freezing.    

The influence of wet/dry cycles on surface water extent was evident throughout the 

Arctic-boreal region.  The summer of 2004 was the driest observed over the AMSR-E Fw record, 

with a 6% decrease in inundation from the long-term mean that coincided with drought 

conditions across the Arctic Basin and Alaska (Rinsland et al. 2007, Zhang et al. 2008, Jones et 

al. 2013).  In North America, 2005 and 2006 were the wettest summers, with a 7% increase in 

water coverage.  These positive anomalies were also reflected in the high river discharge 

observed in the Yukon basin (Watts et al. 2012) and Hudson Bay lowlands (Déry et al. 2011) 

following high spring snow melt and summer precipitation.  The wettest summer in Eurasia 

occurred in 2010, with a 5% increase in surface water that was primarily associated with a strong 

La Niña event that brought cooler air and precipitation to central Siberia despite an anomalous 

heat wave and drier conditions in western Russia (Schneidereit et al. 2012, Trenberth & Fasullo 

2012).   
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3.4.2.2 Regional summer methane simulations 

Summer methane emissions estimated for non-inundated land fractions averaged 47.9 + 

1.8 Tg CH4 yr
-1

 over the northern wetlands.  This increased to 54.6 + 1.8 Tg CH4 yr
-1

 when also 

considering contributions from inundated landscapes based on the 15-day AMSR-E Fw means.  

These results are within the range of emissions (39 to 89 Tg CH4 yr
-1

) reported from previous 

modeling studies using other satellite-based Fw retrievals (Table 1; Petrescu et al. 2010, 

Ringeval et al. 2010, Riley et al. 2011, Spahni et al. 2011, Wania et al. 2013), but are higher 

than those from atmospheric inversion analyses of northern peatlands (approximately 30 Tg CH4 

yr
-1

, Spahni et al. 2011).  The coarse resolution (0.5° x 0.6°) reanalysis meteorology used in the 

model simulations do not well represent sub-grid variability in soil wetness and temperature 

controls (von Fischer et al. 2010, Sachs et al. 2010, Sturtevant & Oechel 2013), which may lead 

to systematic biases when evaluating methane emissions at larger scales (Bohn & Lettenmaier 

2010).  However, top-down inversion analyses are also prone to uncertainties from atmospheric 

transport conditions and the limited number of observation sites within high latitude regions 

(Berchet et al. 2013, Nisbet et al. 2014).   

In northern wetlands, 80-98% of annual methane emissions occur during the summer 

(Alm et al. 1999, Jackowicz-Korczyński et al. 2010, Song et al. 2012) due to strong thermal 

controls on methane production, carbon substrate and water availability (Strom et al. 2003, 

Christensen et al. 2003, Wagner et al. 2009).  The influence of summer warming on regional 

methane emissions was apparent in the model simulations, with peak efflux occurring in June 

and July (Figure S3.2).  This seasonal pattern has been observed in atmospheric methane mixing 

ratios across the Arctic (Aalto et al. 2007, Pickett-Heaps et al. 2010, Fisher et al. 2011).  Also 

evident was the impact of wet/dry cycles on regional methane contributions, with annual summer 

emission budgets fluctuating by + 4%, relative to the 2003-2011 mean.  The modeled emissions 

were lowest in 2004 despite anomalously high temperatures throughout the Arctic-boreal region 

(Chapin et al. 2005), due to drought conditions in Alaska and northern Canada.  In contrast, 

higher emissions in 2005 resulted from warm and wet weather in North America.   

Surface moisture variability also influenced the correspondence between the modeled 

emissions and summer atmosphere methane concentrations from the regional flask 
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measurements.  Regions showing a positive correspondence between modeled methane 

emissions and atmosphere concentrations largely reflected atmospheric transport trajectories 

indicated in the HYSPLIT simulations (Figure S3.3), with stronger agreement (r > 0.7, p < 0.05) 

occurring in areas characterized by open water or prone to periodic inundation (Figure 4).  

Immediate to the flask sites, mean summer inundation varied from 2 to 10%, with moist soil 

fractions accounting for > 85% of simulated emissions.  At Lac LaBiche, annual emissions 

variability corresponding to wet soil fractions agreed well (r = 0.96, p = 0.02) with the flask 

observations.   

In contrast, relatively poor agreement was observed at Barrow and Sammaltunturi where 

emission patterns for inundated portions of the landscape corresponded more closely with 

atmospheric methane concentrations (Table 2).  At Barrow, the correspondence was similar (r > 

0.43, p < 0.12) for model simulations using dynamic 15-day or annual Fw inputs, reflecting 

methane source contributions from thermokarst lakes and inundated tundra in the surrounding 

landscape (Dlugokencky et al. 1995).  In contrast, the modeled emissions at Sammaltunturi 

corresponded closely (r = 0.86, p < 0.01) with flask observations when accounting for 15-day 

variability in Fw extent, but showed minimal agreement when using annual Fw inputs.  This 

discrepancy may be attributed to less open water cover in the surrounding region and a tendency 

for summer precipitation events to produce intermittent flooding due to shallow soil layers and 

limited drainage (Aalto et al. 2007).  These results differ from the Lac LaBiche site, where 

nearby peatlands are characterized by deeper layers of surface litter and moss (Dlugokencky et 

al. 2011) that can substantially reduce surface water coverage. 

 

3.4.3 Fw temporal scaling effects on summer methane budgets 

Wetland studies have increasingly used satellite microwave remote sensing to quantify 

the extent of methane emitting area, given the strong microwave sensitivity to surface moisture 

and relative insensitivity to solar illumination constraints and atmospheric signal attenuation.  

Regional inundation information has been incorporated into model simulations using monthly, 

annual, or static multi-year Fw means (Ringeval et al. 2010, Petrescu et al. 2010, Hodson et al. 

2011, Riley et al. 2011, Spahni et al. 2011, Meng et al. 2012, Wania et al. 2013).  However, our 
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simulation results show that temporal Fw scaling can lead to substantial differences in methane 

emission estimates (Table 1).   

In this analysis, inundation extent within the Arctic-boreal wetland regions increased by 

4-7% and 20-30% when using respective mean monthly or annual AMSR-E Fw inputs instead of 

finer (15-day) temporal intervals.  The coarser Fw temporal inputs resulted in respective 

increases in estimated methane emission budgets by 3% (t = 1.6, p = 0.05) and 17% (t = 6.7, p < 

0.01) in Eurasia, relative to simulations using finer 15-day Fw temporal inputs.  The impacts of 

Fw temporal scaling in North America were not significant (t < 0.7, p > 0.24), with 

corresponding increases of 0.5% (Fw monthly) and 2% (Fw annual) in estimated annual methane 

emissions.  The observed emissions sensitivity to Fw scaling in Eurasia primarily results from 

precipitation and flooding events in early summer, followed by mid-summer drying (Serreze &  

Etringer 2003).  As a result, Fw means considered over longer time intervals in these regions 

may be biased towards spring inundation conditions, and may not reflect regional decreases in 

surface wetness occurring during the warmer mid-summer months.  Directly incorporating Fw 

maximums, sometimes used to quantify multi-year surface hydrology trends (Bartsch et al. 2012, 

Watts et al. 2012), also led to substantial increases (t > 7.5, p < 0.01) in estimated methane 

emissions by > 40% in North America and 62% in Eurasia relative to simulations using static Fw 

means.   

3.4.4 Potential impact of regional wetting and drying trends on methane emission budgets  

Significant (p < 0.05) increases in surface inundation were observed over 5% (1 x 10
6
 

km
2
) of the high latitude wetlands domain from 2003 to 2011, with substantial Fw wetting 

occurring within northern tundra and permafrost affected landscapes (Figure 5).  While the 

regional wetting patterns may correspond with shifts in northward atmospheric moisture 

transport (Rawlins et al. 2009, Skific et al. 2009, Dorigo et al. 2012, Screen 2013), trends within 

the Arctic Rim may be more closely influenced by thermokarst expansion, reductions in seasonal 

ice cover (Smith et al. 2005, Rowland et al. 2010, Watts et al. 2012), and summer warming 

(Figure 6a).  In portions of western Siberia, localized cooling and residual winter snow melt 

(Cohen et al. 2012) may also contribute to surface wetting.  Regional drying was also observed 

across 3% (6 x 10
5
 km

2
) of the northern wetland domain, particularly in northern boreal Alaska, 
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eastern Canada and Siberia (Figure 5).  These declines in surface water extent may result from an 

increase in summer evaporative demand (Arp et al. 2011) and the terrestrialization of open water 

environments following lake drainage (Payette et al. 2004, Jones et al. 2011b, Roach et al. 2011, 

Helbig et al. 2013).    

The combined influence of warming and wetting in the AMSR-E Fw and reanalysis 

surface meteorology records contributed to an increase in methane emissions across 16% of the 

Arctic-boreal domain (Figure 6b), at a mean rate of 43 tonne CH4 yr
-1

 from 2003 to 2011.  These 

increases occurred primarily in Canada and eastern Siberia, where summer warming has been 

observed in both in-situ measurements and reanalysis records (Figure S3.4, Screen et al. 2010, 

Smith et al. 2010, Walsh et al. 2011).  This finding agrees with a projected 15% increase in 

methane emitting area with continued climate change in the northern wetland regions (Gao et al. 

2013).  A significant (p < 0.05) decrease in modeled methane emissions, associated with regional 

surface drying and cooling patterns, was also observed across 11% of the region (Figure 6b, 40 

tonne CH4 yr
-1

) and offset gains in overall methane emissions over the 2003-2011 period.   

 

3.5 Conclusions 

Northern Arctic-boreal ecosystems may be especially vulnerable to methane emissions 

given climate warming, abundant soil carbon stocks, and a predominately wet landscape (Isaksen 

et al. 2011, van Huissteden et al. 2011, Olefeldt et al. 2013).  We found that 7% of northern 

wetlands were characterized by open water or emergent vegetation, with the majority of 

inundation occurring in the Canadian Shield lowlands and Ob-Yenisei river basins.  Areas of 

significant (p < 0.05) increase in surface water extent were more prevalent within the Arctic Rim 

and may coincide with heightened summer precipitation (Landerer et al. 2010, Screen 2013) or 

high latitude permafrost thaw (Rowland et al. 2010, Watts et al. 2012).  The combined effect of 

surface wetting and warming contributed to regional increases of 0.48 Tg CH4 yr
-1

 in estimated 

methane emissions.  Our analysis also revealed surface drying throughout the boreal zones of 

southern Sweden, western Russia and eastern Canada, as has been anticipated with increasing 

summer temperatures and drought conditions in the sub-Arctic (Frolking et al. 2006, Tarnocai 
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2006).  This landscape drying contributed to a 0.32 Tg CH4 yr
-1

 decrease in summer emissions, 

and largely offset any increases in region-wide methane release.   

Regional modeling studies should consider the potential impacts of Fw scaling when 

prescribing the extent of methane emitting area in northern wetland regions, given the dynamic 

nature of surface water in northern landscapes (Schroeder et al. 2010, Bartsch et al. 2012, Watts 

et al. 2012).  Our model sensitivity analysis shows significant differences in estimated annual 

emissions determined from coarse monthly or annual Fw relative to finer scale (15-day) 

inundation inputs.  Although the estimated emissions rate of 55 Tg CH4 yr
-1

 is similar to the 

results from previous studies, it may overestimate the magnitude of methane release from pan-

boreal and Arctic wetland regions, given difficulties accounting for finer scale soil temperature 

and moisture heterogeneity (Sachs et al. 2008, Parmentier et al. 2011, Muster et al. 2013) using 

coarse > 0.5° reanalysis information.  The NASA Soil Moisture Active Passive (SMAP) mission 

(Entekhabi et al. 2014) launched early 2015 and provides new global satellite L-band passive 

microwave observations of the land surface, with regular monitoring of northern soil thermal and 

moisture dynamics at 1-2 day intervals and moderate (9 km) spatial scales.  These new 

observations may provide for the improved quantification of regional patterns and temporal 

dynamics in surface environmental conditions, which is needed to reduce uncertainty in regional 

and global methane emissions.    
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Tables 

Table 3.1 Wetland methane (CH4) emissions and associated surface inundation extent determined by regional modeling studies using 

satellite microwave based surface water (Fw) retrievals to define the spatial extent of methane producing area.  The Fw inputs include 

those scaled using 15-day, monthly and annual Fw means and maximums, or a static multi-summer Fw mean climatology.  The 

methane emissions determined in this study are reported for inundated and combined inundated/non-inundated wetland landscape 

fractions. 

 

Study Model Domain Fw Source Fw Period Fw Scaling 
Fw Area 

(km2) 

Simulation 

Period 

(CH4) 

Emissions 

(Tg CH4 yr-1) 

+ Std. Dev. 

Petrescu et al (2010) PEATLAND-VU 55° – 70° N Prigent et al (2007)  1993 – 2000 Monthly Clim. (Avg.) 1.6 x 106 
2001 –  2006  

     Adjusted Area 4.4 x 106 89 

Ringeval et al (2010) ORCHIDEE > 50° N Prigent et al (2007)  1993 – 2000 Month Avg. – 1993 – 2000 41 

Riley et al (2011) CLM4Me 45° – 70° N Prigent et al (2007)  1993 – 2000 Month Avg. 2 to 3 x 106   1995 –  1999 70 

Spahni et al (2011) LPJ-WHyMe 45° – 90° N Prigent et al (2007)  1993 – 2000 Month Avg. 2.1 x 106  2004 38.5 – 51.1 

Wania et al (2013) LPJ-WHyMe > 45° N 
Prigent et al (2007), 

Papa et al (2010) 
1993 – 2004 Annual Clim. (Avg.) – 1993 – 2004 40 

Wania et al (2013), 

Melton et al (2013) 
LPJ-Bern 35° – 90° N 

Prigent et al (2007), 

Papa et al (2010) 
1993 – 2004 Monthly Clim. (Avg.) – 2004 81 

This Study 

(All Areas) 
JULES-TCF 45° – 80° N 

Jones et al (2010), 

Watts et al (2012) 
 2003 – 2011 15-day Avg.  1.4 x 106 2003 – 2011 54.6 + 1.8 

 

This Study 

(Inundated Only) 

JULES-TCF 

 

45° – 80° N 

 

Jones et al (2010), 

Watts et al (2012) 
 2003 – 2011 

15-day Avg. 1.4 x 106 

2003 – 2011 

6.6 + 0.2 

15-day Max. 1.8 x 106 9 + 0.3 

Month Avg. 1.5 x 106 6.7 + 0.2 

Month Max.    2 x 106 9.8 + 0.3 

Annual Avg. 1.7 x 106 7.1 + 0.3 

Annual Max.    3 x 106 12.6 + 0.4 

Annual Clim. (Avg.) 1.7 x 106 7.2 + 0.3 
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Table 3.2 Mean summer fractional water (Fw) inundation and Pearson correspondence (r, with associated significance) between flask 

station dry air mole fractions (nmol CH4  mol
-1

) and cumulative methane emission estimates (tonne CH4 grid cell
-1

) within a 3 x 3 

window centered at Barrow (BRW), Lac LaBiche (LLB) and Pallas Sammaltunturi (PAL).  The model simulations incorporate 

dynamic 15 day or mean annual Fw; non-inundated grid cell fractions are regulated by surface soil moisture content (θ).  

 

Location Fw Inundation (%) 
Dynamic Fw       Annual Fw θ Fw + θ 

R 

BRW 5 – 15% 0.46 (p = 0.11) 0.43 (p = 0.12) -0.14 (p = 0.36)   0.05 (p = 0.45) 

LLB 3 – 4% 0.65 (p = 0.24) 0.74 (p = 0.18) 0.94 (p = 0.03)   0.96 (p = 0.02) 

PAL 1 – 3% 0.86 (p < 0.01) 0.02 (p = 0.48) 0.10 (p = 0.4)   0.13 (p = 0.37) 
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Figure 3. 1 Locations of tower eddy covariance, flux chamber, lake and flask measurement sites 

used to verify methane emission simulations for the Arctic-boreal (> 45°N) peatlands (based on 

data provided by Gunnarsson & Löfroth 2009, Yu et al. 2010, Franzén et al. 2012) and RECCAP 

tundra domain.  
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Figure 3.2 Regional variability in fractional surface water (Fw) within the northern (> 45°N) 

wetland regions by (a) latitudinal and longitudinal distribution and (b) pan-Arctic domain; black 

lines and grey shading in (a) denote respective Fw spatial means and standard deviations [± SD].  

A multi-year (2003-2011) mean of daily summer AMSR-E Fw retrievals was used to derive the 

spatial extent of inundation.   
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Figure 3.3 Seasonal (2003-2011) variability in AMSR-E Fw inundation (km

2
) within the Arctic-

boreal wetland domain.  The mean monthly Fw climatology is indicated in black, and 

corresponding + 2 SD (Fw minima, maxima) are denoted by dark (light) grey shading. 
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Figure 3.4 Regional Pearson correlation (r) between mean summer (May through September) dry air mole fractions (nmol CH4  mol
-1

) 

from NOAA ESRL flask sites in Alaska, Canada, and Finland, and modeled methane emissions (tonne CH4 cell
-1

) for sub-grid 

inundated (Fw) and non-inundated surface moisture (Ɵ) conditions.  Methane emissions from inundated surfaces reflect model 

simulations using dynamic 15 day Fw inputs, or static Fw climatology for the 2003-2011 summer period.  The correlation significance 

is determined at a minimum 95% probability level.  
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Figure 3.5 Recent summer AMSR-E Fw wetting and drying trends in the northern (> 45°N) 

wetland regions, indicated by Mann-Kendall tau rank coefficients.  Positive (negative) tau 

represents an increase (decrease) in surface water cover.  Black polylines denote areas having 

significant (p < 0.05, |tau| > 0.6) change in surface water extent over the 2003-2011 satellite 

observation record.  
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Figure 3.6 Regional (a) Pearson correlations (r) between summer MERRA reanalysis surface 

soil temperature (Ts) and AMSR-E Fw inundation extent from 2003 to 2011, and (b) trends 

(Mann-Kendall tau) in wetland methane (CH4) emissions for inundated and wet soil landscapes.  

Areas of significant (p < 0.05) correlation or trend are indicated by the black polylines.   
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Chapter 3 Supplement 

Table S3.1   Location and description of tower eddy covariance, chamber and lake flux measurement records used for methane (CH4) 

model calibration and validation. 

Location Coordinates Description Year(s) 

Month(s) of 

Measurement Method  

Average Flux  

(mg CH4 m
-2 d-1) Reference 

Barrow, Alaska 71°17’ N, 156°35’ W wet tundra 2007 July EC  25 Zona et al (2009) 

Central Alberta, Canada 54°57’ N, 112°28’ W boreal fen 2007 May-Sept. EC  25 Long et al (2010) 

Stordalen Mire, Sweden 68°21’ N, 19°02’ E wet tundra  2006,2007 May-Sept. EC  137 

Jackowicz-Korczynski et al 

(2010) 

Siikaneva, Finland 61°50' N, 24°12' E boreal fen 2005 May-Sept. EC  66 Rinne et al (2007) 

Lena River Delta, Siberia 72°22' N, 126°30' E wet tundra  2003,2006 July-Sept. EC  19 

Sachs et al (2008), Wille et al 

(2008) 

Kytalyk, Siberia 69°36’ N, 161°20’ E wet tundra  2009 June EC  38 Parmentier et al (2011) 

Barrow, Alaska 71°17’ N, 156°37’ W wet tundra 2007 July Flux chamber  50 von Fischer et al (2010) 

Barrow, Alaska 71°17’ N, 156°37’ W flooded tundra 2007 July Flux chamber  84 von Fischer et al (2010) 

North Slope, Alaska 70°03’ N, 148°34’ W wet tundra  1984 Aug. Flux chamber  119 Sebacher et al (1986) 

Brooks Range, Alaska 68°26’ N, 149°22’ W wet tundra 1984 Aug. Flux chamber  40 Sebacher et al (1986) 

Toolik Lake, Alaska 68°38’ N, 149°38’ W wet tundra 1991,1992 June-Aug. Flux chamber  57 Christensen (1993) 

Toolik Lake, Alaska 68°38’ N, 149°38’ W wet tundra 1991-1993 June-Aug. Flux chamber  94 Schimel et al (1995) 

Bethel, Alaska 60°45’ N, 161°45’ W wet tundra 1988 July, Aug. Flux chamber  73 Bartlett et al (1992) 

Bethel, Alaska 60°45’ N, 161°45’ W tundra lake  1988 July, Aug. Flux chamber  65 Bartlett et al (1992) 

Stordalen Mire, Sweden 68°21’ N, 19°02’ E wet tundra  1998-2000 June-Sept. Flux chamber  147 Öquist and Svensson (2002) 

Stordalen Mire, Sweden 68°22’ N, 19°03’ E wet tundra 2000-2007 July, Aug. Flux chamber  35 Bäckstrand et al (2010) 

Lena River Delta, Siberia 72°22' N, 126°28' E wet tundra 1999-200 July, Aug. Flux chamber  36 Wagner et al (2003) 

Tiksi, Siberia 71°50’ N, 130°0’ E tundra peatland 1993-1995 July, Aug. Flux chamber  46 Nakano et al (2000) 

Cherskii, Siberia 70°49’ N, 147°29’ E wet tundra 2003 July-Oct. Flux chamber  29 Merbold et al (2009) 

Indigirka lowlands, Siberia 70°48’ N, 147°26’ E wet tundra 2004 Aug. Flux chamber  173 van Huissteden et al (2005) 

Yamal, Siberia 68°08’ N, 71°42’ E wet tundra 1995 June, Aug. Flux chamber  64 Heyer et al (2002) 

Fairbanks, Alaska 64°52’ N, 147°51’ W boreal muskeg 1987-1990 May-Sept. Flux chamber  35 Whalen and Reeburgh (1992) 
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Bonanza Creek, Alaska 64°41’ N, 148°19’ W boreal wetland 2003 May-Sept. Flux chamber  93 Wickland et al (2006) 

Alaska Range 63°41’ N, 144°29’ W boreal marsh 1984 Aug. Flux chamber  106 Sebacher et al (1986) 

Hudson Bay, Canada 58°45’ N, 94°09’ W sub-arctic fen/bog 1990 June-Sept. Flux chamber  72 Roulet et al (1994) 

James Bay, Canada 51°35’ N, 81°16’ W boreal fen/bog 1990 June-Oct. Flux chamber  52 Roulet et al (1994) 

Storflaket, Sweden 
68°20’ N, 18°58’ E subarctic mire 2007 May-Sept. Flux chamber  21 Lund et al (2009) 

Noyabr'sk Pyaku Pur, 

Siberia 63°24’ N, 74°34’ E wet boreal hollow 2008-2010 Summer/Autumn Flux chamber  20 Sabrekov et al (2012) 

Noyabr'sk, Siberia 63°09’ N, 74°51’ E boreal bog 2008-2010 Summer/Autumn Flux chamber  29 Sabrekov et al (2012) 

Mukhrino, Siberia 60°53’ N, 68°40’ E boreal bog 2008-2010 Summer/Autumn Flux chamber  7 Sabrekov et al (2012) 

Bethel, Alaska 60°45’ N, 161°45’ W thermokarst lake 1988 July, Aug. Flux chamber  10 Bartlett et al (1992) 

Nunavik, Canada 73°09’ N, 79°58’ W thermokarst lake 2007 June, July 
Dissolved. gas 
conc. 14 Laurion et al (2010) 

Nunavik, Canada 55°16’ N, 77°46’ W thermokarst lake 2007 June, July 

Dissolved. gas 

conc. 2 Laurion et al (2010) 

Quebec, Canada 52°09’ N, 76°10’ W boreal lake 2006-2008 May, June 

Dissolved. gas 

conc. 0.69 Demarty et al (2011) 

Quebec, Canada 52°12’ N, 75°29’ W boreal lake 2006-2008 May, June 
Dissolved. gas 
conc. 0.3 Demarty et al (2011) 

Hudson Bay, Canada 51°35’ N, 81°16’ W boreal pond/lake 1990 June-Oct. Flux chamber 126 Roulet et al (1994) 

James Bay, Canada 51°35’ N, 81°16’ W boreal pond 1990 June-Sept. Static chamber 12 Roulet et al (1994) 

Stordalen Mire, Sweden 68°21’ N, 19°03’ E thermokarst lake 2007 

Summer, Non-

frozen period 

Dissolved. gas 

conc. 31 Karlsson et al (2010) 

Kolyma lowland, Siberia 69°N, 161° E thermokarst lake    - May-July 

Dissolved. gas 

conc. 5 Zimov et al (1997) 

Northern Siberia 68°45’ N, 161°20’ E thermokarst lake 2003-2004 June-Sept. Bubble traps 39 Walter et al (2006) 

Khanty-Mansiysk, Siberia 65°52’ N, 74°58’ E thermokarst lake 2005 July, Aug. Floating chamber 6 Repo et al (2007) 

Purpe, Siberia 64°27’ N, 77°04’ E boreal pond 2008-2010 Summer/Autumn Static chamber 5 Sabrekov et al (2012) 

Yakutsk, Siberia 62°54’ N, 130°33’ E thermokarst pond 2007 June, Aug. Floating chamber 140 Desyatkin et al (2009) 

Yakutsk, Siberia 62°11’ N, 130°33’ E thermokarst pond 2007 June, Aug. Floating chamber 38 Desyatkin et al (2009) 

Yakutsk, Siberia 62°11’ N, 130°34’ E thermokarst pond 2007 June, Aug. Floating chamber 119 Desyatkin et al (2009) 

Yakutia, Siberia 62°05’ N, 129°45’ E thermokarst pond 2000-2001 June, July Floating chamber 48 Morishita et al (2003) 

Mukhrino, Siberia 60°53’ N, 68°38’ E boreal mire/lake 2008-2010 Summer/Autumn Static chamber 

  
57 Sabrekov et al (2012) 
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Figure S3.1 Modeled methane fluxes (mg CH4 m
-2

 d
-1

) evaluated against mean monthly (a) tower eddy covariance (EC) records from 

Alaska (US-Brw BE/CB), Canada (CA-WP), Finland (Fi-Sii), Russia (RU-Sam, RU-Cok) and (b) chamber (boreal and tundra 

wetlands) and lake flux observations.  Boxplot notches indicate the 95% confidence interval around the median (black horizontal line); 

lower and upper box boundaries indicate the first and third quartiles.  The methane emission estimates for tundra sites are significantly 

lower (p < 0.05, n = 10) than the flux chamber observations.  



89 

 

 
Figure S3.2 Mean summer methane fluxes (mg CH4 m

-2
 d

-1
) for northern tundra and peatland 

regions, over the 2003 to 2011 study period.  The northward progression of summer emissions 

reflects soil warming and lessening frozen surface constraints, in addition to increases in labile 

carbon availability.  
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Figure S3.3 Regional correlations (r) between mean summer (May through September) dry air mole fractions (nmol CH4  mol
-1

) from 

NOAA ESRL flask sites in Alaska, Canada, and Finland, and modeled methane emissions (tonne CH4 cell
-1

) for sub-grid inundated 

(Fw) and non-inundated surface moisture conditions.  The emissions from inundated surfaces reflect model simulations using dynamic 

15-day Fw inputs, or static Fw climatology for the 2003-2011 summer period.  
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Figure S3.4 Recent trends in MERRA reanalysis summer surface soil temperature (Ts) for 

northern wetland regions > 45°N, as indicated by Mann-Kendall tau rank coefficients.  Positive 

(negative) tau indicates regional warming (cooling); black polylines denote areas with significant 

(p < 0.05) change over the 2003-2011 period.   
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Chapter 4: A satellite data driven biophysical modeling approach for estimating northern 

wetland peatland and tundra CO2 and CH4 fluxes  

Corresponding publication: 

Watts J D, J S Kimball, F J W Parmentier, T Sachs, J Rinne, D Zona, W Oechel, T Tagesson, M 

Jackowicz-Korczyński, A Aurela (2014) A satellite data driven biophysical modeling approach 

for estimating northern peatland and tundra CO2 and CH4 fluxes. Biogeosciences,11: 1961-1980 

 

4.1 Abstract 

The northern terrestrial net ecosystem carbon balance (NECB) is contingent on inputs 

from vegetation gross primary productivity (GPP) to offset the ecosystem respiration (Reco) of 

carbon dioxide (CO2) and methane (CH4) emissions, but an effective framework to monitor the 

regional Arctic NECB is lacking.  We modified a Terrestrial Carbon Flux (TCF) model 

developed for satellite remote sensing applications to evaluate wetland CO2 and CH4 fluxes over 

pan-Arctic eddy covariance (EC) flux tower sites.  The TCF model estimates GPP, CO2 and CH4 

emissions using in-situ or remote sensing and reanalysis based climate data as inputs.  The TCF 

model simulations using in-situ data explained > 70% of the r
2
 variability in the 8 day 

cumulative EC measured fluxes.  Model simulations using coarser satellite (MODIS) and 

reanalysis (MERRA) records accounted for approximately 69% and 75% of the respective r
2
 

variability in the tower CO2 and CH4 records, with corresponding RMSE uncertainties of < 1.3 g 

C m
-2

 d
-1

 (CO2) and 18.2 mg C m
-2

 d
-1 

(CH4).  Although the estimated annual CH4 emissions 

were small (< 18 g C m
-2

 yr
-1

) relative to Reco (> 180 g C m
-2

 yr
-1

), they reduced the across-site 

NECB by 23% and contributed to a global warming potential of approximately 165 + 128 g CO2 

eq m
-2

 yr
-1

 when considered over a 100-year time span.  This model evaluation indicates a strong 

potential for using the TCF model approach to document landscape scale variability in CO2 and 

CH4 fluxes, and to estimate the NECB for northern peatland and tundra ecosystems.    
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4.2 Introduction 

Northern peatland and tundra ecosystems are important components of the terrestrial 

carbon cycle and store over half of the global soil organic carbon reservoir in seasonally frozen 

and permafrost soils (Hugelius et al. 2013).  However, these systems are becoming increasingly 

vulnerable to carbon losses as CO2 and CH4 emissions, resulting from climate warming and 

changes in the terrestrial water balance (Kane et al. 2012, Kim et al. 2012) that can increase soil 

carbon decomposition.  Recent net CO2 exchange in northern tundra and peatland ecosystems 

varies from a sink of 291 Tg C yr
-1

 to a source of 80 Tg C yr
-1

, when considering the substantial 

uncertainty in regional estimates using scaled flux observations, atmospheric inversions, and 

ecosystem process models (McGuire et al. 2012).  The magnitude of carbon sink largely depends 

on the balance between carbon uptake by vegetation productivity and losses from soil 

mineralization and respiration processes.  High latitude warming can increase ecosystem carbon 

uptake by reducing cold-temperature constraints on plant carbon assimilation and growth 

(Hudson et al. 2011, Elmendorf et al. 2012).  Soil warming also accelerates carbon losses due to 

the exponential effects of temperature on soil respiration, whereas wet and inundated conditions 

shift microbial activity towards anaerobic consumption pathways that are relatively slow but can 

result in substantial CH4 production (Moosavi & Crill, 1997, Merbold et al. 2009).   

Regional wetting across the Arctic (Watts et al. 2012, Zhang et al. 2012a) may increase 

CH4 emissions, which have a radiative warming potential at least 25 times more potent than CO2 

per unit mass over a 100-year time horizon (Boucher et al. 2009).  The northern latitudes already 

contain over 50 % of global wetlands and recent increases in atmospheric CH4 concentrations 

have been attributed to heightened gas emissions in these areas during periods of warming 

(Dlugokencky et al. 2009, Dolman et al. 2010).  Northern peatland and tundra (> 50°N) 

reportedly contribute between 8-79 Tg C in CH4 emissions each year, but these fluxes have been 

difficult to constrain due to uncertainty in the parameterization of biogeochemical models, the 

regional characterization of wetland extent and water table depth, and a scarcity of ecosystem 

scale CH4 emission observations (Petrescu et al. 2010, Riley et al. 2011, Spahni et al. 2011, 

McGuire et al. 2012, Meng et al. 2012).   
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Ecosystem studies using chamber and tower eddy covariance (EC) methods continue to 

provide direct measurements of CO2 and CH4 fluxes and add valuable insight into the 

environmental constraints on these processes.  However, extrapolating localized carbon fluxes to 

regional scales has proven difficult and is severely constrained by the limited number of in-situ 

observations and the large spatial extent and heterogeneity of peatland and tundra ecosystems.  

Recent approaches have used satellite-based land cover classifications, photosynthetic leaf area 

maps, or wetness indices to “up-scale” CO2 (Forbrich et al. 2011, Marushchak et al. 2013) and 

CH4 (Tagesson et al. 2013, Sturtevant & Oechel 2013) flux measurements.  Remote sensing 

inputs have also been used in conjunction with biophysical process modeling to estimate 

landscape-level changes in plant carbon assimilation and soil CO2 emissions (Yuan et al. 2011, 

Tagesson et al. 2012a, Yi et al. 2013).  Previous analyses of regional CH4 contributions have 

ranged from the relatively simple modification of CH4 emission rate estimates for wetland 

fractions per temperature and carbon substrate constraints (Potter et al. 2006, Clark et al. 2011) 

to the use of more complex multi-layer wetland CH4 models with integrated hydrological 

components (McGuire et al. 2012, Wania et al. 2013).  Yet, most investigations have not 

examined the potential for simultaneously assessing CO2 and CH4 fluxes, and the corresponding 

net ecosystem carbon balance (Sitch et al. 2007, Olefeldt et al. 2012, McGuire et al. 2012) for 

peatland and tundra using a satellite remote sensing based model approach.   

It is well recognized that sub-surface conditions influence the land-atmosphere exchange 

of CO2 and CH4 production.  However, near-surface soil temperature, moisture and carbon 

substrate availability play a crucial role in regulating ecosystem carbon emissions.  Strong 

associations between surface soil temperature (< 10 cm depth) and CO2 respiration have been 

observed in Arctic peatland and tundra permafrost systems (Kutzbach et al. 2007).  Significant 

relationships between CH4 emissions and temperature have also been reported (Hargreaves et al. 

2001, Zona et al. 2009, Sachs et al. 2010).  Although warming generally increases the 

decomposition of organic carbon, the magnitude of CO2 production is constrained by wet soil 

conditions (Olivas et al. 2010) which instead favor CH4 emissions and decrease methantrophy in 

soil and litter layers (Turetsky et al. 2008, Olefeldt et al. 2012).  Oxidation by methanotrophic 

communities in surface soils can reduce CH4 emissions by over 90 % when gas transport occurs 
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through diffusion (Preuss et al. 2013), but this constraint is often minimized when pore water 

content rises above 55-65 % (von Fischer & Hedin, 2007, Sjögersten & Wookey 2009).   

Despite increases in the availability of organic carbon and accelerated CO2 release due to 

soil warming and thickening of the active layer in permafrost soils (Dorrepaal et al. 2009), 

anaerobic communities have shown a preference for light-carbon fractions (e.g. amines, carbonic 

acids) that are more abundant in the upper soil horizons (Wagner et al. 2009).  Similarly, labile 

carbon substrates from recent photosynthates and root exudates have been observed to increase 

CH4 production relative to heavier organic carbon fractions (Ström et al. 2003, Dijkstra et al. 

2012, Olefeldt et al. 2013) that require longer decomposition pathways to break down complex 

molecules into the simple compounds (i.e. acetate, H2 + CO2) used in methanogenesis (Le Mer & 

Roger 2001).   

The objective of this study was to evaluate the feasibility of using a satellite remote 

sensing data driven modeling approach to assess the daily and seasonal variability in CO2 and 

CH4 fluxes from northern peatland and tundra ecosystems, according to near-surface 

environmental controls including soil temperature, moisture and available soil organic carbon.  

In this paper, we incorporate a newly developed CH4 emissions algorithm within an existing 

Terrestrial Carbon Flux (TCF) CO2 model framework (Kimball et al. 2012; Yi et al. 2013).  The 

CH4 emissions algorithm simulates gas production using near-surface temperature, anaerobic soil 

fractions and labile organic carbon as inputs.  Plant CH4 transport is determined by vegetation 

growth characteristics derived from gross primary production (GPP), plant functional traits and 

canopy/surface turbulence.  Methane diffusion is determined based on temperature and moisture 

constraints to gas movement through the soil column, and oxidation potential.  Ebullition of CH4 

is assessed using a simple gradient method (van Huissteden et al. 2006).  

The integrated TCF model allows for satellite remote sensing information to be used as 

primary inputs, requires minimal parameterization relative to more complex ecosystem process 

models, and provides a framework to monitor the terrestrial net ecosystem carbon balance 

(NECB).  Although the NECB also encompasses other mechanisms of carbon transport, 

including dissolved and volatile organic carbon emissions and fire-based particulates, the NECB 
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is limited in this study to CO2 and CH4 fluxes, which often are primary contributors in high 

latitude tundra and peatland ecosystems (McGuire et al. 2010).    

To evaluate the combined CO2 and CH4 algorithm approach, we compared TCF model 

simulations to tower EC records from six northern peatland and tundra sites within North 

America and Eurasia.  For this study, baseline simulations driven with tower EC based GPP and 

in-situ meteorology data were first used to assess the capability of the TCF model approach to 

quantify temporal changes in landscape scale carbon (CH4 and CO2) fluxes.  Secondly, CO2 and 

CH4 simulations using internal TCF model GPP estimates (Yi et al. 2013) and inputs from 

satellite and global model reanalysis records were used to evaluate the relative uncertainty 

introduced when using coarser scale information in place of in-situ data.  These satellite and 

reanalysis driven simulations were then used to determine the annual CO2 and CH4 fluxes at the 

six tower sites, and the relative impact of CH4 emissions on the NECB. 

4.3  Methods 

4.3.1 TCF model description 

The combined TCF model CO2 and CH4 framework regulates carbon gas exchange using 

soil surface temperature, moisture and soil organic carbon availability as inputs, and has the 

flexibility to run simulations at local and regional scales.  TCF model estimates of ecosystem 

respiration (Reco) and net ecosystem CO2 exchange (NEE) have been evaluated against tower EC 

datasets from boreal and tundra systems using GPP, surface (< 10 cm depth) soil temperature 

(Ts) and volumetric moisture content (θ) inputs available from global model reanalysis and 

satellite remote sensing records (Kimball et al. 2009, McGuire et al. 2012).  A recent adjustment 

to the TCF model (Kimball et al. 2012, Yi et al. 2013) incorporates a light-use efficiency (LUE) 

algorithm that provides internally derived GPP calculations to determine Reco and NEE fluxes at 

a daily time step.  The adjusted TCF CO2 model also allows for better user control over 

parameter settings and surface meteorological inputs (Kimball et al. 2012).  The CO2 and newly 

added CH4 flux model components are described in the following sections.  A summary of the 
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TCF model inputs, parameters, and the associated parameter values used in this study are 

provided in the Supplement (Tables S4.1 and S4.2; Figure S4.1).  

4.3.1.1 CO2 flux component 

The internal TCF model GPP algorithm estimates daily fluxes based on a biome-

dependent vegetation maximum LUE coefficient (εmax; mg C MJ
-1

) which represents the optimal 

conversion of absorbed solar energy and CO2 to plant organic carbon through photosynthesis 

(Kimball et al. 2012).  To account for daily minimum air temperature (Tmin) and atmospheric 

vapor pressure deficit (VPD) constraints on photosynthesis (Running et al. 2004), εmax is reduced 

(ε) using dimensionless linear rate scalars ranging from 0 (total inhibition) to 1 (no inhibition) 

that are described elsewhere (i.e. Kimball et al. 2012, Yi et al. 2013).  In this study, we also 

account for the sensitivity of shallow rooted vegetation and bryophytes, which lack vascular 

tissues for water transport, to changes in surface volumetric soil water (Wu et al. 2013), where 

θmin and θmax are the specified minimum and maximum parameter values:    

)()()( minmax  fTfVPDf                                                                                             

     where )(/)()( minmaxmin  f .                                                                                   (1) 

Simulated GPP (g C m
-2

 d
-1

) is obtained as: 

FPARSWGPP rad  45.0                                                                                              (2) 

where SWrad (W m
-2

) is incoming shortwave radiation and FPAR is the fraction of daily 

photosynthetically active solar radiation (PAR; MJ m
-2

) absorbed by plants during 

photosynthesis.  For this approach, PAR is assumed to be 45 % of SWrad (Zhao et al. 2005).  

Remotely sensed normalized difference vegetation index (NDVI) records have been used to 

estimate vegetation productivity (Schubert et al. 2010a, Parmentier et al. 2013) and changes in 

growing season length (Beck & Goetz 2011) across northern peatland and tundra environments.  

Daily FPAR is derived using the approach of Badawy et al. (2013) to mitigate potential biases in 

low biomass landscapes (Peng et al. 2012):   

   
rangeIndex

IndexIndex
FPAR

)(94.0 min
                                                                                                 (3) 
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This approach uses NDVI or simple ratio (SR; i.e. (1+NDVI)/(1-NDVI)) indices as input Index 

values.  The results are then averaged to obtain FPAR.  Indexrange corresponds to the difference 

between the 2nd and 98th percentiles in the NDVI and SR distributions (Badawry et al. 2012).    

Biome-specific autotrophic respiration (Ra) is estimated using a carbon use efficiency 

(CUE) approach that considers the ratio of net primary production (NPP) to GPP (Choudhury 

2000).  Carbon loss from heterotrophic respiration (Rh) is determined using a 3-pool soil litter 

decomposition scheme consisting of metabolic (Cmet), structural (Cstr) and recalcitrant (Crec) 

organic carbon pools with variable decomposition rates.  The Cmet  pool represents easily 

decomposable plant residue and root exudates including amino acids, sugars and simple 

polysaccharides, whereas the Cstr pool consists of litter residues such as hemi-cellulose and 

lignin (Ise et al. 2008, Porter et al. 2010).  The Crec pool includes physically and chemically 

stabilized carbon derived from the Cmet and Cstr pools and corresponds to humified peat.  A 

fraction of daily NPP (Fmet) is first allocated as readily decomposable litterfall to Cmet and the 

remaining portion (1-Fmet) is transferred to Cstr (Ise & Moorcroft 2006, Kimball et al. 2009).  To 

account for reduced mineralization in tundra and peatland environments, approximately 70 % of 

Cstr (Fstr) is reallocated to Crec (Ise & Moorcroft 2006, Ise et al. 2008):  

methmetmet RFNPPdtdC ,/                                                                                                 (4) 

strhstrstrmetstr RCFFNPPdtdC ,)()1(/                                                                        (5) 

rechstrstrrec RCFdtdC ,)(/                                                                                                  (6) 

Daily CO2 loss from the Cmet pool (i.e. Rh,met) is determined as the product of Cmet and an optimal 

decomposition rate parameter (Kp).  The realized decomposition rate (Kmet) results from the 

attenuation of Kp by dimensionless Ts and θ multipliers (Tmult and Wmult, respectively), that vary 

between 0 (fully constrained) and 1 (no constraint):   

multmultpmet WTKK                                                                                                             (7)     

])1)17.66(102.66(56.308exp[  refsmult TTT                                                            (8) 

2)(2.21 optmultW                                                                                                             (9) 
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The temperature constraints are imposed using an Arrhenius-type function (Lloyd & Taylor, 

1994, Kimball et al. 2009) where decomposition is no longer limited when average daily Ts 

exceeds a user-specified reference temperature (Tref; in K) which can vary with carbon substrate 

complexity, physical protection, oxygen availability and water stress (Davidson & Janssens 

2006).  The Wmult modifier accounts for the inhibitory effect of dry and near-saturated soil 

moisture conditions on heterotrophic decomposition (Oberbauer et al. 1996).  For this study, θopt 

is set to 80 % of pore saturation to account for ecosystem adaptations to wet soil conditions (Ise 

et al. 2008, Zona et al. 2012) and near-surface oxygen availability provided by plant root 

transport (Elberling et al. 2011).  Decomposition rates for Cstr and Crec (Kstr, Krec) are determined 

as 40 % and 1 % of Kmet, respectively (Kimball et al. 2009), and hR is the total CO2 loss from the 

three soil organic carbon pools: 

recrecstrstrmetmeth CKCKCKR                                                                              (10)  

Finally, the TCF model estimates NEE (g C m
-2 

d
-1

) as the residual difference between Reco, 

which includes Ra and Rh respiration components, and GPP.  Negative (-) and positive (+) NEE 

fluxes denote respective terrestrial CO2 sink and source activity: 

GPPRRNEE ha  )(                                                                                                         (11) 

4.3.1.2 CH4 flux component 

A CH4 emissions algorithm was incorporated within the TCF model to estimate CH4 

fluxes for peatland and tundra landscapes.  The model estimates CH4 production according to Ts, 

θ, and labile carbon availability.  Plant CH4 transport is modified by vegetation growth and 

production, plant functional traits, and canopy aerodynamic conductance which takes into 

account the influence of wind turbulence on moisture/gas flux between vegetation and the 

atmosphere.  The CH4 module is similar to other process models (e.g. Walter & Heimann 2000, 

van Huissteden et al. 2006) but reduces to a one-dimensional near-surface soil profile following 

Tian et al. (2010) to simplify model parameterization amenable to remote sensing applications.  

For the purposes of this study, the soil profile is defined for near-surface soil layers as most 

temperature and moisture retrievals from satellite remote sensing do not characterize deeper soil 

conditions.  Although this approach may not account for variability in carbon fluxes associated 
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with deeper soil constraints, field studies from high latitude ecosystems have reported strong 

associations between CH4 emissions and near-surface conditions including Ts and soil moisture 

(Hargreaves et al. 2001, Sachs et al. 2010, von Fischer et al. 2010, Sturtevant et al. 2012, 

Tagesson et al. 2012b).   

Soil moisture in the upper rhizosphere is a fundamental control on CH4 production and 

emissions to the atmosphere.  Methanogenesis (RCH4) within the saturated soil pore volume (φs; 

m
-3

; the aerated pore volume is denoted as φa) is determined according to an optimal CH4 

production rate (Ro; μM CH4 d
-1

) and labile photosynthates:  

                                   
10

104      Q  C) φ  = (RR
   )/(Ts - T

pmetso CH

p

                                     (12) 

For this study, CH4 production was driven using the soil Cmet pool to reflect contributions by 

lower weight carbon substrates (Reiche et al. 2010, Corbett et al. 2012) in labile organic carbon-

rich environments.  Carbon from the Cstr pathway may also be allocated for CH4 production in 

ecosystems with lower labile organic carbon inputs and higher contributions by 

hydrogenotrophic methanogenesis (Alstad & Whiticar 2011).  The Q10p temperature modifier is 

used as an approximation to the Arrhenius equation and describes the temperature dependence of 

biological processes (Gedney & Cox 2003, van Huissteden et al. 2006).  The reference 

temperature (Tp) typically reflects mean annual or non-frozen season climatology.  Both Q10p and 

Tp can be adjusted, in addition to Ro, to accommodate varying temperature sensitivities in 

response to ecosystem differences in substrate quality and other environmental conditions (van 

Hulzen et al. 1999, Inglett et al. 2012).  Methane additions from RCH4 are first allocated to a 

temporary soil storage pool (CCH4) prior to determining the CH4 emissions for each 24-h time 

step; Cmet is also updated to account for carbon losses due to CH4 production. 

The magnitude of daily CH4 emissions (FCH4) from the soil profile is determined through 

plant transport (Fplant), soil diffusion (Fdiff) and ebullition (Febull) pathways:   

ebulldiffplantCH FFFF 4                                                                                                      (13) 

Vegetation plays an important role in terrestrial CH4 emissions by allowing for gas transport 

through the plant structure, avoiding slower diffusion through the soil column and often reducing 

the degree of CH4 oxidation (Joabsson et al. 1999).  Daily Fplant is determined using a rate 



104 

 

constant (Cp) modified by vegetation growth and production (fgrow), an aerodynamic term (λ) and 

a rate scalar (Ptrans) that account for differences in CH4 transport ability according to plant 

functional type:   

)1()( 4 oxtransgrowpCHplant PPfCCF                                                                        (14) 

A fraction of Fplant is oxidized (Pox) prior to reaching the atmosphere and can be modified 

according to plant functional characteristics (Frenzel & Rudolph 1998; Ström et al. 2005, Kip et 

al. 2010).  Plant transport is further reduced under frozen surface conditions to account for 

pathway obstruction by ice and snow or bending of the plant stem following senescence 

(Hargreaves et al. 2001, Sun et al. 2012).  The magnitude of fgrow is determined as the ratio of 

daily GPP to its annual maximum and is used to account for seasonal differences in root and 

above-ground biomass (Chanton 2005).   

 Aerodynamic conductance (ga) represents the influence of near-surface turbulence on 

energy/moisture fluxes between vegetation and the atmosphere (Roberts 2000, Yan et al. 2012) 

and gas transport within the plant body (Sachs et al. 2008, Wegner et al. 2010, Sturtevant et al. 

2012): 

]/)ln[(]/)ln[(

2

ovmomm

m

a
zdzzdz

k
g





                                                                                (15)                       

Values for zm and d are the respective anemometer and zero plane displacement heights (m); zom 

and zov are the corresponding roughness lengths (m) for momentum, heat and vapor transfer.  The 

von Karman constant (k; 0.40) is a dimensionless constant in the logarithmic wind velocity 

profile (Högström 1988), μm is average daily wind velocity (m s
-1

), d is calculated as 2/3 of the 

vegetation canopy height, zom is roughly 1/8th of canopy height (Yang & Friedl 2002), and zov is 

0.1zom (Yan et al. 2012).  The estimated ga is then scaled between 0 and 1 to obtain λ using a 

linear function for sites with a lower observed sensitivity to surface turbulence; for environments 

with a higher sensitivity to surface turbulence, a quadratic approach is used when μm exceeds 4 m 

s
-1

:   

ag5091.00246.0  ,  μm ≤ 4 m s
-1

                                                                         

)51.44()28.3(0885.0
2

aa gg  ,  μm > 4 m s
-1                           

  (16) 
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Although this approach focuses on the influence of wind turbulence on plant gas transport within 

vegetated wetlands, it is also applicable for inundated microsites where increases in surface 

water mixing can stimulate CH4 degassing (Sachs et al. 2010).  In addition, Eq. 15 reflects near-

neutral atmospheric stability and adjustments may be necessary to accommodate unstable or 

stable atmospheric conditions (Raupach 1998).  

The upward diffusion of CH4 within the soil profile is determined using a one-layer 

approach similar to Tian et al. (2010).  The rate of CH4 transport (De; m
-2

 d
-1

) is considered for 

both saturated (Dwater; 1.73x10
-4

 μM CH4 d
-1

) and aerated (Dair; 1.73 μM CH4 d
-1

) soil fractions: 

    )()( aairswatere DDD                                                                                                    (17) 

Potential daily transport through diffusion (Pdiff) is estimated as the product of De and the 

gradient between CCH4 and the concentration of CH4 in the atmosphere (AirCH4).  This is further 

modified by soil tortuosity (τ; 0.66), which increases exponentially for Ts < 274 K to account for 

slower gas movement at colder temperatures and barriers to diffusion resulting from near-surface 

ice formation (Walter & Heimann 2000, Zhuang et al. 2004) and pathway constraints within the 

saturated pore fraction (1 – θ): 

     144 CHCHediff AirCDP                                                                                       

2.972381005.0,274

66.0,274

ss

s

TT

T








                                                                                      (18) 

A portion of diffused CH4 is oxidized (Rox) before reaching the soil surface, using a Michaelis-

Menten kinetics approach that is scaled by φa:   
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
                                                                                       (19)             

where Vmax is the maximum reaction rate and Km is the substrate concentration at 0.5Vmax (van 

Huissteden et al. 2006).  Oxidation during soil diffusion is modified by soil temperature Q10 

constraints (Q10d); Td is the reference temperature and can be defined using site-specific mean 

annual Ts (Le Mer & Roger 2001).  Total daily CH4 emission (Fdiff) from the soil diffusion 

pathway is determined by substracting Rox from Pdiff. 
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The CH4 algorithm uses a gradient-based approach to account for slow or “steady-rate” 

ebullition from inundated micro-sites in the landscape (Rosenberry et al. 2006, Wania et al. 

2010), whereas episodic events originating deeper within the soil require more complex 

modeling techniques and input data requirements (Kettridge et al. 2011) that are beyond the 

scope of this study.  Emission contributions due to ebullition occur when CCH4 exceeds a 

threshold value (ve) of 500 μM (van Huissteden et al. 2006).  The magnitude of gas release is 

determined by steady-rate bubbling (Ce) applied within the saturated soil pore space (φs): 

)()( 4 eCHseebull CCF   ,  eCH vC 4            (20) 

4.3.2 Study sites and in situ data records 

Tower EC records from six pan-Arctic peatland and tundra sites in Finland, Sweden, 

Russia, Greenland and Alaska were used to assess the integrated TCF model CO2 and CH4 

simulations (Figure 1; Table 1).  The Scandinavian tower sites include Siikaneva (SK) in 

southern Finland and Stordalen Mire (SM) in northern Sweden near the Abisko Scientific 

Research Station.  The Lena River Delta (LR) site is located on Samoylov Island in northern 

Siberia and EC measurements from the Kytalyk (KY) flux tower were collected near 

Chokurdakh in northeastern Siberia.  The Zackenberg (ZK) flux tower is located within 

Northeast Greenland National Park, and tower data records for Alaska were obtained from a 

water table manipulation experiment (Zona et al. 2009; 2012, Sturtevant et al. 2012) 

approximately 6 km east of Barrow (BA).  With exception of Siikaneva, the EC tower footprints 

represent wet permafrost ecosystems with complex, heterogeneous terrain that includes moist 

depressions, drier, elevated hummocks and inundated microsites.  Vegetation within the tower 

footprints (Rinne et al. 2007; Riutta et al. 2007, Sachs et al. 2008, Jackowicz-Korczyński et al. 

2010, Parmentier et al. 2011a, Zona et al. 2011, Tagesson et al. 2012b) consists of Carex and 

other sedges, dwarf shrubs (e.g. Dryas and Salix), grasses (e.g. Arctagrostis) and Sphagnum 

moss (with exception of Zackenberg).   

Mean daily Ts and θ site measurements corresponding to near-surface (< 10 cm) soil 

depths were selected when possible (Table 1), to better coincide with the soil penetration depths 

anticipated for upcoming satellite-based microwave remote sensing missions (Kimball et al. 
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2012).  For Siikaneva, reanalysis θ was used in place of in-situ measurements as only water table 

depth information was available to describe soil wetness (Rinne et al. 2007).  At the Lena River 

site Ts and θ (< 12 cm) observations were obtained from the nearby Samoylov meteorological 

station and represent tundra polygon wet center, dry rim and slope conditions (Boike et al. 2008; 

Sachs et al. 2008).  Although θ was also measured during summer 2006, the in-situ records are 

limited to the wet polygon center location (Boike, personal communication, 2012) and were not 

used in this study due to the potential for overestimating saturated site conditions.  For 

Zackenberg, site Ts measurements were obtained at a 2 cm depth (Tagesson et al. 2012a, b) 

within the tower footprint, while near-surface θ (< 20 cm) and > 5 cm Ts measurements were 

collected adjacent to the site (Sigsgaard et al. 2011).  At Stordalen, site θ measurements were not 

available at the time of this study (Jackowicz-Korczyński et al. 2010).  Barrow (Zona et al. 2009, 

Sturtevant et al. 2012) includes southern (S), central (C) and northern (N) tower locations; in 

2007 only CO2 and CH4 EC measurements from the northern tower were used in the analysis, 

due to minimal EC data availability for the other tower sites following data processing (Zona et 

al. 2009).  Many of the Barrow CO2 measurements were also rejected for the 2009 period; as a 

result NEE was not partitioned into Reco and GPP (Sturtevant et al. 2012).   

4.3.3 Remote sensing and reanalysis inputs 

Daily input meteorology was obtained from the Goddard Earth Observing System Data 

Assimilation Version 5 (GEOS-5) MERRA archive (Rienecker et al. 2011) with 1/2 x 2/3° 

spatial resolution.  The MERRA records were recently verified for terrestrial CO2 applications in 

high latitude systems (Yi et al. 2011; 2013, Yuan et al. 2011), and provide model enhanced Ts 

and surface θ information similar to the products planned for the NASA Soil Moisture Active 

Passive (SMAP) mission (Kimball et al. 2012).  In addition to near surface (< 10 cm) Ts and θ 

information from the MERRA-Land reanalysis (Reichle et al. 2011) required for the Reco and 

CH4 simulations, daily MERRA SWrad, Tmin and VPD records were used to drive the internal 

GPP calculations.  The MERRA near-surface (2 m) wind parameters were also used to obtain 

mean daily μm for the CH4 simulations.  The MERRA-Land records for Greenland are spatially 

limited due to land cover/ice masking inherent in the reanalysis product, and MERRA Ts and θ 

were not available for the Zackenberg tower site.  As a proxy, Ts was derived from reanalysis 
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surface skin temperatures by applying a simple Crank-Nicholson heat diffusion scheme which 

accounts for energy attenuation with increasing soil depth (Wania et al. 2010); for θ, records 

from a nearby grid cell were used to represent moisture conditions at Zackenberg.   

For the daily LUE-based GPP simulations, quality screened cloud-filtered 16-day 250 m 

NDVI values from MODIS Terra (MOD13A1) and Aqua (MYD13Q1) data records (Solano et 

al. 2010) were used as model inputs.  Differences between the MOD13A1 and MYD13Q1 

retrievals were minimal at the tower locations, and the combination of Terra and Aqua MODIS 

records reduced the retrieval gaps to approximate 8 day intervals.  The NDVI retrievals 

correspond to the center coordinate locations for each flux tower site, and temporal linear 

interpolation was used to scale the 8-day NDVI records to daily inputs.   Coarser (500-1000 m 

resolution) NDVI records were not used in this study due to the close proximity of water bodies 

at the tower sites, which can substantially reduce associated FPAR retrievals.  In addition, 250 m 

MODIS vegetation indices have been reported to better capture the overall seasonal variability in 

tower EC flux records (Schubert et al. 2012).   

4.3.4 TCF model parameterization 

A summary of the site specific TCF model parameters is provided in the Supplement 

(Table S4.2).  Parameter values associated with grassland biomes were selected for the LUE 

model VPD and Tmin modifiers used to estimate GPP (Yi et al. 2013), as more specific values for 

tundra and moss-dominated wetlands were not available.  Parameter values for θmax were 

obtained using growing-season maximum θ measurements for each site and θmin was set to 0.15 

for scaling purposes.  Model εmax was specified as 0.82 mg C MJ
-1

for the duration of the growing 

season, although actual LUE can vary throughout the summer due to differences in vegetation 

growth phenology and nutrient availability (Connolly et al. 2009, King et al. 2011).  The tundra 

CUE ranged from 0.45 to 0.55 (Choudhury 2000); a lower CUE value of 0.35 was used for the 

moss-dominated Siikaneva site due to a more moderate degree of carbon assimilation occurring 

in bryophytes that has been observed in other sub-Arctic communities (Street et al. 2012).  For 

the TCF model Fmet parameter, the percentage of NPP allocated to Cmet varied between 70 % and 

72 % for tower tundra sites (Kimball et al. 2009) compared to 50 % and 65 % for Siikaneva and 

Stordalen where moss cover is more abundant.  The TCF model Ro parameter ranged from 4.5 
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and 22.4 μM CH4 d
-1

 (Walter & Heimann 2000, van Huissteden et al. 2006).  Values for Q10p 

varied between 3.5 and 4 due to an enhanced microbial response to temperature variability under 

colder climate conditions (Gedney & Cox 2003, Inglett et al. 2012).  A Q10d of 2 was assigned 

for CH4 oxidation (Zhuang et al. 2004, van Huissteden et al. 2006).  Parameter values for Ptrans, 

which indicates relative plant transport ability, ranged from 7 to 9 (dimensionless); lower values 

were assigned to tower locations with a higher proportion of shrub and moss cover, whereas 

higher Ptrans corresponds to sites where sedges are more prevalent (Ström et al. 2005, Rinne et al. 

2007).  For λ, the scaled conductance for lower site wind sensitivity was used in the CH4 model 

simulations, except for Lena River which showed higher sensitivity to surface turbulence.  

Values for Pox ranged from 0.7 in tundra to 0.8 in Sphagnum-dominated systems to account for 

higher CH4 oxidation by peat mosses (Parmentier et al. 2011c).  Due to a lack of detailed soil 

profile descriptions and heterogeneous tower footprints, soil porosity was assigned at 75 % for 

sites with more abundant fibrous surface layer peat (i.e. Siikaneva and Stordalen) and 70 % 

elsewhere to reflect more humified or mixed organic and mineral surface soils (Elberling et al. 

2008, Verry et al. 2011).   

4.3.5   TCF model simulations 

The TCF model was first evaluated against tower EC records using simulations driven 

with in-situ environmental data including EC based GPP, Ts, θ and μm.  This step allowed for 

baseline TCF model Reco and CH4 flux estimates to be assessed without introducing additional 

uncertainties from input reanalysis meteorology and LUE model derived GPP calculations.  Four 

additional TCF model simulations were conducted using reanalysis θ, Ts, μm (in the CH4 

module), or internal model GPP in place of the in-situ data.  A final TCF model run included 

only satellite and reanalysis based data, and was used to establish annual GPP, Reco and CH4 

carbon budgets for each site.  Baseline carbon pools were initialized by continuously cycling 

(“spinning-up”) the model for the tower years of record (described in Table 1) to reach a 

dynamic steady-state between estimated NPP and surface soil organic carbon stocks (Kimball et 

al. 2009).  In-situ data records were used during the model spin-up to establish baseline organic 

carbon conditions for the first five TCF model simulations, although it was often necessary to 
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supplement these data with reanalysis information to obtain a continuous annual time series.  The 

final model simulation did not include in-situ data in the spin-up process.   

The temporal agreement between the tower EC records and TCF model simulations was 

assessed using Pearson correlation coefficients (r; + one standard deviation) for the daily, 8 day, 

and total-period (EC length of record) cumulative carbon fluxes and corresponding tests of 

significance at a 0.05 probability level.  The 8 day and total-period cumulative fluxes were 

evaluated, in addition to the daily fluxes, to account for differences between the model estimates 

and tower EC records stemming from temporal lags between changing environmental conditions 

and resulting carbon (CO2, CH4) emissions (Lund et al. 2010, Levy et al. 2012).  The mean 

residual error (MRE) between the tower EC records and TCF modeled CO2 and CH4 fluxes was 

used to identify potential positive (underestimation) and negative (overestimation) biases in the 

simulations; root-mean-square-error (RMSE) differences were used as a measure of model 

estimate uncertainty in relation to the tower EC records.   

4.4   Results 

4.4.1   Surface organic carbon pools    

The TCF model generated surface soil organic carbon pools represent steady-state 

conditions obtained through the continuous cycling of in-situ or satellite and reanalysis 

environmental data for the years of record associated with each tower site (described in Table 1).  

Approximately 600 and 1000 years of model spin-up were required for Crec to reach dynamic 

steady state conditions.  Over 95 % of the resulting total carbon pool was allocated to Crec by the 

TCF model, with 2-3 % stored as Cmet and the remainder partitioned to Cstr.  The estimated 

carbon pools from the in-situ (reanalysis-based) model spin-up ranged from approximately 3.3 

kg C m
-2

 (2.3 kg C m
-2

) for Zackenberg and Stordalen to 1.3 kg C m
-2

 (2.1 kg C m
-2

) for the other 

tower sites.   

Differences in carbon stocks, resulting from the use of satellite remote sensing and 

reanalysis information in the TCF model, reflect warm or cold biases in the input Ts records 

relative to the in-situ data that modified the rate of CO2 loss during model initialization.  The 
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larger carbon stocks at Zackenberg, compared to the other tundra sites, resulted from higher 

tower EC based GPP inputs that often exceeded 5 g C m
-2

 d
-1

 in mid-summer, and a short (< 50 

day) peak growing season (Tagesson et al. 2012a) that minimized TCF modeled Rh losses.  

Although it was necessary to use internal LUE based GPP calculations for Stordalen in the 

absence of available CO2 records, the resulting Cmet and Crec carbon stocks were similar in 

magnitude to surface litter measurements at this site (Olsrud & Christensen 2011).  The TCF 

model simulated carbon stock for Lena River was less than a 2.9 kg C m
-2

 average determined 

from in-situ (< 10 cm depth) measurements of nearby river terrace soils (Zubrzycki et al. 2013), 

but this could have resulted from site spatial heterogeneity and the use of recent climate records 

in the model spin-up that may not reflect past conditions.   

4.4.2 LUE based GPP   

The GPP simulations using reanalysis and satellite based inputs captured the overall 

seasonality observed in the tower records (Figure 2; Table 2) and explained 76% (r
2
; p < 0.05, N 

= 7) of variability in the total EC period-of-record fluxes (Figure 3).  The across-site RMSE and 

MRE were 1.3 + 0.51 and -0.1 + 0.7 g C m
-2

 d
-1

, respectfully.  Although the 8 day cumulative 

flux correspondence between the tower EC and TCF model GPP estimates was strong (r
2
 = 75 + 

16 %), the model-tower agreement decreased considerably for daily GPP (r
2
 = 57 + 22%).  These 

differences may reflect a delayed response in vegetation productivity following changes in 

atmospheric and soil conditions (Lund et al. 2010), and short term fluctuations in the reanalysis 

SWrad inputs.  For Kytalyk, the large RMSE (2.2 g C m
-2

 d
-1

) observed for the TCF model GPP 

simulations resulted from warm spring air temperatures that reduced Tmin constraints on carbon 

assimilation, although a similar increase in GPP did not occur in the EC based records.  This lack 

of response likely resulted from a shallow (< 14 cm) early season thaw depth at this site, that 

limited bud break activity in deeper rooted shrubs (e.g. Betula nana and Salix pulchra).  To 

address this, an additional simulation was conducted using a temperature driven phenology 

model described in Parmentier et al. (2011a) to better inform the start of growing season in the 

TCF model.  This step reduced the corresponding RMSE difference for Kytalyk by 56% (to 1 g 

C m
-2

 d
-1

) with an associated r
2
 of 67%.   
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Although previous LUE models (e.g. Running et al. 2004, Yi et al. 2013) have relied 

solely on VPD to represent water related constraints to GPP, our approach also considers soil 

moisture to better account for the sensitivity of bryophytes and shallow rooted vegetation to 

surface drying (Wu et al. 2013).  Including this additional moisture constraint reduced the overall 

TCF model and tower GPP RMSE and MRE differences by approximately 14% and 92%.  

However, the model simulations continued to overestimate GPP fluxes for Siikaneva, Lena River 

(2003), and Kytalyk (MRE = -0.6 + 0.8 g C m
-2

 d
-1

).  This residual GPP bias could be influenced 

by inconsistencies between the coarse scale MERRA reanalysis inputs and local tower 

meteorology, as reported elsewhere (e.g. Yi et al. 2013), although systematic biases for the high 

latitude regions have not been identified.  For instance, periods of warmer (3 to 4 °C) reanalysis 

Tmin inputs relative to in-situ measurements at Lena River in 2003 led to seasonally higher TCF 

modeled GPP fluxes.  In contrast, the reanalysis Tmin at Barrow was 2 to 7 °C cooler in mid-

summer than the local meteorology; this resulted in significantly lower (p < 0.05) TCF model 

GPP estimates relative to the tower EC records (Table 2).  It is also possible that differences in 

the light response curve and respiration models, used when partitioning the site EC NEE fluxes 

into GPP and Reco (i.e. Aurela et al. 2007, Kutzbach et al. 2007; Parmentier et al. 2011a, 

Tagesson et al. 2012, Zona et al. 2012), may have contributed to differences between the TCF 

model simulations and tower CO2 records.  However, further investigation is needed to 

determine the expected range of GPP and Reco that might result from variability in the flux 

partitioning routines.   

4.4.3 Reco and NEE 

The in-situ TCF model Reco simulations accounted for 59 + 28% and 76 + 24% (r
2
) of the 

observed variability in the respective daily and 8 day cumulative tower EC fluxes (Figure 4; 

Table 2).  As with GPP, the r
2
 agreement increased to 89% (p < 0.05, N = 6) when considering 

the total-period cumulative fluxes (Figure 3).  The overall RMSE difference for the in-situ based 

TCF model Reco and NEE simulations was 0.74 + 0.45 g C m
-2

 d
-1

 when using 5 cm depth Ts 

inputs.  A corresponding across-site MRE of -2.1 + 5.7 g C m
-2

 d
-1

 indicated that the TCF model 

simulations overestimated Reco relative to the tower records, and slightly underestimated NEE 

(MRE = 0.1 + 0.4 g C m
-2

 d
-1

).  We also conducted TCF model simulations using 8-10 cm depth 
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in-situ Ts inputs, instead of those from < 5 cm (as reported in Table 2), to investigate the 

influence of deeper soil thermal controls on site Reco response; this step reduced the overall 

RMSE by approximately 12%.   

Incorporating the TCF internal LUE model GPP estimates increased the overall RMSE 

for Reco and NEE by 23% relative to the in-situ based simulations, compared to a respective 3% 

and 14% increase when using reanalysis θ or Ts inputs (Figure 5).  The model-tower daily and 8 

day cumulative correspondence was also lower (r
2
 = 32 and 56%, respectively) for CO2 

simulations driven using internally derived GPP, relative to those using reanalysis θ or Ts inputs 

(r
2
 = 57 and 72%) in place of the in-situ records.  Without the in-situ inputs, the respective 

RMSE and MRE difference between the reanalysis based Reco (NEE) simulations and the tower 

EC records averaged 0.9 + 0.4 and -0.2 + 0.9 g C m
-2

 d
-1

 (1 + 0.5 and 0.3 + 0.05 g C m
-2

 d
-1

).   

The reanalysis and remote sensing based TCF model Reco (NEE) simulations accounted 

for 51 + 29 (45 + 34) % and 71 + 17 (62 + 34) % of the observed r
2
 variability in the respective 

daily and 8 day tower EC records.  The mean r
2
 values exclude TCF model results for Barrow 

and Kytalyk, which did not show significant (r < 0.20; p > 0.16) agreement with the site EC 

records (Table 2).  For Barrow, it is likely that the water table manipulations at this site led to 

local temperature and moisture variability that was not reflected in the coarse reanalysis and 

remote sensing inputs.  The minimal agreement at Kytalyk is attributed to higher Rh losses driven 

by warmer reanalysis Ts inputs, and increased Ra contributions due to the overestimation of GPP 

relative to the tower EC records.   

4.4.4 CH4 fluxes 

The in-situ TCF model CH4 simulations explained 64 + 11 % and 80 + 12 % (r
2
) of the 

respective daily and 8 day cumulative variability observed in the tower EC records (Figure 6; 

Table 3), when excluding Kytalyk (p = 0.1).  The r
2
 correspondence increased to 98 % when 

considering the total period-of-record emissions across the six sites (Fig. 3; p < 0.05, N = 9).  At 

Kytalyk, Parmentier et al. (2011b) reported large differences in measured half-hourly CH4 fluxes 

following shifts in wind direction, and larger emissions from portions of the tower footprint 

containing Carex sp., E. angustifolium and inundated microsites.  Although this may have 
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contributed to the observed discrepancy between the TCF model estimates and tower EC record, 

attempts to systematically screen the CH4 observations based on wind direction, or to use daily 

EC medians instead of mean values, did not substantially improve the model results.   

On average, the in-situ TCF model simulations overestimated CH4 fluxes relative to the 

tower EC records (MRE = -2.2 mg C m
-2

 d
-1

), with RMSE differences varying from 6.7 to 42.5 

mg C m
-2

 d
-1

.  Without including μm in the TCF model, the resulting RMSE increased by > 10 % 

and the mean daily correspondence decreased to r
2
 < 40%.  The most substantial difference was 

observed for Lena River, where excluding μm reduced the daily and 8 day emission 

correspondence by over 60 %.  Unlike the TCF model Reco results, deeper (10 cm depth) Ts 

measurement inputs did not improve the RMSE values, except for Barrow (2007N) where the 

RMSE decreased by 35%.  This sensitivity to deeper Ts conditions may reflect changes in active 

layer depth following water table manipulations at this site (Zona et al. 2009, 2012), and 

associated changes in carbon substrate availability.  In contrast, the RMSE for Lena River was 

15 % higher when using in-situ 10 cm Ts records in the TCF model simulations instead of 5 cm 

depth measurements.  A 6 % decrease in the RMSE occurred for Zackenberg (2008) when using 

the warmer (3 to 5 °C) 2 cm depth Ts records, relative to model simulations using 5 cm Ts inputs.  

Contrary to expectations, the 2 cm depth Ts inputs did not improve RMSE differences for 

Zackenberg in 2009 when site moisture conditions were drier (Tagesson et al. 2012a).   

The reanalysis driven TCF model CH4 simulations (Figure 6; Table 3) accounted for 48 + 

16 % and 79 + 8% (r
2
) of the respective daily and 8 day variability in the tower EC records when 

excluding the less favorable results for Kytalyk (r
2
 = 8 and 44%, respectively).  Although 

slightly lower than the in-situ TCF model CH4 estimates, the coarser reanalysis and remote 

sensing driven simulations explained 96% (r
2
) of the total period-of-record emissions at these 

sites (Figure 3).  The corresponding model RMSE was 18.2 + 13.6 mg C m
-2

 d
-1

, with an 

associated MRE difference of 1.8 + 7.3 mg C m
-2

 d
-1

 that indicated the slight model 

underestimation of daily CH4 emissions.  The model RMSE differences increased by 

approximately 15% when using reanalysis μm records or internal GPP estimates in place of the 

in-situ inputs, and by 10% when incorporating reanalysis Ts and θ inputs (Figure 7).   
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4.4.5 Estimates of annual carbon budgets  

The reanalysis and remote sensing driven TCF model simulations indicated a net CO2 

sink (NEE = -34.5 + 18.5 g C m
-2

 yr
-1

) for the tower sites, excluding Barrow in 2009 (NEE = 7.3 

g C m
-2

 yr
-1

) where the estimated Reco emissions exceeded annual GPP (Figure 8).  Other studies 

near Barrow have also reported NEE losses from wet tundra communities, resulting from drier 

micro-scale surface conditions and warming within the hummocky landscape (Huemmrich et al. 

2010b, Sturtevant & Oechel 2013) which can strongly influence Reco.  The corresponding TCF 

model Reco estimates ranged from 133 (Zackenberg in 2009) to 494 g C m
-2

 yr
-1 

(Stordalen in 

2006) with lower CO2 emissions occurring in the colder, more northern tundra sites.  The 

strongest NEE carbon sink indicated by the model simulations was observed for the peat-rich 

Siikaneva site (-70.3 g C m
-2

 yr
-1

) due to high annual GPP (462.5 g C m
-2

 yr
-1

) relative to the 

other tower locations.  Although tower EC CO2 records were not available for Stordalen to verify 

the TCF model NEE results (-50.8 and -65.8 g C m
-2

 yr
-1

 respectively), the estimates are slightly 

smaller (~ 30 g C m
-2

 d
-1

) than other NEE approximations over the same time period 

(Christensen et al. 2012) but are similar to observations reported for other years at this site 

(Olefeldt et al. 2012; Marushchak et al. 2013).   

The annual TCF model CH4 estimates determined using the reanalysis inputs averaged 

6.9 (+ 5.5) g C m
-2

 yr
-1

 for the six tower sites.  The highest CH4 emissions were observed for 

Stordalen and Siikaneva (> 11.8 g C m
-2

 yr
-1

) due to higher model-defined CH4 production rates 

and summer reanalysis Ts records that were often 5 °C warmer than the other sites.  In contrast, 

model CH4 emissions were lowest for Barrow (1.8 g C m
-2

 yr
-1

) due to smaller GPP estimates 

and colder summer reanalysis Ts records that did not reflect the unusually warm site conditions in 

2007 (Shiklomanov et al. 2010).  The annual TCF model CH4 emissions for Lena River were 

relatively small (2.3 g C m
-2

 yr
-1

, on average), but are similar in magnitude to site CH4 estimates 

determined using more complex coupled biogeochemical and permafrost models (i.e. Zhang et 

al. 2012b).  Although the TCF modeled CH4 fluxes contributed only 1-5% of annual carbon 

emissions (Reco + CH4) at the tower sites, which is similar to previous reports (Schneider von 

Deimling et al. 2012), these CH4 emissions reduced the NECB (-23.3 + 19.6 g C m
-2

 yr
-1

) by 

approximately 23 % relative to NEE.  The annual model estimates indicated that the site CO2 and 
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CH4 fluxes, excluding Barrow and Lena River, contributed to a net global warming potential 

(GWP) of 188 + 68 g CO2eq m
-2

 yr
-1

 over a 100 year time horizon (Boucher et al. 2009) with 

total GWP influences by CH4 at approximately 9% to 44% that of Reco.  Similarly the Lena River 

and Barrow sites mitigated GWP at a mean rate of -40 g CO2eq m
-2

 yr
-1

 in 2006 and 2007, but 

were net GWP contributors in 2003 and 2009 (25 and 160 g CO2eq m
-2

 yr
-1

, respectfully).  

Although site CO2 contributions from methantrophy during plant transport and soil diffusion 

were estimated to range from 3.8 to 58.3 g C m
-2

 yr
-1

, these contributions represented < 14% of 

total TCF model derived Reco.    

 

4.5 Discussion and conclusions 

The level of complexity in biophysical process models has increased considerably in 

recent years but there remain large differences in carbon flux estimates for northern high latitude 

ecosystems (McGuire et al. 2012, Wania et al. 2013).  An integrated TCF model CO2 and CH4 

framework was developed to improve carbon model compatibility with remote sensing retrievals 

that can be used to inform changes in surface conditions across northern peatland and tundra 

regions.  Although the TCF model lacks the biophysical and hydrologic complexity found in 

more sophisticated process models (e.g. Zhuang et al. 2004, Wania et al. 2010), it avoids the 

need for extensive parameterization by instead employing generalized surface vegetation growth, 

temperature, and moisture constraints on ecosystem CO2 and CH4 fluxes.   

Despite the relatively simple model approach and landscape heterogeneity at the tower 

sites, the TCF model simulations derived from local tower inputs captured the overall seasonality 

and magnitude of Reco and CH4 fluxes observed in the tower EC records.  Overall the Reco, NEE 

and CH4 emission simulations determined using local site inputs showed strong mean 

correspondence (8 day r > 0.80; p < 0.05) with tower EC records, but the strength of agreement 

varied considerably for the daily fluxes due to temporal lags between changing environmental 

conditions and carbon emissions (Zhang et al. 2012b), and larger EC measurement uncertainty at 

the daily time step (Baldocchi et al. 2008, Yi et al. 2013).  The respective RMSE differences 

from the in-situ TCF model CO2 and CH4 simulations averaged 0.7 + 0.4 g C m
-2 

d
-1

 and 17.9 + 
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11.5 mg C m
-2

 d
-1

 which is comparable to other site based model results (e.g. Marushchak et al. 

2013, Sturtevant & Oechel 2013). 

In this study, we used near-surface Ts records in the model simulations to better coincide 

with the soil depths represented by upcoming satellite remote sensing missions, but acknowledge 

that deeper Ts controls are also important for regulating high latitude carbon emissions.  This was 

evident in TCF model Reco results where RMSE differences between the in-situ based 

simulations and tower EC fluxes generally improved when using deeper 10 cm Ts inputs instead 

of those from shallower (< 5 cm) soil depths.  However, the TCF model CH4 simulations were 

more favorable when using near-surface (2 to 5 cm) Ts inputs.  The observed CH4 emission 

sensitivity to surface soil warming may be influenced by cold temperature constraints on CH4 

production in the carbon-rich root zone where organic acids are more abundant (Turetsky et al. 

2008, Olefeldt et al. 2013).  Light-weight carbon fractions have been shown to be more 

susceptible to mineralization following soil thaw and temperature changes than heavier, more 

recalcitrant soil organic carbon pools in high latitude environments (Glanville et al. 2012).  

However, the depletion of older organic carbon stocks may also become more prevalent in 

permafrost soils subject to thawing and physiochemical destabilization (Schuur et al. 2009, 

Hicks Pries et al. 2013a) in the absence of wet, anoxic conditions (Hugelius et al. 2012, Hicks 

Pries et al. 2013b).  Seasonal changes in Ts constraints were also evident in this study, especially 

in the Zackenberg records where the TCF model underestimated tower Reco and CH4 emissions in 

autumn by not accounting for warmer temperatures deeper in the active layer that can sustain 

microbial activity following surface freezing (Aurela et al. 2002).   

Allowing the TCF model vegetation CUE parameter to change over the growing season 

instead of allocating Ra as a static fraction of GPP may also improve model and tower Reco 

agreement.  In Arctic tundra, Ra can contribute anywhere from 40% to 70% of Reco, with higher 

maintenance and growth respiration occurring later in the growing season when root systems 

expand deeper into the soil active layer (Hicks Pries et al. 2013a).  Representing Ra as a fixed 

proportion of daily GPP in the TCF model, and not accounting for the use of stored plant carbon 

reserves, may also have contributed to the lower Reco estimates during spring and autumn 

transitional periods when photosynthesis is reduced.   
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Our estimates of peatland and tundra CO2 fluxes using TCF model simulations driven by 

MERRA reanalysis and satellite (MODIS) remote sensing inputs showed favorable agreement 

relative to the tower EC observations, with relatively moderate RMSE uncertainties of 1.3 + 0.5 

(GPP), 0.9 + 0.4 (Reco) and 1 + 0.5 (NEE) g C m
-2

 d
-1

.  These model accuracies are similar to 

those reported in a previous TCF model analysis for the northern regions (Yi et al. 2013), and 

other Arctic LUE based GPP studies (Tagesson et al. 2012a, McCallum et al. 2013).  The 

associated model-tower RMSE for CH4 was 18.2 + 13.6 mg C m
-2

 d
-1

, and is comparable to 

results from previous remote sensing driven CH4 analyses (Meng et al. 2012, Tagesson et al. 

2013).  The larger observed differences between TCF model and tower EC based GPP results 

may reflect seasonal changes in nutrient availability (Lund et al. 2010), although one peatland 

study reported that nutrient limitations to plant productivity could be detected indirectly by 

MODIS NDVI retrievals (Schubert et al. 2010b).  It is more likely that this reduced 

correspondence resulted from fluctuations in the reanalysis SWrad inputs (Yi et al. 2011) and 

uncertainty associated with satellite NDVI and resulting FPAR inputs stemming from residual 

snow cover and surface water effects on optical-IR reflectance (Delbert et al. 2005).   

High latitude studies have reported difficulty in using satellite NDVI to determine the 

start of spring bud burst and seasonal variability in leaf development (Huemmrich et al. 2010a).  

Evaluating other portions of the visible spectrum, including blue and green reflectances, in 

addition to NDVI has helped to alleviate this problem in remote sensing applications 

(Marushchak et al. 2013) and should be considered in subsequent studies.  Incorporating  

phenological constraints into the TCF LUE model may also better characterize early season GPP, 

especially for plant communities such as E. vaginatum that are sensitive to changes in active 

layer depth (Parmentier et al. 2011a, Natali et al. 2012).  Considering Ts as an additional 

constraint in the TCF LUE model may also better account for autumn GPP activity under frozen 

air temperatures if plant-available moisture is still available within the root zone (Christiansen et 

al. 2012).  Yi et al. (2013) attempted to address this condition by incorporating satellite passive 

microwave-based freeze/thaw records (37 GHz) to constrain GPP according to frozen, 

transitional, or non-frozen surface moisture states but did not report a significant improvement, 

likely due to the coarse (25 km) resolution freeze/thaw retrievals.   
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The TCF model assessment of annual NECB for the six northern tower EC sites indicate 

that CH4 emissions reduced the terrestrial net carbon sink by 23% relative to NEE.  Although 

GPP at the Lena River and Barrow sites mitigated GWP additions from Reco and CH4 in two of 

the years examined, in most years the tower sites were GWP contributors by approximately 165 

+ 128 g CO2eq m
-2

 yr
-1

 when considering the impact of CH4 on atmospheric forcing over a 100- 

year time span.  These results are consistent with other model based analyses of Arctic carbon 

fluxes (McGuire et al. 2010) and emphasize the importance of evaluating CO2 and CH4 

emissions simultaneously when quantifying the terrestrial carbon balance and GWP for northern 

peatland and tundra ecosystems (Christensen et al. 2012, Olefeldt et al. 2012).  However, on-

going efforts are needed to better inform landscape scale spatial/temporal variability in soil 

moisture, temperature and vegetation controls on CO2 and CH4 fluxes for future model 

assessments using a combined network of in-situ soil measurements and strategically placed EC 

tower sites (Sturtevant & Oechel 2013), and regional airborne surveys.  The new SMAP mission 

(launched early 2015) may also help to determine landscape soil moisture and thermal 

constraints on northern carbon fluxes through relatively fine scale (9 km resolution) and lower 

frequency (≤ 1.4 GHz) microwave retrievals with enhanced soil sensitivity (Entekhabi et al. 

2010, Kimball et al. 2012), complimented by recent improvements in Arctic-specific reanalysis 

data (Bromwich et al. 2010, Henderson et al. 2015).  These advances, in conjunction with a 

suitable model framework to quantify ecosystem NEE and CH4 emissions, provide the means for 

regional carbon assessments and monitoring of the net ecosystem carbon budget and underlying 

environmental constraints.     
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Tables 

 

Table 4.1   Description of flux tower locations and site characteristics including permafrost (PF) cover and climate.  The length (days) 

of each tower site CO2 and CH4 record is provided in addition to the observation year.   

Site Name 
Location 

(Lat. Lon.) 
Climate   Land Cover Observation Period In-Situ Data    Data Source 

 

Siikaneva, 

Finland 

(SK) 

 

 

61°50' N, 

24°12' E 

 

PF: N/A 

MAT 3.3°C 

MAP 713 mm 

 

 

homogenous boreal 

oligotrophic fen  

with peat, sedges,  

graminoids 

 

8 Mar - 14 Nov 2005 

 (273 days) CO2 

 (165 days) CH4 

 

 CO2, CH4 

 5, 10 cm Ts 

 

   Aurela et al. (2007) 

   Rinne et al. (2007) 

   Riutta et al. (2007) 

Lena River, 

Russia 

(LR) 

 

72°22' N, 

126°30' E 

PF: Continuous 

MAT -14.7 °C 

MSP 72-208 mm  

wet polygonal  

tundra with sedges,  

dwarf shrubs,  

forbes, moss 

19 Jul - 21 Oct 2003 

(95 days) CO2, CH4 

 9 Jun - 17 Sep 2006 

 (101 days) CO2, CH4 

 CO2, CH4 

 5, 10 cm Ts 

 < 12 cm θ 

 

    Boike et al. (2008) 

    Kutzbach et al. (2007) 

    Sachs et al. (2008) 

    Wille et al. (2008) 

Zackenberg, 

Greenland 

(ZK) 

74°28' N, 

20°34' W 

    PF: Continuous 

MAT -9°C 

MAP  200 mm 

heterogeneous  

wetland fen tundra  

with graminoids, 

heath, moss 

24 Jun - 31 Oct 2008 

(130 days) CO2, CH4 

16 May - 25 Oct 2009 

(163 days) CO2, CH4 

 CO2, CH4 

 2, 5, 10 cm Ts 

 < 20 cm θ 

 

    Sigsgaard (2011) 

    Tagesson et al. (2012) 

  

Stordalen, 

Sweden 

(SM) 

68°20’ N, 

19°03’ E 

 

PF: Discontinuous 

MAT -0.9°C 

MAP 305 mm 

 

palsa mire with 

graminoids, dwarf  

shrubs, birch, moss, 

  lichen 

 

1 Jan - 31 Dec 2006 

(365 days) CH4 

1 Jan - 31 Dec 2007 

(365 days) CH4 

 

 CH4 

 3 cm Ts 

     Jackowicz-Korczyński 

     et al. (2010) 

 

Kytalyk, 

Russia 

(KY) 

70°49’ N, 

147°29’ E 

 

PF: Continuous 

MAT -10.5°C 

MAP 220 mm 

 

polygonal tundra  

with mixed shrub,  

sedge, moss 

 

 8 Jun - 10 Aug 2009 

 (64 days) CO2 

 5 Jul - 3 Aug 2009 

 (30 days) CH4 

 

 CO2, CH4 

 4, 8 cm Ts 

     Parmentier  

     et al. (2011a, b) 
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Barrow, 

Alaska 

(BA) 

71°17’ N, 

156°35’ W 

PF: Continuous 

MAT -12°C 

MAP 106 mm 

thaw lake basin with  

moss and sedge 

 12 Jun - 31 Aug 2007 

 North: (81 days) CO2 

 North: (46 days) CH4 

 

 20 Aug - 21 Oct 2009 

 North: (30, 11 days) CO2, CH4, 

 Central: (12, 23 days) CO2, CH4 

 South: (2, 10 days) CO2, CH4 

  CO2, CH4,     

  5, 10 cm Ts  

  < 10 cm θ 

 

 

 CO2, CH4 

 5 cm Ts 

 < 10 cm θ 

     Zona et al. (2009, 2012) 

 

 

 

     Sturtevant et al. (2012) 
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Table 4.2 Tower EC CO2 records and TCF modeled gross primary production (GPP), ecosystem respiration (Reco) and net ecosystem 

exchange (NEE) derived using in-situ information (in parentheses) or satellite remote sensing and reanalysis inputs.  The Pearson 

correlation coefficients (r) are significant at a 0.05 probability level, excluding Kytalyk 2009 NEE (r < 0.11, p > 0.17) and Barrow 

2007N GPP and NEE (r < 0.1, p > 0.16).  

 

Site Year Flux  r 8 day r RMSE  MRE  Site EC TCF Model 

       g C m
-2

 d
-1

 Cumulative (g C m
-2

) 

Siikaneva 2005 GPP 0.84 0.94 0.8  -0.2 361.1 409.4 

Reco      0.96 (0.96) 0.96 (0.98) 0.4 (0.3) -0.3 (0.1) 289.9 365.6 (274.9) 

NEE   0.49 (0.91) 0.92 (0.92) 0.5 (0.3)  0.3 (-0.1) -71.2 -43.8 (-86.2) 

Lena River  2003 GPP 0.74  0.91 0.7 -0.1 72.3 131.5 

Reco    0.77 (0.87) 0.83 (0.91) 1. (0.3) -0.5 (-0.1) 56.3 103.3 (62.4) 

NEE   0.90 (0.94) 0.93 (0.97) 0.3 (0.3) -0.1 (0.1) -16.0 -28.2 (-9.9) 

2006 GPP 0.78 0.86 1.1  0.5 247.4 199.3 

Reco     0.76 (0.84) 0.91 (0.91) 0.7 (0.6)  0.3 (0.2) 193.0 160 (176.4) 

NEE   0.57 (0.76) 0.62 (0.89) 0.7 (0.6)  0.2 (-0.2) -54.4 -39.3 (-71.0) 

Zackenberg 2008 GPP 0.75  0.76 1.8  < 0.1 218.2 215.4 

Reco     0.67 (0.44) 0.80 (0.50) 1.1 (1.3)  0.3 (0.3) 215.9 175.5 (182.6) 

NEE   0.31 (0.83) 0.37 (0.85) 1.7 (1.3) -0.3 (-0.3) -2.3 -39.9 (-35.6) 

2009 GPP 0.91  0.96 1.3  0.6 305.0 234.6 

Reco     0.86 (0.90) 0.93 (0.96) 0.8 (1)  0.4 (0.1) 250.3 183.7 (238.6) 

NEE   0.89 (0.89) 0.92 (0.92) 1.2 (1)  0.2 (-0.1) -54.7 -50.9 (-66.4) 

Kytalyk 2009 GPP 0.41  0.73 2.2 -1.5 143.2 224.9 

 Reco 0.49 (0.60) 0.80 (0.94) 1.6 (1.3) -2.2 (-1.5) 60.8 200.2 (126.9) 

NEE 0.11 (0.92) 0.01 (0.95) 1.6 (1.3)  0.9 (1.5) -82.4 -24.7 (-16.3) 

Barrow 2007N GPP 0.12 0.32 1.1  0.2 152.0 137.0 

 Reco 0.23 (0.61) 0.64 (0.82) 0.5 (0.4)  0.4 (-0.1) 117.4 104.3 (121.6) 

NEE 0.10 (0.79) 0.20 (0.79) 0.8 (0.4)  < 0.1 (0.1) -34.6 -32.7 (-30.4) 

2009N 

2009C 
NEE - - 1.6  1.4 -62.1 -15.6 

NEE - - 0.5  0.4 -8.3 -3.6 
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Table 4.3 Tower EC CH4 records and TCF model results using in-situ information (in parentheses) or satellite remote sensing and 

reanalysis inputs.  The Pearson correlation coefficients (r) are significant at a 0.05 probability level, excluding Kytalyk 2009 (r < 0.28, 

p > 0.07).   

 

Site Year         r 8 day r 
RMSE MRE Site EC    TCF Model 

        mg C m
-2

 d
-1

 Cumulative (g C m
-2

) 

Siikaneva 2005 0.72 (0.75) 0.90 (0.90) 21.8 (16.9) -9.6 (-1.2) 5.9 7.6 (6.3) 

        

Lena River  2003 0.59 (0.87) 0.88 (0.97) 9.1 (7.5) 4.7 (0.5) 1.4 0.9 (1.2) 

2006 0.53 (0.69) 0.81 (0.78) 6.9 (9.3) -1.3 (-4.4) 1.4 1.6 (1.9) 

        

Zackenberg 2008 0.78 (0.84) 0.91 (0.95) 35.7 (28.5) 11.6 (2.4) 7.6 6.1 (7.3) 

2009 0.75 (0.88) 0.84 (0.95) 28.7 (21.2) -1.1 (-6.7) 6.3 6.5 (7.4) 

        

Stordalen  2006 0.80 (0.80) 0.88 (0.89) 35 (33.4) 13.3 (0.9) 18.3 12.6 (17.9) 

2007 0.80 (0.79) 0.94 (0.89) 39.4 (42.5) 12.6 (-5.3) 22.1 17.5 (23.9) 

        

Kytalyk 2009 0.28 (0.24) 0.66 (0.41) 20.1 (14.9) -6.4 (0.7) 0.9 1.1 (0.8) 

        

Barrow 2007N 0.51 (0.78) 0.94 (0.80) 5.8 (6.7) -1.5 (-2.4) 0.7 0.8 (0.9) 

2009N - - 4.5 (15.9) -0.5 (-12.6) 0.1 0.1 (0.2) 

2009C - - 4.2 (10.2) 0.4 (-4.7) 0.2 0.3 (0.3) 

2009S - - 7.2 (7.6) -0.2 (6.3) 0.2 0.2 (0.2) 
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Figures 

 

Figure 4.1 Locations of the flux tower sites (circles) used in this study, including Barrow (BA), 

Kytalyk (KY), Lena River (LR), Siikaneva (SK), Stordalen Mire (SM) and Zackenberg (ZK).  

The Arctic Circle is indicated by the dashed line.  
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Figure 4.2 TCF model simulations for GPP (lines) using input remote sensing and reanalysis 

information as compared with flux tower EC records (circles). Site GPP records were not 

available for SM and BA 2009.   
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Figure 4.3 Correspondence between TCF model and tower EC records for cumulative (g C m
-2

) 

GPP, Reco, NEE, and CH4 fluxes from six pan-Arctic tower locations.  The TCF model 

simulations include those derived from in-situ measurements (open circles) or MODIS remote 

sensing and MERRA reanalysis inputs (MDMR; in black).  A 1:1 relationship is indicated by the 

dashed line.  The r
2
 agreement is significant at a 0.05 probability level, except for MDMR based 

Reco and NEE (p = 0.16 and 0.27), and excludes NEE fluxes for KY (circled) due to large 

differences in the CO2 response relative to the other sites.   
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Figure 4.4   TCF model CO2 simulations driven using in situ (solid lines) or remote sensing and 

reanalysis inputs (MDMR; dashed lines), as compared with tower EC records (circles) for Reco 

and NEE.  For BA 2009, in-situ Reco was not available and NEE measurements from the northern 

(central) tower are shown in black (grey).  The TCF model Reco results for SM 2006 (2007) are 

displayed in light (dark) red and NEE is indicated in light (dark) blue. 
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Figure 4.5  TCF model accuracy for Reco relative to CO2 records from five tower EC sites.  The 

TCF model simulations include those determined from in-situ measurement inputs; reanalysis 

soil moisture (θ), soil temperature (Ts) or TCF LUE model simulated GPP inputs; TCF 

simulations derived entirely from remote sensing and reanalysis (MDMR) inputs.  Measures of 

comparison include RMSE, MRE, r-values for daily and 8 day cumulative fluxes.  The BA 2009 

results represent the local spatial mean determined from north, central and southern Barrow 

tower locations.  
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Figure 4.6 TCF model CH4 simulations driven using in situ (solid lines) or input remote sensing 

and reanalysis (dashed lines) inputs, as compared with tower EC records (circles).  For BA 2009, 

the TCF model results are simulation means for the three Barrow tower sites; diamond shapes 

indicate CH4 flux observations from the northern (in dark gray) and central (in light gray) towers 

whereas grey circles indicate observations from the southern tower.    

 

 

 

 

 

 

 

 

 

 

 

 



143 

 

 

 

Figure 4.7 TCF model accuracy relative to CH4 records from six tower EC sites.  Model 

simulations include those derived from: in-situ measurements; reanalysis soil moisture (θ), soil 

temperature (Ts), surface wind velocity (μm) or TCF LUE model simulated GPP inputs; TCF 

simulations derived solely from remote sensing and reanalysis (MDMR) inputs.  Measures of 

comparison include RMSE, MRE, r-values for daily and 8 day cumulative fluxes.  Results for 

BA 2009 are means for north, central and southern Barrow tower locations.  
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Figure 4.8 The TCF model simulation results for cumulative annual GPP, Reco, NEE and CH4 

fluxes determined using satellite remote sensing and reanalysis inputs.  For NEE, all sites are net 

CO2 sinks except for BA 2009 which is a carbon source (in black).   
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Chapter 4 Supplement 

Table S4.1    Definitions for the symbols and abbreviations used to describe the TCF model 

components and required input information.   
Model 

Component 
Symbols   Definition Units 

General 

Ts Soil temperature  K 

Tmin Daily minimum air temperature K 

SWrad Incident shortwave radiation W/m2 

VPD Vapor pressure deficit Pa 

APAR Absorbed photosynthetically active radiation MJ m-2  

FPAR Fraction photosynthetically active radiation [ ] 

εmax Maximum plant light use efficiency mg C MJ-1 

ε Light use efficiency with environ. constraints mg C MJ-1 

θ Volumetric water content d-1 

θopt Soil moisture optimum  [ ] 

φs Saturated pore volume m-3 d-1 

φa Aerated pore volume m-3  d-1 

    

CO2 Model 

CUE Plant carbon use efficiency  (NPP/GPP) [ ] 

Cmet Metabolic carbon pool g C m-2  

Cstr Structural carbon pool g C m-2 

Crec Recalcitrant carbon pool g C m-2 

Fmet Fraction of NPP into Cmet  [ ] 

Fstr Fraction of Cmet allocated to Cstr [ ] 

Frec Fraction of Cstr allocated to Crec [ ] 

Ra Autotrophic respiration g C m-2 d-1 

Rh Heterotrophic respiration g C m-2 d-1 

Reco Ecosystem respiration g C m-2 d-1 

Kp Potential soil decomposition rate d-1 

Kmet Modified soil decomposition rate  d-1 

Tmult Temperature multiplier for Kp [ ] 

Tref Reference temperature for Tmult K 

Wmult Soil moisture multiplier for Kp [ ] 
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Table S4.1 continued.     
Model 

Component 
Symbols Definition           Units 

Soil CH4 

Production 

RCH4 Daily CH4 production mg C m-2 d-1 

CCH4 Total CH4 storage mg C m-2 

Ro CH4 production rate μM CH4 d
-1 

Q10p Q10 temperature modifier, CH4 production K 

Tp Reference temperature, CH4 production K 

FCH4 Total CH4 emission mg C m-2 d-1 

Fplant Plant CH4 transport mg C m-2 d-2 

Fdiff Diffusion CH4 transport mg C m-2 d-3 

Febull Ebullition CH4 transport mg C m-2 d-4 

    

Plant Transport 

Cp Plant CH4 transport rate d-1 

Ptrans Transport modifier for Cp [ ] 

fgrow Plant growth scalar, based on GPP d-1 

μm Mean daily wind velocity m s-1 

ga Aerodynamic conductance m s-1 

λ Aerodynamic modifier d-1 

k von Karman constant (for ga) [ ] 

zm Anemometer height m 

d Zero-plane displacement height (for ga) m 

zom Roughness length, momentum (for ga) m 

zov Roughness length, heat/vapor transfer (for ga) m 

Pox Fraction oxidized during plant transport [ ] 

    

Diffusion 

And 

Ebullition  

Pdiff Potential CH4  diffusion mg C m-2 d-1 

Rox CH4 oxidation mg C m-2 d-1 

ACH4 Atmospheric CH4 μM CH4 

De Effective soil diffusion rate μM CH4 d
-1 

Dair CH4 diffusion rate, aerated fraction μM CH4 d
-1 

Dwater CH4 diffusion rate, saturated fraction μM CH4 d
-1 

τ Soil tortuosity coefficient [ ] 

Ls Length of soil profile m 

Vmax Maximum reaction rate, μM CH4 d
-1 

Km Substrate conc. at 1/2 Vmax μM CH4 

Q10d Q10 temperature modifier, CH4 diffusion [ ] 

Td Reference temperature, CH4 oxidation K 

υe CH4 threshold for ebullition μM 

Ce CH4 ebullition transport rate μM d-1 
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Table S4.2   Parameter values used for site-specific peatland (Biome 1) and wet tundra (Biome 

2) TCF model CO2 and CH4 flux simulations.  

 

TCF Component  Parameter 
       Tower Site: SM    SK  LR    KY  ZK  BA 

               Biome:   1    1    2    2    2    2 

GPP 

emax mg C MJ-1 0.82 0.82 0.82 0.82 0.82 0.82 

θmin Fract. 0.15 0.15 0.15 0.15 0.15 0.15 

θmax Fract. 0.75 0.72 0.75 0.70 0.75 0.75 

         

 Reco 

CUE Fract. 0.45 0.35 0.55 0.55 0.5 0.5 

Kp d-1 0.03 0.03 0.03 0.03 0.03 0.03 

Fmet Fract. 0.65 0.52 0.72 0.72 0.72 0.72 

Tref K 293 293 297 293 297 297 

         

 CH4 

ϕ Fract. 0.75 0.75 0.70 0.70 0.70 0.70 

Ro µM CH4 d
-1 22.4 15.4 9.2 10.8 10.8 10.8* 

Tp K 287 288 289 287 287 287 

Q10p [ ] 3.5 3.5 4 3.9 3.5 3.8 

Ptrans [ ] 8 9 7 7 7 7 

Pox Fract. 0.8 0.8 0.7 0.7 0.7 0.7 

ACH4 μM CH4 0.11 0.11 0.11 0.11 0.11 0.11 

Vmax μM CH4 d
-1 120 120 120 120 120 120 

Km μM CH4 1 1 1 1 1 1 

Td K 274 274 274 274 274 274 

Q10d [ ] 2 2 2 2 2 2 

υe μM 500 500 500 500 500 500 

Ce μM d-1 3 3 3 3 3 3 

*A Ro value of 4.5 was used for BA 2007 to account for flooding disturbance impacts on 

substrate availability and methanogenesis. 
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Figure S4.1 TCF model flow diagram for GPP (in green), Reco (in red) and CH4 (in blue) 

modules.  Rectangular boxes denote primary environmental inputs (single border) or model 

derived stored carbon pools (double border) including Cmet, Cstr, Crec and CCH4.  Rounded 

rectangles indicate major process calculations, and arrows show the direction of data flow.  The 

dashed lines specify where pool updates occur at daily time steps to account for carbon losses. 
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Chapter 5: Regional and longer-term variability in northern high latitude wetland ecosystem 

carbon budgets 

Corresponding publication: 

Watts J D, J S Kimball, R Commane, D Zona, M Helbig, D Olefeldt, F J W Parmentier, T  
Sachs, L Bruhwiler, O Sonnentag, E Euskirchen, J Kochendorfer, E Humphreys,  
D Nadeau, J Rinne, M Lund, T Tagesson, M Jackowicz-Korczynski, W C 
Oechel, M Aurela, M Ueyama, et al. (In Prep.) Regional and longer-term variability 
in the northern high latitude wetland carbon budget. For submission to Global Change Biol.  
 

5.1 Abstract 

 

High latitude warming and changes in wetland hydrology is expected to substantially 

impact the northern terrestrial net ecosystem carbon balance, particularly in thawing permafrost 

affected landscapes.  Changing environmental conditions may result in divergent responses 

observed in gross primary productivity (GPP), ecosystem respiration (Reco) of carbon dioxide 

(CO2), net ecosystem CO2 exchange (NEE; GPP – Reco) and methane (CH4) emissions.  

Seasonal CH4 losses are also expected to drastically shift net ecosystem carbon budgets (NECB) 

from net carbon sink to carbon source, unless terrestrial warming is mitigated by a coinciding 

decrease in landscape wetness.  Here we examine recent (yrs. 2003-2015) wetland carbon 

budgets and corresponding changes in carbon flux components for the Arctic-boreal region.   To 

do this, we compiled eddy covariance flux records from 36 high latitude tower sites.  We also 

use an enhanced Terrestrial Carbon Flux (TCF) model developed for satellite remote sensing 

applications, with input MODIS remote sensing and reanalysis data.  The resulting daily 1-km 

TCF model simulations had low RMSE uncertainties of 0.97 gC m
-2

 d
-1

 (NEE) and 21 mgC m
-2

 

d
-1 

(CH4) relative to the tower records.  Model results indicate a net ecosystem carbon sink in 

tundra and boreal wetlands with respective average NEE values of -4 and -96 gC m
-2

 yr
-1

.  

Accounting for NECB (NEE + CH4) reduced the overall boreal wetland carbon sink by 20% and 

shifted tundra from carbon sink to carbon source (NECB = 1.6 gC m
-2

 yr
-1

).  Although the 13-yr 

TCF model flux records did not show significant ( = 0.05) change in annual GPP, Reco, NEE 

and NECB across the tower sites, boreal wetlands experienced a significant increase in CH4 flux 

(1.9 gC m
-2 

yr
-1

; p < 0.0001) with higher increases occurring in non-forested boreal wetlands.  This 
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study suggests that the continued monitoring of NECB in Arctic-boreal ecosystems through the 

integration of tower flux measurements, ecosystem models and satellite remote sensing is critical 

to determining the vulnerability of high latitude ecosystems to climate change.  

 

5.2 Introduction 

Northern permafrost landscapes store approximately 1 billion tonnes of carbon in the 

upper (1-3 m depth) soil layers, representing over a third of the global soil carbon pool (Schuur 

et al. 2015).  Under a high warming scenario, soil thaw and subsequent decomposition of these 

stored organic materials could release carbon to the atmosphere at a magnitude comparable to 

current global deforestation rates (> 200 billion tonnes C-CO2-eq by 2100), with a 2.5 times 

greater overall effect on climate if substantial methane (CH4) release coincides with CO2 (Zimov 

et al. 2006, Schuur & Abbott 2011). Warmer summers (Christensen et al. 2004, Åkerman et al. 

2008) and a decreasing winter frozen period (Webb et al. 2016, Zona et al. 2016) in northern 

high latitudes will continue to increase the vulnerability of boreal and tundra ecosystems to 

changes in climate.  However, these changes will likely vary geographically with divergent 

community response characteristics (Hinzman et al. 2005, Ernakovich et al. 2014, Bahn et al. 

2015) influenced by plant species composition (Parmentier et al. 2011, Bjorkman et al. 2015, 

Davidson et al. 2016), local hydrology, snowpack and snowmelt (Bintanja & Selten 2014, 

Karlsson et al. 2015, Liljedahl et al. 2016, Wrona et al. 2016), fires and pest outbreaks (Helbig et 

al. 2016a, Loranty et al. 2016, Young et al. 2016), regional differences in warming patterns 

(Screen & Simmonds 2010, Serreze & Barry 2011, Walsh 2014) and active layer thaw depth 

(Pastick et al. 2015, Atchley et al. 2016).     

High latitude warming might increase ecosystem carbon uptake by reducing cold-

temperature constraints on plant carbon assimilation and growth (Elmendorf et al. 2012, Cahoon 

et al. 2016), yet recent studies show that earlier snowmelt and longer surface non-frozen seasons 

do not necessarily result in higher net plant productivity and carbon gain (Parmentier et al. 2011, 

Bjorkman et al. 2015) due to phenological constraints and frozen soil conditions that limit root 

growth.  Plant response to warming is also species specific and can be influenced by 

environmental changes (e.g. wetting or drying, nutrient availability, species competition) that co-
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occur with warming (Kremers et al. 2015). Boreal forest communities, carbon sinks in past 

decades, are increasingly shifting towards net carbon sources for atmospheric CO2 following 

increases in autotrophic respiration under warmer summer temperatures (Hadden & Grelle 2016) 

and drought stress (Bond-Lamberty et al. 2013, Reichstein et al. 2013).  Although regional 

wetting may increase boreal plant productivity, carbon uptake through photosynthesis may also 

decrease in regions experiencing increasing cloud cover and more limited light availability 

(Öquist et al. 2014).  Boreal forest conversion to wetlands following permafrost thaw, and 

landscape waterlogging, can further increase ecosystem carbon (CO2 + CH4) source activity due 

to heightened CH4 emissions (Helbig et al. 2016b, 2016c). 

Soil respiration, and release of CO2 to the atmosphere, in high latitude environments is 

regulated by the availability of carbon substrates from recent plant litter and organic materials 

stored in soil (Wagner et al. 2009, Olefeldt et al. 2013), soil temperature and frozen water 

conditions (Davidson & Janssens 2006, Zona et al. 2016), and shifts in soil wetness (Watts et al. 

2014, Schuur et al. 2015). Warmer and wetter soil environments generally favor production of 

CH4 (Turetsky et al. 2008, Treat et al. 2015), a greenhouse gas with an atmospheric warming 

potential 25 times more potent than CO2 over a 100-yr time scale (Boucher et al. 2009). 

However, a recent synthesis of soil carbon incubation studies suggests that the form of carbon 

emitted from warming northern soils will be dominated by CO2, resulting from more rapid soil 

decomposition under aerobic conditions (Schädel et al. 2016).  Nonetheless, CH4 emissions from 

northern wetlands are expected to significantly impact high latitude ecosystem carbon budgets, 

amplifying greenhouse gas contributions to atmospheric warming and shifting landscapes closer 

to net carbon source (Chang et al. 2014, Schuur et al. 2015, Natali et al. 2015).   

Improvements in near surface trace gas sampling through portable and automatic flux 

chambers (Christensen et al. 2000, Elberling & Brandt 2003, Mastepanov et al. 2008), and eddy 

covariance flux towers (Baldocchi et al. 2001, Zona et al. 2016) provide systems capable of 

measuring landscape CO2 and CH4 exchange in often remote and rugged high latitude 

environments.  Flux operations in northern Arctic and boreal environments remain challenged by 

harsh working conditions, high expenses for power supplies and transportation, and a lack of 

physical support needed for equipment maintenance (Baldocchi & Koteen 2012, Zona et al. 
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2016).  Hence, chamber and flux measurements collected from remote environments often span 

only a summer season, and rarely extend through the winter (Zona et al. 2016); funding 

limitations often make it difficult to sample gas fluxes at a site for longer than a 2 to 3-year 

period.  In consequence, the combined use of ecosystem models and eddy covariance 

observations is necessary to obtain more robust NECB estimates spanning larger regions and 

multi-year periods, and to improve understanding of the ecosystem controls that regulate 

vegetation and carbon cycling in vulnerable northern environments (Abbott et al. 2016). 

 Here we use a satellite data driven terrestrial carbon flux (TCF) model developed for 

northern wetland regions (Watts et al. 2014a), updated to include additional parametrizations of 

ecosystem functional type, and eddy covariance data collected from 36 towers across the 

northern high latitude (> 45 N) region.  Tower eddy covariance records are used in this study as 

the data represent a larger (>300-500 m
2
) footprint relative to flux chambers (~1-m

2
) (Davidson 

et al. 2016).  We use the combined observations and TCF model outputs at a 1-km spatial 

resolution to assess carbon (CO2 and CH4) fluxes, underlying environmental controls, and recent 

changes in the net ecosystem carbon budget (CO2 + CH4; NECB) over a 13-yr period from 2003 

to 2015.  The NECB components include vegetation gross primary productivity (GPP), 

autotrophic respiration (Ra), soil heterotrophic respiration (Rh), and associated impacts on CO2 

and CH4 emissions.  

 

5.3 Methods 

5.3.1 Flux tower CO2 and CH4 sites  

Eddy covariance flux tower data were obtained for 36 tundra and boreal wetland sites 

(Figure 1) across the northern Arctic-boreal region, including Alaska, Canada, Greenland, 

Scandinavia and Russia.  These data represent 52 individual flux records collected over years 

2003-2015 (Table S5.1, Supplement) and regional gradients in permafrost conditions across the 

Arctic-boreal landscape.  The records characterize the terrestrial carbon cycle for ecosystems 

having underlying continuous (14 sites), discontinuous (6 sites) and sporadic/isolated (2 sites) 

permafrost and seasonal surface active layer thaw depths varying from -20 cm below the surface 

(e.g. Greenland, Russia and North Slope Alaska) to > -70 cm (e.g. Scandinavia and boreal Alaska). 



153 

 

The remaining 14 tower sites are located outside the permafrost zone but experience seasonal 

freezing of the surface and root zone soil profile. Vegetation communities at the Arctic tundra 

tower sites include wet sedge, tussock, shrub-encroached tussock and dry heath.  Vegetation at the 

non-tundra sites includes forested and non-forested boreal peatland and fen sites.  Forest sites 

include black spruce (Picea mariana), larch (e.g Larix sibirica), birch and pine with a mixed 

understory that often includes moss.  The dominant vegetation communities at the tower sites are 

listed in the Supplement (Tables S5.1, S5.2), along with corresponding publications that more fully 

describe site characteristics.  

The eddy covariance flux records include ½ hourly NEE measurements partitioned into 

GPP and Reco components using methods deemed appropriate (e.g. Stoy et al. 2006, Lasslop et al. 

2010, Reichstein et al. 2012) by the tower principal investigators.  In addition to CO2 flux, 15 of 

the sites also included ½ hourly CH4 flux measurements.  To correspond temporally with the mean 

daily TCF model estimates, the ½ hr fluxes were averaged per 24-hr period time step across the 

data records.  

 

5.3.2 TCF model estimates for tower sites 

5.3.2.1 TCF model description 

 The TCF model was developed as a precursor to the NASA Soil Moisture Active Passive 

(SMAP) mission Level 4 Carbon (L4_C) algorithms used to diagnose and reduce uncertainty in 

global terrestrial carbon budgets (Kimball et al. 2009, Kimball et al. 2016). The TCF model 

utilizes inputs from satellite optical-IR remote sensing (e.g. MODIS) to infer changes in surface 

vegetation cover and the fraction of photosynthetic active radiation (FPAR) absorbed during 

photosynthesis.  The TCF model also readily incorporates microwave sensor data on surface soil 

thermal and moisture conditions, including water inundation, that affect carbon cycle processes. 

Ancillary meteorology inputs are used in the model to define daily incoming shortwave solar 

radiation (SWrad; W/m
2
), atmosphere vapor pressure deficit (VPD; Pa), near-surface (2 m) wind 

velocity (m/s; μm), air and soil temperature (°C), and root zone (up to 1m depth) soil moisture 

(m
3
/m

3
).   
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The TCF model is summarized here; a detailed description can be found in Watts et al. 

(2014a). Vegetation GPP is estimated in the model as the product of canopy absorbed 

photosynthetically active radiation (APAR, MJ m
-2

 d
-1

) and a light use efficiency term (ɛ, g C 

MJ
-1

) describing the conversion of APAR to vegetation biomass. Canopy FPAR is provided from 

MODIS (MOD15A2) inputs and can also be derived from lower-order vegetation indices (e.g. 

NDVI; Watts et al. 2014a).  Photosynthetically Active Radiation (PAR) is defined as a fixed 

proportion of SWrad, and multiplied by FPAR to derive APAR. Light use efficiency is determined 

from optimum ɛ rates specific to model plant functional types (PFT); these are reduced under 

sub-optimal environmental, thermal and moisture conditions.  Controls on ɛ are defined using 

remote sensing and meteorology inputs, and include microwave derived landscape freeze-thaw 

status (FT; Kim et al. 2014), surface to root zone soil moisture (SMRZ), soil or air temperature 

(Ts, Ta) and VPD (Watts et al. 2014a, Kimball et al. 2016).  The start and end of the season for 

active vegetation growth (GPP) in the TCF model is constrained by microwave FT fields 

describing binary surface frozen (0) or non-frozen (1) states, in addition to inputs from Ta and Ts.  

For non-coniferous vegetation, the TCF model GPP remains inactive until at least six 

consecutive days of FT (1) is achieved; this step is taken to help reduce premature growing 

season onset in the modeled GPP fluxes (Watts et al. 2014a)   

TCF daily CO2 loss from Reco under aerobic conditions is determined as the sum of 

autotrophic (Ra) and heterotrophic (Rh) respiration in near-surface litter and soil layers. A portion 

of daily net primary production (NPP; GPP-Ra) is allocated to metabolic (Cmet), structural (Cstr) 

and recalcitrant (Crec) soil organic carbon (SOC) pools using a dynamic litterfall turnover scheme 

(Kimball et al. 2009, Watts et al. 2014a). The Cmet pool represents easily decomposable plant 

residue and root exudates; Cstr includes litter residues including hemi-cellulose and lignin; Crec 

accounts for more slowly decomposing physically and chemically stabilized carbon and 

humified peat. Ecosystem Rh losses from soil decomposition of Cmet, Cstr and Crec are regulated 

using dimensionless temperature and moisture multipliers (Watts et al. 2014a) that vary between 

0 (fully constrained) and 1 (no constraint) as informed by daily input Ts and SMRZ.  Net 

ecosystem CO2 exchange (NEE; gC m
-2

 d
-1

) is determined as the residual difference between Reco 

and GPP.   
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A CH4 emissions algorithm was added to the TCF model to account for anaerobic carbon 

loss in northern wetland environments (Watts et al. 2014a, Zona et al. 2016).  The model estimates 

daily CH4 production according to Ts, SMRZ and substrate availability from SOC pools within a 

one-dimensional soil profile for more direct implementation of remote sensing inputs and to 

simplify model parameterization for regional simulations (Watts et al. 2014a).  Transfer of CH4 

from the soil to the atmosphere occurs through vegetation, soil diffusion and water ebullition 

pathways.  Methanogenesis occurs within the saturated soil pore volume per a biome specific 

optimal production CH4 rate, the availability of labile photosynthates (Ström et al. 2003, Olefeldt 

et al. 2013) and a soil Q10 modifier used to describe the temperature dependence of biological 

processes.  Oxidation (conversion of CH4 to CO2) is accounted for during plant transport using a 

PFT specific scalar; for the soil diffusion pathway a Michaelis-Menten kinetics approach scaled 

by aerated pore space is used to regulate methantrophy (Watts et al. 2014a).  

 

5.3.2.2 Updates to the TCF model for Arctic-boreal wetlands 

The original TCF model (Kimball et al. 2009) and SMAP L4_C model parameter Look-

Up-Table (LUT) logic (Kimball et al. 2016) is based on global MODIS Land Cover (MCD12Q1 

Type 5) vegetation classes (e.g. Friedl et al. 2010).  These LUT classes represent up to eight 

global plant functional type (PFT) classes, including evergreen and deciduous forests, shrubland, 

grassland, and cereal/ broadleaf cropland.  The adjusted TCF wetlands model expands the PFT 

parameter table to better represent northern vegetation and wetland types.  The initial LUT 

enhancement described in Watts et al. (2014a) included the addition of two general wetland 

classes: tundra and peatland.  A new expanded TCF model LUT for the northern latitudes 

includes classes for shrub peatlands, forested peatlands, non-peatland permanent wetlands, 

barren tundra, shrub tundra, wet sedge tundra, and tussock tundra.  The vegetation community 

types used to guide development of the updated TCF model LUT classes (Table S5.2) are 

derived from an expanded northern vegetation map (Figure 1) obtained from merged 

classifications using the 300-m resolution ESA CCI-LC 2010 Epoch land cover product (Kirches 

et al. 2014), the Circumpolar Arctic Vegetation Map (CAVM; Walker et al. 2005) and a high 

latitude peatland vegetation map (Watts et al. 2014b).  The merged land cover map was re-
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projected to a 1-km Equal Area Scalable Earth Grid Version 2 (EASE2) format with the WGS 84 

ellipsoid (Brodzik et al. 2012).  The land cover classes were assigned to each flux tower site 

based on the 1-km resolution grid cell overlying the central tower locations. An additional 

modification to the TCF model was the use of Ts to regulate carbon assimilation activity in the 

GPP module instead of Ta as had been used in prior TCF model simulations (Watts et al. 2014a). 

This step was taken as the high latitude GPP start-of-season is affected by the onset of spring 

thaw in frozen soil layers, which is correlated with bud break activity (Van Wijk et al. 2003, 

Euskirchen et al. 2006,  Parmentier et al. 2011).   

5.3.2.3 TCF model meteorology and remote sensing inputs 

Daily input meteorology was obtained from the Goddard Earth Observing System Data 

Assimilation Version 5 (GEOS-5) MERRA archive (Rienecker et al. 2011) with 1/2 x 2/3° 

spatial resolution. In addition to near surface (< 10 cm) Ts and root zone θ information from the 

MERRA-Land reanalysis (Reichle et al. 2011) required for the Reco and CH4 simulations, daily 

MERRA SWrad, Tmin and VPD records were used to drive the internal GPP calculations.  The 

MERRA near-surface (2 m) wind parameters were also used to obtain mean daily μm for the CH4 

simulations.  The GEOS-5 data were re-projected from geographic lat./lon. to a 1-km EASE2 

grid for input into the TCF model. 

For the daily LUE-based GPP simulations, quality screened cloud-filtered 4-day 1-km 

FPAR values from MODIS MCD15A3 combined Terra and Aqua data records (Knyazikhin et 

al. 1999) were used as model inputs.  The 4-day FPAR product is especially useful for 

monitoring high latitude environments due to rapid changes in vegetation growth occurring 

during the relatively short Arctic-boreal non-frozen season. The MCD15A3 records were 

converted from Sinusoidal grid to a 1-km EASE2 grid using Geospatial Data Abstraction Library 

for Python (GDAL 2.1.0).  The resulting MCD15A3 data were gap-filled using a simple linear 

interpretation method.  The spatially coarse 1-km FPAR values are used in this study rather than 

the 250-m FPAR derived from vegetation indices as described in Watts et al. (2014a) to more 

readily facilitate TCF model extrapolation from tower locations to the greater Arctic-boreal 

domain.  
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5.3.2.4 TCF model simulations  

TCF model simulations were conducted for each tower site using reanalysis SWrad, Tmin, 

VPD, SMRZ, Ts, μm and input satellite FT (Kim et al. 2014) over the 2003-2015 period.  The 

parameter values associated with TCF model GPP, Reco and CH4 simulations are provided in the 

Supplement (Tables S5.3-5.5).  Baseline carbon pools were initialized by continuously cycling 

(“spinning-up”) the model using reanalysis inputs over a 14-yr period (1989 to 2002) to reach a 

dynamic steady-state between estimated NPP and surface SOC stocks (Kimball et al. 2009, 

Watts et al. 2014a).  The resulting baseline SOC stocks were used as inputs in the 2003-2015 

forward model simulations.  The TCF model is designed to use reanalysis and satellite remote 

sensing input data representing the near-surface soil profile (> 30 cm) and more recent SOC 

accumulation in surface layers (~10 cm depth).  This assumption is adequate for investigations of 

contemporary ecosystem flux variability, but may not be appropriate for multi-decadal analyses 

and studies of carbon loss from highly disturbed landscapes where deeper soils become exposed 

to near-surface processes.        

 

5.3.2.5 TCF model assessment & site NECB trends  

The temporal agreement between the tower EC records and TCF model simulations was 

assessed using mean residual error (MRE) between the tower eddy covariance records and TCF 

modeled CO2 and CH4 fluxes to identify potential positive (underestimation) and negative 

(overestimation) biases in the simulations; root-mean-square-error (RMSE) differences were 

used as a measure of model estimate uncertainty in relation to the tower EC records.  Regression 

analysis was also used to ascertain which environmental predictor variables (e.g. land cover, 

mean annual precipitation and Ta, mean daily Ta and Ts, soil thaw depth) were significantly 

associated ( = 0.05) with changes in mean daily tower eddy covariance flux estimates for NEE, 

Reco, GPP and CH4 emissions. In situ soil moisture was not available for all tower sites and was 

not included in the multiple regression analysis.  Finally, a Mann–Kendall trend test (Watts et al. 

2012) was applied to the TCF model estimated annual totals for GPP, Reco, NEE, CH4 

emissions, and the NECB (NEE + CH4) to determine trend direction and significance (here we 

use  = 0.1) for ecosystem carbon fluxes over the 13-yr time period.  The trend tests were applied 
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for the individual tower sites and TCF model records aggregated across tundra and boreal wetland 

vegetation communities.  

 

5.4 Results  

5.4.1 Site eddy covariance flux characteristics  

Linear regression analysis indicates that thaw depth (cm), mean annual Ta (C) and mean 

daily Ta and Ts (C) contribute significantly (p < 0.05) to the regulation of mean daily NEE (gC 

m
-2

) fluxes in Arctic-boreal environments (Table 5.1; Figure 5.2).  Land cover, though not 

significant (p = 0.09), was also an important predictor in the model.  Mean annual precipitation 

was not a significant predictor (p = 0.7) of daily NEE flux.  All input environmental explanatory 

variables were significant for GPP when considering an  level of 0.1 (all variables sans thaw 

depth had p-values < 0.05).  All explanatory variables were significant (p < 0.01) in explaining 

mean daily Reco.  For model CH4 emissions, land class, thaw depth, mean annual precipitation, 

mean annual Ta and mean daily Ts were significant at p < 0.05; daily Ta was not a significant 

predictor.  For the GPP, Reco and CH4 models, the predictor variables explained 50% (R
2
 = 0.5) 

of the variability in carbon flux; however, for NEE the R
2
 was substantially lower at 28%.   

In general, the monthly summer (June-August) tower based GPP flux sums were larger 

(by a factor of 2.5) for boreal wetland landscapes (-143.6 + 57 gC m
-2

 mon
-1

; Figure 5.2) relative 

to the tundra land cover types included in this study (-57.7 + 33 gC m
-2

 mon
-1

), resulting from 

longer growing season length, warmer Ts and an absence of permafrost.  Boreal GPP was larger 

in needleleaf/peatland and mixed forest/peatland (land classes 45, 47, 49) with monthly fluxes 

exceeding 300 gC m
-2

.
  
 Monthly summer Reco flux sums for boreal wetlands (98 + 35 vs. 41+ 

21 gC m
-2

 mon
-1

) were more than twice as large relative to tundra. Reco was largest for the 

evergreen needleleaf forest/peatland and mixed needle/broadleaf/peatland landscapes (respective 

land classes = 45 & 49; Table S5.2).   

Mean monthly NEE sink strength, however, was only slightly larger (by a factor of 1.4; -

37 + 12 gC m
-2

 mon
-1

) for boreal wetland systems relative to tundra (-25 + 20 gC m
-2

 mon
-1

).  

Monthly CH4 fluxes were also larger for boreal wetlands (1.8 + 0.69 gC m
-2

 mon
-1

) compared to 
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tundra (0.8 + 0.41 gC m
-2

 mon
-1

).  The CH4 emission magnitudes were highest for the 

Scandinavian shrub/herbaceous non-tundra wetlands (land class = 19) characterized by 

discontinuous or an absence of permafrost, and minimal forest cover in the flux tower footprint.  

Higher CH4 fluxes were also observed for dwarf shrub/tussock tundra (land class = 28) found at 

Ivotuk, Alaska and Zackenberg, Greenland, although the temporal period of release at these sites 

was limited over a short time span (weeks to ~2 months) due to extended frozen soil conditions.  

5.4.2 Comparison of TCF model simulations with flux measurements  

The resulting TCF model simulations agree well with the tower observed GPP, Reco, 

NEE and CH4 eddy covariance fluxes (Figures 5.3, 5.4).  The TCF daily fluxes replicate the 

carbon sink/source patterns observed over Arctic-boreal wetland tower sites (Figure 5.5), with 

peak CO2 and CH4 emissions occurring in July and August and persisting throughout the winter 

at trace levels (~ 0.02-0.4 gC for Reco and 10-20 mgC for CH4).  The TCF model estimates, 

however, do not capture occasional episodic CO2 and CH4 loss from soils to the atmosphere that 

can occur following spring ice-off and autumn re-freeze events (e.g. Ivotuk tundra and Tanana 

Flats Bog, Alaska; Figure 5.2).  The TCF model also estimates a GPP start-of-season occurring 3 

to 6 days prior to GPP records obtained from tower eddy covariance data (e.g. Figure 5.2) even 

with the input satellite FT surface observations, and could reflect the coarse 4-day MODIS 

FPAR compositing.  The premature GPP estimates are more prevalent for colder boreal and 

tundra ecosystems where cold surface soil conditions and residual snow cover constrain the 

timing of annual vegetation leaf-out activity.  

A TCF algorithm error (RMSE) analysis for the Arctic-boreal flux tower sites, relative to 

the eddy covariance record observations, demonstrates carbon flux retrieval accuracy within targets 

specified by global satellite based carbon model guidelines (Kimball et al. 2016) and prior Arctic 

model investigations (Watts et al. 2014a).  The RMSE uncertainty (Table 5.2) for NEE at the flux 

tower sites are 0.97 + 0.46 gC m
-2

 d
-1

, and is similar to that reported in Watts et al. (2014a) for 

model simulations using MERRA reanalysis and 250-m MODIS vegetation index inputs.  The 

corresponding RMSE values for GPP and Reco are 1.08 + 0.44 and 0.85 + 0.49 gC m
-2

 d
-1

, 

respectively.  For CH4, TCF model RMSE uncertainty values of 21 + 12 mgC m
-2

 d
-1

 are also 

similar to those reported in prior studies (Watts et al. 2014a, 2014b). Corresponding MRE values 
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for the tower sites are 0.04 + 0.43, 0.01 + 0.27 and 0.13 + 0.39 gC m
-2

 d
-1 

for respective NEE, GPP 

and Reco fluxes indicating that, on average, the model is slightly underestimating CO2 fluxes 

relative to the eddy covariance data.  For CH4 the MRE is -0.65 + 5.93 mgC m
-2

 d
-1

.  

5.4.3 Annual TCF model flux budgets  

The 13-yr (2003-2015) TCF model flux record indicates that boreal wetlands had the 

largest total annual NEE (-96 + 86 gC m
-2

 yr
-1

) which results from a longer non-frozen period, 

increasing the GPP CO2 sink (-618 + 246 gC m-
2
 yr

-1
).  Forested wetlands, on average, had larger 

NEE sink strength (-122 + 99 gC m
-2

 yr
-1

) relative to non-forested boreal wetlands (-72 + 65 gC 

m
-2

 yr
-1

), attributed to the longer growing season for conifers (boreal wetland GPP = -493 + 194 

vs. 757 + 222 gC m
-2

 yr
-1

 for forested wetlands).  Boreal Reco averaged 554 + 245 gC m
-2

 yr
-1

, 

with 435 + 202 gC m
-2

 yr
-1

for non-forested wetlands and 690 + 223 gC m
-2

 yr
-1

for forested 

wetlands.  

The tundra sites experienced a small annual NEE sink (-4 + 37 gC m
-2

 yr
-1

).  Although 

the extended frozen season and relatively short (2-4 month) summer period at the tundra sites 

limited soil decomposition (Reco = 222 + 92 gC m
-2

 yr
-1

), the cold climate also greatly 

constrained vegetation GPP (-226 + 96 gC m
-2

 yr
-1

), thereby reducing the annual CO2 sink.  

Annual release of CH4 from the boreal sites averaged 23 + 26 gC m
-2

 yr
-1

.  The CH4 

emissions from non-forested wetlands were 25 + 32 gC m
-2

 yr
-1

, slightly higher than the forested 

wetland sites (18 + 13 gC m
-2

 yr
-1

).  Tundra CH4 emissions were substantially less, at 7 + 4 gC 

m
-2

 yr
-1

.  When considering NEE + CH4 loss, boreal wetland NECB was -79 + 90 gC m
-2

 yr
-1

; 

this reduced net ecosystem carbon sink strength by 19% relative to NEE.  Partitioning boreal 

non-forest wetlands and forested wetlands, NECB values were -51 + 68 gC m
-2

 yr
-1 

and -105 + 

101 gC m
-2

 yr
-1

, respectively.  The tundra NECB was 1.6 + 31 gC m
-2

 yr
-1

, resulting in net 

ecosystem carbon loss as opposed to being a small carbon sink when considering only NEE.   

Factoring in an enhanced atmospheric forcing potential for CH4, at least 25 times that of CO2 

over a 100-year time period, the boreal wetlands had an average global warming potential 

(GWP) of 472 + 640 g CO2eq m
-2

 yr
-1

 (607 + 815 g CO2eq m
-2

 yr
-1

 for non-forested and 336 + 

348 CO2eq m
-2

 yr
-1

for forested wetlands).  For tundra the GWP was 156 + 93 g CO2eq m
-2

 yr
-1

.   
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5.4.4 Trends in NECB and component fluxes 

 A generalized grouping of ecosystem types (e.g. boreal wetland; boreal forested wetland; 

boreal non-forest wetland; tundra) shows a slight decline in boreal GPP from 2005-2013, followed 

by an increase in yrs. 2014-2015 (Figure 5.6). Boreal Reco was relatively stable during this period, 

but increased considerably in 2014-2015 (~ 100 gC m
-2

) in the forested wetlands following a short 

decline in 2013.  The tundra wetlands had substantial year-to-year variability in GPP and Reco, 

with a decrease in GPP occurring from 2008-2009 and 2010-2014, followed by an increase in 

2015.  The combined GPP and Reco response over the 13-yr period in boreal wetlands shows a 

decrease in NEE (less carbon sink) from 2003-2009, followed by a stabilization in 2010-2013, and 

then an increase in NEE from 2014-2015.  The tundra wetlands show something similar, with NEE 

decreasing from 2003-2013, followed by an increase from 2014-2015.  Wetland CH4 emissions 

from boreal sites increased steadily over yrs. 2003-2015.  In tundra, CH4 was relatively stable with 

a small increase in 2007.    

The Mann Kendall trend results for TCF model annual flux sums, averaged according to 

general ecosystem type, indicate a lack of trend significance ( = 0.1) for NEE and Reco when 

considering the 36 Arctic-boreal sites (Table 5.3).  However, the boreal wetlands did show a 

significant increase in CH4 flux during the 13-yr period with higher increases and greater trend 

significance occurring for the non-forested boreal wetland sites (1.9 gC m
-2 

yr
-1

; p < 0.0001).  The 

boreal forested wetlands also showed a significant decrease in GPP flux (9.9 gC m
-2 

yr
-1

; p = 0.08).  

Increasing annual CH4 emissions in the non-forested boreal wetlands decreased the NECB (7.1 gC 

m
-2 

yr
-1

; p = 0.08) during the observation period.    

           Mann Kendall trend tests for the individual tower sites reveal contrasting flux response over 

the 13-yr period based on geographic location and land cover type (Figure 5.7).  Ten of the 36 

tower sites had a significant (p < 0.1) increase in annual Reco from 2003-2015 (i.e. site numbers 1, 

2, 8, 9, 13, 20, 28, 30, 31, 32; see Table S5.1).  Five towers had significant increases in annual GPP 

(site numbers 17, 28, 29, 33, 34) whereas two sites showed a decrease in GPP (3, 18).  Only four 

sites revealed an overall decrease in annual NEE CO2 sink (i.e. sites 6, 10, 19, 36) and included 

two Alaska North Slope tussock and sedge sites, a sedge fen in Finland, and a boreal peat site in 



162 

 

Manitoba, Canada.  For CH4, eight sites showed an increase in annual emissions (i.e. 13, 18, 20, 

21, 23, 25, 28, 32); one site showed a decrease (i.e. 9).   

5.5 Discussion & conclusion 

This study investigates recent (yrs. 2003-2015) changes in Arctic-boreal carbon fluxes 

and NECB using flux observations obtained from 36 high latitude eddy covariance tower sites 

and 13-yr records of daily 1-km resolution NEE, GPP, Reco, CH4 and NECB simulations from 

an enhanced satellite data driven TCF model developed for northern wetland regions. 

The TCF model estimates are in close agreement with the tower observed NEE and CH4 

eddy covariance fluxes, and replicate the carbon sink/source patterns observed over Arctic-boreal 

wetland tower sites.  The RMSE uncertainty for NEE at the flux tower sites (0.97 + 0.46 gC m
-2

 d
-

1
) is comparable to other model simulations using MERRA reanalysis and MODIS inputs (Watts et 

al. (2014a). The RMSE uncertainty for CH4 (21 + 12 mgC m
-2

 d
-1

) is also similar to those reported 

in prior studies (Watts et al. 2014a, 2014b).  The higher RMSE values for NEE (> 1.2 gC m
-2

 d
-1

) 

observed for some Arctic sites result from a seasonal mismatch between reanalysis and site Ts (e.g. 

Imnavait hillslope tussock in Alaska and Zackenberg wet fen tundra in Greenland).  High RMSE 

values for NEE also occur for a NOAA North Slope (Deadhorse area) tower site in Alaska, 

resulting from recent large, localized increases in active layer depth (and Ts) that are not reflected 

in the coarse 0.5 resolution MERRA reanalysis records.  Similar temperature mismatch may also 

contribute to the higher RMSE values observed at the Scotty Creek boreal bog in the Canadian 

NWT where permafrost thaw and thermokarst activity has resulted in warmer soil conditions and 

waterlogging relative to adjacent landscapes (Helbig et al. 2016b).  However, the higher model 

estimate uncertainty for these ecosystems is still within the range of acceptable error for northern 

high latitude systems (Marushchak et al. 2013, Kimball et al. 2016).  

Although the TCF model performs well in simulating the seasonal NEE patterns at these 

sites, the model does not capture episodic CO2 emission events occurring during spring thaw 

when CO2 trapped in frozen soils is released following surface ice and snow melt (e.g. as 

observed at Tanana Flats).  This episodic release can also occur during the autumn freeze, when 

contracting soils push CO2 (and CH4) stored at depth towards the surface (Mastepanov et al. 
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2008).  Representing these episodic processes would require an increase in model complexity 

and the addition of multiple soil layers and a heat transfer model, and is beyond the intended 

scope of the satellite data driven TCF model framework.   

The regulating effect of environmental conditions on carbon flux is evident in the Arctic-

boreal tower site records and the TCF model simulations. Higher monthly NEE loss occurred at 

permafrost sites where thaw depths ranged between -40 and -50 cm below the surface, reflecting 

a priming effect on respiration as deeper stored SOC became available for microbial activity, 

offsetting vegetation GPP (Schuur et al. 2015, Schädel et al. 2016).  Continuing permafrost thaw 

also facilitates sub-surface drainage and drying of the surface soil layers.  The drier surface soils 

support warmer, aerobic conditions which accelerate microbial decomposition rates and CO2 loss 

(Watts et al. 2014a). This priming effect at summer thaw depths near -40 cm was also observed 

in the tower records for CH4 but began to decrease with further active layer deepening if soil 

drainage occurred.  Overall, a decrease in CO2 sink (more positive NEE) resulted when cooler Ts 

and Ta temperatures limited GPP and the offset of CO2 loss from Reco, or warmer conditions 

(monthly average air temperatures > 17°C) resulted in drier soil conditions which heightened 

Reco and reduced GPP.  These response characteristics have been reported elsewhere 

(Parmentier et al. 2011, Sturtevant & Oechel 2013). Ecosystem CH4 emissions from the 

observed Arctic-boreal landscapes were relatively minimal at temperatures below 0°C but 

increased substantially at or above 0°C, reflecting the strong temperature sensitivity of 

methanogens (Watts et al. 2014a, 2014b; Zona et al. 2016). 

This investigation indicates that tundra landscapes are particularly vulnerable to shifts 

from classification as net carbon (NECB) sink to net carbon source when accounting for annual 

CH4 emissions in addition to NEE.   Tundra NEE showed a very minimal average carbon sink (-

4 + 37 gC m
-2

 yr
-1

) during yrs. 2003-2015.   The corresponding NECB was 1.6 + 31 gC m
-2

 yr
-1

, 

shifting tundra to a net carbon source.  At some tundra tower sites, CH4 emissions in the wet and 

warm years of 2008 and 2012 offset the already minimal NEE sink by 200-500%.  With 

continued climate warming the relatively low annual CO2 uptake through GPP in tundra 

environments is less likely to offset microbial decomposition of SOC, especially given the 

lessening cold temperature protection of stored labile carbon substrates (Watts et al. 2014a, 
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2014b, Zona et al. 2016).  In contrast, the boreal wetland sites have much higher magnitudes of 

annual GPP and stronger (more negative) NEE sink (-96 + 86 gC m
-2

 yr
-1

).  Yet, a 20% reduction 

in carbon sink (NECB -76 + 90 gC m
-2

 yr
-1

) was evident at the boreal sites when accounting for 

carbon loss as CH4.  When considering the 25-times higher atmospheric warming potential for 

CH4 (Boucher et al. 2009), all ecosystems showed an average positive GWP (472 + 640 g CO2eq 

m
-2

 yr
-1

 for boreal forests and 156 + 93 g CO2eq m
-2

 yr
-1 

for tundra).   

Change in NEE sink activity for the Arctic-boreal tundra was not significant (p > 0.19) 

during the 2003-2015 yr. period, nor were the observed changes in Reco (p > 0.45), GPP (p > 0.08) 

and the NECB (p > 0.08).  However, boreal wetlands did show significant increase in CH4 (p < 

0.05) resulting from warming Ts and CH4 sensitivity to changing thermal conditions, an increasing 

annual non-frozen season, and sufficient soil wetness and landscape inundation to support 

anaerobic conditions.  These results indicate that a lengthening of the surface non-frozen season in 

Arctic-boreal communities does not necessarily lead to higher net annual CO2 sink activity due to 

moisture and vegetation phenology controls on GPP and carbon loss contribution from Reco and 

CH4 (Watts et al. 2014a).  Other studies have reported a similar lack of overall change in 

ecosystem carbon balance (Marchand et al. 2004, Sistla et al. 2013) and tundra CH4 emissions 

(Miller et al. 2016, Sweeney et al. 2016) despite northern high latitude warming.   Although the 

trends in regional Reco were not significant, the TCF modeled CO2 emissions show a steep rise in 

yrs. 2014 and 2015 that reflect warmer summer temperatures.  This reveals a need for further long-

term monitoring of these ecosystems to ascertain changes in longer-term soil respiration rates 

(Watts et al. 2014a), especially considering ecosystem surface drying trends that have been 

observed in localized Arctic-boreal systems (Watts et al. 2014b).  The indication of trend in CO2 

and CH4 exchange at individual tower sites, but not in the regional grouping of tundra and boreal 

wetlands, shows a need for more localized landscape monitoring, in compliment to regional 

analyses, to understand contrasting ecosystem response to shifting climate and interannual 

wetting/drying effects.  

On-going efforts are needed to better quantify the NECB in Arctic-boreal ecosystems, 

and to detect contrasting patterns and regional trends in carbon uptake through GPP and carbon 

loss through CO2 respiration and wetland CH4 emissions.  Given the limited network of eddy 
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covariance flux towers in northern high latitude environments, and lack of temporal permanence 

in flux tower observations, the on-going integration of in situ gas sampling with satellite and 

airborne remote sensing and ecosystem flux models will be crucial to track changes in carbon 

balance (Fisher et al. 2014, Miller et al. 2016, Parazoo et al. 2016) and shifts from ecosystem 

carbon sink to carbon source in tundra and boreal wetlands.  
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Tables 

Table 5.1 Multiple linear regression results for flux tower NEE, GPP, Reco (gC m
-2

 d
-1

) and CH4 records (mgC m
-2

 d
-1

) from the 35 
Arctic-boreal wetland sites.  Explanatory variables include land cover class, permafrost thaw depth, mean annual precipitation (MAP; 
mm), mean annual air temperature (C), mean daily air and soil temperature (Ta, Ts; C).  The parameter estimates are shown, along 
with model standard error, t-values, p-values, root square error (RSE), F-statistic, the degrees of freedom, and the coefficient of 
determination (R

2
).  Parameter significance is denoted as * where p < 0.1, ** where p < 0.05, and *** where p < 0.01.   

NEE Estimate  Std.Error t-value p-value Significance Reco Estimate  Std.Error t-value p-value Significance 

Intercept 5.24 6.24 0.84 4.00E-01 

 

Intercept 35.77 10.28 3.48 5.30E-04 *** 

Land Class -0.18 0.11 -1.72 9.00E-02 * Land Class 0.66 0.17 3.77 1.78E-04 *** 

ThawDepth -0.14 0.06 -2.18 3.00E-02 ** ThawDepth -0.27 0.11 -2.59 9.92E-03 *** 

MAP 0.002 0.01 0.38 7.10E-01 

 

MAP -0.03 0.01 -2.59 3.14E-03 *** 

MAT 1.61 0.33 4.83 1.64E-06 *** MAT 4.03 0.55 7.29 8.523-13 *** 

Ta -0.61 0.13 -4.76 2.33E-06 *** Ta 1.29 0.22 5.95 4.27E-09 *** 

Ts -1.26 0.23 -5.54 4.23E-08 *** Ts 3.59 0.4 9.08 2.00E-16 *** 

RSE 26 Deg. Freedom 722 

  
RSE 42 Deg. Freedom 682 

  F-stat 46 R2 0.28 p-value < 2.2e-16 F-stat 110 R2 0.49 p-value < 2.2e-16 

GPP Estimate  Std.Error t-value p-value Significance CH4 Estimate  Std.Error t-value p-value Significance 

Intercept -25.27 12.25 -2.06 4.00E-02 ** Intercept 4792 679 7.06 4.09E-11 *** 

Land Class -0.91 0.21 -4.38 1.39E-05 *** Land Class -50.55 10.51 -4.81 3.32E-06 *** 

ThawDepth 0.22 0.12 1.74 8.00E-02 * ThawDepth 13.3 6.73 1.98 4.00E-02 ** 

MAP 0.03 0.01 2.31 2.00E-02 ** MAP -5.59 1.32 -4.23 3.75E-05 *** 

MAT -2.57 0.66 -3.89 1.09E-04 *** MAT 80.96 39.82 2.03 4.00E-02 *** 

Ta -1.64 0.26 -6.32 4.80E-10 *** Ta -22.37 17.05 -1.31 1.90E-01 

 Ts -4.55 0.47 -9.63 2.00E-16 *** Ts 209.47 25.34 8.27 3.71E-14 *** 

RSE 50 Deg. Freedom 682 
  

RSE 1087 Deg. Freedom 171 
  F-stat 114 R2 0.5 p-value < 2.2e-16 F-stat 31 R2 0.52 p-value < 2.2e-16 
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Table 5.2 TCF model results for tower sites relative to fluxes derived from eddy covariance 

methods.  Measures of model estimate disagreement include the root mean square error (RMSE) 

and mean residual error (MRE).  RMSE and MSE are provided for NEE, GPP, Reco (units are 

gC m
-2

 d
-1

) and CH4 (mgC m
-2

 d
-1

) flux estimates.  

SITE RMSE.NEE MRE.NEE RMSE.GPP MRE.GPP RMSE.Reco MRE.Reco RMSE.CH4 MRE.CH4 

 
gC m-2 d-1 mgC m-2  d-1 

1 0.69 -0.03 0.84 -0.04 0.85 0.09 14 -6.01 

2 0.86 -0.05 0.98 -0.11 0.91 0.27 
  3 1.21 0.26 0.97 -0.11 1.01 -0.13 
  4 0.96 -0.1 1.66 0 0.77 0.26 
  5 0.73 0.09 0.89 0.01 0.81 -0.08 4.94 -0.44 

6 1.3 -0.22 1.15 0.42 3.19 2.02 
  7 0.6 0.12 0.63 -0.02 0.66 0.24 
  8 0.34 0.06 0.28 -0.1 0.43 -0.11 14.35 -0.78 

9 0.84 -0.21 0.99 -0.12 1.22 -0.03 22.42 2.5 

10 0.63 0.05 0.92 -0.41 0.5 0.36 4.52 0.04 

11 0.48 -0.12 0.54 -0.11 0.45 -0.13 10.86 -6.12 

12 0.33 0.05 0.34 -0.04 0.36 0.04 9.06 6.48 
13 1.27 -0.94 1.29 -0.75 0.63 0.09 23.34 11.37 

14 0.79 -0.07 1.05 0.13 0.78 -0.21 12.8 -1.09 

15 0.84 0.2 0.98 -0.03 0.81 0.17 25.38 -1.72 
16 1.29 -0.23 1.22 0.29 0.86 -0.14 19.63 0.87 

17 0.53 0.12 0.67 0.13 0.35 0.1 31.35 4.1 

18 0.95 0.07 1.17 0.01 0.76 -0.04 
  19 0.84 0.23 0.99 -0.03 0.8 0.03 
  20 0.77 0.12 1.17 0.31 0.73 -0.23 
  21 0.8 0.36 1.08 0.51 0.62 -0.26 
  22 1.84 0.9 1.84 0.17 1.26 0.47 
  23 2.02 0.71 2.38 0.07 1.29 0.57 
  

24 0.76 0.36 0.9 0 0.88 0.21 
  

25 0.81 0.24 0.99 0 0.95 0.22 
  26 0.51 0.05 0.67 -0.06 0.64 0.23 
  27 1.42 0.59 1.52 0.44 0.87 0.13 35.6 4.42 

28 1.42 0.59 1.52 0.44 0.87 0.13 35.6 4.42 

29 1.15 0.16 1.42 -0.18 1.33 0.05 35.43 -15.2 
30 1.22 -0.73 0.96 -0.07 0.62 0.14 12.06 1.75 

31 
  

1.9 -0.72 
    32 2.31 -1.33 1.38 0.02 1.01 -0.14 

  34 0.54 -0.13 0.64 -0.03 0.42 -0.12 24 -6.28 

35 
      

46.98 -5.47 

36 0.85 -0.01 0.81 -0.04 0.45 0 34.09 -5.1 

Mean 0.96 0.01 1.07 -0.01 0.85 0.13 21.16 -0.93 

Stdev 0.47 0.43 0.45 0.27 0.51 0.41 11.95 5.98 
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Table 5.3 Mann Kendall trend results for TCF model simulated annual NEE, GPP, Reco, CH4 

and NECB (gC m
-2

 yr
-1

) for years 2003-2015.  The intercept and trend indicate the linear model 

component.  Tau indicates the rank correlation between the carbon fluxes and time.  The * 

denotes trend significance at  = 0.05.  

 

 

Intercept    Trend        Tau       P-value 

NEE     

Boreal Wetland -141.7 8.17 0.12 0.63 

Boreal Forested Wetland -183.2 11.59 0.18 0.45 

Boreal Non-forested Wetland -94.7 4.44 0.21 0.37 

Tundra -15.7 1.51 0.3 0.19 

GPP 

    
Boreal Wetland 635.5 -7.22 -0.33 0.15 

Boreal Forested Wetland 788 -9.89 -0.39 0.08 

Boreal Non-forested Wetland 556.9 -7.71 -0.18 0.45 

Tundra 225.76 -0.33 -0.15 0.54 

Reco 

    
Boreal Wetland 525.7 3.5 0.09 0.74 

Boreal Forested Wetland 650.3 4.24 0.09 0.73 

Boreal Non-forested Wetland 394.4 3.4 0.15 0.53 

Tundra 209.9 1.23 0.18 0.45 

CH4 

    
Boreal Wetland 11.76 1.6 0.73 0.001* 

Boreal Forested Wetland 11.16 1.1 0.45 0.05* 

Boreal Non-forested Wetland 13.9 1.99 0.82  <0.0001* 

Tundra 6.3 0.01 0.12 0.63 

NECB 

    
Boreal Wetland -142.2 10.11 0.33 0.15 

Boreal Forested Wetland -185.9 13.39 0.3 0.19 

Boreal Non-forested Wetland -96.6 7.13 0.39 0.08 

Tundra 6.3 0.01 0.12 0.63 
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Figures 

 

 

Figure 5.1 Land cover for high latitude regions > 45°N as derived from merged ESA CCI-LC 

2010 (Kirches et al. 2014), Circumpolar Arctic Vegetation Map (CAVM; Walker et al. 2005) 

and peatland (Watts et al. 2014b) classification fields.  Filled red circles denote flux tower 

validation sites.  Land cover classes include Evergreen Needleleaf and Broadleaf Forest 

(ENF/EBF), Deciduous Needleleaf and Broadleaf Forest (DNF/DBL), Mixed Forest (MF), 

Tussock (T) and Non-Tussock (NT) sedge/shrub tundra and other tundra, peatland, and wetland 

shrub and grassland vegetation. 
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Figure 5.2 Ecosystem characteristics observed in eddy covariance tower records for net 

ecosystem CO2 exchange (NEE) and CH4 emissions (gC/m
2
/month) from northern high latitude 

wetland sites. Key environmental regulators influencing seasonal flux magnitudes include 

vegetation community type (e.g. boreal or tundra wetlands), the thaw depth (cm) of soils 

overlaying permafrost, and air/soil temperature (C).  Landscape wetness (not shown) is also a 

key factor, with carbon emissions shifting towards anaerobic CH4 pathways under very wet or 

saturated soil conditions.  Thaw depths of ‘0’ indicate an absence of permafrost in the landscape 

immediate to the tower sites.
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Figure 5.3  Example TCF model simulation results shown for four of the 36 Arctic-boreal flux tower sites, using 1-km MODIS FPAR 

(MCD15A3) and 0.5° NASA GMAO MERRA reanalysis inputs.  Model estimated gross primary productivity (GPP; gC m
-2

 d
-1

) is 

indicated by the green lines, whereas model estimated ecosystem CO2 respiration (Reco; gC m
-2

 d
-1

) is shown in green.  The open 

circles denote daily flux averages obtained through tower eddy covariance observations.  The four ecosystems included here represent 

two boreal sites (Mer Bleu and Tanana Flats) and two tundra sites (Ivotuk and Atqasuk).  
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Figure 5.4  Example TCF model simulation results shown for four of the 36 Arctic-boreal flux tower sites, using 1-km MODIS FPAR 

(MCD15A3) and 0.5° NASA GMAO MERRA reanalysis inputs.  Model estimated CH4 emissions (mgC m
-2

 d
-1

) are indicated by the 

blue lines, whereas model estimated net ecosystem CO2 exchange (NEE; gC m
-2

 d
-1

) is shown in green.  The open circles denote daily 

flux averages obtained through tower eddy covariance observations.  The four ecosystems included here represent two boreal sites and 

two tundra sites.  The boreal sites are: (1) a Canadian non-permafrost boreal peat and fen wetland (Mer Bleu; site number 14); and (2) 

a boreal bog in Alaska with discontinuous permafrost (Tanana Flats; site number 1). The tundra sites are: (1) upland mixed tussock 

and shrub tundra in Alaska having underlying continuous permafrost (Ivotuk; site number 9); and (2) lowland moist tussock tundra 

having underlying continuous permafrost (Atqasuk; site number 8). 
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Figure 5.5 Distributions of daily mean fluxes for NEE, GPP, Reco (gC m

-2
 d

-1
) and CH4 (mgC m

-2
 d

-1
) obtained from the 1-km res. 

TCF model simulations (in blue) and tower eddy covariance datasets (in grey) by land cover class. The boxplot median values are 

indicated by black horizontal lines; vertical tails indicate the flux range.  
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Figure 5.6   Annual variability in NEE, GPP, Reco, CH4 and NECB (gC m

-2
 yr

-1
) for Arctic-boreal flux tower locations according to 

aggregated ecosystem type (i.e. Boreal wetland; Boreal forested wetland; Boreal non-forested wetland; Tundra).  The solid lines 

indicate across-site flux means and the shaded regions denote +/- 1 standard deviation around the mean.   
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Figure 5.7   Site trends in NEE and CH4 (gC m

-2
 yr

-1
) for Arctic-boreal flux tower locations, from 2003 through 2015.  Locations of 

the 36 towers are shown by the white circles.   Red circles denote sites having significant trends (p < 0.1) in annual net CO2 or CH4 

flux.  The blue circle indicates a significant decrease in annual site CH4 emissions over the 13-yr period.   
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Chapter 5 Supplement 

 

Table S5.1  Flux tower site information, including associated 1-km land cover class type, permafrost (PF) class, active layer thaw 

depth, elevation, mean annual precipitation and temperature (MAP, MAT), the measured gas species, years of available flux record, 

and associated publications.   

Site 

Number 
Region 

Tower 

Coordinates 

Site 

Location 
Site Description 

Land 

Class 
PF 

Thaw 

Depth 

(cm) 

Elev 

(m) 

MAP 

(mm) 

MAT 

(°C) 
Species 

Year(s) of 

Record  
Publications or Contact Info 

    

1 AK 
64.696°N,   

148.320°W 

Tanana Flats  

(TF BB) 

Boreal Thermokarst 

Collapse Scar Bog 
55 

Discont

. 
0.62 100 287 -3.1 

CH4 2013 
Euskirchen et al. 2014  

CO2 2011-2013 

2 AK 
64.696°N, 

148.323°W 

Tanana Flats  

(TF Bs) 

Sparsely Treed Black 

Spruce 
45 

Discont

. 
0.53 100 287 -3.1 CO2 2011-2013 Euskirchen et al. 2014    

3 AK 
64.704°N, 

148.313°W 

Tanana Flats  

(TF Rf) 
Rich Fen (No Trees) 45 

Discont

. 
> 2.5 m  100 287 -3.1 CO2 2011-2013 Euskirchen et al. 2014  

 

4 AK 
64.8663°N, 
147.856°W 

University of 

 Alaska 

Fairbanks 

Open Canopy Black 
Spruce 

45 
Discont
. 

-45 158 263 -2.9 CO2 2003-2011 
Ueyama et al. 2014;  
Iwata et al. 2012 

 

5 AK 
68.606°N, 
149.311°W 

Imnavait 
Wet Sedge Fen  
(Riparian) 

16 Cont. 60 930 318 -7.4 

CH4 2012-2013 

Euskirchen et al. 2012  

 

CO2 

2008-

2010; 
2012-2013 

 

6 AK 
68.608°N, 

149.304°W 
Imnavait Tussock (Hillslope) 55 Cont. 70 930 318 -7.4 CO2 2008-2010 Euskirchen et al. 2012    

7 AK 
68.607°N, 

149.296°W 
Imnavait Dry Heath (Ridge) 33 Cont.  40 930 318 -7.4 CO2 

2008-
2010; 

2012-2013 

Euskirchen et al. 2012  
 

8 AK 
70.469° N, 
157.408°W 

Atqasuk Moist Tussock 36 Cont. -50 15 102.7 -9.7 
CH4 2013-2014 Donatella Zona 

d.zona@sheffield.ac.uk 
    

CO2 2013-2014 
    

9 AK 
68.486°N, 

155.750°W 
Ivotuk 

Moist Tussock & 

Shrub/Moss/Lichen 
28 Cont. -60 568 

MSP: 

210 
-7.9 

CH4 2013-2014 Donatella Zona 

d.zona@sheffield.ac.uk 
 

CO2 2013-2014 

10 AK 
71.323°N, 

156.609°W 

Barrow; 

CMDL 

Wet Sedge & Grass 

Tundra  
37 Cont. -32 6 

MAP 

110 
-12.6 

CH4 2014 Donatella Zona 

d.zona@sheffield.ac.uk 
 

CO2 2013-2014  

11 AK 
71.280°N, 

156.596°W 
Barrow; BES Wet Inundated 

Sedge/Grass/Moss 
37 Cont. -36 6 

MSP: 

72 
-12.6 

CH4 2013-2014 
Donatella Zona 

d.zona@sheffield.ac.uk 

    

CO2 2013-2014 
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Site 

Number 
Region 

Tower 

Coordinates 

Site 

Location 
Site Description 

Land 

Class 
 PF 

Thaw Depth 

(cm) 

Elev 

(m) 

MAP 

(mm) 

MAT 

(°C) 
Species 

Year(s) of 

Record  
Publications or Contact Info      

12 AK 
71.281°N, 

156.612°W 

Barrow; 

BEO 

Med Dry Poly. 

Tundra; 

(Grass/Sedge/Moss/ 
Dwarf Shrub) 

37 Cont.     -35 7 
MSP: 

72 
-12.6 

CH4 

CO2 

2013-2014 

2013-2014 
 

Donatella Zona 

d.zona@sheffield.ac.uk 

     

     

13 

 

AK 

 

70.1°N, 

148.6°W 

Prudhoe 

Bay; 

NOAA/AT
DD 

Wet Sedge 37 Cont. -71 30 103 -11.8 

CH4 2013-2014 
John Kochendorfer 

john.kochendorfer@noaa.gov 
  

    

CO2 2013-2014 
    

14 CA 
45.41°N, 

75.51°W 
Ottawa Bog Peatland & Fen 11 None NA 65 943 6.4 

CH4 2011-2012 
Brown et al. 2014    

CO2 2011-2012 
  

15 CA 
53.674°N, 

78.170°W 

Quebec; St. 
James Bay 

Lowlands 

Boreal Sphagnum 

Bog 
11 None NA 71 697 -2.4 CH4 2012 Nadeau et al. 2013 

    

16 CA 
61.18°N, 

121.3°W 

Scotty 
Creek, 

NWT 

Boreal Forest; 3-4 

m peat  
11 Spor. 1000 283 369 -3.2 CO2 2015-2016 

Helbig et al. 2016a;  

Helbig et al. 2016b     

17 CA 
61.18°N, 

121.3°W 

Scotty 

Creek, 
NWT 

Boreal Forest + 

Thermokarst Bog; 
3-4 m peat  

11 Spor. 1000 283 369 -3.2 CO2 2015-2016 
Helbig et al. 2016a; 

Helbig et al. 2016b  
 

 

18 CA 
54.953°N, 

112.467°W 

Western 

Peatland 

Lac 
LaBiche 

Peatland; stunted 

trees, shrubs, herbs, 

moss 

49 None NA 540  324 -1.84 CO2 
2003-2005; 

2008-2009 

Larry Flanagan; 

larry.flanagan@uleth.ca     

19 CA 
55.88°N, 

98.48°W 

Manitoba; 

BOREAS 
NSA- Old 

Black 

Spruce 

Boreal Black 
Spruce; moss 

understory 

45 None NA 253 509 -2.9 CO2 
2003; 

2007-2008 

Brian Amiro; 

brian_amiro@umanitoba.ca     

20 CA 
55.537°N, 
112.335°W 

Alberta 

Western 

Peatland 

Poor Fen (No 
Trees) 

49 None NA 732 504 2.1 CO2 2004 Adkinson et al. 2011 
    

21 CA 
55.537°N, 

112.335°W 

Alberta 
Western 

Peatland 

Rich Fen (No 

Trees) 
49 None NA 732 504 2.1 CO2 2004 Adkinson et al. 2011     

22 CA 
48.217°N, 

82.155°W 

Ontario, 

Groundhog 
River 

Old (70+ years) 
Mixed Forest; 

aspen, birch, 

spruce, moss 

49 None NA 355 835 1.3 CO2 2003-2005 Pejam et al. 2006 
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Site 

Number 
Region 

Tower 

Coordinates 
Site Location Site Description 

Land 

Class 
PF 

Thaw 

Depth (cm) 

Elev 

(m) 

MAP 

(mm) 

MAT 

(°C) 
Species 

Year(s) of 

Record 

Publications or Contact 

Info 
    

23 CA 
53.6289°N, 

106.198°W 

Saskatchewan; Old 

Aspen 

Old (70+ years) 
Aspen;  + 10% 

balsam poplar, 

moss 

45 None NA 580 406 0.5 CO2 2003-2010 
Andy Black; 

(andrew.black@ubc.ca) 
    

24 CA 
49.6925°N, 

74.342°W 

Quebec; Eastern 
Old Black Spruce 

(EOBS)  

90-100 yr old 
Black Spruce and 

Jack Pine; moss  

45 None NA 390 962 -0.36 CO2 2003-2006 Bergeron et al. 2006 
    

25 CA 
53.916°N, 

104.692°W 

Saskatchewan; Old 

Jack Pine (SOJP) 

Jackpine and 

lichen  
45 None NA 518 

390-

542 
0.1 CO2 2003-2005 

Warren Helgason; 
warren.helgason@usask.c

a 
    

26 GL 
74.4732°N, 

20.5503°W 
Zackenberg 

Well Drained 

Cassiope Heath 
28 Cont. -46 40 200 -9 CO2 2004-2014 

Magnus Lund 

ml@bios.au.dk 
    

    

27 GL 
74.4791°N, 

20.5557°W 
Zackenberg Wet Fen 28 Cont. -40 40 200 -9 CO2 2007-2014 

Magnus Lund 

ml@bios.au.dk     

28 GL 
74.4791°N, 

20.5557°W 

Zackenberg 

 
Wet Fen 28 Cont. -40 38 200 -9.2 

CH4 2008-2009 Tagesson et al. 2012 
    

CO2 2008-2009 Tagesson et al. 2012 
    

29 RU 
70.829°N, 

147.494°E 

Chokurdakh/ 

Kytalyk 

Moist Tussock; 

wedge polygon 

34 

 

Cont. 

 

-35 

 

48 

 

220 

 

-10.5 

 

CH4 2008-2009 
Parmentier et al. 2011a 

Parmentier et al. 2011b 

   

CO2 2003-2010    

30 

 

RU 

 

72.3733°N, 

126.4979°E 
 

Samoylov Island- 

Lena Delta 
 

Moist Tundra 

 

 
34 Cont. 

 

-30 

 

16 

 

MSP: 

72-208 
 

-14.7 

 
 

CH4 2003-2004 Wille et al. 2008 
    

CO2 2003-2004 Kutzbach et al. 2007 
 

CH4 2006 
Sachs et al. 2008;  

Sachs et al. 2010 

 CO2 2006 
Sachs et al. 2008;  

Sachs et al. 2011 
 

31 RU 
56.4615°N, 

32.9221°E 

Fedorovskoje, 

near Nelidovo.  

Old Drained 

Spruce 
45 None NA 265 584 3.73 CO2 2003-2006 McCallum et al. 2013     

32 RU 
60.8001°N, 

89.3508°E 

Zotino; West side 

of Yenisei River  

Old Pine Forest; 

surrounded by 

sphagnum peat 
bogs 

45 None NA 90 943 -3.27 CO2 2003-2004 
Corinna Rebmann 

corinna.rebmann@ufz.de 
 

33 RU 
62.255°N, 

129.241389° 

Yakutsk 

Spasskaya Pad  
Larch Forest 47 Discont. -200 220 111-347 -8.8 CO2 2004-2007 Ohta et al. 2008  
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Site 

Number 
Region 

Tower 

Coordinates 
Site Location Site description 

Land 

Class 
PF 

Thaw 

Depth 

(cm) 

Elev 

(m) 

MAP 

(mm) 

MAT 

(°C 
Species 

Year(s) 

of 

Record 

Publications or Contact 

Info 
    

34 
 

FI 
 

61.8327°N, 

24.1928°E 

 

Siikaneva  

Boreal Open Fen 

Wetland; moss & 
sedge dominated 

 

55 None NA 170 713 3.3 

CH4 2005 Aurela et al. 2007;  

Rinne et al. 2007 

 

    

CO2 
2004-

2005     

35 SE 
68.3542°N, 

19.0471°E 

Stordalen 

Grassland 
(Mire) 

Boreal Birch; 

wet & tall 

graminoid 
wetland & open 

water 

19 Discont. NA 347 364.5 -0.21 CH4 
2006-

2007 

Jackowicz-Korczynski  

et al. 2010 

36 FI 
67.9972°N, 

24.2092°E 
Lompolojänkkä 

Sedge Fen; with 

deep peat 
19 None NA 274 484 -1.4 CO2 

2006-

2010 
Aurela et al. 2009 
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Table S5.2 Vegetation land cover classes from a merged 1-km resolution land cover map (See section 5.3.2.2) as represented by the 

flux tower sites used in this study.  The land cover classification number (Land Class) is provided, along with a description of the 

associated general vegetation community types. 

 

Land Class Vegetation Community Type 

  
11 Permanent wetland 

    16 Barren or sparsely vegetated 
   19 Shrub and herbaceous non-tundra wetland  

 28 Dwarf-shrub tundra 
    33 Non-tussock sedge-shrub-moss tundra 

  34 Tussock sedge-shrub-moss tundra (shrub land characteristics) 

36 Tussock sedge-shrub-moss tundra (savanna characteristics)  

37 Wet sedge-moss tundra 
   45 Evergreen needle leaf forest + peatland 

  47 Deciduous needle leaf forest + peatland 
  49 Mixed forest (evergreen, deciduous) needle and broad leaf forest + peatland  

55 Shrub wetland + peatland  
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Table S5.3 TCF model parameter values for GPP specific to tundra and forested wetland land class types.  Parameters include 

maximum light use efficiency (LUE_max), soil temperature minimum and maximum (Ts_max, Ts_min), vapor pressure deficit 

minimum and maximums (VPD_min, VPD_max) and root zone soil moisture minimum and maximum (SM_min, SM_max). Further 

description of these parameters can be found in Watts et al. (2014a). 

 

Sites Land Class LUE_max   Ts_max Ts_min VPD_min VPD_max    SM_min SM_max 

14, 15, 16, 17 
11 1.01 8.75 -0.25 600 4250 0.14 0.55 

5 16 0.97 8.00 0.50 300 2500 0.45 0.85 

35, 36 19 0.87 12.50 -0.25 450 2500 0.15 0.55 

9,25,26,27,28 28 1.67 6.00 -4.70 600 3900 0.15 0.49 

7 33 0.96 10.50 -2.00 300 3000 0.35 0.90 

29, 30  34 0.98 5.00 -2.00 600 3500 0.15 0.45 

8 36 1.30 6.00 -3.50 500 4500 0.15 0.45 

10,11, 12, 13 37 1.15 4.75 -4.25 575 3500 0.15 0.50 

2,3,4,19,23,24,31,32 45 1.19 9.88 -9.38 625 4100 0.13 0.46 

33 47 1.35 8.00 -15.00 600 5500 0.10 0.35 

18,20,21,22 49 0.90 11.75 0.88 600 3750 0.15 0.50 

1,6,34 55 1.05 9.00 -3.50 500 3333 0.25 0.62 
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Table S5.4 TCF model parameter values for Reco specific to tundra and forested wetland land class types.  These include Rhet scaling 

parameters for the soil moisture curve (SM1, SM2), the soil temperature curve (PTM1-PTM3), the metabolic fraction of NPP 

(FMET), the proportional rate allocation for respective structural and slow soil organic carbon pool decomposition (KSTR; KSLW).  

KOPT is the proportion of GPP lost through Ra. Further description of these parameters can be found in Watts et al. (2014a).  

 

Sites 
Land 

Class 
SM1 SM2 PTM1 PTM2 PTM3 FMET FSTR KSTR KSLW FRAUT KOPT 

14, 15, 16, 17 11 2.1 1 244.81 0.017 240.63 0.71 0.7 0.4 0.009 0.40 0.03 

5 16 2.1 1 249.56 0.017 240.13 0.71 0.7 0.4 0.009 0.40 0.03 

35, 36 19 2.1 1 250.56 0.016 240.13 0.71 0.7 0.4 0.009 0.47 0.02 

9,25,26,27,28 28 2.1 1 249.31 0.061 236.88 0.71 0.7 0.4 0.009 0.43 0.03 

7 33 2.2 1 240.56 0.016 240.13 0.70 0.7 0.4 0.009 0.36 0.03 

29, 30  34 2.1 1 249.56 0.017 240.13 0.71 0.7 0.4 0.009 0.46 0.03 

8 36 2.2 1 251.56 0.191 235.13 0.71 0.7 0.4 0.009 0.35 0.03 

10,11, 12, 13 37 2.1 1 247.81 0.145 237.38 0.71 0.7 0.4 0.009 0.46 0.03 

2,3,4,19,23,24,31,32 45 2.1 1 248.31 0.032 235.13 0.71 0.7 0.4 0.009 0.48 0.03 

33 47 2.1 1 249.56 0.005 235.13 0.71 0.7 0.4 0.009 0.55 0.03 

18,20,21,22 49 2.1 1 244.96 0.009 240.73 0.71 0.7 0.4 0.009 0.50 0.02 

1,6,34 55 2.1 1 247.56 0.074 241.46 0.71 0.7 0.4 0.009 0.41 0.02 
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Table S5.5 TCF model parameter values for CH4 production and emission through vegetation, soil diffusion and ebullition pathways  

specific to tundra and forested wetland land class types.  These include a volumetric scalar for CH4 storage (LT), CH4 production rate 

(g C per liter H2O/day), reference soil temperature for the Q10 CH4 production curve (QTREF), the Q10 coefficient for CH4 

production, a baseline constant for plant CH4 transport (Cp), the fraction of CH4 oxidized during plant transport (Pox), and an annual 

maximum GPP value used in the vegetation transport functions to indicate peak biomass potential (Fgrow_max). Further description 

of these parameters can be found in Watts et al. (2014a). 

Sites 
Land 

Class 
LT Ro QTREF Q10p Cp Pox Fgrow_max 

14,15,17 11 13.0 1.25E-05 288 3.7 0.18 0.62 6.67 

35,36 19 15.5 3.40E-05 287 3.0 0.19 0.60 5.50 

9,25,26,27 28 12.8 3.17E-05 289 3.8 0.18 0.64 7.13 

29,30 34 15.0 2.50E-05 287 2.5 0.19 0.55 6.50 

10,11,12,13 37 15.8 7.63E-05 287 3.3 0.20 0.63 4.00 

19,23,24,31,32,46,47 45 11.0 2.00E-05 287 2.8 0.31 0.60 6.79 

18,20,21,22 49 10.0 6.80E-06 287 3.3 0.19 0.54 7.50 

1,34 55 13.5 3.00E-05 287 2.9 0.40 0.65 5.75 
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Chapter 6: Chapter summaries and recommendations for future research 

 

This chapter summarizes the research presented in Chapters 2-5, identifies 

information gaps and high-priority data needs, and provides recommendations for future 

investigations.  

 

6.1 Fractional water inundation  

 

A global land fractional open water (Fw) database using AMSR-E satellite 

passive microwave remote sensing 18.7 and 23.3 observations (Chapter 2) was assessed 

to determine the sensitivity of daily 25-km Fw retrievals to changes in northern high 

latitude surface hydrology, and the ability of the Fw retrievals to detect regional wetting 

and drying trends occurring in warming permafrost landscapes (Watts et al. 2012). 

Validation of this product was accomplished using finer resolution (30-m to 250-m 

resolution) static Fw maps derived from Landsat, MODIS and SRTM radar (MOD44W) 

data.  Additional validation was achieved for major Arctic river basins (i.e. Yukon, 

Mackenzie, Ob, Yenisei, Lena) by comparing basin averaged Fw with monthly mean 

river discharge (m
3
 s

-1
).  The Fw comparison results showed favorable agreement (R

2
 = 

71-84%) with the static surface water maps, with an improved ability to account for 

standing water in vegetated wetland areas that are not characterized by dense overlaying 

canopy cover (Watts et al. 2012).  The Fw analysis for the five Arctic river basins also 

showed relatively strong retrieval correlations (R > 0.70) with the discharge records, 

despite other hydrological influences on river drainage, including contributions from 

snowmelt and groundwater, and a local decoupling of lakes and wetlands from whole 

basin water flow (Vörösmarty et al. 2001, Syed et al. 2007).   

The AMSR-E record indicates that approximately 7% of the Arctic-boreal domain 

(1.4 x 10
6
 km

2
) is inundated with surface water during the non-frozen summer months 

(Watts et al. 2014a).  Results from an initial Arctic-boreal Fw trend analyses (yrs. 2001-

2010 and 2001-2011) indicated that 9% of the permafrost affected region experienced a 

significant increase (p < 0.1) in surface water inundation (Watts et al. 2011, Watts et al. 

2014a) in recent years, whereas 2.2% of the region experienced significant surface water 
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drying.  Wetting was widespread in the continuous permafrost zone, where soils remain 

frozen for much of the year with only a shallow (~ 30-70 cm depth) seasonal non-frozen 

active layer.  Drying was more prevalent in southern discontinuous and sporadic/isolated 

permafrost zones having a much deeper active layer (70 to > 100 cm depth) and increased 

sub-surface soil water drainage.   

Wetting and drying patterns in permafrost affected landscapes have also been 

documented in studies using higher resolution (< 60 m) optical-IR satellite remote 

sensing data (e.g. Smith et al. 2005, Walter et al. 2006, Carroll et al. 2011, Andresen & 

Lougheed 2015), yet Watts et al. (2012, 2014a) is the first to demonstrate that these 

changes can be assessed for the larger Arctic-boreal region using a continuous (daily) 

AMSR-E microwave data record having minimal temporal gaps due to insensitivity to 

cloud cover and changing solar illumination effects that often limit data quality in optical 

records.  This record has now been extended through 2015 by integrating the AMSR-E 

record with similar observations from the Advanced Microwave Scanning Radiometer 2 

(AMSR2) sensor on the JAXA GCOM-W1 satellite (Du et al. 2014).  The AMSR-E/2 

record provides for continued Fw monitoring over the Arctic-boreal zone and 13+ year 

period.   

6.2 Fractional water inundation and wetland methane budgets 

The impact of applying satellite microwave Fw inundation records for Arctic-

boreal wetland CH4 monitoring applications was assessed in Chapter 3.  This study used 

a JULES based satellite data driven model to investigate the combined effect of surface 

warming and moisture variability on high northern latitude (> 45° N) wetland CH4 

emissions, by considering sub-grid scale changes in Fw at 15-day, monthly and annual 

intervals, and the potential influence of recent (2003-2011) wetting/drying trends on 

northern CH4 emissions (Watts et al. 2014a). The JULES model is relatively simple and 

estimates per 25-km grid cell wetland CH4 emissions through a production rate constant 

modified by a soil temperature (Q10) factor, input soil carbon quantity (kg C), satellite 

microwave surface freeze/thaw indices (0 = frozen surface, 1 = thawed surface), surface 

Fw inundation and volumetric soil moisture for non-inundated surface areas.   
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The modeled CH4 fluxes were within the 5-180 mg CH4 m
-2

 d
-1 

range observed in 

the lake and wetland measurements (see the Chapter 3 Supplement, Table S3.1) and 

estimate mean summer emissions of 55 Tg CH4 yr
-1

 from Arctic-boreal wetlands.  Arctic 

wetting and summer warming in the 9-yr. (2003-2011) record increased wetland 

emissions by 0.48 Tg CH4 yr
-1

, but this was mainly offset by decreasing emissions (-0.32 

Tg CH4 yr
-1

) in sub-Arctic areas experiencing surface drying or cooling.  The combined 

influence of warming and wetting in the Fw and reanalysis surface meteorology records 

contributed to an increase in methane emissions across 16% of the Arctic-boreal domain 

at a mean rate of 43 tonne CH4 yr
-1

 from 2003 to 2011.  These increases occurred 

primarily in Canada and eastern Siberia, where summer warming has been observed in 

both in-situ measurements and reanalysis records.  These findings agree with a projected 

15% increase in CH4 emitting area that might occur with continued climate change in the 

northern wetland regions (Gao et al. 2013). 

 In global and regional wetland CH4 studies, the largest budget uncertainties 

continue to result from a lack of information to adequately define wetland area extent 

(Melton et al. 2013, Kirschke et al. 2013, Watts et al. 2014a).  Furthermore, CH4 

transport from soil-to-atmosphere is strongly regulated by vegetation community types 

and species (Davidson et al. 2016). Ongoing improvements to vegetation maps suitable 

for Arctic-boreal CH4 emission budget mapping are still required (Davidson et al. 2016, 

Watts et al. In Prep), although regional efforts using satellite radar data have made 

considerable progress in mapping vegetated wetlands in Alaska (Whitcomb et al. 2014).  

Additional efforts have used radar remote sensing to delineate peatlands in permafrost 

regions using time series of soil moisture and inundation dynamics (Bartsch et al. 2009).  

Methods developed for downscaling high temporal but coarser (e.g. 25-km) spatial 

resolution passive microwave Fw data to the landscape level show additional promise for 

informing regional CH4 models (Fluet-Chouinard et al. 2015).  New 5-km passive 

microwave Fw datasets with 10-day sampling intervals are also now available for the 

Arctic-boreal region from yrs. 2003-2015 (Du et al. 2016).  The 5-km Fw records 

incorporate information from higher frequency (89 GHz) AMSR brightness temperature 
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retrievals and show greater sensitivity to surface water changes from open water lake and 

pond bodies, relative to vegetated wetlands (Figure 1; Du et al. 2016).   

Combined information from 25-km and 5-km AMSR-E/AMSR2 records, in 

conjunction with available radar-based static lake maps for the pan-Arctic region, new 

soil moisture data records (e.g. from SMAP; Kimball et al. 2012), radar derived soil 

organic carbon records (Bartsch et al. 2016a) and spatial downscaling (Fluet-Chouinard 

et al. 2015), could provide enough information to spatially partition seasonal changes in 

lake area extent, expansion and contraction of high CH4 emitting littoral zones (Juutinen 

et al. 2003) and wetting/drying in vegetated wetlands.  These efforts, and the 

development of a new high resolution (30 m) Arctic-boreal wetland vegetation map using 

input data from Landsat, MODIS, and Sentinel (Bartsch et al. 2016b) will be necessary to 

reduce uncertainty in northern CH4 wetland budgets.   

An improved understanding of lateral transport of terrestrial-originating CH4 by 

stream and river channels (Benoy et al. 2007, van Huissteden et al. 2009) and CH4 

emission response in wetlands under water inundated conditions is also necessary.  For 

example, regional modeling studies (Watts et al. 2014a) show temporal agreement with 

changes in atmospheric CH4 concentrations and CH4 emission estimates resulting from 

expansion or contraction of regional inundation area.  However, field studies show a 

substantial decrease in landscape CH4 emissions when water begins to submerge venting 

structures in wetland vegetation (Juutinen et al. 2003, Zona et al. 2009) suggesting the 

need to monitor vegetation and water level height in addition to landscape inundation.  

Perhaps more effective than inundation monitoring would be improvement of surface and 

rootzone volumetric soil moisture records for organic and mineral soils in the Arctic-

boreal region, especially since a recent regional analysis reveals higher CH4 emissions 

occurring in upland tussock tundra communities having wet soils but minimal surface 

inundation (Zona et al. 2016).   
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6.3 TCF model development for northern wetlands  

The enhancement of a Terrestrial Carbon Flux (TCF) model (Kimball et al. 2009; 

2016) to include tundra and peatland land cover functional types and a wetland CH4 

emission module (Watts et al. 2014b) was presented in Chapter 4.   The TCF model 

allows for in situ, satellite remote sensing and reanalysis information to be used as 

primary environmental inputs and provides a framework to monitor the terrestrial net 

ecosystem carbon budget (NECB; CO2 + CH4).  The TCF model estimates mean daily 

fluxes (gC m
-2

) of vegetation gross primary productivity (GPP), ecosystem CO2 

respiration (Reco; with autotrophic and heterotrophic components), and net ecosystem 

exchange (NEE; GPP – Reco).  The TCF model CH4 emissions algorithm simulates gas 

production using near-surface soil temperature, soil volumetric water content and labile 

organic carbon as inputs.  Plant CH4 transport (mgC m
-2 

d
-1

) is determined by vegetation 

growth characteristics derived from GPP, plant functional traits and canopy/surface 

turbulence.  Methane diffusion is determined based on temperature and soil moisture 

constraints to gas movement through the soil column, and column oxidation potential.  

Ebullition (bubble transport) of CH4 is assessed using a simple gradient method.   

The TCF model simulations using in-situ data from six Arctic-boreal flux tower 

sites (see Section 4.3.2) explained > 70% of the R
2
 variability in the 8 day cumulative 

eddy covariance measured fluxes.  Model simulations using coarser satellite (250-m 

MODIS) and reanalysis (0.5 MERRA) records accounted for approximately 69% and 

75% of the respective r
2
 variability in the tower CO2 and CH4 records, with RMSE 

uncertainties of < 1.3 gC m
-2

 d
-1

 (CO2) and 18.2 mgC m
-2

 d
-1 

(CH4).  This study found the 

estimated annual wetland CH4 emissions to be relatively small (< 18 g C m
-2

 yr
-1

) 

compared to Reco (> 180 g C m
-2

 yr
-1

). However, CH4 fluxes reduced the across-site 

NECB by 23% and contributed to a global warming potential of approximately 165 + 128 

g CO2 eq m
-2

 yr
-1

 when considered over a 100-year time span.   

This initial TCF model evaluation indicated a strong potential for using the model 

to document landscape scale variability in CO2 and CH4 fluxes, and to estimate the 

NECB for northern peatland and tundra ecosystems.  However, opportunities remain for 
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model improvement.  For example, in some cases the TCF model GPP (informed using 

air temperature constraints and microwave based surface freeze/thaw indices) start-of-

season was premature relative to GPP estimates obtained from site tower eddy covariance 

records.  The delayed site GPP response likely resulted from a shallow (< 14 cm) early 

season thaw depth that limited bud break activity in deeper rooted shrubs (e.g. Betula 

nana and Salix pulchra).  Experimental TCF model simulations using a temperature 

driven phenology model (Parmentier et al. 2011) reduced the corresponding RMSE 

difference for Kytalyk by 56% (to 1 g C m
-2

 d
-1

).   

Alternatives to using a temperature driven phenology model may include coupling 

the TCF model to a multi-layer permafrost and hydrology soil model for finer 

temperature regulation of carbon dynamics by depth (Yi et al. 2015).  A coupled TCF-

permafrost model would also be able to regulate soil metabolic activities and carbon loss 

from deeper soil layers following seasonal and annual changes in the active layer, making 

the model more compatible with field study warming experiments.  It may also be 

possible to regulate TCF model GPP start-of-season through seasonal input estimates of 

permafrost active layer depth obtained using combined satellite microwave remote 

sensing and process model simulations (Park et al. 2016).  Further improvements to the 

TCF GPP model could include the experimental use of solar-induced chlorophyll 

fluorescence (Zhang et al. 2016) in addition to input MODIS FPAR (fraction of daily 

photosynthetically active solar radiation) products or FPAR derived from MODIS 

optical-IR vegetation indices.  

 

6.4 Assessment of longer-term NECB response in TCF model simulations across 

Arctic-boreal flux tower sites 

Recent (yrs. 2003-2015) wetland carbon budgets and corresponding changes in 

carbon flux components for the Arctic-boreal region were investigated in Chapter 5 

(Watts et al. In Prep.).  The TCF model presented in Chapter 4 (Watts et al. 2014b) was 

further developed to include 12 wetland functional types representative of Arctic-boreal 

tundra and boreal vegetation (Table S5.2).  The GPP module was also modified to use 
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input near-surface (> 20 cm) soil temperatures for tundra landscapes, instead of air 

temperature.  This step was taken to mitigate issues with premature GPP start-of-season 

(see Section 6.4; Chapter 4).   

The original eddy covariance database (presented in Watts et al. 2014b) was 

expanded from six tower sites to include data from 36 tower locations (Table S5.1).  This 

enhanced tower eddy covariance database was essential to further evaluate the ability of 

the TCF model to accurately estimate CO2 and CH4 fluxes from Arctic-boreal 

environments prior to using the model to generate 1-km res. carbon flux estimates for 

high latitude (> 45N) wetland regions (an example is provided in Figure 2).  This 

investigation also resulted in 1-km res. northern wetland vegetation map resulting from 

the merging of the 300-m resolution ESA CCI-LC 2010 Epoch land cover product 

(Kirches et al. 2014), the Circumpolar Arctic Vegetation Map (Walker et al. 2005) and a 

peatland vegetation map (Watts et al. 2014a).  This step was necessary to remedy the lack 

of an Arctic-boreal wetland vegetation map suitable for CH4 mapping purposes (see the 

discussion in Section 6.3).   

The resulting daily 1-km TCF model simulations had low RMSE uncertainties of 

0.97 gC m
-2

 d
-1

 (NEE) and 21 mgC m
-2

 d
-1 

(CH4) relative to the tower records, and are 

similar to those reported elsewhere (Watts et al. 2014b).  The model results indicated a 

net ecosystem carbon sink for the 36 tower tundra and boreal wetland sites with 

respective average NEE values of -4 and -96 gC m
-2

 yr
-1

.  Accounting for NECB (NEE + 

CH4) reduced the overall boreal wetland carbon sink by 20% and shifted tundra from 

carbon sink to carbon source (NECB = 1.6 gC m
-2

 yr
-1

).  Significant ( = 0.1) change in 

annual Reco and NEE were not observed in the 13-yr TCF model records for boreal and 

tundra wetland groups.   However, this analysis indicated a significant increase in CH4 flux 

(1.9 gC m
-2 

yr
-1

) from boreal wetlands (forested and non-forested) and a significant 

decrease (9.9 gC m
-2

 yr
-1

) in GPP in boreal forested wetlands.   

The TCF model simulations also show contrasts in carbon flux response relative to 

geographic location and land cover type, with mixed trends observed at individual flux 
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sites.  The 13-yr trend analysis showed that 28% of the tower sites had an increase in 

annual CO2 loss through Reco, distributed across boreal and tundra wetlands.  For GPP 

flux, 14% of the tower sites showed an increase in annual CO2 assimilation and 5% of the 

sites showed a decrease (both were boreal wetlands).  Only 11% of the sites (two tundra 

and two boreal) showed a decrease in annual NEE.   However, 22% of the sites had 

increasing annual CH4 emissions (three tundra, five boreal), further decreasing NECB.  

The results from this study emphasize the need for continued NECB monitoring in 

Arctic-boreal ecosystems through the integration of tower flux measurements, ecosystem 

models and satellite remote sensing.  Next steps for this analysis will be the expansion of 

TCF model simulations to include all 1-km wetland grid cells for the Arctic-boreal region 

(Figure 2) and an assessment of NECB change from 2003-2015 according to the 12 

functional land cover types presented in this study (Watts et al. In Prep).  Modification of 

wetland area in the tundra and boreal zones using AMSR-E/2 derived 5-25 km resolution 

Fw inputs, and associated impacts on seasonal CH4 emission totals, will also be assessed.  

Finally, the ability of TCF model simulated fluxes to account for recent variability and 

trends in northern high atmospheric CO2 and CH4 fluxes will be investigated using inverse 

modeling (e.g. Alexe et al. 2014, Bruhwiler et al. 2014).  
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Figure 1  The AMSR 18.7 and 23.8 GHz Fw retrievals capture dynamic wetland 

inundation and seasonal variability in surface water area (black lines) for Alaska 

ecosystems, in contrast to static surface water products (e.g. 30-m optical-IR). The 25-km 

Fw observations (Watts et al. 2012) are complimented by finer (5-km) resolution Fw 

retrievals from the AMSR 89 GHz record (Du et al. 2016) with less sensitivity to flooded 

vegetation relative to lake bodies (blue circles).  The upper left plot shows inundation 

response in open (flooded) tundra wetlands relative to tundra wetlands having lower 

water tables and less landscape standing water  (upper right).  The bottom plots show 

inundation response in boreal wetlands prone to summer flooding (left) and those 

characterized by spring flooding transitioning to saturated soils in summer (right).  
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Figure 2  Example TCF wetland model estimates for average August vegetation gross 

primary productivity (GPP; gC m
-2

 d
-1

), ecosystem CO2 respiration (Reco; gC m
-2

 d
-1

), 

net ecosystem CO2 exchange (NEE) and CH4 emissions over the 13-yr (2003-2015) study 

period.  Model simulations are daily at a 1-km spatial resolution using MODIS 

(MCD15A3) and MERRA reanalysis inputs, in addition to landscape freeze/thaw records 

and inundation area extent provided through AMSR-E/2 fractional water records (Watts 

et al. 2012, 2014b; Watts et al. In Prep).  


