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Forest disturbances result in numerous impacts on ecosystem services. In the western 

United States, disturbances such as wildfires and bark beetle outbreaks have resulted in 

millions of hectares of dead trees. Despite the potential for these events to have 

significant climatic impacts, it remains a challenge both to effectively locate and 

characterize disturbance events across landscapes, and to identify the disturbance 

biophysical and biochemical impacts.  The objective of my dissertation research was to 

improve the ways in which we locate and classify forest disturbances over large areas, as 

well as to increase our understanding of disturbance biophysical and biochemical impacts 

and how those impacts vary according to ecosystem properties. 

 

In chapter 1, I researched how a severe mountain pine beetle outbreak in western 

Montana influenced the future characteristics of lodgepole pine forests through the use of 

dendrochronological and climate station data. I investigated whether the outbreak had 

differentially impacted differing growth phenotypes, resulting in changes in forest 

productivity, and how growth phenotype related to patterns of growth-climate sensitivity. 

In chapter 2, I moved up in scale to investigate the biophysical and biochemical impacts 

of multiple forest disturbance classes, as well as how impacts of forest disturbances 

differed across varying ecoregions around the western United States. For chapter 3, I 

sought to improve our ability to understand the climatic impacts of forest disturbances by 

developing a logical framework to more accurately and efficiently detect and attribute 

forest disturbances using satellite imagery. 

 

The results of my work demonstrate the potential for large-scale impacts of forest 

disturbances on climate, and also suggest that current disturbances may alter the future 

forest-climate interactions. Additionally, the results from chapters 1 and 2 suggest that 

there is significant variability in the impacts of forest disturbances on climate, both within 

and among ecoregions and among disturbance types. This variability is mostly ignored in 

large-scale simulations of disturbance, despite its potential to significantly alter model 

and simulation results. The framework developed for my 3rd chapter will enable a better 

understanding of the variability of forest disturbances and allow for better prediction of 

their impacts on climate and other ecosystem properties. 
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DISSERTATION OVERVIEW 

 

 My dissertation is organized into three chapters, covering the biochemical and 

biophysical impacts of disturbances across ecosystems and climatic gradients, as well as 

new methods with which to detect and attribute forest disturbances using satellite data. 

Combined, these chapters improve our understanding of how disturbance impacts vary 

according to local or regional environmental characteristics, and also improve on our 

ability to study these disturbance impacts in more detail in future research. A brief 

summary of each chapter follows. 

Chapter 1: Mountain pine beetle attack faster growing lodgepole pine at low 

elevations in western Montana, USA 

 

Global change has impacted forests through altered disturbance regimes. In the 

western US, climate change has resulted in extensive and severe mountain pine beetle 

outbreaks. These outbreaks have the potential to impact forest function through the 

selection of certain phenotypes. We investigated the potential for bark beetle-induced 

selection by way of measuring growth and climate response in mountain pine beetle-

killed and surviving lodgepole pine in the Northern Rockies. We had three objectives: (1) 

investigate differences in growth between beetle-killed and surviving lodgepole pine 

prior to a recent outbreak, (2) compare the climate-growth relationships for beetle-killed 

and surviving lodgepole pine and how those relationships explain observed growth 

differences and predict mortality risk, and (3) investigate growth differences and growth-

climate relationships across north- and south-facing aspects and over an elevation range 

representing local climate gradients. Significant differences in growth rate were observed 

at low-elevation sites, with beetles killing large, faster-growing, trees. While aspect 

influenced overall growth, it did not have a significant influence on the difference in 
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growth between beetle-killed and surviving trees. Growth showed significant 

relationships with several climate variables (i.e., previous-year August temperatures, 

October temperatures, annual precipitation, and summertime climatic water deficit), with 

slight differences in those relationships between beetle-killed and surviving trees. Mixed 

effects models demonstrated that higher growth rates and age increased the probability of 

mortality during the outbreak at all elevations, and also that climatic water deficit and 

previous-year August maximum temperatures were related to the magnitude of growth 

differences between beetle-killed and surviving trees. Overall, mountain pine beetles 

tended to attack large, fast-growing, lodgepole trees, especially at lower elevations where 

trees may be more susceptible to seasonal water stress. 

Chapter 2: Disturbance impacts on land surface temperature and gross primary 

productivity in the western United States 

 

Forest disturbances influence forest structure, composition, and function, and may 

impact climate through changes in net radiation or through shifts in carbon exchange. 

Climate impacts vary depending on environmental variables and disturbance 

characteristics, yet few studies have investigated disturbance impacts over large, 

environmentally heterogeneous, regions. We used satellite data to objectively determine 

the impacts of fire, bark beetles, defoliators, and ‘unidentified disturbances’ (UD) on land 

surface temperature (LST) and gross primary productivity (GPP) across the western 

United States (US). We investigated immediate disturbance impacts, the drivers of those 

impacts, and long-term post-disturbance LST and GPP recovery patterns. All disturbance 

types caused LST increases (ᵒC; Fire: 3.45±3.02, Bark Beetles: 0.76±3.04, Defoliators: 

0.49±3.12, UD: 0.76±3.03). Fire and insects resulted in GPP declines (%; Fire: -

25.05±21.67, Bark Beetles: -2.84±21.06, Defoliators: -0.23±15.40), while UDs resulted 
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in slightly enhanced GPP (1.89±24.20 %). Disturbance responses also varied between 

ecoregions. Severity and interannual changes in air temperature were the primary drivers 

of short-term disturbance responses, and severity also had a strong impact on long-term 

recovery patterns. These results suggest a potential climate feedback due to disturbance-

induced biophysical changes that may strengthen as disturbance regimes shift due to 

climate change. 

Chapter 3: Application of Random Forest for the detection and attribution of forest 

disturbance 

 Accurate assessments of current and future disturbance characteristics and trends 

are essential for understanding the ecological processes and interactions within and 

among landscapes. Current methods for disturbance detection rely primarily on temporal 

change detection. These approaches areas are fairly accurate in regions where they have 

been tuned but are less accurate when applied to regions where they have not been tuned. 

Here, we introduce a new approach for both disturbance detection and attribution that 

exploits both temporal and spatial variability. Our objectives with this new approach 

were to determine the usefulness of both temporal and spatial information for disturbance 

detection and attribution, and to determine whether a machine learning (i.e., Random 

Forest) approach utilizing both types of information would improve the accuracy of 

detection across multiple regions. The results of our analysis are also useful for providing 

information on how disturbances differ across forest types, and how those differences 

might complicate conventional temporal approaches to disturbance detection. 

Specifically, with this approach, we were able to ask, how do variables important for 

disturbance detection and attribution vary among regions? We found that while accuracy 

varied across regions and among disturbance types, the false positive (3-23%) and 
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negative (3-40%) rates using these new methods were similar to those from strictly 

temporal approaches. In addition, we found that the variables important for disturbance 

detection and attribution varied considerably across regions, with at least one spatial and 

one temporal variable included in each model. This suggests that both disturbance 

characteristics and the environment in which they occur vary considerably by forest type 

and location. This difference among predictor variables may explain why previous 

detection algorithms are accurate in one region, but are less accurate when applied to 

other regions. The detection methods developed for this study may be useful for detecting 

and attributing disturbance at the landscape scale, and have the potential to be scaled up 

from regional to global scales in the future. 
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CHAPTER 1 

Mountain pine beetle attack faster growing lodgepole pine at low 

elevations in western Montana, USA 
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INTRODUCTION 

Forests are globally important due to the ecosystem services they provide 

[Trumbore et al., 2015]. Recently, widespread mountain pine beetle (Dendroctonus 

ponderosae Hopkins) outbreaks have occurred in the western United States and Canada, 

resulting in mass mortality across large areas of forest [Meddens et al., 2012]. These 

outbreaks are driven in part by changes in regional climate, where temperatures have 

increased and precipitation patterns have shifted [IPCC, 2014]. Warmer and drier 

conditions stress host trees and provide a longer period of temperatures suitable to beetles 

[Dale et al., 2001; Raffa et al., 2008; Bentz et al., 2010]. Thus, beetles are both more 

capable of reproducing rapidly and can more easily overwhelm tree defenses [Mitton and 

Ferrenberg, 2012]. As water stress is predicted to increase in many ecosystems in the 

western US [Seager et al., 2007; IPCC, 2014], the need to more fully understand the 

relationship between host trees, bark beetles, and climate is significant. Specifically, it is 

important to understand how host trees interact with climate and to determine the impact 

of those interactions on host tree susceptibility to beetle attack. 

Mountain pine beetles are a native, ‘irruptive,’ insect in western North America. 

Beetles attack trees by burrowing through the tree’s bark and into the phloem. Successful 

attacks occur when sufficient numbers of beetles are recruited to attack the tree via the 

release of pheromones by the initial attackers [Raffa, 1988]. These mass attacks succeed 

by overwhelming tree defenses, and result in mortality of the host tree. Beetles also 
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introduce blue-stain fungus to trees during attacks, which helps to kill trees by blocking 

the xylem with fungal spores. Tree defenses include producing resins to physically expel 

beetles and producing defensive compounds, processes that require a substantial 

investment of resources [Raffa and Berryman, 1983]. Trees become more susceptible to 

successful attack when climate conditions are stressful because their resources are 

already limited [Waring and Pitman, 1983]. Additionally, climate conditions that are 

stressful to host trees are typically beneficial to the beetles, with warmer temperatures 

allowing some species to grow and mature faster [Bentz et al., 2010]. While mountain 

pine beetles attack several species, their most common host is lodgepole pine (Pinus 

contorta Douglas ex Loudon) [Raffa, 1988]. 

Numerous climatological variables have been linked to bark beetle outbreaks, 

including vapor pressure deficit (VPD) [Littell et al., 2010; Hart et al., 2014], climatic 

water deficit (CWD) [Millar et al., 2012], high previous-year  summer and fall 

temperatures [Berg et al., 2006; Chapman et al., 2012], and multi-decadal oscillations 

such as the Atlantic Decadal Oscillation [Hart et al., 2014]. Similar climate variables have 

been found to limit the growth of lodgepole pine [Chhin et al., 2008; Lo et al., 2010], 

reinforcing the link between climate and host tree resource limitation. All of these climate 

conditions decrease the availability of water to the host tree, inhibiting both its ability to 

grow and its ability to produce resin with which to pitch out attacking beetles [Kane and 

Kolb, 2010]. 

Mountain pine beetle outbreaks have the potential to influence the characteristics 

of host stands through beetle preference for certain host tree characteristics, as well as 

through differential success of beetle attacks based on tree traits. Resistance to mountain 
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pine beetles may vary among stands and individuals due to environmental or genetic 

variation [Raffa and Barryman, 1983; Alberto et al., 2013], such that in the right outbreak 

conditions, trees with lower resistance may be killed more readily than trees with 

naturally higher resistance [Ferrenberg et al., 2014]. During severe outbreaks, it is 

therefore possible that the phenotypic traits of host stands may shift due to extensive 

mortality within one resistance group [de la Mata et al., 2017]. 

The results of previous studies on selection for certain phenotypes, both in 

lodgepole pine and other pine species, are highly variable. High levels of mortality in 

ponderosa pine were found to primarily affect slower-growing individuals, leading 

towards selection for faster-growing trees [Knapp et al., 2013]. Similarly, Millar et al. 

[2012] found evidence for selection towards faster-growing whitebark pine in the eastern 

Sierra Nevada, CA due to higher mortality among slower-growing individuals from 

mountain pine beetle. However, a separate study on ponderosa pine found that a greater 

number of individuals from fast-growing families were killed during an intense bark 

beetle outbreak, resulting in selection towards slower growth in the population [de la 

Mata et al., 2017]. Results from a study in British Columbia, Canada on lodgepole pine 

also found that faster-growing families within populations were more susceptible to 

mountain pine beetle attack [Yanchuk et al., 2008]. In an Aleppo pine (Pinus halepensis 

Mill.) plantation in Spain, high bark beetle mortality was observed in both fast- and slow-

growing individuals. However, individuals that were more responsive to annual climate 

variations were less likely to have been killed [Sanguesa-Barreda et al., 2015]. The ages 

of the stands in these studies differed substantially, with the Knapp et al. [2013] and 

Millar et al. [2012] studies focusing on relatively old (>150 years) stands, and the de la 
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Mata et al. [2017], Yanchuk et al. [2008], and Sanguesa-Barreda et al. [2015] studies 

focusing on a younger (<50 years) stands. These studies suggest high variability in the 

impacts of bark beetles on pine stands, potentially due to variations in local climate, host 

species, stand age, and topographic variables. Studies have consistently found that water 

deficit plays a role in regulating annual tree growth and pine susceptibility to attack, and 

that climate-related growth differences may exist between trees that succumbed to pine 

beetles and trees that survived outbreaks. Further research is therefore necessary to 

illuminate the relationship between climate (e.g., water deficit) impacts on growth and 

how that relationship translates into mountain pine beetle susceptibility. 

 Differences in growth between beetle-killed and surviving trees may suggest a 

difference in the allocation of resources [Ruel and Whitham, 2002; Bigler and Veblen, 

2009]. Trees may differ in the amount of carbon allocated towards growth versus 

defensive compounds [Herms and Mattson, 1992], or carbon compounds used for growth 

and maintenance when drought limits photosynthetic activity.  Trees that are affected 

more by drought may also have a higher chance of successful beetle attack [Hanks et al., 

1999]. If an outbreak occurs with sufficient severity, this could push the local host tree 

population towards having lower growth, but higher defenses. However, this has not been 

demonstrated consistently [Lahr and Krokene, 2013; Hood and Sala, 2015], suggesting 

that differences in growth may instead be explained by environmental context. Trees 

growing in more or less favorable environments may naturally react differently to climate 

stress, resulting in differential mortality during bark beetle outbreaks. While the trees 

may appear phenotypically different when examining growth and growth-climate 

responses, they may not have any natural differences in allocation strategies. In this 
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scenario, trees with higher growth might also have greater natural resistance to pine 

beetles [Mitchell et al., 1983] due to greater access to resources [Christiansen et al., 

1987]. 

For this study, we had three objectives: (1) investigate differences in growth 

between beetle-killed and surviving lodgepole pine prior to a recent outbreak, (2) 

determine and compare the climate-growth relationships for beetle-killed and surviving 

lodgepole pine and how those relationships explain observed growth differences and 

predict mortality risk, and (3) investigate growth differences and growth-climate 

relationships across north- and south-facing aspects and over an elevation range 

representing a local gradient in climate stress. 

METHODS 

Study area 

Our study sites occur within the Boulder Mountains of the Beaverhead-Deerlodge 

National Forest (Fig. 1.1), where elevation ranges from ~1400 m to ~3100 m. The area 

experienced a severe mountain pine beetle outbreak in the mid-2000s. Primary tree 

species in the area are lodgepole pine, Douglas-fir (Pseudotsuga menziesii (Mirb.) 

Franco), subalpine fir (Abies lasiocarpa (Hook.) Nutt), and whitebark pine (Pinus 

albicaulis Engelm.). Douglas-fir and lodgepole pine are dominant species at low to mid 

elevations, and whitebark pine, subalpine fir, and lodgepole pine are dominant species at 

higher elevations. According to the nearest climate station, located ~34 km away in 

Boulder, MT, January was the coldest month between 1949 and 2015, with an average 

temperature of -12.4 ᵒC. July was the warmest month with an average temperature of 

28.2 ᵒC [http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?mt1008]. Within this period, 
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annual precipitation averaged 279 mm, with most precipitation falling in June. The actual 

study site temperature and precipitation are likely slightly colder and wetter, as Boulder, 

MT is located just outside the forested area at a lower elevation (1521 m). 

Plot selection and design 

Twelve plots were selected for the study from the Thunderbolt Creek and Boulder 

River drainages. The plots span both north and south aspects, and three elevational bands 

across a 600 m gradient. Potential plot locations were selected based on apparent 

lodgepole pine dominance, significant mortality due to mountain pine beetle, and stand 

access [Montana Natural Heritage Program, 2017; USDA Forest Service, 2000-2014]. 

Actual plots were selected upon visiting the sites, with selection determined by (1) 

dominance of lodgepole pine in the canopy, (2) substantial mountain pine beetle-caused 

mortality in the stand (>40%), and (3) survival of at least 10 trees in the plot and 

immediate vicinity. In order to capture more of the variability in stand dynamics, two 

plots were chosen within each aspect-elevation combination (e.g., south – low #1 = SL1, 

south – mid #2 = SM2, etc.). Plots were required to be a minimum of 100 m from one 

another so as to limit spatial autocorrelation.   

Ten beetle-killed trees were selected within a 10 m radius circular plot, and two 

increment cores were taken at 1.37 m height on opposite sides of the tree, perpendicular 

to the slope. Beetle-killed trees were randomly selected across the plot to obtain an even 

distribution of samples. Ten surviving trees of similar diameter to the beetle-killed trees 

were selected and cored within the plot. If ten surviving trees were not found within the 

plot, additional surviving trees close to the boundary of the plot (i.e., within 1 m) were 

used. Non-random sampling of surviving trees was used in order to minimize the 
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difference in ages between surviving and beetle-killed trees. Six of the plots did not have 

sufficient surviving trees within the plot radius, necessitating that trees outside the plot be 

sampled (Table 1.1). No plots required more than 40% of surviving trees to be sampled 

outside the plot radius. A total of 482 tree cores were collected for the study. Of the 482 

tree cores collected, 444 were included in the analysis. Thirty-eight cores were discarded 

from the analysis due to poor correlations with the master chronologies. Additionally, 

age, DBH, and the coefficient of variation for annual growth within trees were assessed 

in order to provide context for other results. 

Climate data 

Climate data were obtained from the Boulder, MT climate station 

[http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?mt1008]. Monthly maximum temperature, 

minimum temperature, and precipitation were prepared for the analysis. Vapor pressure 

deficit (VPD) was calculated from climate station data [Buck et al., 1981], using the 

equations 

𝑒𝑠 = 0.6108𝑒
17.27𝑇

237.3+𝑇 

𝑉𝑃𝐷 =
100 − 𝑅𝐻

100
𝑒𝑠 

where 𝑒𝑠 is saturated vapor pressure, T is temperature in degrees Celsius, and RH is 

relative humidity as measured at the climate station. Hydrologic year (annual) 

precipitation was calculated from the monthly data, and previous-year values of all 

variables were determined. RH data came from the Helena, MT climate station 

[https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?mthele] because the Boulder station did not 

record the variable. Monthly climatic water deficit (CWD) [Dobrowski et al., 2013] was 

also included in the analysis as a variable representative of drought, and because it has 
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been demonstrated to have significant relationships with growth in other study locations 

[Millar et al., 2012]. All data preparation was completed in R [R Core Team, 2013]. 

Tree core preparation 

Increment cores were prepared according to standard dendrochronological 

techniques [Stokes and Smiley, 1968]. Master chronologies for each aspect-elevation 

combination were created using approximately ten cores from surviving trees at each 

location. Cores were cross-dated, then scanned at 2400 dpi. Annual ring widths were 

measured using CooRecorder 7.8 [Cybis Elektronik, 2014], and final chronologies 

quantitatively validated in COFECHA [Holmes, 1983]. 

Basal area increment (BAI), a measure of growth, was calculated using ring 

widths and estimated distance to pith with the dplR package [Bunn et al., 2015] in R. 

Distance to pith was estimated based on growth and curvature of the earliest observed 

rings if the pith was not present in the core [Larsson et al., 2014]. Converting annual ring 

widths to BAI overcomes the decrease in ring width that occurs as a function of 

increasing tree size [Biondi and Qeadan, 2008]. 

Statistical analyses 

Climate correlations 

In order to determine which climate variables to include in models of mortality 

risk and growth differences, correlations between BAI and climate variables were tested 

using Pearson correlations. Correlations were considered significant if p-values were ≤ 

0.05. Climate variables were tested for correlations with zero (current-year) and one year 

(previous-year) lag times. 

Mortality models 
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A binomial mixed effects model was used to model mortality risk as a function of 

elevation, aspect, tree age, mean 1950 – 2005 BAI, and growth resistance to extreme 

values of correlated climate variables. Stress resistance was calculated for each tree as the 

BAI during stressful years relative to the BAI during ‘normal’ years. Stressful years were 

determined as years in which the value of the variable exceeded the 75th percentile of its 

distribution over the 1950 – 2005 period. All years in which the variable did not exceed 

the 75th percentile were designated as ‘normal.’ None of the variables included in the 

binomial mortality model showed signs of collinearity. Models were fit according to 

protocols in Zuur et al. [2009]. Both plot and tree were considered as random effects in 

the model. 

BAI-climate models 

General linear mixed effects models (GLMMs) were used to model BAI as a 

function of climate variables, mortality, and tree age [Fernández‐de‐Uña et al., 2016]. 

Climate variables shown to be significant in the BAI-climate correlation analysis were 

considered for the models. Potential climate variables were checked for collinearity and 

the variable deemed most ecologically important was chosen if two variables were 

collinear. Variables were considered sufficiently independent with variance inflation 

factors less than 10. 

One model was created for each aspect-elevation combination in order to 

determine the growth controls at each site, and whether pre-outbreak growth differed 

significantly between mortality categories. Both plot and tree were considered as random 

effects in each model, and autocorrelation was modeled between years. Residual 

heterogeneity was allowed to vary by plot for the mid- and high-elevation models. 
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Residual heterogeneity did not vary significantly between plots at low elevations and was 

not included in those models. 

Growth difference models 

Plot-level differences in BAI between beetle-killed and surviving trees were also 

modeled using GLMMs. These models predicted BAI differences as a function of aspect, 

elevation, and climate variables. Plot was considered as a random effect. Residual 

heterogeneity was allowed to vary by plot and autocorrelation was again modeled 

between years. 

RESULTS 

Site characteristics 

All plots showed high levels of mortality ranging from 49 – 86% (Table 1.1), with 

most mortality occurring between 2006 and 2008. Stands were similar in density, with no 

discernable pattern across elevations and aspects, although the diameter and age of trees 

did increase with elevation (Table 1.1; Figs. S1.2 & S1.5). While it was possible to locate 

stands spaced evenly along the elevation gradient, the exact aspect of stands varied 

slightly from north-south alignment. 

Climate correlations 

Correlations between BAI and maximum temperature, minimum temperature, 

precipitation, and VPD were significant (p ≤ 0.05) for several months, with similar 

correlation patterns between aspects (Table S1.1). Beetle-killed trees generally showed 

slightly stronger correlations with climate variables, and while the coefficient of variation 

for BAI was slightly lower over the study period in beetle-killed trees relative to 

surviving trees, this was not related to climate variation (Fig S1.3) nor significant across 
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plots. In general, late-summer maximum temperatures and VPD of the previous growing 

season were negatively related to growth across elevations and aspects, with only a few 

exceptions. Additionally, current-year October temperatures and VPD were generally 

positively related to growth across high-, and sometimes mid-elevation sites. Annual 

precipitation was positively correlated with BAI at both aspects of low elevations for 

both beetle-killed and surviving trees. Summertime CWD was correlated with BAI at 

low-elevation sites across both aspects for both beetle-killed and surviving trees. 

Mortality model 

Mortality risk was explained by both mean 1950 – 2005 BAI and tree age (Table 

1.2). Growth rate was the most significant predictor of mortality (p < 0.001) followed by 

age. Resistance to instances of high previous-year August temperatures and high CWD 

were both tested as potential variables due to their high and consistent correlations with 

BAI, but neither were found to be significant predictors in the model. The differences in 

growth rate (Fig. S1.8) found in the model were also clearly seen when comparing overall 

BAI time series for each elevation-aspect combination (Fig. 1.2), especially at low-

elevation sites.  The final model did not include either elevation or aspect as being 

important for overall mortality risk. 

BAI-climate models 

The fixed effects components of the GLMMs demonstrated that climate 

influences on growth at each site differed across elevations, and also differed slightly by 

aspect (Table 1.3, Fig. S1.6). Notably, mortality was only a factor in determining growth 

at low elevations and tree age was not important in any of the models. Low-elevation 

models showed significantly higher pre-outbreak growth rates in beetle-killed trees than 
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surviving trees. All elevations and aspects showed previous-year August maximum 

temperatures to be important for growth. October maximum temperatures negatively 

impacted growth for low-elevation sites and south-facing sites across elevations. Annual 

precipitation positively influenced growth at low elevations and the north-facing mid-

elevation sites. CWD had a negative impact on growth at high-elevation sites and at 

south-facing mid-elevation sites. 

Growth difference model 

Differences between beetle-killed and surviving tree BAI were explained by 

CWD, previous-year August maximum temperature, and elevation (Table 1.3, Fig. S1.7). 

The model results found that beetle-killed trees were typically faster growing than 

surviving trees, with elevation strongly determining the value of that difference. Low-

elevation sites had significantly larger growth differences than mid and high sites, 

whereas the mid and high site growth difference results were indistinguishable from one 

another and were not significantly different from 0.  The overall difference between 

beetle-killed and surviving tree BAI decreased with increasing CWD as well as with 

increasing previous-year August maximum temperature. However, the sites with the 

largest growth differences also coincided with the highest CWD and August temperature 

values [Reed et al., 2018]. 

DISCUSSION 

Growth differences across elevations and aspects 

We found that beetle-killed trees grew consistently faster than surviving trees in 

the half century prior to a severe mountain pine beetle outbreak at low-elevation sites, 

while there were no significant differences in growth rate at the mid- and high-elevation 
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sites. This finding is consistent with results from some studies on lodgepole, ponderosa, 

and limber pine from similar locales [Yanchuk et al., 2008; de la Mata et al., 2017], but 

contrasts with others [Millar et al., 2012; Knapp et al., 2013; Ferrenberg et al., 2014]. Our 

results provide further evidence that observed differences in growth between beetle-killed 

and surviving trees vary substantially across host species and climate regions, as well as 

with stand age and along gradients of bark beetle population densities. Additionally, we 

found evidence that growth differences vary by elevation, which may explain some of the 

variation seen in results from previous studies. 

There are a number of possibilities as to why we observed faster growth in beetle 

killed trees. Beetle outbreak pressure may have a strong influence on host selection, with 

particularly large epidemics having the ability to override the defenses of host trees, 

regardless of their relative resistance to attack [Boone et al., 2011]. As beetle populations 

increase in density, host trees that are naturally more resistant (i.e., larger or faster 

growing) [Christensen et al., 1987] to beetle invasion may become more susceptible than 

less resistant trees because they provide more resources to beetles [Boone et al., 2011], 

Similarly, trees with thicker phloem also tend to have higher growth rates [Shrimpton and 

Thomson, 1985]. As trees with thicker phloem can support more beetles [Amman, 1972; 

Safranyik and Carroll, 2006], it follows that the faster-growing trees are more likely to be 

attacked during a severe outbreak. The high stand mortality rates seen in this study (x̃ = 

70%) may therefore explain the observed patterns of growth differences [Boone et al., 

2011]. 

Growth differences between surviving and beetle-killed trees appear to diminish 

with increasing elevation, with significant differences only observed at low-elevation, 
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more water-limited sites. Growth at low elevations was indeed positively correlated with 

precipitation (Table 1.3; Table S1.1), demonstrating some control of moisture on growth. 

This implies that there may be some difference in resource allocation strategy between 

mortality groups, which is shown best when trees are under high water stress and 

competing for very limited resources. Specifically, trees that are fast-growing might 

allocate fewer carbon resources to defenses and therefore suffer more in water-limited 

conditions, resulting in higher susceptibility to beetle-related mortality. However, stress 

due to water limitation does not prove that there were differences in allocation strategy 

between mortality groups. At dry, low-elevation sites, the larger, faster-growing, trees 

may have simply been more water-stressed than the smaller trees within the plot due to 

higher water requirements, resulting in their defenses being more easily overcome by the 

beetles than equivalent trees at higher elevations. Additionally, while climate was related 

to the magnitude of growth differences at low-elevation sites, resistance to high CWD 

and late summer temperatures was not a significant predictor of mortality risk in our 

models as would be expected if trees occupied sites with substantially different 

microclimates. 

While growth differences between mortality categories changed along an 

elevational gradient, there were no significant differences between aspects. We had 

expected that the growth differences would be smaller on less water-limited, north-facing 

aspects, and the lack of significant differences suggests that the changes in climate along 

an elevational transect are greater than those across aspects. Alternatively, the similarity 

in results among aspects may be due to the larger range of size classes on north-facing 
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slopes (Fig. S1.5), with beetles being able to choose larger, faster-growing, trees on 

north-facing slopes. 

Variation in mortality across elevations 

Beetle pressure, as measured by stand level mortality, may vary across elevations 

and can influence growth differences between beetle-killed and surviving trees. Simard et 

al. [2012] found that beetle-related lodgepole pine mortality increased with elevation in 

the Greater Yellowstone ecosystem, although this may have been due to increased basal 

area in stands at higher elevations [Klutsch et al., 2009; Simard et al., 2012]. Conversely, 

mortality decreased with elevation in a meta-analysis including plots across the mountain 

pine beetle native range [Björklund and Lindgren, 2009]. This elevational pattern could 

be explained by a negative correlation between beetle survival and cold winter 

temperatures [Logan and Powell, 2001; Carroll et al., 2003; Hicke et al., 2006; Björklund 

and Lindgren, 2009]. We did not find any significant differences in beetle-induced 

mortality with elevation in our study (Table 1.1), despite decreasing differences in BAI 

between mortality categories over the elevation range. 

One possible explanation for this phenomenon is that the higher elevation trees 

were older than those at low elevations (Table 1.1; Fig. S1.2). Competition may have 

been lower in older stands, resulting in decreased competition for resources and more 

similarity in stress levels among trees within a stand. Additionally, growth at higher 

elevations was more correlated with late summer temperatures than precipitation (Table 

S1.1), so high CWD and late summer temperatures may have impacted trees less at 

higher elevations. Physiological responses to stress may also vary with age [Knapp and 
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Soulé, 2011], so the older median age of the higher elevation sites may further explain the 

different climatic responses at those sites relative to low-elevation sites. 

Growth-climate relationships and comparisons between mortality categories 

Growth of both beetle-killed and surviving trees was influenced by the same 

climate variables and showed mostly similar correlation strengths. Consistent with results 

from lodgepole pine in interior British Columbia, low-elevation tree growth was 

correlated with precipitation, while mid- and high-elevation growth was most strongly 

correlated with late summer temperatures [Lo et al., 2010]. While beetle-killed trees did 

have somewhat stronger correlations with climate, the pattern was not consistent. 

Interactions between mortality and climate variables were insignificant in all growth 

models, and mortality category only had a significant impact on growth at low elevations. 

This suggests that both surviving and beetle-killed trees generally respond similarly, but 

may differ when conditions are stressful to growth as is the case at lower, more water-

limited, sites. The model of growth difference magnitude (Table 1.3) supports this theory, 

as both late summer temperatures and CWD were significant in influencing the low-

elevation BAI differences. However, overall, our correlation and model results do not 

provide substantial evidence that beetle-killed trees are more sensitive to stressful 

climatic conditions and thus more vulnerable to beetle outbreaks. 

Increased allocation towards defenses over growth theoretically should result in 

increased resistance to stressful climate conditions due to enhanced stored carbon 

resources. As such, we expected to find interactions between mortality categories and 

climate variables in the mortality risk and BAI-climate models. Our results were contrary 

to this expectation, with both beetle-killed and surviving trees showing similar responses 
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to stressful climate events, according to the models. While unexpected, these results may 

be in line with Bentz et al., [2015], in which no significant differences in phloem 

chemistry were found between attacked and non-attacked lodgepole pine in the Greater 

Yellowstone Ecosystem. In this case, beetles had no apparent selective preference for 

trees that were less chemically resistant to mountain pine beetles, but rather focused on 

the larger trees in the study stands [Bentz et al., 2015]. In short, while trade-offs between 

growth and defense may exist, they may not significantly influence mortality risk during 

severe pine beetle outbreaks. 

Caveats 

Trees have varying growth patterns depending on their age [Shrimpton and 

Thomson, 1985], thus it is possible that tree age may have had some influence on our 

results. However, no strong patterns emerged for differences in age and age-growth 

relationships between mortality categories (Table 1.1; Fig. S1.2). While beetle-killed 

trees were older, the trees had no identifiable trend in growth over the study period and 

were mature, with a median age of x̃ = 124 (x̃BK = 125; x̃S = 122). In short, age may have 

resulted in a greater size of those trees which died, but those trees also had higher growth 

rates. Further research controlling for age would be useful in disentangling the two 

variables. Interestingly, there was no substantial relationship between age and growth rate 

for this study, and our BAI model results suggest that age did not have a strong influence 

on growth rate. 

 Additionally, while faster-growing trees may have greater constitutive defenses 

[Hood and Sala, 2015; Pinnell, 2016], slower-growing trees may have greater induced 

defenses [de la Mata et al., 2017]. The trade-off between constitutive and induced 
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defenses [Moreira et al., 2014] is such that the allocation of resources towards defenses 

may have differed between mortality categories in a way that we did not measure in this 

study. This phenomenon could explain why we found growth differences, despite few 

clear differences in host tree climate-growth relationships, as those conditions would not 

activate induced defenses. 

Management implications 

Our results indicate that severe mountain pine beetle outbreaks in lodgepole pine 

forests may lead to a dominance of slower-growing individuals by way of higher 

mortality rates among faster-growing individuals. Further work should be done to 

determine the heritability of growth rate, and whether or not slower growth rate is in fact 

being selected for during these outbreaks. It should also be noted that the preference of 

beetles for fast-growing trees, either due to increased size or reduced defenses, runs 

counter to the aim of many breeding programs which seek high growth. A more 

moderated program in which increased growth diversity is sought would be beneficial for 

the resilience of forests to future outbreaks. 

CONCLUSIONS 

In conclusion, we found differences in growth between beetle-killed and surviving 

trees, with significant differences seen at low elevations. Models demonstrated that 

higher growth rates and age increased the probability of mortality during the outbreak, 

and also that CWD and previous-year August maximum temperatures were related to the 

magnitude of growth differences between mortality categories. Overall, while there was 

limited evidence that beetle-killed trees were more susceptible to successful bark beetle 

attack due to increased climatic stress, the impact was potentially diminished by 



 24 

differences in growth environment between the trees. It is likely that many of the beetle-

killed trees grew more quickly simply due to earlier recruitment, better slope position, or 

lower resource competition. The extreme pressure of the outbreak may also have partially 

masked or reversed any natural differences in mountain pine beetle resistance within 

stands, particularly at more water-limited low elevations where the largest growth 

differences were observed. Our results do not rule out that some individuals are more or 

less susceptible to bark beetle attack, but they do not provide strong evidence in that 

direction. Further work should compare responses to past beetle outbreaks, investigate 

growth differences following a lower severity beetle outbreak, and investigate genetic 

differences between beetle-killed and surviving trees. 
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FIGURES AND TABLES 

Figure Legends 

Figure 1.1. Study location in Montana, USA. Low elevation plots (-L) are in yellow, mid 

elevation plots (-M) are in green, and high elevation plots (-H) are in blue. South (S-) and 

North (N-) aspects are designated by the direction of the arrow symbol. 

 

Figure 1.2. Basal area increment (i.e., BAI) over time on (a) south-facing, and (b) north-

facing slopes. Open symbols represent mean annual BAI values of surviving trees and 

filled symbols represent mean annual BAI values of beetle-killed trees. 
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Figure 1.1.  
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(a) 

(b) 

Figure 1.2.  
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Tables 

 

Table 1.1. Characteristics of chosen study sites. Plot names are determined by aspect (North/South), elevation (Low/Mid/High), and 

plot number within the aspect-elevation combination. n indicates number of trees sampled. If surviving n is higher than the surviving 

trees within the plot, additional surviving trees were sampled within 1m of the plot boundary. The surviving trees within plot column 

indicates the total number of surviving trees > 5in DBH in the plot, not just those sampled. Median age represents the age of the trees 

in 2005, when the outbreak began. The median BAI values were calculated for 1950-2005 with units of mm2/year. Plot density and 

percent mortality at each plot were measured in September 2017. All other plot variables were measured in July 2016. Median 

mortality year was rounded to the nearest year. PICO indicates measurements of lodgepole pine (Pinus contorta). 

Plot Surviving 

n 

Beetle-kill 

n 

Surviving 

median 

age 

Beetle-kill 

median 

age 

Median 

BAI (S) 

Median 

BAI 

(BK) 

Elevation 

(m) 

Aspect 

(º) 

Slope 

(º) 

PICO 

Plot 

Density 

(trees/m2) 

Total Plot 

Density 

(trees/m2) 

% PICO 

Mortality 

Median 

Mortality 

Year 

Surviving 

Trees 

within 

Plot 

SL1 9 10 108 107 145.3 235.4 1873 160 20 0.11 0.12 62 2008 13 

SL2 11 13 100 101 136.0 198.0 1859 116 18 0.11 0.13 73 2007 9 

NL1 11 12 94 96 214.7 336.4 1861 270 18 0.10 0.11 74 2007 8 

NL2 9 9 120 110 137.7 246.6 1854 302 14 0.10 0.13 69 2006 10 

SM1 10 10 115 140 226.7 186.2 2132 184 15 0.11 0.12 49 2007 18 

SM2 10 10 114 120 285.6 379.1 2152 184 20 0.06 0.06 63 2006 7 

NM1 10 8 124 163 139.0 169.4 2152 58 20 0.13 0.14 71 2007 12 

NM2 10 11 124 124 129.6 151.0 2173 38 12 0.14 0.15 74 2008 11 

SH1 10 10 100 126 205.4 283.5 2505 138 14 0.12 0.13 82 2007 7 

SH2 10 10 131 138 189.1 209.8 2481 182 24 0.08 0.09 68 2007 8 

NH1 10 11 212 225 154.9 168.3 2504 328 12 0.12 0.12 56 2008 17 

NH2 10 10 208 215 160.3 171.8 2482 328 6 0.13 0.15 86 2008 6 
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Table 1.2. Results of the binomial mixed effects model predicting mortality risk. 

Coefficient β is the coefficient of the predictor variable, SE(β) is the standard error of that 

coefficient, z is the z-score of the coefficient, and p is the p-value of the coefficient. The 

χ2 metrics show the significance of each predictor variable by way of comparing the 

model with and without the variable. Measures of model fit are reported for scaled values 

of the predictor variables in order to provide more context for their relative influence on 

mortality risk. 

 

 

 

Predictor Coef. β SE(β) z p  χ2 df pχ2 

Intercept -0.04 0.14 -0.25 0.8 
    

Growth Rate (1950-2005) -0.54 0.15 -3.48 <0.001 
 

13.4 1 <0.001 

Age in 2005 -0.29 0.14 -2.03 0.04 
 

4.2 1 0.04 
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Table 1.3. Model results for BAI-climate relationships and BAI difference-climate 

relationships. Coefficient β is the coefficient of the predictor variable, SE(β) is the 

standard error of that coefficient, z is the z-score of the coefficient, and p is the p-value of 

the coefficient. The AIC metrics show the AIC of the final model (AICfinal) relative to that 

of a model without a variable (AICdrop). pL is the p-value for the likelihood that the 

models are different from one another. 

 

 

 

 

 

Model Predictor Coef. β SE(β) t p  AICfinal dffinal AICdrop dfdrop pL 

So
u

th
 

Lo
w

 

B
A

I 

Intercept 14.74 0.63 23.51 <0.001 
      

Mortality (S) -3.02 0.92 -3.26 0.003 8168.9 
 

9 
 

8176.2 8 0.002 

Previous-year August Tmax -0.14 0.01 -9.62 <0.001 8257 8 <0.001 

October Tmax -0.05 0.01 -3.58 <0.001 8179.6 8 <0.001 

Annual Prcp 0.007 0 14.3 <0.001 8361.1 8 <0.001 

N
o

rt
h

 

Lo
w

 

B
A

I 

Intercept 16.76 1.19 14.11 <0.001 
     

Mortality (S) -3.23 1.05 -3.08 0.004 8943.3 
 

9 
 

8949.7 8 0.004 

Previous-year August Tmax -0.14 0.02 -7.97 <0.001 9003.7 8 <0.001 

October Tmax -0.05 0.02 -3.22 0.001 8951.7 8 0.001 

Annual Prcp 0.007 0 12.1 <0.001 9082.7 8 <0.001 

So
u

th
 

M
id

 

B
A

I 

Intercept 16.44 1.52 10.82 <0.001 
     

Previous-year August Tmax -0.18 0.01 -14.14 <0.001 7879.2 
 

8 
  

 

8066.5 7 <0.001 

CWD -0.002 0 -5.41 <0.001 7906.2 7 <0.001 

October Tmax -0.07 0.01 -5.74 <0.001 7909.9 7 <0.001 

N
o

rt
h

 

M
id

 

B
A

I 

Intercept 12.3 0.45 27.34 <0.001 
     

Previous-year August Tmax -0.14 0.01 -12.54 <0.001 7066.9 
 

7 
 

7215.3 6 <0.001 

Annual prcp 0.001 0 2.96 0.003 7073.6 6 0.003 

So
u

th
 

H
ig

h
 

B
A

I 

Intercept 15.42 0.51 30.5 <0.001 
     

Previous-year August Tmax -0.24 0.01 -18.6 <0.001 7671.7 
 

8 
 

7985.5 7 <0.001 

CWD -0.002 0 -5.54 <0.001 7700.2 7 <0.001 

October Tmax -0.07 0.01 -6.18 <0.001 7707.5 7 <0.001 

N
o

rt
h

 

H
ig

h
 

B
A

I 

Intercept 13.35 0.32 41.39 <0.001 
     

Previous-year August Tmax -0.25 0.01 -21.49 <0.001 7327.3 
 

7 
 

7732.8 6 <0.001 

CWD -0.002 0 -3.84 <0.001 7340 6 <0.001 

 

G
ro

w
th

 

D
if

fe
re

n
ce

 Intercept 17.57 13.29 1.32 0.19 
      

CWD -0.03 0.01 -4.29 <0.001 5954.28 
 

19 
 

5969.29 18 <0.001 

Previous-year Aug. Tmax -0.78 0.28 -2.81 0.005 5959.68 18 0.007 

Elevation (Low) 80.91 19.18 4.22 0.002 5961.38 17 0.004 

Elevation (High) 24.27 18.78 1.29 0.23 
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SUPPLEMENTARY INFORMATION 

Supplemental Figure Legends 

Figure S1.1. BAI for entire time series on (a) south-facing, and (b) north-facing slopes. 

 

Figure S1.2. Average age (in 2005) of cored trees. Age was cut off at 2005 because most 

mortality occurred after 2006. * marks significant differences between mortality 

categories (p≤0.05). BK stands for beetle-killed, and S stands for surviving. 

 

Figure S1.3. Average CV of cored trees. * marks significant differences between 

mortality categories (p≤0.05). BK stands for beetle-killed, and S stands for surviving. 

 

Figure S1.4. Average year of recruitment of cored trees. * marks significant differences 

between mortality categories (p≤0.05). BK stands for beetle-killed, and S stands for 

surviving. 

 

Figure S1.5. Average DBH of cored trees. * marks significant differences between 

mortality categories (p≤0.05). BK stands for beetle-killed, and S stands for surviving. 

 

Figure S1.6. Model fits for all BAI models. (a) South-Low, (b) North-Low, (c) South-

Mid, (d) North-Mid, (e) South-High, (f) North-High. The black line in each plot is the 

model fit, and the red line is the 1-1 line. R2 and RMSE values are for the fit of the line 

between predicted and actual values. See table 1.3 in the main text for measures of model 

fit. 
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Figure S1.7. Model fit for the BAI difference model. The black line shows the 

relationship between predicted and actual BAI differences, and the red line is the 1-1 line. 

R2 and RMSE values are for the fit of the line between predicted and actual values. See 

table 1.3 in the main text for measures of model fit. 

 

Figure S1.8. Differences between beetle-killed and surviving tree BAI across aspects and 

elevations. 
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Figure S1.1. 
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Figure S1.2.  
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Figure S1.3.  
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Figure S1.4.  
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Figure S1.5.  
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(a) 

 

(a) 

(b) 

 

(b) 

(c) 

 

(c) 

Figure S1.6.  
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(d) 
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Figure S1.7.  
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Figure S1.8. 
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(a) 

 

(a) 

Supplementary Tables 

Table S1.1. Correlations between BAI and climate variables for (a) beetle-killed and (b) 

surviving trees.  Only months with significant results are shown here. Yellow 

highlighting indicates positively correlated significant variables, and blue highlighting 

indicates negatively correlated significant variables. Asterisks denote significance level 

(*:  p ≤ 0.05; **: p ≤ 0.01).  

Aspect 
Climate 

Variable Elevation Previous-Year 
 

Climate-Year 

      

Ja
n
 

Ju
n
 

Ju
l 

A
u

g
 

O
ct

 

D
ec

 

A
p

r 

Ju
n
 

Ju
l 

A
u

g
 

A
n

n
u

a
l 

South Tmax Low -0.03 -0.03 0.06 -0.16 0.18 0.12 0.03 -0.08 -0.06 0.03  

    Mid -0.15 -0.03 -0.08 -0.29* 0.27* 0.15 0.08 -0.09 -0.05 0.03  

    High -0.37** 0.03 -0.11 -0.46** 0.27* 0.16 -0.05 -0.16 -0.07 0.07  

  Tmin Low -0.1 0.01 0.09 -0.2 0.2 0.05 0.08 -0.1 -0.04 0.01  

    Mid -0.2 0.03 -0.02 -0.18 0.31* 0.11 0.13 -0.09 -0.01 0.04  

    High -0.41** 0.07 0.02 -0.26 0.22 0.14 0.13 -0.1 0 0.06  

  Prcp Low 0.15 0.06 0.06 -0.1 0.04 -0.06 0.08 0.18 0.11 -0.07 0.31* 

    Mid 0.18 0.11 0.2 0.02 0.02 -0.04 0.11 0.24 0.11 -0.1 0.2 

    High 0.2 -0.01 0.25 0.1 -0.11 -0.08 0.28* 0.23 0.18 -0.07 0.25 

  VPD Low 0.05 -0.03 0.09 -0.06 0.15 0.15 0.02 -0.12 -0.08 0.1  

    Mid -0.02 -0.08 -0.09 -0.18 0.23 0.2 0.01 -0.1 -0.09 0.15  

    High -0.29* -0.03 -0.13 -0.37** 0.35** 0.24 -0.15 -0.18 -0.22 0.13  

  CWD Low  -0.14**    -0.16**   

    Mid  -0.03    -0.01   

    High  -0.06*    0   

North Tmax Low -0.04 -0.05 -0.01 -0.14 0.1 0.17 0.05 -0.07 -0.07 0.09  

    Mid -0.06 -0.09 -0.09 -0.41** 0.32* 0.18 0.09 -0.05 0.06 0.02  

    High -0.2 0.04 -0.07 -0.54** 0.31* 0.09 -0.02 -0.03 0.07 0.04  

  Tmin Low -0.1 -0.01 0.07 -0.18 0.2 0.12 0.07 -0.08 -0.07 0.05  

    Mid -0.1 -0.04 -0.05 -0.24 0.39** 0.15 0.16 -0.12 0.04 0.03  

    High -0.25 0 0.02 -0.25 0.27* 0.05 0.12 -0.07 0.05 -0.02  

  Prcp Low 0.19 0.06 0.16 -0.09 0.06 -0.06 0.08 0.18 0.11 -0.08 0.29* 

    Mid 0.03 0.09 0.25 0.05 0.01 -0.05 0.18 0.17 0.07 -0.09 0.18 

    High 0.06 -0.05 0.22 0.16 -0.14 0.13 0.24 0.11 0.06 -0.04 0.12 

  VPD Low 0.03 -0.07 0.01 -0.06 0.1 0.18 0.04 -0.12 -0.1 0.13  

    Mid 0.06 -0.08 -0.11 -0.26* 0.19 0.28* 0.05 -0.02 0.03 0.2  

    High -0.19 0.03 -0.09 -0.38** 0.31* 0.14 -0.09 0.01 -0.02 0.16  

  CWD Low  -0.19**    -0.21**   

    Mid  -0.01    0.01   

    High  0.03    0.03   
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(b) 

 

(a) 

 

 

 

 

 

Aspect 
Climate 

Variable Elevation Previous-Year Current-Year 

      

Ja
n
 

Ju
n
 

Ju
l 

A
u

g
 

O
ct

 

F
eb

 

A
p

r 

Ju
n
 

Ju
l 

A
u

g
 

A
n

n
u

a
l 

South Tmax Low -0.09 -0.01 0.02 -0.26 0.2 -0.03 -0.01 -0.16 -0.1 0.06  

    Mid -0.08 -0.01 -0.06 -0.23 0.2 0.07 0.05 -0.05 0 -0.01  

    High -0.15 0.02 -0.08 -0.48** 0.29* 0.1 0.07 -0.08 0.01 0.02  

  Tmin Low -0.17 0.03 0.12 -0.26 0.24 -0.02 0.05 -0.13 -0.06 0.03  

    Mid -0.13 0.01 -0.02 -0.16 0.24 0.05 0.09 -0.05 0.01 -0.05  

    High -0.19 0.01 0.03 -0.22 0.23 0.05 0.19 -0.08 0.09 0.06  

  Prcp Low 0.17 0.03 0.16 -0.08 0.03 0.30* 0.11 0.27* 0.18 -0.1 0.40** 

    Mid 0.09 0.1 0.15 -0.02 0 0.11 0.11 0.17 0.06 -0.12 0.18 

    High 0.19 0 0.22 0.19 -0.08 0.02 0.17 0.15 0.14 -0.06 0.17 

  VPD Low -0.03 -0.04 0.02 -0.16 0.22 -0.05 -0.04 -0.22 -0.19 0.11  

    Mid 0.02 -0.01 -0.02 -0.1 0.15 0.04 0.03 -0.03 0.01 0.1  

    High -0.02 0.01 -0.06 -0.35** 0.34* 0.12 0.05 0 -0.03 0.18  

  CWD Low  -0.18**    -0.22**   

    Mid  -0.05    -0.01   

    High  -0.03    -0.01   

North Tmax Low -0.06 -0.01 0 -0.16 0.13 -0.03 0.07 -0.07 -0.11 0.07  

    Mid -0.05 -0.02 -0.07 -0.28* 0.18 0.07 0.04 -0.01 0 -0.08  

    High -0.2 -0.02 -0.15 -0.53** 0.27* 0.09 -0.06 -0.09 0.06 0.07  

  Tmin Low -0.14 0.02 0.06 -0.22 0.2 -0.03 0.08 -0.05 -0.1 0.02  

    Mid -0.08 0 -0.04 -0.17 0.22 0.05 0.09 -0.03 0.01 -0.05  

    High -0.27* -0.03 -0.01 -0.28* 0.22 0.06 0.05 -0.14 0.08 -0.01  

  Prcp Low 0.17 0.07 0.14 -0.11 0.08 0.27* 0.07 0.2 0.13 -0.11 0.32* 

    Mid 0 0.11 0.17 0.03 -0.01 0.1 0.12 0.13 0.08 -0.05 0.18 

    High 0.17 0.01 0.27* 0.17 -0.07 -0.01 0.28* 0.14 0.11 -0.07 0.18 

  VPD Low -0.01 -0.06 0.01 -0.06 0.14 -0.05 0.04 -0.13 -0.14 0.11  

    Mid 0.04 0.02 -0.01 -0.1 0.12 0.11 0.05 0.03 0.04 0.07  

    High -0.15 -0.01 -0.12 -0.37** 0.27* 0.14 -0.12 -0.04 -0.06 0.18  

  CWD Low  -0.16**    -0.15**   

    Mid  -0.08*    0.01   

    High  -0.02    0.04   
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CHAPTER 2 

Disturbance impacts on land surface temperature and gross 

primary productivity in the western United States 
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INTRODUCTION 

 Forests cover roughly 30% of Earth’s land surface and provide vital ecosystem 

services, such as water quality, wildlife habitat, and timber production, as well as climate 

services [Bonan, 2008]. The ability of forests to continue providing these ecosystem 

services depends on forest characteristics, such as stand structure, composition, and 

functional processes. The primary drivers of forest characteristics are state factors 

including climate, soils, and topography. However, secondary drivers, such as 

disturbance (e.g., wildfire, insect attack, or windthrow), are often more important than 

state factors in determining ecosystem services at the regional scale [Law et al., 2003; 

Pregitzer and Euskirchen, 2004; Bond-Lamberty et al., 2007], influencing stand 

composition and stand age, as well as C fluxes, nutrient cycling, and energy dynamics. 

As such, disturbance is an integral process in all forest ecosystems and altered 

disturbance regimes have the potential to impact forest health globally. 

 Although disturbance agents such as insect outbreaks and stand-replacing 

wildfires play a major role in shaping forest ecosystems, global change may be altering 

disturbance regimes in the United States (US) and elsewhere. Disturbance events affect 

large swathes of forest in North America every year, with wildfires affecting 

approximately 760,000 ha/yr [Littell et al., 2009] and insect-induced mortality affecting 

approximately 100,000 to 1,000,000 ha/yr [Hicke et al., 2012; Meddens et al., 2012]. 

While disturbance regimes vary in frequency and severity, more severe disturbance 



 46 

events, such as stand-replacing wildfires and severe bark beetle outbreaks, may be 

increasing in frequency as global temperatures rise [Watson et al., 1998; Adams et al., 

2009; Bentz et al., 2010; Westerling et al., 2011; Hicke et al., 2012; Millar and 

Stephenson, 2015]. The extent and magnitude to which disturbance has altered certain 

ecosystem services, including climate regulation, is often regionally specific [Randerson 

et al., 2006].  

 Disturbance events vary widely in severity and extent and their ecological impacts 

are mediated by climate, topography, and pre-disturbance vegetation characteristics 

[Holden et al., 2009; Dillon et al., 2011]. These impacts can include everything from 

decreases in stand-level productivity [Hanson and Weltzin, 2000; Kurz et al., 2008] to 

changes in the radiative budget of the surface [Randerson et al., 2006; Maness et al., 

2013]. Many studies have focused on the impacts of disturbance on successional patterns, 

forest structure, and composition [e.g., Sousa, 1984; Johnson et al., 1998]; however, 

disturbance effects on local and regional climate are less studied. Therefore, 

understanding how disturbances of varying severity and frequency impact climate is 

critical for predicting forest resilience and the recovery of vital ecosystem services.  

Disturbance can influence climate in several ways, including altering the radiative 

budget of forests or by affecting the uptake and release of C by forests. Kurz et al. [2008] 

estimated that large forested regions of British Columbia (BC), Canada switched from a 

C sink to a C source following a large and severe mountain pine beetle (MPB) outbreak. 

The conversion in net C flux was expected to occur over several decades, suggesting that 

severe biotic disturbances have gradual, but long-term, impacts. These modeled results 

were supported by an observed 15-20% decline in satellite-derived GPP immediately 
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post-outbreak [Coops and Wulder, 2010]. Although increased albedo following beetle 

outbreaks in both BC and the western US results in a decline in absorbed radiation 

[O'Halloran et al., 2012; Maness et al., 2013; Vanderhoof et al., 2013], a decrease in 

summertime evapotranspiration (ET) results in an increase in the sensible to latent heat 

ratio (i.e., Bowen ratio). These effects combined to ultimately result in a ~1 ᵒC increase 

in surface temperature following the BC outbreak [Maness et al., 2013].  

Despite the relatively consistent findings regarding post-MPB outbreak C fluxes, 

these studies focused on an area with a very large and severe insect outbreak; results may 

differ when outbreaks occur on smaller scales or under different environmental 

conditions. For example, the effects of less severe disturbance and mortality events, such 

as smaller-scale insect outbreaks and drought, are more ambiguous than the results from 

the MPB outbreak in BC. Hanson and Weltzin [2000] determined that the likely effects 

of drought are reductions in net primary production and stand water use, both phenomena 

resulting in positive radiative forcing (i.e., an atmospheric warming effect). However, 

changes in albedo or heterotrophic respiration were not included in the analysis, making 

it difficult to assess the net radiative forcing resulting from smaller and less severe 

disturbances such as drought. Thus, the exact climate effects of these disturbances are 

unclear and likely depend on the extent and severity of the event as well as the 

environmental characteristics of the forest ecosystem (e.g., vegetation type).  

Wildfire also appears to have a large effect on the net radiative forcing of 

ecosystems [Randerson et al., 2006], although the effect is not well understood across 

different forest ecosystems.  Fires in boreal Alaska were found to have differing impacts 

on climate depending on the time since disturbance [Randerson et al., 2006]. Initially, 
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observations showed that fires resulted in positive radiative forcing due to large C 

emissions and the deposition of black C on ice and snow, decreasing the albedo of the 

surface and increasing absorbed radiation. However, according to model simulations, 

after several decades, boreal forest fires resulted in a net negative radiative forcing due to 

increases in surface albedo as a result of decreased canopy cover, ultimately leading to a 

potential cooling of the land surface. This is one of the few studies to develop a physical 

framework to evaluate the net radiative impacts of the effects of forest disturbance, but it 

only addressed a relatively small forested site and a single fire event.  

Another study [O’Halloran et al., 2012] addressed the radiative impacts of fire, 

bark beetle attack, and hurricanes due to changes in albedo and the net ecosystem carbon 

balance over several locations across North America. The authors found results similar to 

those of Randerson et al. [2006] for boreal wildfire, with an initial warming effect, 

followed several decades later by a slight cooling effect. However, they found that bark 

beetle attack increased wintertime albedo, resulting in negative radiative forcing. This 

complicates the longer-term results of Kurz et al. [2008], which suggest positive radiative 

forcing from bark beetle attack over many decades. These results demonstrate differences 

in climate impacts among disturbances and disturbance locations and highlight the need 

for systematic analyses across larger areas. 

Several other studies have addressed the potential for disturbances to impact 

climate in temperate regions through both biogeochemical [Hanson and Weltzin, 2000; 

Kurz et al., 2008; Hicke et al., 2012; Seidl et al., 2014] and biogeophysical [Vanderhoof 

et al., 2013; Maness et al., 2013] effects, with results indicating that temperate 

disturbances may generally result in a long-term net positive radiative forcing, although 
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the forcing depends on disturbance location, timing, type, and severity. The continued 

complexity of disturbance-related climate forcing in forest ecosystems indicates that an 

analysis evaluating the patterns of effects of multiple disturbance types on local to 

regional climate across multiple ecosystems is a novel contribution to the field. There is a 

general consensus that forests will become more vulnerable to disturbance as a result of 

increasing water and heat stress [Allen et al., 2010; Heyder et al., 2011; Anderegg et al., 

2013], but in order to better manage for forest resilience to climate change it is also 

necessary to understand the effects of forest disturbances on local- to regional-scale 

climate.  

The aim of this study is to determine the impact of fires, bark beetles, defoliators, 

and ‘unidentified disturbances’ (UD) on land surface temperature (LST) and gross 

primary productivity (GPP) in the western US from 2002 – 2012. Specifically, our 

analysis seeks to answer the following research questions: (1) How do LST and GPP 

change immediately following disturbance in forests of the western US?, (2) How do 

these short-term effects differ among ecoregions and disturbance types?, (3) How 

important are severity, extent, and interannual air temperature change to the short-term 

disturbance response of LST and GPP?, and (4) How do LST and GPP change over 

twelve years following disturbance? This study adds to the literature through an analysis 

of disturbance effects across ecoregions and four disturbance categories. It covers a large 

geographical region and provides a summary of the relative importance of disturbances of 

varying types and locations on local- to regional-scale climate. 

METHODS 

Study area 
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We assessed the impacts of disturbance over the western US (Fig. 2.1a), a region 

encompassing substantial topographic and climatic variation. Mean annual temperatures 

range from -3 ºC in the intermountain West to 24 ºC in the Southwest [PRISM Climate 

Group, 2011] and mean annual precipitation ranges from 5925 mm in the Pacific 

Northwest to 62 mm in the desert Southwest [PRISM Climate Group, 2011].  

A range of disturbances are known to impact western forests, including prescribed 

and wildland fires, insects and pathogens, windthrow, and timber harvest. Substantial 

efforts to map wildfires and insect-induced mortality have resulted in spatially explicit 

annual maps of these disturbance types. We therefore focus primarily on these 

disturbance types, and classify all other forms of disturbance as UD. Furthermore, as our 

disturbance detection approach was limited to detecting only disturbances affecting 

moderately large areas of the landscape, insect species included in the insect damage 

categories were limited to species of aggressive bark beetles and defoliators [see Hicke et 

al., 2012; USDA Forest Service, 2000-2014]. Bark beetle species included mountain pine 

beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and 

species of ips (Ips sp.). Defoliators included western spruce budworm (Choristoneura 

occidentalis), western blackheaded budworm (Acleris gloverana), western hemlock 

looper (Lambdina fiscellaris spp. lugubrosa), pine needlesheath miner (Zelleria 

haimbachi), sawflies (Suborder Symphyta), tent caterpillars (Malacosoma sp.), and 

douglas-fir tussock moth (Orygia pseudostugata). 

Disturbance detection and grouping by disturbance and ecoregion 

Disturbances were mapped using a combination of satellite imagery and aerial 

data sources, including Moderate Resolution Imaging Spectroradiometer (MODIS) 
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Enhanced Vegetation Index (EVI) time series imagery [http://lpdaac.usgs.gov], 

Monitoring Trends in Burn Severity (MTBS) data [Eidenshink et al., 2007], and Aerial 

Detection Survey (ADS) maps [USDA Forest Service, 2000-2014]. EVI time series data 

for 2000-2014 were accessed between July and September 2014. These data are available 

at 250 m resolution and are collected via the Terra satellite every 16 days. EVI was used 

rather than the Normalized Difference Vegetation Index (NDVI) because it is less 

susceptible to saturation in dense canopies [Liu and Huete, 1995]. The index is calculated 

as: 

𝐸𝑉𝐼 = 𝐺 ×
(𝜌𝑛𝑖𝑟− 𝜌𝑟𝑒𝑑) 

(𝐿+ 𝜌𝑛𝑖𝑟+𝐶1𝜌𝑟𝑒𝑑+ 𝐶2𝜌𝑏𝑙𝑢𝑒)
       (1) 

where G is the gain factor, ρnir and ρred are atmospherically corrected surface reflectances, 

L is the canopy background adjustment term, and C1 and C2 are coefficients for the 

aerosol resistance term [Huete et al., 2002]. While the blue band used for correcting 

residual atmospheric effects (𝐶2𝜌𝑏𝑙𝑢𝑒) is only available at 500 m rather than 250 m, this 

should have negligible impacts on results [lpdaac.usgs.gov]. 

Raw EVI images were pre-processed for quality assurance, and pixels determined 

to be either cloudy or unreliable due to satellite measurement abnormalities were 

removed. Images were further processed to remove non-forested pixels according to a 

20% forest mask created from the 250 m resolution MODIS Vegetation Continuous 

Fields product [DiMiceli et al., 2011; Townshend et al., 2011]. Forested images were 

then mosaicked to cover the western US and run through a pre-processing algorithm to 

remove outliers and replace missing values by interpolation, using the ‘interpts’ function 

in the ‘wq’ package [Jassby and Cloern, 2015] in R [R Core Team, 2013], resulting in 

spatially and temporally continuous time series of EVI values. Outliers were determined 
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as values lying outside of 150% of the first or third quartiles of the EVI value 

distribution. Because the time series were evaluated for change at the pixel level, we were 

further able to selectively remove pixels where: (a) more than one quarter of the total 

measurement days were missing, or (b) more than 20 consecutive measurement days 

were missing.  

We then used the Breaks for Additive Season and Trend (BFAST) change-

detection algorithm [Verbesselt et al., 2010a, 2010b] to determine areas of likely 

disturbance between 2002 and 2012 at the pixel level (i.e., 250 m). The BFAST algorithm 

decomposes time series into seasonal, trend, and noise components, and then compares 

slopes of trend segments iteratively to find breakpoints [Verbesselt et al.¸ 2010a, 2010b]. 

We used the BFAST algorithm with a harmonic seasonal component and a single 

allowable breakpoint. With a single breakpoint, only one year per pixel could show 

disturbance, resulting in the pixel disturbance being the largest break in the time series (if 

breaks were detected) and thus the most severe disturbance in that pixel. BFAST could 

not detect disturbance 2000-2001 and 2013-2014 due to lead-in requirements within the 

algorithm. Pixels with significant detected decreases in the EVI time series were labeled 

with the year of change and compiled into annual raster files. 

In an effort to improve the detection of disturbed pixels in cloud- and snow-

contaminated areas, we augmented the BFAST results with data on forest loss from 

Hansen et al. [2013]. The Hansen data were originally computed annually at 30 m 

resolution using Landsat imagery, thus increasing the likelihood of catching a cloud-free 

segment of the landscape. For this analysis, these 30 m data were aggregated to 240 m 

resolution to approximate the resolution of the MODIS data. The coarser resolution forest 
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loss files were then placed onto a grid equivalent in resolution and extent to the BFAST 

results grid, with Hansen raster values added to the nearest BFAST-equivalent grid 

pixels. Once equivalent grids were achieved, the Hansen and BFAST detection rasters 

were mosaicked to a final disturbance raster, with disturbances marked if they were 

shown on either of the two detection rasters (Fig. 2.1b). Data from Hansen et al. [2013] 

were prepared and downloaded from Google Earth Engine [see Hansen et al., 2013] in 

August 2015. Raster files were mosaicked in ArcGIS [ESRI, 2010]. 

The combined disturbance data were split into four distinct disturbance type 

categories - (1) fire, (2) bark beetles, (3) defoliators, and (4) UD. Fire disturbance pixels 

were identified as pixels where the combined disturbance data for a given year 

overlapped MTBS fire polygons for that same year. Insect disturbance pixels, including 

bark beetles and defoliators, were determined as pixels where the combined disturbance 

data for a given year overlapped the ADS polygons labeled as bark beetle or defoliator 

mortality for any year between 2002 and 2012. Insect damage may only reach an EVI-

detectable severity after several years, although the outbreak may be detected in the ADS 

maps at the very start of the outbreak. Alternatively, ADS data may mark the disturbance 

after it is detected by satellite methods. Thus, it was assumed that if the pixel was within 

the bounds of the ADS polygon, it was most likely an insect damage pixel. This 

assumption was not made for fires because all damage occurs within a single year, 

allowing for much more accurate identification and timing. Where fire and insect damage 

polygons overlapped, the pixel was labeled ‘fire’ if the detection year matched the year of 

the fire, and labeled ‘bark beetle’ or ‘defoliator’ if the detection year did not match the 
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year of the fire. The UD category was applied to all other pixels that did not fall under the 

previous categories. 

MTBS and ADS presence or absence values were extracted at disturbance 

detection points in ArcGIS [ESRI, 2010] in order to indicate the mode of disturbance for 

that pixel. ADS polygons were limited to those containing damage attributed to the bark 

beetle and defoliator species listed in section 2.1. We chose not to use a cut-off for trees 

killed per acre within ADS polygons, as mortality area is patchy within the affected area 

polygons, making polygon-level trees killed per acre unrepresentative of all pixels within 

each polygon. 

Lastly, results were evaluated by ecoregions as defined by the Environmental 

Protection Agency’s Level II ecological region product [Omernik, 1987; Omernik and 

Griffith, 2014]. Data were grouped into ecoregions according strictly to the level II 

regions at first, and then regions with fewer than fifty detected disturbance pixels were 

combined with the ecoregion nearest to them in both location and vegetation type (Fig. 

2.1a). 

Detection results were evaluated for accuracy using two methods, (1) evaluation 

relative to ADS [USDA Forest Service, 2000-2014] and MTBS polygons [Eidenshink et 

al., 2007], and (2) comparison with 2002-2010 detection results from the well-validated 

Vegetation Change Tracker (VCT) project [Huang et al., 2010; Zhao et al., 2015]. The 

first method indicated mixed results for the number of ADS and MTBS polygons that 

were detected by the combined BFAST and Hansen dataset (Table S2.3). For example, 

ADS bark beetle polygons were often undetected, but most MTBS polygons were 

detected. Those polygons that were not detected by the dataset tended to be smaller and 
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had lower recorded severity (Table S2.3). The second validation method demonstrated 

similar overlap between VCT detected pixels and ADS and MTBS polygons as method 1, 

suggesting general agreement between VCT and the dataset used here in detecting 

disturbance (Table S2.3). Additionally, an examination of the distances between 

BFAST/Hansen points and VCT points indicated similarities in areas of detection (Fig. 

S2.9, Table S2.4). The detection areas that did not match were primarily in UD areas. 

Response and predictor variable preparation 

Mean summertime (June-July-August; JJA) Landsat-based 30 m LST data were 

prepared in Google Earth Engine in August 2015 using methods described in Weng et al. 

[2004] and Sobrino et al. [2004]. In short, this method for estimating LST uses an 

estimated land surface emissivity based on NDVI [Sobrino et al., 2004] as input into the 

equation 

𝐿𝑆𝑇 =
𝑇𝐵

1+(𝜆 × 
𝑇𝐵
𝜌

)
ln 𝜀         (2) 

where TB is the effective at-satellite temperature (K), λ is the wavelength of emitted 

radiance (µm), ε is NDVI-based emissivity, and 𝜌 = ℎ × 𝑐 𝜎⁄ , with h equal to Planck’s 

constant (J·s), c equal to the speed of light (m·s-1), and σ equal to the Boltzmann constant 

(J·K-1) [Weng et al., 2004]. The resulting product was aggregated to 240 m to better 

match the detection data. Landsat data are available from the U.S. Geological Survey.   

Changes in GPP were estimated using the 1 km, 8-day, MOD17A2 GPP product. 

Data were downloaded via the Land Processes Distributed Active Archive Center (LP 

DAAC) in September 2015 and pixels flagged as low quality were removed.  

Factors (i.e., predictor variables) potentially influencing the disturbance response 

variables included disturbance severity (S), extent (E), and local interannual change in air 
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temperature (Tair). S was determined as the per-pixel change in pre- to post-disturbance 

EVI (see Eq. (5) and (6)). The E of fire disturbance events was labeled as the total acres 

burned, retrieved from the MTBS fire polygon data. Each fire pixel was labeled with the 

total area of the fire. The E of bark beetle, defoliator, and UD events was estimated as the 

size of the area covered by adjoining pixels detected in the same year. The calculation of 

area for insect and UD disturbances was done in ArcGIS [ESRI, 2010]. We chose to label 

each pixel with the area of the total disturbance (encompassing several pixels), because 

we were interested in how disturbance in surrounding pixels influences the effects within 

single pixels. For example, a large fire may cause a larger increase in LST in some pixels 

because surrounding pixels no longer have surviving vegetation, and thus higher ET, to 

mitigate that pixel’s rising LST. 

PRISM monthly 800 m temperature data [PRISM Climate Group, 2011] averaged 

for JJA were used to represent local air temperatures, for use in determining how the 

disturbance response results were influenced by non-disturbance-related differences in 

temperature. Tair was calculated as the pre- to post-disturbance change in the variable (see 

Eq. (5) and (6)). Data were downloaded from the PRISM website in October 2015. 

It should be noted that the aim of this analysis was not to identify the drivers of fires, 

bark beetle outbreaks, or defoliator attacks, but rather to identify what disturbance or 

environmental factors have the strongest influences on the responses of LST and GPP 

following disturbance. Many other studies have identified the drivers of disturbance [e.g., 

Raffa et al.¸ 2008; Dillon et al., 2011; Westerling et al., 2011]. 

Analysis of disturbance-related changes in LST and GPP 
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The LST difference and GPP percent change following the disturbance were 

calculated at the pixel level. Only changes in the JJA values of the variable were analyzed 

for this study. Values for each variable before (Vpre) and after (Vpost) the detected 

disturbance were calculated as follows: 

𝑉𝑝𝑟𝑒 =
(𝑉𝑡−1+𝑉𝑡−2)

2
           (3) 

𝑉𝑝𝑜𝑠𝑡 =
(𝑉𝑡+𝑉𝑡+1)

2
         (4) 

where Vt is the variable at t years before or after the detected disturbance. We then 

calculated the absolute (ΔV) and percent change (% ΔV) in each variable as: 

∆𝑉 = 𝑉𝑝𝑜𝑠𝑡 −  𝑉𝑝𝑟𝑒         (5) 

%∆𝑉 = (
𝑉𝑝𝑜𝑠𝑡− 𝑉𝑝𝑟𝑒

𝑉𝑝𝑟𝑒
) ×  100        (6) 

All calculations were completed in R [R Core Team, 2013]. 

Statistical analysis 

After response variables were extracted at each detected disturbance point, 

differences in disturbance effects between ecoregions and disturbance types were 

examined. The significance of the differences between both ecoregions and disturbance 

types were determined using multivariate analysis of variance (MANOVA) tests. If 

significant differences in disturbance response variables (LST, GPP) were found, 

discriminant function analysis was conducted to determine the ability of the response 

variables to predict the type of disturbance that caused the response and the ecoregion in 

which the disturbance occurred. MANOVA tests were conducted in R [R Core Team, 

2013]. Discriminant function analysis was also done in R using the ‘lda’ function in the 

‘MASS’ package [Venables and Ripley, 2002]. 
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To analyze the influence of the potential drivers of disturbance impacts, 

regression trees were created using the ‘randomForest’ function within the 

‘randomForest’ package [Liaw and Wiener, 2002] in R. One model was created for each 

response variable (i.e., LST, GPP), resulting in two total models. The importance S, E, 

and Tair to the response variables was identified by mean squared error (MSE) importance 

values from the random forest models. Ecoregion and disturbance type were also 

included in the models as potential driving factors (Table 2.1).  

To determine how the disturbance responses of LST and GPP change through 

time, data were collected for all years following disturbance events through 2014. Pre- to 

post-disturbance changes in LST and GPP were used to identify the patterns in recovery 

following disturbances segregated by four severity classes (0-20%, 21-40%, 41-60%, and 

> 60%), with percent decline in EVI used as a proxy for severity (Fig. S2.10). Recovery 

data were prepared with the same methods used to calculate initial disturbance response 

(Eq. (5) and Eq. (6)), with Vpost representing only one year rather than the average of two 

years. Line graphs of recovery were analyzed by time to stabilization and compared by 

disturbance type, ecoregion, and severity category. The time period of the analysis (2002-

2012) was insufficient to see full recovery following disturbance. However, 

“stabilization,” or leveling in the response variables following the disturbance, may result 

due to other factors, including regrowth of non-canopy vegetation. This stabilization, if 

seen, indicated some degree of recovery and is used here as an indication of future trends 

in recovery. 

RESULTS 

Changes in LST and GPP in response to disturbance 
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Fire 

We observed a significant increase in LST and a decline in GPP following fire 

events (Fig. 2.2; Table S2.2). The mean LST increase (°C) was 3.45 ± 3.02 (µ ± σ) over 

all regions (Fig. 2.2a), although there was considerable interregional variation (Fig. 2.3). 

Cold Deserts experienced the largest increases in LST (4.57 ± 3.45) while the Marine 

West Coast Forests experienced the smallest increases (1.10 ± 1.98). Fires also resulted in 

significant declines in GPP (Fig. 2.2b). Across all regions, the mean GPP percent change 

was -25.05 ± 21.67. The fire effect on GPP varied significantly by ecoregion (Fig. 2.3). 

The largest declines in GPP were seen in the Warm Deserts (-41.49 ± 23.81) and the 

smallest declines were observed in Marine West Coast Forests (-4.72 ± 11.38). 

Bark Beetles 

Following bark beetle outbreaks, LST generally increased, and response of GPP 

was variable across ecoregions (Fig. 2.2; Table S2.2). All but two regions, the Sierra 

Madre and Temperate/West Central Semi-Arid Prairies, showed increases in LST 

following bark beetle outbreaks (Fig. 2.2a). The mean impact of bark beetles on LST (°C) 

was 0.76 ± 3.04. The largest increase in LST was seen in the Western Cordillera (0.92 ± 

3.00) and the smallest increase was seen in Warm Deserts (0.01 ± 0.87). Bark beetle 

disturbance occurring in Sierra Madre and Temperate/West Central Semi-Arid Prairies 

resulted in slight decreases in LST (-0.05 ± 3.13; -0.18 ± 2.89). The mean impact of bark 

beetle outbreaks was a percent change in GPP of -2.84 ± 21.06, although seven of the 

nine ecoregions showed a slight increase in GPP (Fig. 2.3). The greatest increase in GPP 

occurred in Warm Deserts (29.86 ± 37.09), although there were also increases in the Cold 

Deserts, Sierra Madre, Upper Gila Mountains, Marine West Coast Forests, and all Semi-
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Arid Prairies. GPP decreased post-disturbance in Mediterranean California and the 

Western Cordillera (-1.02 ± 17.01; -4.43 ± 13.80). 

Defoliators 

Overall, LST increased slightly and GPP decreased slightly following defoliator 

attacks (Fig. 2.2, Table S2.2). The average LST effect over all regions was 0.49 ± 3.12 

°C, with four ecoregions showing increases in LST and two ecoregions showing 

decreases. An additional three ecoregions had no data. The largest increases in LST 

following defoliator attack occurred in Cold Deserts (2.68 ± 3.00). The Sierra Madre and 

Upper Gila Mountain ecoregions showed decreases in LST (-0.56 ± 2.12; -0.48 ± 2.94). 

The overall defoliator effect on GPP (%) was very small (-0.23 ± 15.40), with substantial 

variation between ecoregions. The Upper Gila Mountain ecoregion showed large 

increases in GPP following defoliator attacks (9.68 ± 27.91), while Mediterranean CA 

showed moderate GPP declines (-4.51 ± 10.97). 

Unidentified Disturbance 

In general, LST and GPP increased following UDs (Fig. 2.2; Table S2.2). The 

mean LST effect (0.76 ± 3.03 °C) and regional variability were very similar to the 

patterns following insect outbreaks (Fig. 2.2). The ecoregion with the largest increase in 

LST was the Marine West Coast Forest ecoregion (1.48 ± 3.24). LST decreased in the 

South Central Semi-Arid Prairies following UDs (-0.15 ± 2.97). GPP generally increased 

following UDs, with variation in response between ecoregions (Fig. 2.3). The mean 

percent change in GPP was 1.89 ± 24.20. The largest increases in GPP occurred in four 

regions: Warm Deserts (9.13 ± 42.16), Sierra Madre (11.48 ± 68.57), Upper Gila 
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Mountains (8.03 ± 36.55), and South Central Semi-Arid Prairies (9.26 ± 34.99). The 

Western Cordillera showed a slight decrease in GPP (-0.35 ± 20.28). 

Differences in disturbance response between disturbance types and ecoregions 

MANOVA tests indicated that there were highly significant differences in LST 

and GPP responses due to disturbance type (F(6,4883470) = 59,477,  p < 0.01), 

ecoregion (F(16, 4883470) = 4735, p < 0.01), and the interactive effect of disturbance 

type and ecoregion (F(42, 4883470) = 516, p < 0.01). In order to ensure that the large 

sample size was not confounding the significance of the results, MANOVA tests were 

also conducted on 2000 samples of 1000 detected disturbance points, and the statistics of 

each of those 2000 samples averaged to determine the significance of lower sample size 

on the factor differences. Disturbance (F(6,1960) = 25.98, p < 0.01) and ecoregion 

(F(16,1960) = 3.47, p < 0.01) remained significant, despite the lower sample size. The 

interactive effect between disturbance type and ecoregion became insignificant 

(F(17,1960) = 1.66, p = 0.20). 

 Discriminate function analysis was used to determine whether the responses of 

LST and GPP were sufficiently different to classify detected pixels into disturbance types 

and ecoregions. A linear model using the response variables (LST, GPP) as predictor 

variables predicted disturbance type with 83.98% accuracy. The response variables 

resulted in lower accuracy when predicting ecoregion (49.76% accuracy). However, 

when the data were subset by disturbance type, linear models predicted ecoregion with 

higher accuracy for bark beetle attack (72.92%) and defoliator damage (92.95% 

accuracy) than for fire (57.25% accuracy) and UDs (46.36% accuracy). 

Importance of severity, extent, and local interannual change in air temperature for 

LST and GPP responses 
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The random forest models used to determine the importance of S, E, and Tair to 

the post-disturbance response in LST and GPP were cross-validated using a 60% testing 

subset of the data. R2 values of the relationship between predicted and actual data were 

0.39 for LST and 0.45 for GPP (Table 2.2).  

 Across both response variable models, both S and Tair were the most important 

continuous variables in determining disturbance impacts according to MSE importance 

(Table 2.2). Both models also underscored the importance of disturbance type and 

ecoregion on LST and GPP. E had relatively low importance in the random forest 

models. The models had somewhat low predictive power, likely because all potential 

predictor variables were not included in the model. While the residual sum of squares 

(RSS) importance values were not used to determine variable importance, they 

corroborate the results using MSE importance (Table 2.2). 

Long-term patterns and trends in disturbance response 

Fire 

LST and GPP showed a short time to stabilization across all ecoregions following 

fire. In general, LST rose quickly in the first year post-disturbance, and then followed a 

slight decline over the next 1-4 years (Fig. 2.4; Fig. S2.1), although LST remained 

elevated from pre-disturbance LST and even rose gradually over the remainder of the 

years following the decline. This pattern was consistent across ecoregions, with slight 

variations in the timing of the decline and in the level to which LST declined post-

disturbance. As predicted, the severity (% decline in EVI) of the disturbance had a strong 

influence on the LST increase post-disturbance. Surprisingly, severity did not have an 

effect on the duration of the post-disturbance difference in LST. Ecosystem LST values 
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appeared to decline just as quickly following high severity fires as lower severity fires, 

although they retained higher LST than lower severity fires. GPP decreased over the first 

1-2 years following fire and then increased back to a stable level over the following 2-12 

years (Fig. 2.5; Fig. S2.5), although GPP remained lower than pre-disturbance levels for 

higher severity fires. Most regions showed a similar pattern, with varying degrees of 

differences between the severity categories. The highest severity fires (> 60% decline in 

EVI) showed the largest declines in GPP. However, these fires did not show significantly 

different stabilization times than fires in other severity categories. 

Bark Beetles 

Generally, LST increased gradually in the 1-2 years following bark beetle 

disturbance, and then stabilized at higher temperatures for the remainder of the post-

disturbance years, with some recovery to slightly lower temperatures (Fig. 2.4; Fig. S2.2). 

This pattern was fairly consistent across ecoregions and severity levels, despite many of 

the ecoregions not having any bark beetle detections. In general, GPP declined in the year 

of the disturbance event, and then recovered gradually over the next 3-12 years (Fig. 2.5; 

Fig. S2.6). Higher severity attacks resulted in the sharpest declines and longest recovery 

times of GPP. Several regions did not show significant impacts of bark beetle disturbance 

on GPP. 

Defoliators 

The regions with data available for defoliator attacks showed an increase in LST 

in the 1-2 years after an attack (Fig. 2.4; Fig. S2.3), with higher severity disturbances 

resulting in a larger increase in temperature. LST never fully recovered to pre-disturbance 

levels and actually increased over the period of observation, although the rate of increase 
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slowed over time. In several regions and with lower severity disturbances, LST increased 

but did not decline over the period of available data. GPP declined in the year of 

disturbance in the Western Cordillera and Upper Gila Mountains ecoregions (Fig. 2.5; 

Fig. S2.7) and increased slightly in the Cold Desert and West/Central Semi-Arid Prairie 

ecoregions. GPP increased back to pre-disturbance levels over the remainder of the 

available time period in the two ecoregions that showed initial declines. In the ecoregions 

that showed GPP increases, GPP levels fluctuated around pre-disturbance levels. 

Unidentified Disturbances 

For the first 1-3 years following UDs, LST increased from pre-disturbance levels 

(Fig. 2.4; Fig. S2.4). LST showed slight indications of recovery (i.e., decreasing LST) in 

the 1-5 years following maximum LST increases, but tended to stabilize at higher 

temperatures. Following UDs, GPP declined for 1-2 years (Fig. 2.5; Fig. S2.8) and then 

gradually increased for 1-9 years until stabilizing. In the Marine West Coast Forests it 

took a much longer period of time for the very high severity disturbances to recover 

compared to the other three disturbance categories. 

Relationships between recovery and initial impacts 

Recovery patterns following bark beetle, defoliator, and fire effects (Fig. 2.4, Fig. 

2.5) are of similar magnitude and sign, seeming to contradict the results from the 

previous section regarding immediate post-disturbance changes in LST and GPP (Fig. 

2.3). This is due to the separation of severity in the recovery figures. The severity 

categories do not contain equal numbers of pixels, and thus if the average is taken, bark 

beetle and defoliator LST and GPP responses are smaller than those following fire simply 

due to the inclusion of more low-severity disturbances. Additionally, as many of the 
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pixels lie within the Western Cordillera ecoregion, the results of that ecoregion dominate 

the recovery results. 

DISCUSSION 

Mechanisms behind LST and GPP responses to disturbance 

Our results indicate that LST increases and GPP decreases following forest 

disturbances in the western US, although these responses vary by ecoregion. These 

responses to tree mortality are expected, as mortality results in a loss of canopy 

photosynthesis, and thus GPP. Previous research [e.g., Bright et al., 2013; Maness et al., 

2013] has indicated that ET declines coincident with photosynthesis following 

disturbance. Decreases in ET result in shifts in the exchange of heat from latent to 

sensible heat, resulting in increased LST. Decreased albedo following fires also enhances 

absorption of radiation at the surface, further increasing LST. There are mixed results 

regarding the importance of albedo for impacting LST and radiative forcing following 

insect outbreaks or drought, with some results indicating little importance [Bright et al., 

2013], and some indicating higher importance [O’Halloran et al.¸ 2012]. Disturbance-

related albedo changes may be more or less important to LST and radiative forcing at 

varying times of the year, with more importance in the winter due to snowpack effects 

(i.e., more exposed snow due to a loss of canopy cover) [Randerson et al., 2006; 

O’Halloran et al., 2012], and less importance in summer. Decreased surface shading by 

the canopy due to needle loss and/or snagfall and subsequent changes in soil moisture 

may also impact post-disturbance LST.  

Despite showing a broad scale reduction in GPP, some ecoregions showed an 

increase in GPP. This may occur through several mechanisms: (1) false classification of a 
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pixel as disturbance due to natural fluctuations in the EVI signal, (2) pre-disturbance 

limitation of GPP by climate conditions, (3) release of the remaining vegetation from 

resource (light, nutrient, and/or water) limitation or, (4) an increase in the length of the 

growing season. The first and second mechanisms are the most probable in the case of 

UDs where detections may reflect random or phenological fluctuations in canopy 

greenness or temporary climate-induced declines in photosynthesis (e.g., due to drought). 

Natural fluctuations in the EVI signal may have been labeled as disturbance in some 

instances, resulting in false positives. Removal of climate limitations post-detection 

would allow ‘disturbance’ pixels to increase in GPP, also resulting in false positives 

because no actual mortality occurred. The third mechanism is that partial canopy 

mortality, as may occur in insect outbreaks, may release any remaining vegetation from 

resource limitation, enhancing the productivity of the remaining vegetation enough to 

compensate for the partial or complete loss of the canopy, increasing GPP. Several 

studies [Veblen et al., 1991; Brown et al., 2012; Reed et al., 2014; Pec et al., 2015] have 

cited this mechanism to explain potential increases in productivity following insect 

disturbance. While the relatively low resolution of MODIS GPP is unlikely to detect 

small changes in GPP due to this mechanism, if the affected area is large enough, it may 

be sufficient. Finally, sites with increased GPP typically also had increased LST. As 

minimum temperature is a variable in the current GPP algorithm, slight increases in LST 

could extend the growing season and thus increase GPP. 

Causes and implications of differences in response among disturbance types and 

ecoregions 

 

There were differences in LST and GPP responses to disturbance both between 

disturbance categories and ecoregions, although the general response patterns matched 
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those from previous studies [e.g., Coops and Wulder, 2010; Bright et al., 2013; Maness et 

al., 2013; Moore et al., 2013]. We hypothesize that insect disturbances and UDs resulted 

in less severe responses than fires due to both the detection method used and the nature of 

the disturbances. Our disturbance detection algorithm may have recorded some pixels as 

disturbed that were experiencing decreased greenness that did not cause significant 

mortality, diminishing the category’s overall disturbance response results. Additionally, 

bark beetle outbreaks, defoliator attacks, and UDs tend to be somewhat species specific 

and may occur over several years [Raffa et al., 2008; Bentz et al., 2010]. Thus, small 

patches within larger pixels might be at differing successional stages at the time of 

observation [e.g., Penn et al., 2016]. These disturbance characteristics could decrease the 

disturbance LST and GPP response because few trees may be affected in a given area 

annually. This also could result in the inclusion of some mortality in our pre-disturbance 

LST and GPP response estimates. However, our recovery figures (Fig. 2.4, Fig. 2.5) 

indicate that the largest changes in magnitude of the variables occurred in the year of the 

detection. This suggests that most of the mortality or decrease in productivity occurred in 

the year of detection and not in previous years. Thus, we believe that the muting effect of 

gradual disturbances is very slight. 

The variation in disturbance response among ecoregions is likely a result of 

regional variation in climate, forest composition and structure, soils, and hydrology, as 

well as disturbance regime. For example, post-fire increases in LST were much lower in 

ecoregions with high precipitation and moderate temperatures (e.g., Marine West Coast 

Forests) than in ecoregions with low precipitation and higher temperatures (e.g., Upper 

Gila Mountains), likely due to greater water availability for latent heat exchange and 
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lower atmospheric demand. Differences between ecoregions in terms of cloudiness may 

also account for some of the differences in disturbance responses. However, all response 

variables were pre-processed to minimize cloud cover and were JJA averages, when 

clouds are the least prevalent. The exact influence of environmental variables other than 

air temperature was not investigated in this study and merits further research.  

The observed differences in disturbance response between ecoregions reinforce 

the importance of management strategies that are dependent on the disturbance locale. 

Current and predicted future climate [PRISM Climate Group, 2011; Dobrowski et al., 

2013] and disturbance regimes [Fulé et al., 1997; Franklin et al., 2002] differ 

substantially between ecoregions. We show that response regimes (i.e., response 

magnitude, direction, and duration) also differ significantly.  Variation in management 

strategies among ecoregions and other management divisions will have increasing 

importance as these components (i.e., climate, disturbance regime, and response regime) 

of climate-disturbance feedbacks interact. This is especially true in areas where high-

severity disturbance events may be increasing in frequency, as recovery to pre-

disturbance biophysical characteristics may not occur, indicating longer-term shifts in 

ecosystem type or function. Managers should be wary of applying strategies aimed at 

mitigating disturbance-climate feedbacks from one region to another without validation. 

Potential disturbance feedbacks to local and regional climate 

Disturbance severity (S) is critical to LST and GPP responses, as has been noted 

in many previous studies [Randerson et al., 2006; Bond-Lamberty et al., 2007; Kurz et 

al., 2008; Maness et al., 2013]. Disturbances are projected to increase in severity due to 

climate change [Adams et al., 2009; Littell et al., 2009; Bentz et al., 2010; Westerling et 
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al., 2011; Seidl et al., 2014], indicating the presence of a positive feedback loop whereby 

changes in climate may result in more frequent and more severe disturbances, which then 

may result in greater LST and GPP feedbacks to climate. As severity was also linked to 

differences in post-disturbance recovery, longer feedbacks from disturbance to local 

climates may result as severity increases due to climate change. Longer disturbance 

impacts may lead to shifts in ecosystem type, as prolonged changes in the energy budgets 

of the area prevent the vegetation from fully recovering [e.g., Breshears et al., 2009; 

Allen et al., 2010]. However, the impacts of changes in disturbance regime on recovery 

patterns may be mitigated somewhat by a CO2 fertilization effect, which potentially 

allows vegetation to grow more quickly due to enhanced photosynthetic efficiency 

[Foster et al., 2010; McMahon et al., 2010; Williams et al., 2012]. 

Years with warmer air temperatures also resulted in larger LST and GPP 

responses. As such, disturbance impacts are likely to be enhanced in areas where climate 

change will result in warmer conditions. Forest function may change more in response to 

future disturbances than it did in response to historic disturbances with the same severity 

and extent. 

Scale and its role in disturbance-induced climate forcing 

The variation in disturbance responses between disturbance types highlights the 

importance of scale in disturbance studies. Previous studies [e.g., Kurz et al., 2008; Hicke 

et al., 2013] found that insect outbreaks can result in potential impacts at least as large as 

fire. We did not see this in our results. However, non-fire disturbances are typically more 

spatially and temporally patchy than fires. Less continuous spatial patterns mean that, 

when aggregated across large pixels (e.g., 250 m), the disturbances appear to have a 
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smaller effect. The use of 1 km GPP data may have exaggerated this effect. Penn et al. 

[2016] found that despite large impacts on ET observed at the hillslope scale following a 

bark beetle outbreak, only small effects were seen at the watershed scale due to the 

mediating contribution of nearby healthy vegetation. 

Disturbance detection  

 The detection of low-severity disturbances and in particular insect-induced 

damage and mortality remains a challenge for remote sensing, particularly in cloud 

dominated and mountainous regions. Evaluation efforts are further hampered by the 

limited availability of broad-scale repeated ground survey data. The BFAST/Hansen and 

VCT remotely-sensed datasets we evaluated agreed well with each other and with MTBS 

polygons (Table S2.3). However, both datasets showed poor agreement with ADS maps 

(Table S2.3). This is not surprising, as ADS maps, while very useful at coarse resolutions 

for research or for forest planning purposes, have only low to moderate accuracy when 

compared to field plots [Johnson and Ross, 2008]. While ADS are increasingly used in 

research studies on the extent and impacts of insect disturbance, these data have their 

own issues. For example, different observers conduct the surveys each year, and the 

methods used vary from region to region. More specifically, one observer might draw a 

small polygon around only a few trees, while another might draw a very large polygon 

around the same small area. ADS maps are subjective and represent general areas of 

disturbance, not precise disturbance locations [Hall et al., 2006; Johnson and Ross, 2008; 

Johnson and Wittwer, 2008]. Despite low agreement between our detection product and 

ADS, we believe that our combined approach, whereby we limit our ecosystem response 

results to areas where ADS also detected insect damage, is justified and preferable to 
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using ADS alone to represent non-fire disturbances. The approach uses remotely detected 

data as a complement to ADS and MTBS data to more finely resolve the temporal and 

spatial variation in disturbance locations. Several studies have used this combined 

approach [Hall et al., 2006; Assal et al., 2014], in which aerial surveys bound an area, but 

remote sensing algorithms are used to discover the exact locations and timing of 

disturbances within those bounds. It is highly unlikely that detected disturbances within 

an aerial polygon represent a disturbance other than that marked by the survey. Although 

our disturbance detection is not perfectly accurate, it is statistically comparable to the 

results from the similar VCT remote sensing approach (Table S2.3; Table S2.4; Fig. 

S2.9). By limiting our data extent to areas of known disturbance, we can be confident that 

the detected points are indeed disturbance. 

Assumptions and errors 

Several assumptions may have contributed to increased uncertainty in the results. 

While the BFAST method has proven effective at detecting disturbances such as fires, 

floods, and deforestation [Verbesselt et al., 2010a; Watts et al., 2014; DeVries et al., 

2015], the method’s success may vary depending on local vegetation and disturbance 

type [Watts et al., 2014]. We demonstrated that BFAST and Hansen data combined are 

able to detect the majority of large, moderate to severe, disturbances (Fig. S2.9, Fig. 

S2.10, Table S2.3; Table S2.4). However, small or patchy disturbances may be missed at 

this resolution (250 m), leading to conservative results that are likely to be underestimates 

rather than overestimates of the total impacts of disturbance on forest ecosystems.  

We may have also introduced some error by using all MTBS and ADS polygons, 

regardless of the severity reported in those polygons. However, our detection methods 
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were designed to represent more spatially and temporally explicit disturbance locations 

and tended to pick up higher severity disturbances than would have been found in a 

random subset of the disturbance polygons (Table S2.3). It is therefore unlikely that we 

include many non-disturbance pixels in low-severity polygons.  

 We also assume that the detected decline in EVI represents mortality, not simply a 

decline in canopy ‘greenness’ related to temporary stressors such as high vapor pressure 

deficit. It is likely that these false positives are few [Watts et al., 2014; Dutrieux et al., 

2015] and occur primarily in the UD category. The use of fire, bark beetle, and defoliator 

polygons decreased the likelihood of false positives in those categories. Detected declines 

in EVI that did not represent mortality should result in a decrease in the magnitude of the 

response results, as non-mortality detections will decrease the average change observed. 

Additionally, we demonstrate the validity of EVI-based severity in Fig. S2.10. 

 Issues of scale, especially pertaining to our use of 1 km GPP, may have also 

resulted in increased uncertainty. However, several other studies have investigated the 

effects of MPB on GPP and found reductions in GPP that overlap the 10-90% quantiles 

of our results (-27-21%). Results in the upper and lower quantiles of our data are not 

considered due to outliers. Bright et al. [2013], Coops and Wulder [2010], and Moore et 

al. [2013] found GPP declines of 5-26%, 15-20%, and 13-30%, respectively. Coops and 

Wulder [2010] studied MPB disturbance in British Columbia, and Bright et al. [2013] 

and Moore et al. [2013] studied MPB disturbance in Colorado. Both regions have 

experienced severe MPB damage. While our results overlapped zero and used the same 

MODIS GPP product to estimate changes in the variable, we also used coarser resolution 
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data to locate areas of likely disturbance (i.e., 240 m vs. 30 m or field data) and included 

less severely disturbed areas in addition to severely disturbed areas. 

 Finally, the calculation of extent (E) may have contributed towards its 

insignificant relationship with disturbance responses. E was determined as the area of 

adjoining pixels that were affected by the same disturbance type. This method is slightly 

problematic as it assumes that bark beetle and defoliator disturbances in the same area 

represent the same outbreak. However, it is logical that E is less important than severity 

and interannual changes in air temperature for determining disturbance effects on LST 

and GPP. 

CONCLUSIONS 

 We used satellite data to objectively determine the effects of four categories of 

disturbance on LST and GPP across nine ecoregions in the western US. We found that all 

disturbance types resulted in overall increased LST in the 2 years following disturbance, 

and all disturbance types but UD resulted in decreased GPP, although the exact 

magnitude and direction of these changes varied significantly both among disturbance 

types and ecoregions. Fires showed the largest and clearest impacts in all response 

variables, whereas bark beetle, defoliator, and UD responses were much less pronounced. 

Severity and interannual changes in air temperature were the primary drivers of the 

magnitude of disturbance response regardless of the type or location, and disturbances of 

higher severity resulted in longer recovery times. The results of this study suggest a 

strong potential climate feedback due to biophysical changes in forests following 

disturbance events that may strengthen as disturbances grow in frequency and severity in 

the coming decades. Despite several assumptions made in the study, to our knowledge 
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this analysis remains the first to incorporate multiple disturbance types over a large 

geographical region in an evaluation of the effects of disturbance on ecosystem climate 

services. Future research utilizing both field and satellite observations in conjunction with 

ecosystem simulations are required to advance our understanding of ecosystem responses 

to interactions between climate and disturbance. 
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FIGURES AND TABLES 

Figure Legends 

Figure 2.1. (a) Map of ecoregions used in the study. Ecoregions were limited to eleven 

states (WA, OR, CA, ID, NV, AZ, MT, UT, WY, CO, and NM). (b) Location of 

disturbances across the western US. *Note that disturbances shown ARE NOT to size, 

actual pixel size is smaller than map representation. 

 

Figure 2.2. Density distributions of JJA changes in (a) LST and (b) GPP following fire, 

bark beetle attack, defoliator attack, and UDs. 

 

Figure 2.3. JJA change in response variables by ecoregion. Bar height is the mean 

response for the ecoregion; error bars represent standard deviation. 

 

Figure 2.4. JJA change in LST (ᵒC) following disturbance over the entire western US. 

See Figures S2-S4 for changes by ecoregion. In the case of bark beetles and defoliators, 

‘year of disturbance’ is defined as the year in which damage reaches a level detectable in 

the EVI time series. 

 

Figure 2.5. Percent JJA change in GPP following disturbance over the entire western US. 

See Figures S5-S7 for changes by ecoregion. In the case of bark beetles and defoliators, 

‘year of disturbance’ is defined as the year in which damage reaches a level detectable in 

the EVI time series. 
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Figure 2.1. 
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Figure 2.2. 
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Figure 2.3. 
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Figure 2.4. 
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Figure 2.5. 
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Tables 

Table 2.1. Variables included in the Random forest models.* 

* S, Tair, and Ea are continuous variables. D and R are factors. 

 

 

 

 

 

 

 

 

 

Predictor Variable Abbreviation Reasoning 
Severity (% Decline in 

EVI) 
S A higher degree of mortality (i.e., higher severity) in the 

pixel will separate it from the original state more than a 

lower degree of mortality. 

   

Local Interannual Change 
in Air Temperature 

Tair A change in the average JJA air T will influence soil 

moisture and therefore latent heat exchange, surface 

temperatures, and photosynthesis (GPP). 

   

Areal Extent Ea Disturbances that cover the entire pixel should have a larger 

impact on the response variables than small (< 1 pixel) 

disturbance patches. Responses to smaller disturbances may 

be diluted by undisturbed patches of forest. 

   

Disturbance Type D Included for comparison with the above variables. 

Disturbance type should have a strong influence on the 

average LST, GPP, and C stock response because each 

disturbance type affects forest structure and composition 

differently. 

   

Ecoregion R Also included for comparison with S, Tair, and Ea. 

Environmental characteristics, including soils, vegetation, 

climate, and hydrology, differ by ecoregion and may impact 

disturbance responses. 
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Table 2.2. Summary of Random Forest models used to predict LST and GPP.* 

 

 

 

 

Response 

Variable 

Predictor 

Variable 

% Increase in 

MSE 

Increase in 

RSS 
RMSE MBE 

Model 

R2 

Testing 

n 

Training 

n 

LST Severity 20.13 13.3 x 106 2.49 0 0.39 1465320 976855 

  Change in Air T 16.25 10.6 x 106   
   

  Area 7.72 2.32 x 105     

   

  Disturbance 

Type 
16.07 3.78 x 105   

   

  Ecoregion 15.45 2.03 x 105     

   

  
   

  
   

GPP Severity 14.95 8.88 x 107 18.73 -0.03 0.45 1465320 976697 

  Change in Air T 17.77 7.26 x 107   
   

  Area 10.42 2.36 x 107     

   

  Disturbance 

Type 
11.12 3.30 x 107   

   

  Ecoregion 13.78 3.22 x 107           

* The model R2 value is the correlation between values predicted by the model and the actual values in the 60% testing subset of the 

data. The ‘% Increase in MSE’ is the increase in MSE that would occur if that predictor variable were removed from the model. The 

‘Increase in RSS’ is the increase in RSS that would occur if the values of that variable were permuted across all nodes in all trees. 
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SUPPLEMENTARY INFORMATION 

Supplemental Figure Legends 

Figure S2.1. Recovery of JJA LST following fires. Legend values represent severity 

categories. 

 

Figure S2.2. Recovery of JJA LST following bark beetle disturbance events. Legend 

values represent severity categories. 

 

Figure S2.3. Recovery of JJA LST following defoliator disturbance events. Legend 

values represent severity categories. 

 

Figure S2.4. Recovery of JJA LST following UD events. Legend values represent 

severity categories. 

 

Figure S2.5. Recovery of JJA GPP following fires. Legend values represent severity 

categories. 

 

Figure S2.6. Recovery of JJA GPP following bark beetle disturbance events. Legend 

values represent severity categories. 

 

Figure S2.7. Recovery of JJA GPP following defoliator disturbance events. Legend 

values represent severity categories. 
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Figure S2.8. Recovery of JJA GPP following UD events. Legend values represent 

severity categories. 

 

Figure S2.9. Nearest neighbor distance from detection points used in this paper to nearest 

Vegetation Change Tracker point in meters. 

 

Figures S2.10. EVI-based severity and MTBS-defined severity for the 2011 Wallow Fire 

in Eastern Arizona. 
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Figure S2.1.  
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Figures S2.2.  
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Figure S2.3.  
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Figures S2.4.  
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Figures S2.5.  
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Figure S2.6.  
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Figure S2.7.  
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Figure S2.8.  
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Figure S2.9.  
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Figure S2.10. 
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Supplementary Tables 

Table S2.1. Area affected by detected disturbances in each ecoregion.* 

Ecoregion Bark 

Beetles 

(Mha) 

Defoliators 

(Mha) 

Fire 

(Mha) 

Unknown 

(Mha) 

Cold Deserts 0.003 0.001 0.033 0.307 

Warm Deserts 0.000 0.000 0.002 0.029 

Mediterranean CA 0.004 0.000 0.228 2.417 

Sierra Madre 0.000 0.000 0.034 0.139 

Upper Gila Mountains 0.174 0.008 0.348 2.134 

Western Cordillera 0.499 0.249 0.943 5.868 

Marine West Coast Forest 0.000 0.000 0.023 1.499 

Temperate and West Central Semi-

Arid Prairies 

0.004 0.009 0.033 0.203 

South Central Semi-Arid Prairies 0.000 0.000 0.002 0.068 

     

Total Area (all ecoregions) 0.685 0.268 1.646 12.665 

Total Area (all disturbance types and 

ecoregions) 

 15.264   

* Area is estimated by the area of a pixel by the number of pixels in each category. Pixels are 250 m x 250 

m. 
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Table S2.2. Pre- to post-disturbance changes in JJA LST and GPP.** 

Ecoregion 

Change in LST 

(ᵒC) 

% Change in 

GPP 

 Fires 

Cold Deserts 4.57 ± 3.45* -28.19 ± 26.07* 

Warm Deserts 3.55 ± 2.47* -41.49 ± 23.81* 

Mediterranean CA 3.36 ± 3.33* -28.05 ± 15.62* 

Sierra Madre 3.61 ± 2.91* -23.17 ± 37.76* 

Upper Gila Mountains 3.67 ± 3.23* -27.64 ± 32.70* 

Western Cordillera 3.39 ± 2.82* -23.96 ± 16.09* 

Marine West Coast Forest 1.10 ± 1.98* -4.72 ± 11.38* 

Temperate and West Central Semi-

Arid Prairies 

3.61 ± 3.43* -19.96 ± 16.54* 

South Central Semi-Arid Prairies 5.45 ± 2.42* -28.47 ± 13.01* 

𝑥̅ 3.45 ± 3.02* -25.05 ± 21.67* 

 Bark Beetles 

Cold Deserts 0.12 ± 3.00 2.22 ± 20.75* 

Warm Deserts 0.01 ± 0.87 29.86 ± 37.09* 

Mediterranean CA 0.36 ± 2.16* -1.02 ± 17.01 

Sierra Madre -0.05 ± 3.13 13.28 ± 58.20 

Upper Gila Mountains 0.35 ± 3.12* 1.38 ± 33.87* 

Western Cordillera 0.92 ± 3.00* -4.43 ± 13.80* 

Marine West Coast Forest 0.75 ± 2.07 3.56 ± 5.75 

Temperate and West Central Semi-

Arid Prairies 

-0.18 ± 2.89 2.36 ± 12.43* 

South Central Semi-Arid Prairies 0.91 ± 3.78 3.30 ± 25.19 

𝑥̅ 0.76 ± 3.04* -2.84 ± 21.06* 

 Defoliators 

Cold Deserts 2.68 ± 3.00* -0.83 ± 8.68 

Warm Deserts NA NA 

Mediterranean CA 1.21 ± 0.58 -4.51 ± 10.97 

Sierra Madre -0.56 ± 2.12 3.87 ± 14.81 

Upper Gila Mountains -0.48 ± 2.94* 9.68 ± 27.91* 

Western Cordillera 0.53 ± 3.13* -0.66 ± 14.74* 

Marine West Coast Forest NA NA 

Temperate and West Central Semi-

Arid Prairies 

0.23 ± 2.94* 2.68 ± 14.40* 

South Central Semi-Arid Prairies NA NA 

𝑥̅ 0.49 ± 3.12* -0.23 ± 15.40* 

 Unidentified Disturbances 

Cold Deserts 0.76 ± 3.08* 3.62 ± 23.36* 

Warm Deserts 0.43 ± 2.64* 9.13 ± 42.16* 

Mediterranean CA 0.22 ± 2.35* 1.31 ± 17.87* 

Sierra Madre 0.54 ± 2.77* 11.48 ± 68.57* 

Upper Gila Mountains 0.00 ± 2.88 8.03 ± 36.55* 

Western Cordillera 1.12 ± 3.17* -0.35 ± 20.28* 

Marine West Coast Forest 1.48 ± 3.24* 0.85 ± 12.32* 
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** Format is mean ± 

standard deviation. 

Highlighting 

indicates values that do not overlap zero. * indicates values that were significantly different from zero (p < 

0.01) in a one sample t-test [R Core Team, 2013]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temperate and West Central Semi-

Arid Prairies 

0.15 ± 3.04* 4.11 ± 17.63* 

South Central Semi-Arid Prairies -0.15 ± 2.97* 9.26 ± 35.99* 

𝑥̅ 0.76 ± 3.03* 1.89 ± 24.20* 
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Table S2.3. Detection accuracy assessment using polygon data from USFS Aerial 

Detection Surveys (ADS) and Monitoring Trends in Burn Severity (MTBS). Table (a) 

contains overlap results for detections from this paper. Table (b) contains results for 

Vegetation Change Tracker (VCT) detection data. Polygon summaries are made for 

polygons that either contained detections or did not. 
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Table S2.4. Percent BFAST/Hansen dataset points within specified distances from VCT 

points. 

 

 

 

 

 

 

 

 

 

 

Disturbance Type Distance 

(m) 

Percentage (%) BFAST/Hansen points 

Fire 1000 96.77 

 750 95.23 

 500 92.44 

 250 87.34 

   

Bark Beetles 1000 75.88 

 750 69.08 

 500 60.58 

 250 50.49 

   

Defoliators 1000 68.23 

 750 60.37 

 500 51.50 

 250 41.70 

   

UDs 1000 59.98 

 750 51.18 

 500 41.76 

 250 32.44 

   

   

All disturbance types 1000 69.89 

 750 62.61 

 500 54.40 

 250 45.60 
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CHAPTER 3 

Application of random forest for the detection and attribution of 

forest disturbance 
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INTRODUCTION 

 Accurate assessments of current and future disturbance characteristics and trends 

are essential for understanding the ecological processes and interactions within and 

among landscapes [McDowell et al., 2015]. Current methods to detect forest disturbances 

use time series modeling or temporal decomposition on individual pixels (pixel of 

interest; POI) in order to detect when disturbances occur across landscapes [e.g., 

Kennedy et al., 2010; Verbesselt et al., 2010; Zhu et al., 2012]. These temporal 

approaches work well when applied to regions for which they have been tuned, but 

struggle when applied to new areas. Additionally, the temporal approaches require a 

separate method to be applied after the detection process in order to attribute the detected 

disturbances. Previous research has mentioned the potential for spatial spectral 

information to improve detection and attribution methods [Rich et al., 2010]. While 

several studies have used neighborhood pixel information (NPI) to attribute disturbances 

once detected using a temporal POI approach [Kennedy et al., 2015; Shimizu et al., 2017; 

Zhao et al., 2017], none have used spatial information simultaneously for the detection 

and attribution of disturbances. The incorporation of spatial data (e.g., NPI) may improve 

detection algorithms in addition to attribution algorithms by reducing the reliance of 

detection methods on perfect time series data and adherence of disturbance events to 

defined thresholds of change. However, despite the awareness of its potential uses, the 

reliance of most detection algorithms on computationally-intensive time series 

decomposition or modeling has limited the incorporation of spatial data thus far.  

 The advent of free, publicly-available, Landsat data in 2008 has made 

increasingly innovative methods for detecting and attributing forest disturbances possible 
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[McDowell et al., 2015]. For example, using dense time series of Landsat imagery, it is 

now possible to assess areas of forest loss and gain globally [Hansen et al., 2013]. 

However, it remains a challenge to efficiently and accurately detect and attribute forest 

disturbances across varying disturbance and forest types. It is especially difficult to detect 

low severity disturbances [Cohen et al., 2017].  Several model ensemble methods have 

been proposed to improve disturbance detection accuracy across varying forest types and 

for low intensity impacts. Ensemble approaches integrate results from multiple 

algorithms [Healey et al., 2018], or multiple spectral bands or indices [Cohen et al., 

2018]. This approach substantially decreases both commission (i.e., false positive) and 

omission (i.e., false negative) errors, but are computationally intensive as many iterations 

of detection must be completed before the secondary classification process. 

 Researchers are beginning to incorporate API into attribution methods that make 

use of the temporal detection (POI) approaches [Kennedy et al., 2015; Shimizu et al., 

2017; Zhao et al., 2017]; however, API may also be of use in the detection of forest 

disturbances. Disturbances do not occur in isolation, and therefore it is likely that if 

changes in the spectral band or index values are observed in a single pixel, neighboring 

pixels may also show similar changes. Thus, incorporating information on neighboring 

pixels into models of disturbance presence or absence may substantially improve our 

abilities to find disturbances of low severity or where time series data are incomplete or 

noisy due to the presence of clouds or snow. Additionally, the incorporation of API into 

the detection process enables a natural link of detection with attribution, making it 

possible to complete both processes using one analysis pipeline. For attribution, the 

characteristics of the neighboring pixels allow for differentiation between disturbance 
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types because disturbances often vary considerably in their spatial heterogeneity. For 

example, high severity fires may affect all pixels in an area similarly due to non-selective 

mortality or may impact all pixels within a short time frame. In contrast, a bark beetle 

outbreak might only affect some species in the area, leading to more patchy changes in 

spectral measures over the same area over a longer time period.  

 Adding NPI into the disturbance detection process requires the development of 

new detection methods. With temporal methods, each pixel is marked simply by the 

presence or absence of a clearly-defined change in the band or index. With the inclusion 

of NPI, this approach must be modified to look at the results of nearby pixels. Machine 

learning may help to solve this problem. Rather than look at the time series as something 

continuous, it is possible to break down the results of both temporal (POI) and spatial 

(NPI) components of the area (e.g., overall spectral change in the area, pre-break variance 

in spectral indices). The spatial and temporal components of each pixel represent 

potentially large numbers of variables, none of which are ideal for detecting disturbance 

on their own. It is more likely that a combination of the variables is best able to describe 

disturbed areas, but this presents a difficult problem for most user-defined models in that 

choosing the correct variables out of the many available requires a lot of time and effort. 

Machine learning methods are well-suited for this problem and are capable of efficiently 

using large quantities of variables to produce models to make decisions regarding the 

presence or absence of disturbance. This eliminates the need for the user to define 

complex rules governing when or where a disturbance can occur and allows for the 

incorporation of many variables that may be important for defining disturbance in a given 

area. Additionally, machine learning approaches such as Random Forest or Support 
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Vector Machines tend to be computationally efficient [Lippitt et al., 2008; Rodriguez-

Galiano et al., 2012], reducing the resource requirements for the detection and attribution 

processes. 

 Machine learning has been applied to disturbance detection and attribution in 

several previous analyses, although primarily on either POI time series approaches 

[Huang et al., 2008; Lippitt et al, 2008; Rogan et al., 2008; Healey et al., 2018], or solely 

for attribution [Zhao et al., 2015; Shimizu et al., 2017]. Using only temporal spectral 

data, detection of partial forest harvest was up to 94% accurate in central Massachusetts 

[Lippitt et al., 2008], and detection of varying disturbances was ≥ 80% accurate in 19 

Landsat scenes from around the world [Huang et al., 2008]. While both of these 

approaches are promising, they are limited by the training requirements and data 

preparation steps because high-quality, temporally-dense, Landsat data were not yet 

publicly available at the time of the studies. More recently, machine learning has been 

applied to the attribution of detected forest disturbances. Attribution accuracies of 

wildfires, harvests, and ‘other disturbances’ using Support Vector Machines in the 

Greater Yellowstone Ecosystem yielded 87% overall accuracy [Zhao et al., 2015], while 

attribution accuracies of harvests, ‘water invasions’, urbanization, ‘other changes’, and 

areas of recovery were ~85-96% accurate using a Random Forest approach in the Bago 

Mountains, Myanmar [Shimizu et al., 2017]. These applications show the promise of 

machine learning approaches for both detection and attribution. Using machine learning 

for both steps within a single analysis pipeline could result in similarly high accuracies as 

previous studies, while decreasing the amount of time and effort spent on the analysis. 

Additionally, while previous detection studies reported high accuracy results, they tended 
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to be focused on either single disturbance types or high severity disturbances. Combining 

detection and attribution steps while incorporating NPI could improve the reliability of 

results when searching for many disturbance types, including low severity disturbances. 

 Current methods for disturbance detection are less successful when applied to 

regions in which they were not developed [Cohen et al., 2017]. This represents a 

significant obstacle for the regular detection of disturbances globally. Detection 

algorithms do not work as well in areas for which they were not developed primarily 

because disturbances differ among ecosystems depending on myriad factors, including 

forest vegetation, climate, topography, and management. In short, parameters of forest 

disturbances are not stationary and models that assume stationarity are limited in their 

scope [e.g., Fotheringham et al., 1996]. By looking only at POI patterns of spectral 

change, it is extremely difficult to find reproducible patterns that will consistently find 

disturbances regardless of ecosystem properties. As mentioned previously, the use of a 

flexible machine learning framework that also incorporates NPI may reduce errors related 

to this issue. The ability of machine learning algorithms to relax assumptions of 

stationarity of model parameters may be beneficial in this circumstance, because different 

models may be fit to different regions without the user specified parameters that may be 

biased. Additionally, by incorporating NPI, the exact temporal patterns of specific 

regions matter less, as other variables are also considered. Finally, while this approach 

may help to improve the ability of disturbance detection and attribution methods to be 

applied more broadly, it may also help to elucidate how disturbance and forest 

characteristics change across space. Specifically, the output of methods such as Random 

Forest allow for the determination of variable importance, which may provide valuable 
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information about the typical temporal and spatial characteristics of disturbances among 

varying forest types. By understanding how disturbance characteristics vary across the 

landscape, we can work to further improve our detection and attribution methods, and 

also to enhance our understanding of disturbance impacts on ecosystem patterns and 

processes [Cooper et al., 2017]. 

 Here, we test this concept by developing a new approach for both the detection 

and attribution of forest disturbances. In addition to using Random Forest models for both 

steps, we also incorporate spatial information on the area surrounding each POI. Our 

objectives with this new approach are to determine the usefulness of both temporal and 

spatial information for disturbance detection and attribution, and to determine whether a 

machine learning approach utilizing both types of information improves the accuracy of 

detection across multiple regions. We also seek to understand how disturbances differ 

across forest types, and how those differences might complicate traditional temporal 

approaches to disturbance detection. Specifically, with this approach, we ask, how do 

variables important for disturbance detection and attribution vary among regions? 

METHODS 

Site selection 

Study sites (Fig. 3.1; Table 3.1) were selected to match those of previous studies 

presenting methods of disturbance detection using satellite imagery [Healey et al., 2018] 

so as to allow for direct comparison of our results with those from other analyses. These 

sites also represented a range of forest functional types and disturbance types. Sites 

selected included a warm summer Mediterranean mixed conifer forest in southwestern 

Oregon, a warm summer continental Mediterranean spruce-fir forest in northern 
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Colorado, a warm summer humid continental mixed pine forest in northeastern 

Minnesota, a warm summer humid continental spruce-fir forest in western Maine, humid 

subtropical mixed hardwood and pine forests in eastern Pennsylvania and New Jersey, 

and a humid subtropical mixed hardwood and pine forests in southern South Carolina. An 

additional Landsat scene covering the Olympic Peninsula in Washington state was 

included in the analysis to allow for a better understanding of the performance of the 

pipeline in an additional economically-important forest type (i.e., temperate 

rainforest/coastal mixed conifer), and to enhance our understanding of the ability of the 

pipeline in a natural forested system relative to a heavily human-impacted system. The 

added area, composed of mixed conifer forests shifting towards temperate rainforests in 

the western side of the peninsula, encompasses both Olympic National Park and national 

forest and private lands in which substantial clear-cutting has been practiced. This 

diversity of management provides a unique opportunity to analyze both human-caused 

and natural disturbances within a single region.  

Random Forest models 

Random Forest models were used for both the detection and attribution 

components of the pipeline developed for this study because they have proven to be 

effective in past approaches to the disturbance detection and attribution problems [Lippitt 

et al., 2008; Kennedy et al., 2015; Schroeder et al., 2017; Cohen et al., 2018; Healey et 

al., 2018]. Random Forest models use ensemble learning methods for classification or 

regression; here, we use them for classification. Random Forest models are randomized 

decision trees, which may be much less prone to model overfitting than ordinary decision 

tree methods. Random Forest models take multiple random subsets of the complete 
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training dataset and create decision trees with each subset. When data are then run 

through the model (i.e., set of decision trees), the result (disturbance class) with the most 

votes from all trees is the predicted class. 

Data preparation 

Forty-seven spatial and temporal variables were created in R as potential 

predictors for the disturbance detection Random Forest model (Fig. 3.2).Temporal 

variables were calculated using 2000-2016 NDVI time series for a single pixel, and 

spatial variables were calculated using 2000-2016 NDVI time series for all pixels within 

a 450m x 450m window around the pixel of interest. NDVI was selected for this analysis 

due to its widespread use in previous studies [e.g., Mildrexler et al., 2007; Verbesselt et 

al., 2012] and its relative simplicity to calculate. Temporal predictor variables were 

produced using several models fit to the time series, including a simple smoother (loess), 

a simple linear model [R Core Team, 2017], and a regression tree [Therneau et al., 2017]. 

These variables provided different information on breaks in the time series, overall trend, 

locations of maxima and minima, and trend in NDVI recovery if a negative break in the 

time series (decline in NDVI) occurred. Variables not derived via models provided further 

information on overall time series characteristics such as pre- and post-disturbance 

variation (Fig. 3.2). While many variables were included in the analysis, all were 

considered due to observed differences between disturbed pixel time series and 

undisturbed pixel time series.  

NDVI data were prepared in Google Earth Engine using both Landsat 5 and 

Landsat 7 surface reflectance images. Areas with clouds, shadows, water, and snow were 

removed from all tiles from the study period (2000-2016) using the information included 
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in QA bands, which are derived using CFMask. The USGS surface reflectance data had 

been atmospherically-corrected using the LEDAPS pre-processing methods, and 

orthorectified prior to our use 

[https://landsat.usgs.gov/sites/default/files/documents/ledaps_product_guide.pdf]. 

Summertime mean (June-July-August; JJA) NDVI was calculated using all available 

annual imagery over the region and study period. If both Landsat 5 and Landsat 7 

imagery were available, all surface reflectance images from both satellites were used in 

the calculation of the average. Data were aggregated from 30m to 90m resolution so as to 

reduce computational requirements, while maintaining the ability of the pipeline to assess 

stand-scale changes in NDVI. 

Detection modeling 

Data for Random Forest models were trained using a multi-step method. First, 

each Landsat scene was split into 9 blocks in order to reduce computational requirements. 

Either 0.01% of the data or 350 pixels were sampled from one block of the scene, 

depending on which sample was larger. For each pixel in the sample, human observers 

were shown a time series of NDVI images for the area surrounding the pixel, a recent 

true-color satellite image (via Google Earth), and a line plot of NDVI over the study 

period fitted with a loess curve. Observers marked each pixel with a binary value, either 

disturbed or undisturbed. These methods are very similar to those from TimeSync [Cohen 

et al., 2010], as they were derived from that training approach. We used similar methods 

developed in R for this analysis, rather than using TimeSync, because we wanted the 

resulting pipeline to be seamless. Using TimeSync would have meant that users would 

have to exit the pipeline, train data in a separate setting, and then export data and return 
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to the original pipeline. The streamlined method we have developed here will minimize 

the number of programs required by users of the pipeline. 

 Following training, a Random Forest model was fit with the ‘rf’ model option 

[Liaw & Wiener, 2002] in the ‘caret’ package in R [Kuhn, 2017]. All 47 variables were 

considered in the model. The resulting detection model was used to classify all pixels 

within each Landsat scene as either disturbed or undisturbed. 

Attribution data preparation 

 Seventeen new spatial variables were created using the detection results to be 

used for attributing disturbances (Fig. 3.2). These variables relied on only those pixels 

which had been marked as disturbed by the initial model, and describe the similarity in 

disturbance characteristics within 450m x 450m windows surrounding each pixel (Fig. 

3.2). For example, many of these variables describe how similar disturbed pixels were in 

terms of magnitude, duration, or other time series characteristics within neighboring 

areas. 

Attribution modeling 

Data for a second Random Forest model for attribution were trained with the 

initial variables in addition to the new spatial disturbance variables using the same 

method as for the detection data. However, in developing the training points for this 

model, points were labeled with the type of disturbance at each location rather than just 

the presence or absence of disturbance. When unsure of the disturbance type, we checked 

the point using historical imagery in Google Earth Pro. As the detection model had the 

potential to return false positives, we added a ‘0’ disturbance class indicating points 

where no disturbance had actually occurred. This allowed for the removal of detection 
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errors due to data abnormalities such as those resulting from the Landsat 7 failure of the 

scan line corrector. Other disturbances included biotic disturbances (e.g., bark beetles or 

defoliators), fire, harvest, wind, flooding or changes in river path, land use change (e.g., 

subdivision development), and landslides. These categories were user-defined and are 

therefore flexible for studies with varying objectives. 

 A model for the attribution of points was fit using the same method as the 

detection model. The resulting model was used to classify the pixels marked disturbance 

by the initial detection model into individual disturbance classes (Fig. 3.3). Output from 

this final step included a map of disturbance locations and types, as well as a map of 

disturbance year (Fig. 3.3). Disturbance year for each pixel was already determined for 

the creation of several spatial predictor variables (Fig. 3.2) using a simple time series 

break detection method [Zeileis et al., 2002; Zeileis et al., 2003]. 

Validation 

 The results of the attribution model were assessed using three measures. First, we 

assessed if a disturbance had actually occurred in the labeled points. Second, we assessed 

if no disturbance was present in the unlabeled points. Third, we assessed the accuracy of 

the disturbance date produced from the model. Out-of-bag accuracy assessments were 

completed using first historical satellite imagery in Google Earth Pro, and second, the 

training methods described previously. Validation was completed for two sections of 

each Landsat scene, both the block used for training as well as a separate block that was 

randomly selected from the remaining non-training blocks within the scene. Accuracy 

metrics were calculated using simple accuracy and Cohen’s kappa statistic. 

RESULTS 
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Detection and attribution accuracy 

 Detection errors varied considerably among the seven study regions. Simple 

commission rates were 12 ± 6% (accuracy of identified pixels, ĸ = 0.77 ± 0.12), and 

omission rates were 17 ± 12% (accuracy of all disturbed pixels, ĸ = 0.66 ± 0.23) (Fig. 

3.4). Lower-severity areas of biotic disturbances in Northern Colorado led to the highest 

rate of false negative results (40%; ĸ = 0.20) (Fig. 3.5). The highest rates of false 

positives (23%; ĸ = 0.54) occurred in Eastern Pennsylvania. Incorrect attribution to 

disturbance type occurred at rates of 3 ± 3% (ĸ = 0.95 ± 0.06) (Fig. 3.6), with the highest 

rates occurring in Oregon, and the lowest rates occurring in South Carolina (Fig. 3.6). It 

should be noted that South Carolina only had one major disturbance type, while Oregon 

had several. The most commonly misidentified disturbance type in Oregon was fire, 

which was most frequently misclassified as harvest. 

The year of disturbance was identified correctly in 41-79% of the correctly-

identified disturbances, with 73-95% of disturbances dated to within 3 years of the true 

disturbance date (Fig. 3.7). The lowest accuracy rate for disturbance year was in 

Minnesota, while the highest accuracy rate for disturbance year was in Oregon. All 

regions other than Minnesota were ≥59% accurate in correctly identifying the year of 

disturbance. 

Accuracy rates were similar within the randomly-selected blocks outside the 

training area. Commission rates were 16 ± 7% (accuracy of identified pixels, ĸ = 0.68 ± 

0.13), and omission rates ranged were 11 ± 11% (accuracy of all disturbed pixels, ĸ = 

0.77 ± 0.21) (Fig. 3.4, Fig. 3.5). The highest and lowest rates of each error type occurred 

in the same regions as in the original validated training area. Incorrect attribution errors 
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occurred at similar rates as seen in the training area for most regions (Fig. 3.6). However, 

both Minnesota and Pennsylvania showed substantially higher mis-attribution rates (29% 

and 86%, respectively) due to the presence of novel, or differently represented, 

disturbance types in the randomly selected external blocks. The primary disturbance type 

in Pennsylvania shifted from harvest to land development, while in Minnesota there was 

significant mining activity in the external validation block that was mistaken for harvest. 

Accuracies for the disturbance date were similar to those from the primary training block 

(Fig. 3.7).  

Geographic variation in disturbance characteristics 

The variables selected to model disturbance presence/absence and type were 

inconsistent among regions (Table 3.2). However, each final detection and attribution 

model contained at least one spatial and one temporal variable. Temporal variables held 

more importance for determining the presence of disturbances, while spatial variables 

were more important for classifying the type of disturbance. There were no clear 

geographic patterns in variable importance.  

 The most important predictor variables for both detection and attribution models 

tended to relate to either the magnitude of the disturbance, the overall trend of the NDVI 

time series, or the minimum slope found between points in the time series (Table 3.2). 

Spatial equivalents of these variables were also deemed important in many of the models. 

Additionally, the loess slope variables tended to be much more important than the 

regression tree slope variables or raw time series slope variables, although some of those 

variables were among the top 5 most important variables in several models. Overall, 

disturbance dates (e.g., range in dates over the area) and durations were not especially 
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important in the models. Characteristics of NDVI in the area (e.g., average NDVI, 

variance in NDVI) were occasionally among the variables in the models. 

Comparison of detection and attribution results from two forest regions 

Products resulting from the introduced pipeline demonstrate how forest 

disturbance characteristics vary in different locations and how those differences might 

influence disturbance detection and attribution. We focused on results from two different 

forest types, coastal coniferous forests in Washington and humid subtropical mixed 

forests in South Carolina, to further demonstrate these patterns (Table 3.1). The primary 

disturbance types in Washington were timber harvest, wildfire, and changes in river 

paths, while the primary disturbance types in South Carolina were timber harvest and 

land development. 

 We were successful in locating a number of disturbance events in both locations 

(Fig. 3.8). The Washington state results were particularly striking in demonstrating 

differences in disturbance types and frequencies within and outside Olympic National 

Park. Disturbance locations were much more homogenous over the region in South 

Carolina. The difference in disturbance characteristics between the two regions was 

demonstrated well by observing the distributions of the variables used in the attribution 

models for each disturbance type (Fig. 3.9). Overall temporal patterns were similar 

between the two forested regions, both for disturbed and undisturbed pixels (Fig. 3.10). 

However, timber harvests in Washington tended to have greater magnitude drops in 

NDVI. 

DISCUSSION 
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 The results of this analysis were comparable to forest disturbance detection results 

from strictly temporal detection approaches. Similarly to other studies [e.g., Zhu et al., 

2012; Cohen et al., 2018; Healey et al., 2018], our pipeline seemed to result in better 

accuracy for large, severe disturbances (e.g., clearcut harvests in western Washington), 

than for smaller and less severe disturbances (e.g., beetle-kill in some areas of northern 

Colorado). Additionally, while our detection year was close to the true disturbance year 

for large and severe disturbances, accuracy declined as disturbances became smaller, 

more spatially distributed, and less severe. Results may be improved by using finer 

resolution data and improving our methods for interpolating missing values of NDVI. 

Despite room for improvements, the similarity in detection accuracies between our 

approach that uses multiple time series-derived metrics, and other approaches that use 

time series decomposition and modeling, is promising. Specifically, while accuracy rates 

were not substantially improved, the method did improve the efficiency with which users 

might achieve those accuracy rates. Additionally, this method allows users to 

simultaneously detect and attribute disturbances rather than having to use two different 

approaches for each step. 

 The pipeline introduced here is one of the first, to our knowledge, to use spatial 

information (i.e., NPI) for both the detection and attribution of forest disturbances. 

Although not formally tested here, the incorporation of NPI has the potential to reduce 

the likelihood of false negatives and improve our ability to detect low severity 

disturbances or disturbances in areas with frequently cloudy or snowy conditions, as 

disturbances may be identified even if the pixel of interest does not show a clear drop in 

NDVI. This allows users to make use of more incomplete datasets and may therefore be 
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useful in areas of the world with less complete collections of satellite imagery. 

Additionally, the incorporation of NPI into disturbance detection allows for more clear-

cut differentiation of data abnormalities from true disturbances, as forest disturbances 

tend to have fairly distinct spatial characteristics. Specifically, the incorporation of NPI is 

useful for removing false detections related to our use of Landsat 7 during the years in 

which the scan line corrector failed. While these areas were labeled using our detection 

model, composed of primarily POI variables, they were easy to remove (i.e., mark as 

false positives) in the secondary attribution step, which was completed using models 

composed primarily of NPI variables. Therefore, the incorporation of NPI into 

disturbance detection [Rich et al., 2010] has the potential to improve our ability to 

accurately and efficiently detect disturbances across a wide variety of forest types around 

the globe.  

 In addition to incorporating NPI to detection and attribution models, we also used 

machine learning (i.e., Random Forest) to classify pixels into disturbance and non-

disturbance categories, and then into different types of disturbance. While several studies 

have made use of Random Forest models for the attribution component of this process, it 

is a novel application to also use those models for the detection component. We believe 

that this application simplifies and improves the detection component by limiting reliance 

on perfectly processed time series data. Rather than looking at the time series as a whole, 

the model uses general characteristics of the series, such as overall variance and slope, to 

create rules for what disturbed pixels look like relative to undisturbed pixels. Thus, while 

some undisturbed pixels may show declines in NDVI, they are not necessarily classified 

as disturbance because there are many variables involved in classification, not just the 
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presence or absence of a ‘break.’ The use of regionally-specific training data also 

improves the classification process, by allowing forests to have different ‘typical’ 

characteristics. For example, some forests show increasing trends in greenness over the 

study period, while others have slight depressions in some years due to a regional 

drought. The use of many variables in combination with localized training allows the 

algorithm to incorporate these characteristics, and is therefore more robust in the face of 

variable climate and differing forest ages. In short, most disturbances are more 

complicated than a simple temporal ‘break’ in spectral indices, and using a machine 

learning approach with many potential variables improves the region-to-region accuracy 

of detection and attribution algorithms substantially.  

 We considered a wide variety of potential variables in the detection and 

attribution classification models. Thus, the relative importance of those variables across 

regions is useful for determining patterns in disturbance characteristics across regions. 

None of the regional models used the exact same subset of variables for either detection 

or attribution. While all made use of at least one NPI and one POI variable in both 

detection and attribution components, the relative importance of those variables types 

differed considerably (Table 3.2; Figs. S3.1 & S3.2). We expected that there would be 

latitudinal or longitudinal patterns in variable importance, and therefore disturbance 

characteristics; however, consistent patterns were not apparent in our results despite clear 

variation in importance among regions. We believe that this is due primarily to 

differences in the background (i.e., undisturbed) forest conditions, although it is also 

possible that we simply did not use a large enough sample of regions to determine 

patterns of variable importance. It was necessary to spend considerable time familiarizing 
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ourselves with the characteristics of the forest both in terms of appearance and general 

time series characteristics, before completing the training for each region because the 

typical characteristics differed considerably. As such, while disturbances may be similar 

in many respects between regions, the environment in which they occur may not be and 

may in fact be more important than the disturbance characteristics themselves when 

searching for disturbances. 

 Cohen et al. [2017] found that detection algorithms are substantially less 

successful when applied to regions in which they were not developed. Our results suggest 

that this may be due to the differences in how disturbed areas relate to undisturbed areas 

within regions. As mentioned previously, while disturbance characteristics may be 

similar across some regions, the background forest conditions in which those 

disturbances occur may differ considerably. However, in addition to background 

conditions, the actual disturbance characteristics themselves also differ considerably, 

especially when shifting across management zones [Niemelӓ, 1999] and from evergreen 

to deciduous forests. A semi-arid, evergreen forest managed for recreation and fire risk 

mitigation will differ completely in terms of both background and ‘typical’ disturbance 

relative to a humid subtropical, deciduous forest managed for timber harvest. These 

readily apparent differences between forest types and disturbance regimes likely account 

for the poor transferability of POI-based disturbance detection approaches to different 

regions without substantial re-tuning. A similar approach to that introduced here, 

whereby training data for each region are used to create completely different models for 

separate regions, may prove useful in the future. This method could be scaled rapidly by 

compiling a database of training points. However, a necessary intermediate step is to 
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determine the density of training data required to produce sufficiently accurate results 

while minimizing effort. It would also be helpful to determine the region size within 

which predictions are most accurate (i.e., Landsat scene, ecoregion, etc.). 

 This approach remains a challenge over large regions due to the uncertainty 

surrounding required training point density. Currently, the pipeline developed for the 

analysis is most useful at the local to landscape scale. At these scales, users may quickly 

train points for their study region and produce accurate detection and attribution results in 

a matter of hours, depending on computational resources. The analysis presented here 

was completed on a single desktop computer with four cores and <8 gigabytes of 

memory, with a single Landsat scene taking 2 days of computing time from the beginning 

of the analysis to the end. This makes the approach very accessible for most ecologists 

and may therefore prove useful for studies in which high-resolution disturbance data are 

required over a landscape. Additionally, as the approach does not depend on any one type 

of data, multiple data types and resolutions can easily be used depending on the desired 

results. While we use upscaled Landsat data here, future analyses could use 30m 

resolution Landsat data or 250m MODIS vegetation index data. Additionally, we used 

NDVI for the spectral index. However, other studies have demonstrated that shortwave 

infrared (SWIR)-based indices are much more effective for disturbance detection 

[Schultz et al., 2016; Cohen et al., 2018]. These indices could be applied to this approach 

easily, potentially improving detection accuracy. Additional increases in accuracy might 

be achieved by also integrating factors such as topographic wetness index, or land surface 

temperature. 
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 While the pipeline created for this analysis demonstrates the potential for 

improvement in current disturbance detection and attribution approaches, there are 

several limitations to the current analysis. First, our results were limited by the use of 

only summertime NDVI values for the analysis. We masked out clouds, cloud shadows, 

and other areas marked as being of low quality, but this resulted in a significant number 

of pixels with large chunks of missing data. For this study, we filled in these pixels with 

NDVI averages. This approach led to flattened time series in which trends in NDVI over 

time were less visible and therefore less able to be classified. The use of spatial 

information mitigated this problem somewhat, but a better method for the interpolation of 

missing data points, or the use of better-prepared data [e.g., Robinson et al., 2017], would 

further improve the algorithm. A separate problem with this approach is the need for 

good training data for both the detection and attribution models. Most disturbance models 

require some tuning for each region in which they are applied, so this is not a unique 

problem to this approach. However, this approach relies solely on those training data for 

determining the accuracy of the models and is therefore capable of producing both 

extremely good or extremely poor results depending on the abilities of the trainer. When 

using this pipeline, it is very necessary to become familiar with the typical characteristics 

of the region and to train a sufficient number of points so that a few mistaken training 

points do not have too strong an influence on the results. More work should be done to 

determine both the best density of training points and the sensitivity of the models to the 

presence of ‘bad’ training points [e.g., Rogan et al., 2008]. 

CONCLUSIONS 
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 Disturbance detection and attribution methods may be improved through the 

incorporation of spatial information in addition to temporal information. Detection and 

attribution may also be made more efficient and regionally-robust by using machine 

learning (e.g., Random Forest) approaches with many potential predictor variables rather 

than strictly temporal pixel-level data. We found that while accuracy varied across 

regions and among disturbance types, the false positive and negative rates using these 

new methods were similar to those from strictly temporal approaches. In addition, we 

found that the variables important for disturbance detection and attribution varied 

considerably across regions, with at least one spatial and one temporal variable included 

in each model. This suggests that both disturbance characteristics and the environment in 

which they occur vary considerably by forest type and local environmental conditions. 

These differences may explain why other algorithms are very successful in one region, 

while losing much of their accuracy in others. The pipeline introduced here was aimed at 

demonstrating how spatial information and a machine learning approach could be used to 

improve the efficiency of current detection and attribution methods. However, the 

resulting methods may be useful when applied to landscape-level studies and are freely 

available online as a set of scripts and functions. With continued improvements of both 

this and previously-developed detection and attribution algorithms, we will soon be able 

to accurately and efficiently detect forest disturbances at the global scale. 
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FIGURES AND TABLES 

Figure Legends 

Figure 3.1. Location of Landsat scenes around the United States. Black boxes show the 

bounding boxes around the scenes. 

 

Figure 3.2. Full set of variables considered for the Random Forest detection and 

attribution models. Gridded boxes show the spatial domain of each variables (in grey). 

For disturbance spatial variables, the grey-shaded boxes represent pixels in which 

example disturbances were detected during the detection phase of the pipeline. These 

variables were not considered for the detection model as they are derived from that 

model. The red asterisk in the spatial variable gridded box shows the pixel of interest, 

used to calculate the ratio of that pixel’s value relative to all values in the box. Variable 

markers are as follows: (1) associated with disturbance characteristics, (2) associated with 

general time series characteristics, (3) disturbance timing, (4) associated with overall 

forest NDVI characteristics, (*) characterization of average trend over the area, (**) 

measure of the variable texture over the area, (***) measure of the POI relative to the 

neighboring pixels. 

 

Figure 3.3. Pipeline for detecting and attributing forest disturbances using Landsat data. 

Grey boxes represent the final output images. 

 

Figure 3.4. Omission (false negative) and commission (false positive) error rates for each 

region, based on the validation samples. 
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Figure 3.5. Classified omission errors. Error type represents the type of disturbance that 

was missed. (a) bars show validation results from the original training block (not 

including the training points), while (b) bars show validation results from the randomly-

selected alternative block. 

Figure 3.6. Classified incorrect attribution errors. Error type represents the actual type of 

disturbance vs. the labeled type of disturbance (labeled / actual). Maine had no 

misattributed disturbances because all disturbances were of a single type. (a) bars show 

validation results from the original training block (not including the training points), 

while (b) bars show validation results from the randomly-selected alternative block. 

 

Figure 3.7. Distance in years between detected disturbance date and actual disturbance 

date within validation samples for each region. 

 

Figure 3.8. Example output for the (a) Washington, and (b) Colorado regions. Colors 

show disturbance type, while the saturation of the color indicates the disturbance date.  

 

Figure 3.9. Density plots of the variables in the Random Forest attribution model for the 

(a) Washington state and (b) Colorado Landsat scenes, separated by disturbance type. 

 

Figure 3.10. Time series of summertime (JJA) NDVI for (a, b) Washington, and (c, d) 

Colorado. Example undisturbed pixels are shown in the top panels (a, c), and example 
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disturbed pixels are shown in the bottom panels (b, d). The grey line is the fitted loess 

curve for the time series. 
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Figure 3.1.  
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Figure 3.2.  
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Figure 3.3.  
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Figure 3.4.  
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Figure 3.5.  
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Figure 3.6.  
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Figure 3.7.  
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(a) 

(b) 

Figure 3.8.  
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Figure 3.9.  
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(a) 

(b) 

(c) 

(d) 

Figure 3.10.  
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Tables 

Table 3.1. Landsat scene paths and rows, along with the primary disturbance types within 

each scene. 

 

Region Name Landsat Path Landsat Row Primary Disturbance Types 

Washington (WA) 47 27 Harvest, Fire, River Changes 

Oregon (OR) 45 30 Fire, Harvest 

Colorado (CO) 35 32 Fire, Bark Beetle Outbreaks 

Minnesota (MN) 27 27 Harvest, Flooding 

Maine (ME) 12 28 Harvest 

South Carolina (SC) 16 37 Harvest 

Pennsylvania (PA) 14 32 Land Development 
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Table 3.2. Variables included in the final Random Forest detection and attribution models for each Landsat scene, indicated by the 

abbreviation for the primary state that they overlap. 
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SUPPLEMENTARY INFORMATION 

Supplemental Figure Legends 

Figure S3.1. Relative importance for the top 5 most important variables in the Random 

Forest detection model. 

 

Figure S3.2. Relative importance for the top 5 most important variables in the Random 

Forest attribution model. 
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Figure S3.1. 
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Figure S3.2. 
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CONCLUDING REMARKS 

Contributions 

 The work completed for this dissertation has resulted in several important 

contributions. I have discovered that forest disturbances have the potential to influence 

forest productivity well into the future, and that disturbance impacts vary considerably 

even across relatively small climatic gradients. Previous research had also suggested the 

potential for bark beetle outbreaks to result in phenotypic or genetic changes in pine 

populations, but this study demonstrates that those shifts may be limited to low elevation, 

or water-limited, sites. This new finding is important to managers deciding where best to 

focus treatments aimed at limiting bark beetle outbreaks. Additionally, I was surprised to 

learn that beetles tend to attack faster-growing lodgepole pine. This finding adds to the 

argument that timber plantations may want to focus on increasing phenotypic and genetic 

variability in order to enhance plantation resilience to future disturbances. Secondly, I 

have demonstrated that the variability in disturbance impacts among forest types and 

locations. In addition to variation in the long-term biochemical impacts of beetle 

outbreaks across climatic gradients, there is also substantial variability in the short-term 

biophysical impacts of several disturbance types. Previous research has discussed the 

potential for fires and bark beetle outbreaks to impact climate at large scales over long 

periods of time. The results from chapters 1 and 2 indicate that while this may be true 

when considering very large and severe disturbances, the specific impacts of each 

disturbance event are much more nuanced and depend on individual forest characteristics 

and the climate during which the disturbance occurs.  
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 Both chapters 1 and 2 indicated the need for better methods with which to detect 

and attribute forest disturbances. As such, a third contribution that I have made to 

advancing our understanding of disturbance ecology is the detection and attribution 

pipeline introduced in chapter 3. This new method will better enable researchers and 

managers to locate and assess forest disturbances over many different forested areas. This 

contribution is particularly important because no combined detection and attribution 

methods existed previously, and most separate detection and attribution methods are 

computationally intensive and time consuming. The approach introduced here is more 

efficient and easy to use than previous methods, while limiting concurrent reductions in 

accuracy. 

Next Steps 

 Looking forward, there are several directions for this research to continue to 

progress. First, the methods and results from this research could be used to further 

investigate the biochemical and biophysical impacts of disturbance by informing 

mechanistic model-based studies. Modeling would enable a better understanding of the 

carbon, nutrient, and energy dynamics of forested ecosystems over a range of time scales 

and future climatic scenarios. Using the methods from chapter 3, model simulations of 

disturbances could be improved through a better understanding of the spatial and 

temporal characteristics of disturbances. Furthermore, the results of chapter 1 

demonstrate that models may need to account for changes in forest growth and 

productivity following disturbances; the results of that study also give a preliminary 

measure of those changes. The results of chapter 2, that disturbance impacts on LST and 
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GPP differ by ecoregion, would help to define the typical impacts of forest disturbances 

by ecoregion.  

 In addition to further understanding disturbance impacts through modeling, 

another future direction for the work completed for chapter 3 is to improve on the 

methods in order to make them more accessible. Specifically, the pipeline could be 

developed into an R package or a command line program. This change would enable 

more researchers to use fine-resolution disturbance information in their analyses, and 

potentially greatly enhance our understanding of disturbance dynamics. 
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