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ABSTRACT 
 
  Grassland and shrubland songbird species are a guild of conservation concern in North 
America. Many of these species have experienced severe population declines, due to habitat loss 
and land use change. This makes the conservation and management of remaining habitat of 
crucial importance for this guild. Grazing by large herbivores is an ecosystem process in 
grassland systems, and in North America, one of the major historic grazers was the Plains bison 
(Bison bison). Bison are considered ecosystem engineers, because they modify habitat to be 
more or less suitable for other species, such as grassland and shrubland songbirds. Bison grazing 
can affect avian habitat by altering the vegetation structure. In turn, birds respond to these 
changes in vegetation structure. Bison are becoming more common due to recent reintroductions. 
From 2009-2017, at least eight bison reintroductions have occurred in North America. Lands 
where bison exist are good candidates for songbird conservation because bison are typically 
present in protected areas with a large grass and shrub component. Despite this potential, there is 
limited research about the effects of bison grazing on grassland and shrubland songbirds. Further 
research on this subject will inform bison management for songbird conservation. I investigate 
the relationship between bison grazing and songbird responses in two intermountain grasslands: 
the National Bison Range and Yellowstone National Park. In Chapter 1, I explore two ecological 
processes that may maintain species richness of grassland and shrubland songbirds: habitat 
heterogeneity from bison grazing, and productivity, a measure of the resources available to 
individuals. I analyzed the relationship between these variables and the occupancy of 10 avian 
species. I conclude that bison grazing has a stronger influence on bird occupancy and species 
richness than site productivity. In Chapter 2, I test whether differences between the study sites 
influence the abundance responses of vesper sparrow (Pooecetes gramineus) and western 
meadowlark (Sturnella neglecta) to bison grazing intensity. The differences, such as scale of 
bison grazing, herd size and density, and vegetation type show minimal influence on these 
species’ responses to bison grazing, but may be worth considering in conservation applications.  
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Chapter 1: The Relative Importance of Habitat Heterogeneity and Productivity to 
Intermountain Grassland Songbird Species Richness 

 
Introduction 
 

Ecologists have long observed that the number of different species in a community or 

region can vary substantially across environmental conditions (MacArthur & MacArthur 1961; 

Pianka 1966). Understanding patterns in species richness is a major goal of ecology, 

demonstrated by more than 120 hypotheses (e.g. habitat area hypothesis, intermediate 

disturbance hypothesis) that have been proposed (Palmer 1994). The multitude of potential 

explanations indicates there is little scientific consensus on the primary mechanisms that 

maintain species richness. Many correlates with species richness have been identified (Palmer 

1994; Willig et al. 2003; Rahbek 2005), yet their relative importance remains debatable and is 

sensitive to the temporal and spatial scale of inquiry (Waide et al. 1999; Mittelbach et al. 2001; 

Whittaker 2010; Šímová et al. 2013). Thus, clarifying the mechanisms that maintain species 

richness remains an important goal to further the science of ecological relationships. 

Understanding the maintenance of species richness is not only theoretically significant, it 

is critical to the identification of conservation priorities. Numerous constituencies value 

biodiversity, but with limited resources, decision-makers must often prioritize means to benefit 

the greatest number of species. A theoretical understanding of species richness provides key 

information by predicting which conditions support higher species richness. However, this 

information must be relevant to the scale at which conservation actions take place. Several 

studies suggest that species richness is more variable and less predictable at small spatial scales 

(Field et al. 2009; Mcbride et al. 2014). Thus, more research is needed at local management 

levels to inform conservation decisions. 
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Songbird species in intermountain grasslands are a guild that provides an opportunity to 

further our theoretical understanding of species richness and apply that understanding to 

conservation. Intermountain grassland refers to the non-forested valley lands of the Rocky 

Mountain region, composed of a blend of prairie grasslands and shrublands (Seastedt 2002). 

Grassland and shrubland avian species found in intermountain grasslands have shown long-term, 

nationwide, population declines (Paige & Ritter 1999; Knick et al. 2003; Brennan & Kuvlesky 

2005). These declines are largely due to habitat loss from fragmentation and land use change 

(Knick & Rotenberry 1995; Askins et al. 2007) making the management and conservation of 

remaining habitat of critical importance. Ensuring that conservation efforts can support as many 

intermountain grassland songbird species as possible will be crucial to their persistence into the 

future. To inform management for these species, I use species richness to test two hypotheses 

that have practical applications for conservation: the habitat heterogeneity hypothesis and the 

species-energy hypothesis. 

The habitat heterogeneity hypothesis predicts that species richness will be maximized in 

habitats that are the most heterogeneous because it provides the highest diversity of niches for 

species to utilize (MacArthur & MacArthur 1961). Grazing by large herbivores may affect the 

habitat heterogeneity of intermountain grasslands by altering the vegetation structure. Vegetation 

structure refers to the characteristics of density, height, and dispersion (Fisher & Davis 2010) of 

grasses and shrubs. As an ecosystem process, grazing manipulates vegetation structure by 

reducing vegetation height (Tastad 2013), increasing bare ground (Augustine et al. 2012), and 

altering the spatial heterogeneity of vegetation (Adler et al. 2001). Increases in the heterogeneity 

of vegetation structure due to grazing have been documented at a variety of spatial scales 

(Lwiwski et al. 2015; Bleho 2009). Grassland obligate species respond to differences in 
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vegetation structure (Fisher & Davis 2010), and other grassland and shrubland species have been 

shown to respond to grazing (Saab et al. 1995). As birds seek the vegetation structure they 

prefer, areas with higher heterogeneity of vegetation structure may support more species (Hovick 

et al. 2014, 2015).  

Historically, one of the major grazers of North America was the American bison (Bison 

bison). Bison were once widespread, ranging from as far west as Oregon and Washington, to 

eastern states such as Pennsylvania (Gates et al. 2010). These grazers played an important role in 

creating and maintaining heterogeneity in their habitat. Gates et al. (2010) defined bison as 

ecosystem engineers—a species that modifies habitat to be more or less suitable for other 

species—because they created and responded to heterogeneity through grazing, wallowing, and 

horning behaviors. The ecological effects of bison helped provide habitat conditions that 

supported a wide range of bird species (Askins et al. 2007). 

The presence of bison is becoming more common through recent reintroduction efforts 

(Appendix 1, Table A1-2). Areas where bison are currently present, or will be reintroduced, are 

strong candidates for bird conservation efforts for several reasons. Bison primarily eat grasses 

and sedges (McCullough 1980; Singer and Norland 1994), thriving in areas with a large grass 

component, also providing habitat for grassland and shrubland species. Bison are often present 

and are likely to be reintroduced on lands that have protected status, such as national parks (e.g. 

Banff, Yellowstone, and Grand Teton National Parks), private lands managed by non-

governmental organizations (e.g. The American Prairie Foundation and The Nature 

Conservancy), or state parks (e.g. Antelope Island State Park, UT). Areas with protected status 

are often created under the explicit goal of conservation, with funding and staff allocated to that 

goal. These attributes, combined with the ability of bison to create structural heterogeneity in 
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vegetation, suggest lands with bison are valuable for bird conservation. Testing the habitat 

heterogeneity hypothesis as a mechanism of songbird species richness will inform current and 

future bison management to support songbird conservation. 

I also tested the species-energy hypothesis as a mechanism for maintaining species 

richness. The species-energy hypothesis predicts that habitats have higher species richness in 

areas of higher productivity (Wright 1983). Productivity is defined as the rate at which energy, 

originating from solar radiation, is converted to resources and biomass to be utilized by 

individuals (Wright 1983). Higher productivity supports a greater number of individuals, thereby 

reducing local species extinction rates, and supporting a greater number of species (Srivastava & 

Lawton 1998). Understanding this relationship may be especially important for songbirds in 

grassland systems because of the extent to which their habitat has been fragmented and reduced 

(Knick & Rotenberry 1995; Askins et al. 2007). The most productive areas of North American 

grasslands (with higher available energy) have undergone extensive land use change and are 

overwhelmingly under heavy human use (Scott et al. 2001). If productivity is important for 

maintaining species richness, this makes identifying remaining areas of high species richness a 

priority for conservation. My research contributes to a theoretical understanding of the species 

richness-energy relationship at a scale that is applicable for conservation actions.  

 I investigated the effect of bison grazing and site productivity on avian species richness in 

two intermountain grasslands of the Rocky Mountain Region to test the habitat heterogeneity and 

species-richness hypotheses. I selected two study areas of differing primary productivity to test 

the species-energy hypothesis, and stratified by grazing intensity between sites to test the habitat 

heterogeneity hypothesis.  I then sampled grassland and shrubland songbird occupancy and 

species richness across a spectrum of productivity and grazing intensity. I predict from the 
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habitat heterogeneity hypothesis that grazing intensity will have a unimodal effect on species 

richness with species richness highest at intermediate levels of grazing (Figure 1-1). Because 

grazing increases structural heterogeneity, the low end of the grazing spectrum will have lower 

structural heterogeneity. As grazing increases, structural heterogeneity will increase, until 

biomass of vegetation becomes limiting at the high end of the grazing spectrum, at which point 

structural heterogeneity decreases (Ausden 2007). Secondly, I predict from the species-energy 

hypothesis that productivity will have a positive, linear effect on species richness as suggested by 

Cusens et al. (2012) (Figure 1-2). The relative importance of habitat heterogeneity and 

productivity to species richness will help guide conservation for intermountain grassland 

songbird species. 

 

Study Areas 

I conducted my research in two study sites. The first was the National Bison Range 

(NBR), in the Mission Valley near Moiese, MT. The NBR is federally managed by the U.S. Fish 

and Wildlife Service and was established in 1908 for the conservation of bison. There are 

approximately 350 bison on the NBR. In the past, bison management consisted of rotating bison 

among 8 pastures during summer months and leaving one pasture ungrazed for an entire year (A. 

Lisk, personal communication). Since 2015, bison movement has been unrestricted except to be 

contained within the boundary of the NBR (A. Lisk, personal communication). The NBR is 

approximately 76 km2 and the vegetation is 75% intermountain grassland similar to Palouse 

prairie. The remaining area consists of conifer forest and riparian habitat. The grasslands are 

characterized by bunchgrasses such as Idaho fescue (Festuca idahoensis), bluebunch wheatgrass 

(Agropyron spicatum), and prairie junegrass (Koeleria macrantha).  Intermixed in the grasslands 
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are forbs such as arrowleaf balsamroot (Balsamorrhiza sagittata), and low shrubs such as 

Wood’s rose (Rosa woodsia) and snowberry (Symphoricarpus occidentalis).  

 My second study site was the Northern Range of Yellowstone National Park (YNP). YNP 

is federally managed by the National Park Service. There are approximately 5,000 bison in YNP, 

3,500 of which use the Northern Range (Geremia et al. 2014). The Northern Range of YNP 

constitutes a large part of the herd’s summer range and encompasses about 890 km2. Bison 

movements are minimally managed within YNP, but boundaries are enforced to contain bison 

within YNP. I conducted surveys in the Lamar Valley. The area is composed of shrub steppe, 

dominated by mountain big sagebrush (Artemisia tridentata), and grass species such as Idaho 

fescue, bluebunch wheatgrass, and prairie junegrass. 

 

Methods 
 
Field Methods: 
 

To measure avian species richness, I established sampling plots in areas I predicted 

would represent the spectrum of low to high bison grazing intensity. I then measured avian 

species occupancy, bison grazing intensity, and productivity at each plot.  

Plot Size: 

I defined sampling plots at 250 x 250 m (62,500 m2) for three reasons. First, by walking a 

transect through the middle of the plot, observers were able to survey for birds up to 125 meters 

to either side. Beyond 125 meters, human detection of birds declines dramatically (Ralph et al. 

1995). Secondly, this area is approximately twice the size of the breeding territory western 

meadowlarks (Sturnella neglecta), the species of interest expected to have the largest territory 

size (Lanyon 1956; Aweida 1995). Lastly, the study sites have varying topography with steep 
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slopes and drainages. To maximize visibility, I chose a plot size that reduced the probability of 

visual obstructions within the plot.    

Sampling Frame: 

I stratified my plot selection across three levels of bison grazing intensity. I developed 

these bison grazing strata using a habitat suitability index (HSI) (Steenweg et al. 2016, Wiggins 

2016), using slope (U.S. Geological Survey 2015), distance to water (U.S. Geological Survey 

2013), and vegetation type (Landfire 2012). HSI models use a species’ known affinities for 

habitat characteristics to predict suitability of a habitat for a given species. I binned the 

continuous HSI values from both study sites into three strata of bison grazing intensity, using the 

Natural Jenks tool in ArcGIS: Low (0.169-0.459), Medium (0.460-0.611), and High (0.612-

0.795). HSI values range from 0 to 1, with 0 representing the least suitable habitat, and 1 

representing the most suitable habitat for bison. 

I randomly selected plots in each stratum, and sampled plots by the following criteria: 1.) 

the plot contained ≥ 75% grassland or shrub steppe vegetation, and 2.) the plot contained a 

continuous segment of habitat ≥ 75% of the plot (Wiggins 2016). At the NBR site, I sampled 10 

plots in the Low stratum, 30 plots in the Medium stratum, and 30 plots in the High stratum each 

year. Compared to Medium and High stratum (43% and 32% of NBR, respectively), there was 

less Low stratum available in the NBR (approximately 11% of NBR), because much of this area 

was also forested. This resulted in sampling fewer Low stratum plots in this study site. To 

compensate, I sampled a larger number of Low stratum plots at the YNP site. In YNP, I sampled 

30 plots in the Low stratum, 13 plots in the Medium stratum, and 12 in the High stratum in 2016. 

In 2017, I sampled 25 plots in the Low stratum, 8 in the Medium stratum, and 11 in the High 
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stratum (Appendix 1, Table A1-1). I selected plots in YNP from an area similar in size to the 

NBR (YNP = 69 km2, NBR = 76 km2). 

Avian Occupancy Surveys: 

A line transect of 250 meters was walked through the middle of each plot in which 

observers recorded all songbird species seen within the plot. Visual confirmation of the bird 

within plot boundaries was required, thus detections in which the bird was heard but not seen 

were not recorded. Observers used rangefinders to confirm each bird was within plot boundaries. 

Observers walked slowly and stopped occasionally, such that each bird survey took 

approximately 20-30 minutes per plot. All surveys were conducted in the early morning hours, 

from dawn until 1000 MDT in order to target the hours when birds are most active and easily 

detectable. Surveys were not conducted in rain or winds higher than 24 km/hr because these 

conditions result in reduced detectability of birds. In NBR, bird surveys were conducted from 

May 20 to July 7 in 2016 and from May 19 to June 30 in 2017. In YNP, bird surveys were 

conducted from June 1 to July 1 in 2016 and from May 31 to July 9 in 2017. All plots were 

sampled twice within a field season. 

Covariate Data: 

Bison Grazing Intensity:  

I measured bison grazing intensity by counting bison patties in each plot. Density of 

patties estimates bison grazing intensity at patch-level spatial scales and has been shown to 

reflect vegetation responses to grazing intensity (Tastad 2013). Following Sliwinski (2011), 

patties were either individual, well-formed piles, or several closely associated piles. Observers 

counted all patties, regardless of age, representing bison use over recent years. Observers walked 

four bison grazing transects within each plot. Two transects were sampled each time immediately 
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following a bird survey in each plot. These transects were located to both sides of the bird 

transect and were midway between the bird transect and the edge of the plot (see Appendix 1, 

Figure A1-1). Observers walked two transects in an East-West direction, and two transects in a 

North-South direction. Observers walked slowly, counting all patties within 1 m to the left and 

right of the line transect.  

Productivity data: 

I measured productivity using the mean of the cumulative Normalized Difference 

Vegetation Index (NDVI) at each plot from April 1 to June 30 of each year. I chose this 

timeframe to capture the beginning of the growing season for vegetation and the end of the bird 

breeding season. NDVI is a remotely sensed measurement of photosynthetic pigments in 

vegetation and is considered a proxy for primary production of vegetation (Tucker & Sellers 

1986; Paruelo et al. 1997). Primary production, and its conversion to higher trophic levels, 

creates resources and biomass that are utilized by individuals and support species. NDVI values 

range from -1 to 1, with -1 indicating the lowest measurement of vegetative productivity and 1 

indicating the highest measurement of vegetative productivity. I used an established NDVI 

product (Robinson et al. 2017) that uses gap-filling and smoothing techniques, and has a 

resolution of 30 m. I obtained NDVI data online at http://ndvi.ntsg.umt.edu.  

Analytical Methods: 

Correlation between covariates:  

I investigated relationships between patty counts and NDVI value using pairwise plot 

matrices, linear regressions, and variance inflation factor. Because bison grazing could be 

influenced by NDVI, I used these methods to determine whether patty counts and NDVI were 

collinear. 

http://ndvi.ntsg.umt.edu/
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Multi-species Occupancy Model:  

To analyze species richness across bison grazing intensity and productivity, I used a 

Bayesian multi-species occupancy model (MSOM) developed by Zipkin et al. (2010). This 

hierarchical model uses parameters estimated from the observation process to describe 

parameters in the ecological process of interest (occupancy). The observation process is almost 

always imperfect, but failure to detect a species can be distinguished from true absence of a 

species through repeated sampling of a plot. The field data is thus corrected for detection, and 

then used to model the ecological relationship. This allows us to estimate true occupancy, which 

is unobservable. The use of community-level hyper-parameters adds another level to the 

hierarchy because species-level parameters are assumed to be drawn from a common distribution 

(Zipkin et al. 2010). Thus, hyper-parameters represent a mean response of all species. 

Incorporating hyper-parameters enables better estimates of species-specific estimates, and allows 

estimation for species that are rare or even unobserved in the data set. I augmented species data 

to estimate unobserved species following Zipkin (2010). 

 In the MSOM, the binary state of occurrence for each species 𝑖𝑖, at site 𝑗𝑗, in year 𝑙𝑙, is 

assumed to arise from a Bernoulli random variable such that: 

z (𝑖𝑖, 𝑗𝑗, 𝑙𝑙) ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝛹𝛹𝑖𝑖,𝑗𝑗,𝑙𝑙) 

and 𝛹𝛹𝑖𝑖,𝑗𝑗,𝑙𝑙 R represents the probability that species 𝑖𝑖 occurs at point 𝑗𝑗 in year 𝑙𝑙. 𝛹𝛹𝑖𝑖,𝑗𝑗,𝑙𝑙 is imperfectly 

observed, but from the data (𝑥𝑥), one can estimate the probability of detection (pi,j,k) for each 

species 𝑖𝑖, at point j, replicate k, and year 𝑙𝑙, such that:  

𝑥𝑥(𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙)~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙) ∗ 𝑧𝑧(𝑖𝑖, 𝑗𝑗, 𝑙𝑙)) 

 

Thus, the likelihood is represented as follows: 
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𝐿𝐿[𝑥𝑥𝑖𝑖,𝑗𝑗,𝑙𝑙�Ψ𝑖𝑖,𝑗𝑗,𝑙𝑙,𝑝𝑝𝑖𝑖,𝑗𝑗,𝑙𝑙�

= 𝐼𝐼
� ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙

𝐾𝐾𝑗𝑗,𝑙𝑙
𝑘𝑘=1 >0�

�Ψ𝑖𝑖,𝑗𝑗,𝑙𝑙  �𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙
𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙

𝐾𝐾𝑗𝑗,𝑙𝑙

𝑘𝑘=1

�1 − 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙�
1−𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙�

+ �1 −  𝐼𝐼
� ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙

𝐾𝐾𝑗𝑗
𝑘𝑘=1 >0�

���1 −  Ψ𝑖𝑖,𝑗𝑗,𝑙𝑙� +  Ψ𝑖𝑖,𝑗𝑗,𝑙𝑙  �𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙

𝐾𝐾𝑗𝑗

𝑘𝑘=1

� 

My data met the assumptions of the MSOM, which are that sites are closed to extinction 

and colonization across repeated surveys, species are identified correctly, and the probability of 

occupancy and detection at a plot are independent of those probabilities at another plot. The first 

assumption was met by surveying plots during the breeding season. Birds have higher site 

fidelity during the breeding season as they establish a territory, build a nest, and raise young. 

This reduces the likelihood that individuals left or colonized sites between surveys. The second 

assumption was met by training observers to identify species by sight and sound. Observers were 

supervised in their observations until they could reliably identify species in order to assure data 

quality. The third assumption was met by consecutively surveying plots with a shared border to 

avoid the possibility of counting an individual in both plots. 

I modeled occupancy as a function of study site (NBR or YNP), bison grazing intensity 

(patties), productivity (NDVI), and an interaction between bison grazing intensity and 

productivity, using the logit-link function: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙�Ψ𝑖𝑖,𝑗𝑗,𝑙𝑙� =   𝑢𝑢𝑢𝑢𝐵𝐵𝑢𝑢𝑖𝑖 + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 +  𝛼𝛼1𝑖𝑖 ∗ 𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑖𝑖𝐵𝐵𝑝𝑝𝑗𝑗,𝑙𝑙 + 𝛼𝛼2𝑖𝑖 ∗  𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑖𝑖𝐵𝐵𝑝𝑝2𝑗𝑗,𝑙𝑙 +  𝛼𝛼3𝑖𝑖 ∗ 𝑢𝑢𝑁𝑁𝑁𝑁𝐼𝐼𝑗𝑗,𝑙𝑙

+ 𝛼𝛼4𝑖𝑖 ∗ 𝑢𝑢𝑁𝑁𝑁𝑁𝐼𝐼𝑗𝑗,𝑙𝑙 ∗ 𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑖𝑖𝐵𝐵𝑝𝑝𝑗𝑗,𝑙𝑙 +  𝛼𝛼5𝑖𝑖 ∗ 𝑢𝑢𝐵𝐵𝑝𝑝𝐵𝐵 

I augmented the number of species in the community as described by Royle et al. (2007), 

to estimate the total number of species in the community, including ones not detected during 
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field surveys. I ran the model with three chains, for 60,000 iterations each, and an adaptation 

period of 30,000 iterations. Model convergence was assessed using the Gelman-Rubin statistic 

(Gelman & Rubin 1992) and visual inspection of trace plots, autocorrelation, estimate density, 

and the running mean. I assessed goodness of fit using a Bayesian p-value by comparing the 

estimated deviance values and predicted deviance values for each MCMC sample of each 

observation, following Broms et al. (2016). 

 
Results 
 
National Bison Range: 

 At NBR, field teams completed two surveys on 70 plots each year. For analysis, I 

included all grassland and shrubland species, with the exception of brown-headed cowbirds 

(Molothrus ater). I excluded this species because it feeds in association with grazers and is a 

brood-parasite (Robinson et al. 1995), thus its habitat is unlikely to be associated with vegetation 

structure. The species used in analysis included clay-colored sparrow (Spizella pallida), 

grasshopper sparrow (Ammodramus savannarum), lark sparrow (Chondestes grammacus), 

vesper sparrow (Pooecetes gramineus), and western meadowlark (Sturnella neglecta).  In 2016, 

mean patty count per plot ranged from 2-85.5 patties (median = 23.5 patties, IQR = 26.9 patties) 

and in 2017 from 1.8-66.8 patties (median = 20.25 patties, IQR = 21.6 patties). In 2016, mean 

cumulative NDVI per plot ranged from 31.96 – 52.19 (median = 40.63, IQR = 5.97) and in 2017 

from 35.95 – 58.26 (median = 47.19, IQR = 6.25). Patty counts and NDVI were not correlated in 

NBR. The R2 value for patty counts and NDVI was 0.00 in 2016 (p = 0.87), and 0.00 in 2017 (p 

= 0.72).  Patty counts and NDVI had very low variance inflation factors (2016 = 1.0004, 2017 = 

1.002), indicating little concern for collinearity between these covariates. 



13 
 

 The effect of patty counts (𝛼𝛼1) on species-specific occupancy probabilities was the 

strongest species-level covariate (Table 1-1). The 95% credible intervals for grasshopper 

sparrow, vesper sparrow, and western meadowlark did not cross zero. All coefficients for 

parameters in the MSOM are presented on the logit-link scale. Species responses ranged from -

0.68 (95% CRI = -4.79, 3.08) for lark sparrows, to 2.11 (95% CRI = 0.77, 4.83) for grasshopper 

sparrows. The majority of species responses to patty counts were positive, with the exception of 

lark sparrows (mean = -0.68, 95% CRI = -4.79, 3.08). Most species showed negative quadratic 

responses to patty counts (𝛼𝛼2), with the most negative being -0.76 (95% CRI = -2.00, 0.11) for 

clay-colored sparrows. Additional species-specific responses are presented in Figure 1-5. 

Species-specific responses to NDVI (𝛼𝛼3) were weaker than for patty counts and all 

credible intervals crossed zero (Table 1-1). Species responses ranged from -0.13 (95% CRI = -

1.11, 0.78) for western meadowlarks to 0.30 (95% CRI = -0.39, 1.08) for clay-colored sparrows. 

Except for western meadowlarks, all species’ linear responses to NDVI were positive (Figure 1-

7). For all species, there was a negative response to the interaction between NDVI and patty 

counts. Responses ranged from -0.67 (95% CRI = -2.21, 0.18) for clay-colored sparrows to -0.14 

(95% CRI = -1.46, 1.17) for lark sparrows.  

The fixed effect of year (𝛼𝛼5) was weakly positive for most species, indicating species had 

higher occupancy rates in 2017 than in 2016. All credible intervals for the effect of year crossed 

zero. Only vesper sparrows had lower occupancy in 2017, with a response to year of -0.39 (95% 

CRI = -1.33, 0.80). Positive responses ranged from 0.04 (95% CRI = -2.64, 3.31) for lark 

sparrows, to 0.60 (95% CRI = -0.68, 2.15) for grasshopper sparrows. 

Yellowstone National Park 
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 At YNP, field teams completed two surveys on 53 plots in 2016 and on 42 plots in 2017.  

I included all grassland and shrubland species, with the exception of brown-headed cowbird. The 

species used in analysis included: Brewer’s sparrow (Spizella breweri), green-tailed towhee 

(Pipilo chlorurus), horned lark (Eremophila alpestris) sage thrasher (Oreoscoptes montanus), 

savannah sparrow (Passerculus sandwichensis), vesper sparrow, and western meadowlark. In 

2016, mean patty count ranged from 4.0 – 84.0 patties (median = 36.0 patties, IQR = 24.3 

patties), and in 2017 from 12.8 – 110.8 patties (median = 41.3 patties, IQR = 31 patties).  In 

2016, mean cumulative NDVI per plot ranged from 29.04 – 44.64 (median = 35.20, IQR = 4.44), 

and in 2017 from 35.91 – 51.17 (median = 44.79, IQR = 5.99). Patty counts and NDVI were not 

correlated in YNP. The R2 value for patty counts and NDVI was 0.00 in 2016 (p = 0.92), and 

0.00 in 2017 (p = 0.74).  Similar to NBR, patty counts and NDVI had very low variance inflation 

factors (2016 = 1.002, 2017 = 1.0002), indicating little concern for collinearity between these 

covariates.  

The effect of patty counts (𝛼𝛼1) on species-specific occupancy probabilities was also the 

strongest species-level covariate in YNP (Table 1-1). Credible intervals for Brewer’s sparrow, 

sage thrasher, savannah sparrow, vesper sparrow, and western meadowlark did not cross zero. 

Species responses ranged from -1.09 (95% CRI = -4.76, 2.00) for horned larks to 2.66 (95% CRI 

= 0.68, 5.90) for sage thrashers. The majority of species responses to patty counts were positive, 

with the exception of horned larks (mean = -1.09, 95% CRI = -4.76, 2.00), and green-tailed 

towhees (mean = -0.53, 95% CRI = -1.55, 0.32). Most species showed negative quadratic 

responses to patty counts (𝛼𝛼2), with the most negative being -0.43 (95% CRI = -1.69, 0.99) for 

sage thrashers. The only positive quadratic response to patty counts was for Brewer’s sparrows 

(0.38, 95% CRI = -0.35, 1.63). See Table 1-1 and Figure 1-6 for more species-specific details. 
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 Species-specific responses to NDVI (𝛼𝛼3) were also less than for patty counts in YNP and 

credible intervals for all species crossed zero (Table 1-1). Most linear responses to NDVI were 

negative, with the exception of savannah sparrows. Coefficients ranged from -0.47 (95% CRI = -

1.18, 0.14) for green-tailed towhees to 0.23 (95% CRI = -0.75, 1.52) for savannah sparrows. 

Responses to the interaction between NDVI and patty counts were mixed, with four species 

responding positively and three species responding negatively. Negative responses ranged from -

0.57 (95% CRI = -1.36, 0.07) for vesper sparrows to -0.30 (95% CRI = -1.28, 0.59) for Brewer’s 

sparrows. Positive responses ranged from 0.10 (95% CRI = -0.43, 1.03) for horned larks to 0.28 

(-0.38, 1.05) for green-tailed towhees. See Table 1-1 and Figure 1-8 for more species-specific 

details. 

The fixed effect of year (𝛼𝛼5) was weakly negative for most species, indicating species 

had higher occupancy rates in 2016 than in 2017. All credible intervals for the effect of year 

crossed zero, except for Brewer’s sparrow. Negative responses to year ranged from -1.73 (95% 

CRI = -3.30, -0.47) for Brewer’s sparrows to -0.39 (95% CRI = -1.33, 0.80) to -0.39 (95% CRI = 

-1.33, 0.80) for vesper sparrows. Only western meadowlarks had a positive effect of year (mean 

= 0.07, 95% CRI = -2.47, 3.76). 

Community-level responses: 

 The Bayesian p-value for the goodness-of-fit test of the MSOM was p = 0.12. P-values 

less than 0.05 or higher than 0.95 are considered to have poor model fit (Broms et al. 2016), thus 

the model has an adequate fit to the data. The community parameters, representing the mean 

response of all species, showed little effect of the covariates on community occupancy. All 

credible intervals for community parameters overlapped zero (Table 1-3). Patty counts had a 

positive effect on community occupancy (µ𝛼𝛼1mean = 0.97, 95% CRI = -0.49, 2.58), with a 
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slightly negative quadratic effect (µ𝛼𝛼2 mean = -0.21 95% CRI = -0.82, 0.53). NDVI had a 

slightly negative linear effect on the probability of community occupancy (µ𝛼𝛼3 R mean = -0.11, 

95% CRI = -0.67, 0.45). The effect of the interaction between NDVI and patty counts also had a 

negative effect on the probability of community occupancy (µ𝛼𝛼4 R mean = -0.22, 95% CRI = -

0.94, 0.39). Overall, the probability of community occupancy was lower in 2017 than in 2016, as 

the effect of year was negative (µ𝛼𝛼5 R mean = -0.54, 95% CRI = -1.79, 0.63). 

Detection Parameters: 

Detection was essentially unaffected by date across the breeding season (Table 1-4). At 

the community level, the effect of date on detection of any species (µ𝛽𝛽1) was 0.00 (95% CRI = -

0.22, 0.22), with a quadratic effect (µ𝛽𝛽2) of 0.01 (95% CRI = -0.14, 0.18). The effect of date on 

species-specific detection (𝛽𝛽1) was more variable ranging from -0.21 (95% CRI = -0.73, 0.19) 

for savannah sparrows to 0.26 for horned larks (95% CRI = -0.20, 0.86). The 95% credible 

intervals for all species crossed zero, with the exception of Brewer’s sparrows (mean = 0.19, 

95% CRI = 0.03, 0.37) (Table 1-2). The quadratic effect of date (𝛽𝛽2) was small for all species, 

ranging from -0.13 for lark sparrows (95% CRI = -0.48, 0.14) to 0.15 (95% CRI = -0.14, 0.63) 

for savannah sparrows.   

The estimated number of species in the community (N) was 11.77 (95% CRI = 10.00 

16.00).  This indicates that between the two study sites, 1 to 2 additional species were present, 

but not detected in the grassland and shrubland bird community.   

 

Discussion 
 

My results suggest weak support for the habitat heterogeneity hypothesis and my 

prediction that bison grazing intensity would have a unimodal effect on species richness. Across 
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all species and both study locations, species richness increased with higher bison grazing 

intensity, as measured by patty counts. This effect became less positive with continued increases 

in bison grazing intensity, indicating that intermediate bison grazing intensities supported the 

highest species richness (Figure 1-3). Though the credible intervals for the community 

parameters associated with bison grazing intensity all crossed zero (Table 1-3), the linear effect 

of patty counts had the strongest effects on occupancy probability for individual species (Figure 

1-5 and 1-6). Patty counts had a significant and positive effect for six of ten avian species (Table 

1-1). This supports an increase in species richness because those six species are more likely to be 

present under conditions of higher bison grazing.  

The distribution of grazing intensity in my study sites was skewed towards lower grazing 

intensity, and I sampled relatively few plots with very high grazing intensity, especially at the 

NBR site. More data at the high end of the grazing spectrum would be especially informative to 

determine the shape of the relationship between bison grazing intensity and avian species 

richness. More data may provide stronger support for the observed relationship, but it is also 

possible that avian species richness could level off and remain at similar levels to intermediate 

grazing.  

The relationship between bison grazing intensity and avian species richness is entirely 

correlational, as I did not measure the effect of bison grazing intensity on heterogeneity of 

vegetation structure in avian habitat. Thus, alternative explanations are possible. For example, 

bison grazing has been shown to increase arthropod and grasshopper species diversity and 

abundance (Joern 2005, Moran 2014). These invertebrates are prey items for many grassland and 

shrubland songbird species. Instead of affecting habitat heterogeneity, bison grazing intensity 

could increase avian species richness by creating greater food (and thus energy) resources. If this 
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is the case, then species richness increases until intermediate grazing, at which point species 

richness declines, perhaps due to increased interspecific competition. Further studies should 

explore the causative relationship between bison grazing intensity, the heterogeneity of multiple 

characteristics of vegetation structure, and avian species richness to establish a comprehensive 

understanding of how habitat heterogeneity influences avian species richness.  

My results do not support the species-energy hypothesis. I predicted productivity would 

have a positive, linear effect on species richness (Figure 1-2). Instead, species richness decreased 

slightly with increased NDVI (Figure 1-4). The effect of productivity was very small for both 

species richness and the probability of individual species occupancy, with all credible intervals 

overlapping zero (Table 1-1 and 1-3). Though the observed result is unexpected, it is not 

unprecedented. In their meta-analysis, Milchunas et al. (2001) found that negative relationships 

with productivity are common for studies of animals at several ecological scales. An alternative 

prediction of the species-energy hypothesis is that richness increases in a unimodal relationship 

with productivity. This is explained by a decline in richness at higher productivities due to 

increased interspecific competition. If this were the case, my results may have only captured the 

negative part of the unimodal relationship, due to sampling a limited range of productivity 

values. 

For most species, there was a small negative interaction between NDVI and patty counts 

(Table 1-1 and 1-3). While this was not a strong effect, it suggests that as productivity and 

grazing intensity both increase, fewer species are present. The effect of productivity was 

negative at the community level, and in combination with higher intensities of grazing, the effect 

becomes more negative. This interaction may warrant further investigation. While there was no 

correlation present between NDVI and patty counts in my study, others have found that grazing 
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may influence plant primary productivity (Manier & Hobbs 2007). Such interaction may in turn 

influence how grassland and shrubland songbirds respond to these conditions in their habitat. 

Habitat heterogeneity from bison grazing had a relatively stronger effect on species 

richness than productivity. This may be partly due to the scale at which I measured these 

relationships. My results apply to the local management scale where habitat heterogeneity may 

be more variable, but productivity is less variable. This could result in a stronger influence of 

habitat heterogeneity than productivity. Field et al. (2009) concluded that productivity strongly 

influenced species richness at large scales, but the effect was less evident at small scales because 

of the limited range of productivity at that scale. Bohning-Gaese (1997) notes that habitat 

heterogeneity is often important at small scale investigations of avian species richness, while 

energy-related variables are more important at large spatial scales. This suggests that habitat 

heterogeneity may be a more important consideration for conservation at a local management 

level than productivity.  

 In the context of intermountain grassland songbird conservation, the correlation between 

bison grazing intensity and plot-level species richness suggests that bison grazing may support 

occupancy for multiple species in the avian community. This relationship should be considered 

by conservation constituents and decision-makers in areas where bison are already present and in 

bison-reintroduction scenarios. However, the results should not be interpreted to recommend a 

particular grazing intensity. The effects of grazing on vegetation can vary substantially based on 

moisture availability (Milchunas & Lauenroth 1988), herding behavior (McNaughton 1984), pre-

existing vegetation patterns (Adler et al. 2001), and spatial scale (Adler et al. 2001). In particular, 

grazing effects can vary based on the length of evolutionary history of grazing (Milchunas & 

Lauenroth 1988), as this influences the development of grazing-related adaptations in plants 
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(Mack & Thompson 1982). The intermountain grasslands where I conducted my research are 

considered to have a short evolutionary history of grazing (Milchunas & Lauenroth 1988), where 

bison were less abundant than in the Great Plains (Mack & Thompson 1982). Thus, a given 

intensity of bison grazing could have very different effects on vegetation structure and avian 

species richness across locations, and results from my study may not transfer to other locations. 

To successfully incorporate bison grazing management into avian conservation plans, decision-

makers must first understand how grazing interacts with the management area. 

 From the perspective of local-scale avian conservation, my results suggest productivity is 

a less important factor for decision-makers to consider. Within my study sites, plot-level species 

richness was not strongly correlated with productivity. At a similar scale in other management 

areas, the variability in productivity may not be sufficient to strongly impact species richness. If 

this is the case, decision-makers can focus their efforts on other factors, such as habitat 

heterogeneity, that have a stronger influence on species richness at this scale.  

 My study informs conservation priorities for intermountain grassland avian communities 

and indicates a stronger relative influence of habitat heterogeneity over productivity in 

supporting species richness. These results can be considered for conservation scenarios in which 

bison grazing may provide habitat heterogeneity for avian species, and should be considered at a 

similar scale as this study. Lastly, the results inform a theoretical understanding of species 

richness and lend modest support for the habitat heterogeneity hypothesis.  
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Figures and Tables 
 
 

 

Figure 1-1: Predicted response of bird species richness as bison grazing intensity increases. 

Bison grazing intensity increases heterogeneity of vegetation in a unimodal pattern. Bird species 

richness increases in response to the heterogeneity of vegetation, and thus also responds to bison 

grazing intensity in a unimodal pattern. 
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Figure 1-2: Predicted response of bird species richness to productivity. Increases in productivity 

result in more individuals, thus reducing local extinction rates and supporting a greater number 

of species. 
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Figure 1-3: The relationship between patty counts and plot species richness at the National Bison Range (NBR) and Yellowstone 

National Park (YNP) study sites in 2016 and 2017. Data points show the mean plot richness estimate and lines through the point show 

95% credible intervals.
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Figure 1-4: The relationship between mean cumulative NDVI and plot species richness at the National Bison Range (NBR) and 

Yellowstone National Park (YNP) study sites in 2016 and 2017. Data points show the mean plot richness estimate and lines through the 

point show 95% credible intervals.  
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Figure 1-5: The relationship between mean species occupancy probability and patty counts at 

the National Bison Range. Species identity is indicated by the four letter code for the common 

name: clay-colored sparrow (CCSP), grasshopper sparrow (GRSP), lark sparrow (LASP), vesper 

sparrow (VESP), and western meadowlark (WEME).  
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Figure 1-6: The relationship between mean species occupancy probability and patty counts in 

Yellowstone National Park. Species identity is indicated by the four letter code for the common 

name: Brewer’s sparrow (BRSP), green-tailed towhee (GTTO), horned lark (HOLA), sage 

thrasher (SATH), savannah sparrow (SAVS), vesper sparrow (VESP), and western meadowlark 

(WEME) 
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Figure 1-7: The relationship between mean species occupancy probability and mean cumulative 

NDVI at the National Bison Range. Species identity is indicated by the four letter code for the 

common name: clay-colored sparrow (CCSP), grasshopper sparrow (GRSP), lark sparrow 

(LASP), vesper sparrow (VESP), and western meadowlark (WEME). 
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Figure 1-8: The relationship between mean species occupancy probability and mean cumulative 

NDVI at Yellowstone National Park. Species identity is indicated by the four letter code for the 

common name: Brewer’s sparrow (BRSP), green-tailed towhee (GTTO), horned lark (HOLA), 

sage thrasher (SATH), savannah sparrow (SAVS), vesper sparrow (VESP), and western 

meadowlark (WEME).
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Table 1-1: Coefficient values that affect the probability of species occupancy for grassland and shrubland songbird species present in 

the National Bison Range and Yellowstone National Park in 2016 and 2017. Values are presented on the logit-link scale as mean (95% 

credible interval; CRIs). Bolded values show estimates with 95% CRIs that do not cross zero. 

Species Intercept (𝜶𝜶𝟎𝟎) 
 

Patties: linear 
(𝜶𝜶𝟏𝟏) 

Patties: non-linear 
(𝜶𝜶𝟐𝟐) 

NDVI: linear (𝜶𝜶𝟑𝟑) NDVI*Patties: 
interaction (𝜶𝜶𝟒𝟒) 

Year: fixed effect 
(𝜶𝜶𝟓𝟓) 

National Bison Range      
 Clay-colored    

sparrow 
-1.47 (-2.93, 1.70) 0.21 (-0.90, 1.51) -0.76 (-2.0, 0.11) 0.30 (-0.39, 1.08) -0.67 (-2.21, 0.18) 0.37 (-0.91, 1.70) 

 Grasshopper 
sparrow 

0.92 (-0.74, 3.64) 2.11 (0.77, 4.83) -0.31 (-1.08, 0.69) -0.11 (-0.86, 0.62) -0.43 (-1.43, 0.33) 0.60 (-0.68, 2.15) 

 Lark 
Sparrow 

1.27 (-8.09, 23.94) -0.68 (-4.79, 3.08) -0.12 (-1.46, 1.36) -0.13 (-1.29, 1.01) -0.14 (-1.46, 1.17) 0.04 (-2.64, 3.31) 

 Vesper 
sparrow 

2.29 (1.14, 4.03) 1.86 (0.88, 3.98) -0.29 (-0.82, 0.44) -0.09 (-0.75, 0.70) -0.57 (-1.36, 0.07) -0.39 (-1.33, 0.80) 

 Western 
meadowlark 

7.39 (2.25, 28.68) 1.50 (0.21, 3.73) -0.07 (-1.02, 1.52) -0.13 (-1.11, 0.78) -0.31 (-1.56, 0.73) 0.07 (-2.47, 3.76) 

Yellowstone National Park      
 Brewer’s 

Sparrow 
1.77 (0.67, 3.30) 1.59 (0.54, 2.91) 0.38 (-0.35, 1.63) -0.20 (-0.89, 0.45) -0.30 (-1.28, 0.59) -1.73 (-3.39, -0.47) 

 Green-tailed 
towhee  

0.91 (0.10, 1.90) -0.53 (-1.55, 0.32) -0.03 (-0.41, 0.54) -0.47 (-1.18, 0.14) 0.28 (-0.38, 1.05) -0.60 (-1.57, 0.32) 

 Horned lark  
 

-1.77 (-6.23, 7.08) -1.09 (-4.76, 2.00) -0.16 (-1.39, 1.16) -0.35 (-1.70, 0.68) 0.10 (-0.43, 1.03) -1.00 (-4.29, 1.58) 

 Sage 
thrasher  
 

-2.81 (-5.04, -0.73) 2.66 (0.68, 5.90) -0.43 (-1.69, 0.99) -0.11 (-1.16, 0.90) -0.34 (-1.21, 1.76) -1.49 (-4.11, 0.35) 

 Savannah 
sparrow  

-3.64 (-6.54, -0.87) 2.58 (0.55, 6.16) -0.08 (-1.02, 1.24) 0.23 (-0.75, 1.52) 0.13 (-2.00, 0.77) -0.95 (-3.19, 0.90) 

 Vesper 
sparrow  

2.12 (0.13, 6.29) 1.86 (0.88, 3.98) -0.29 (-0.82, 0.44) -0.09 (-0.75, 0.70) -0.57 (-1.36, 0.07) -0.39 (-1.33, 0.80) 

 Western 
meadowlark  

1.37 (-1.09, 7.41) 1.50 (0.21, 3.73) -0.07 (-1.02, 1.52) -0.13 (-1.11, 0.78) -0.31 (-1.56, 0.73) 0.07 (-2.47, 3.76) 
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Table 1-2: Coefficient values that affect the probability of detection for grassland and shrubland 

songbird species present in the National Bison Range and Yellowstone National Park in 2016 

and 2017. Values are presented on the logit-link scale as mean (95% credible intervals; CRIs). 

Bolded values show estimates with 95% CRIs that do not cross zero. 

Species Intercept (𝛃𝛃𝟎𝟎)  
 

Date: linear (𝛃𝛃𝟏𝟏)  
 

Date: non-linear (𝛃𝛃𝟐𝟐)  
 

National Bison Range     
 Clay-colored sparrow -0.69 (-2.10, 0.46) -0.04 (-0.39, 0.25) 0.10 (-0.08, 0.34) 

 Grasshopper sparrow -0.41 (-1.08, 0.35) 0.07 (-0.10, 0.26) -0.02 (-0.09, 0.05) 

 Lark sparrow -2.85 (-6.17, 1.22) -0.03 (-0.54, 0.45) -0.13 (-0.48, 0.14) 

 Vesper sparrow 0.49 (0.06, 0.95) 0.05 (-0.05, 0.15) 0.00 (-0.04, 0.04) 

 Western meadowlark 1.70 (1.26, 2.18) -0.10 (-0.22, 0.01) -0.02 (-0.07, 0.04) 

Yellowstone National Park   
 Brewer’s sparrow 1.36 (0.82, 1.94) 0.19 (0.03, 0.37) -0.04 (-0.11, 0.02) 

 Green-tailed towhee 0.75 (0.12, 1.39) -0.01 (-0.18, 0.15) -0.01 (-0.08, 0.07) 

 Horned lark -3.03 (-7.26, 0.66) 0.26 (-0.20, 0.86) 0.10 (-0.13, 0.41) 

 Sage thrasher -1.33 (-3.21, 0.63) -0.17 (-0.60, 0.19) 0.11 (-0.06, 0.34) 

 Savannah sparrow -1.35 (-3.18, 0.47) -0.21 (-0.73, 0.19) 0.15 (-0.14, 0.63) 

 Vesper sparrow 0.14 (-0.44, 0.79) 0.05 (-0.05, 0.15) 0.00 (-0.04, 0.04) 

 Western meadowlark -1.09 (-1.94, 0.84) -0.10 (-0.22, 0.01) -0.02 (-0.07, 0.04) 
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Table 1-3: Coefficient values that affect the probability of community occupancy for grassland 

and shrubland songbirds in the National Bison Range and Yellowstone National Park in 2016 

and 2017. Values are presented on the logit-link scale as mean (95% credible intervals; CRIs). 

All 95% CRIs for the parameters crossed zero. 

Parameter Mean (95% CRI) 
NBR Community Intercept (µα0) -1.97 (-4.91, 3.48) 

YNP Community Intercept (µα0) -1.91 (-4.80, 1.67) 

Patties: linear (µα1) 0.97 (-0.49, 2.58) 

Patties: non-linear (µα2) -0.21 (-0.82, 0.53) 

NDVI: linear (µα3) -0.11 (-0.67, 0.45) 

NDVI*Patties: interaction (µα4) -0.22 (-0.94, 0.39) 

Year: fixed effect (µα5) -0.54 (-1.79, 0.63) 
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Table 1-4: Coefficient values that affect the probability of community detection for grassland 

and shrubland songbirds in the National Bison Range and Yellowstone National Park in 2016 

and 2017. Values are presented on the logit-link scale as mean (95% credible intervals; CRIs). 

All 95% CRIs for the parameters crossed zero. 

Parameter Mean (95% CRI) 
NBR community intercept (µ𝛃𝛃𝟎𝟎)  -1.54 (-4.81, 1.32) 

YNP community intercept (µ𝛃𝛃𝟎𝟎) -1.21 (-4.63, 0.61) 

Date: linear (µ𝛃𝛃𝟏𝟏) 0.00 (-0.22, 0.22) 

Date: non-linear (µ𝛃𝛃𝟐𝟐) 0.01 (-0.14, 0.18) 
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Chapter 2:  Variation in Avian Abundance Response to Bison Grazing Intensity 
 
Introduction 
 
 Plains bison (Bison bison) have been an important component of North American 

ecosystems for millennia. Estimates of their historic population range from 30-60 million (Flores 

1991; Knopf & Samson 1997). Currently, in the United States, Canada, and Mexico, there are 

approximately 21,000 bison in 62 conservation herds (Gates et al. 2010). The number of bison 

herds continues to increase as interest grows in reintroducing bison to their former native range. 

From 2009-2017, at least eight reintroductions have occurred in North America (Appendix 1, 

Table A1-2). These reintroductions were undertaken by the U.S. Department of the Interior, 

Native American Tribes, non-governmental organizations, and international efforts in Canada 

and Mexico. Reintroduction is expected to continue, given the strong institutional support for 

increasing bison numbers. The U.S. Department of the Interior’s Bison Conservation Initiative 

seeks to “restore [bison herds] to their ecological and cultural role on appropriate landscapes” 

(U.S. Department of the Interior 2008), and ten nations and tribes signed the Northern Tribes 

Buffalo Treaty with the goal of restoring bison on tribal lands (American Bison Society 2017). 

As bison become more common and have increasing impacts on the landscape, their 

ecological effects are important to integrate into conservation planning. Bison are ecosystem 

engineers—a species that modifies habitat to be more or less favorable for other species (Gates et 

al. 2010). Bison both generate, and react to, spatial and temporal heterogeneity of various 

resources that are important to other species of the ecological community. For example, through 

their grazing, they can affect plant species composition (Coppock et al. 1983a, 1983b; Anderson 

2006), and their movements promote seed dispersal (Rosas et al. 2008). When bison take dust 

baths, they create wallows, which then retain precipitation and augment water availability (Butler 
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2006). Such changes to the distribution of resources in turn influence the ecology of species that 

rely on them. Developing a predictive understanding of how bison affect other species of the 

ecological community will help inform conservation goals, including the role of bison as 

conduits of habitat modification. 

Historically, bison helped create habitat conditions that supported a wide variety of 

grassland bird species (Askins et al. 2007; Knopf 1996). Research in grassland systems of North 

America has shown that bison grazing can induce differences in vegetation structure (Tastad 

2013; Sliwinski 2011; Towne et al. 2005). As an ecosystem process, grazing by large ungulates 

can alter the vegetation structure in songbird habitat by reducing vegetation height (Tastad 

2013), increasing bare ground (Augustine et al. 2012; Lwiwski et al. 2015), and affecting the 

spatial heterogeneity of vegetation (Adler et al. 2001). Changes to vegetation structure are the 

primary known mechanism for songbird responses to grazing (Knopf 1996; Derner et al. 2009). 

Under different intensities of grazing, these effects create distinct habitat conditions to which 

bird species respond. Grassland obligate songbirds, which rely entirely on grassland habitat 

(Vickery et al. 1999), show responses to these differences in vegetation structure (Fisher & Davis 

2010).  

One way to evaluate the grassland songbird species’ responses to the effects of bison 

grazing is to measure adult songbird density. Higher animal density is often indicative of higher 

quality habitat (Fretwell & Lucas 1969; Rosenzweig 1981), informing researchers about the 

resource requirements of a given species. Past research on the relationship between bison grazing 

and grassland songbird density is limited, making it difficult to predict species’ responses 

(Griebel et al. 1998; Leuders et al. 2006; Powell 2006; Sliwinski 2011; Williams & Boyle 2018). 

However, a body of literature exists on the relationship between cattle grazing and grassland 
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songbird density, showing notably variable songbird responses (Saab et al. 1995). For example, 

western meadowlarks (Sturnella neglecta) generally prefer light to moderate grazing and avoid 

heavy grazing (Giezentanner 1970; Kantrud & Kologiski 1982, Bock et al. 1993; Dechant et al. 

2002), yet there are exceptions. Several studies have found that western meadowlarks have no 

response to various intensities of grazing (Renken 1983; Messmer 1990; Dale & McKeating 

1996; Prescott & Wagner 1996). Other studies have found no difference in western meadowlark 

abundance between grazed and ungrazed habitat (Dale 1984; Saab et al. 1995,) and alternatively, 

that they are three times more abundant in ungrazed versus grazed habitat (Maher 1973, 1974).  

Site-specific responses of western meadowlarks and other grassland songbird species to grazing 

appear to vary considerably, resulting in few meaningful generalizations for management 

(Lipsey & Naugle 2017). 

One explanation for the lack of a robust response pattern is that grassland songbirds show 

plasticity in their habitat selection behavior. Habitat selection, the process by which an organism 

chooses habitat components to use (Johnson 1980), is a hierarchical, scale-dependent, behavioral 

decision by the organism (Jaenike & Holt 1991). Many factors influence habitat selection for an 

organism in a particular ecological context, such as landscape structure, population size, and 

historical processes (Fuller 2012). This may result in different patterns of species density, based 

on known habitat relationships in other contexts. Thus, the resources and conditions that make up 

habitat for a given species should not be considered fixed across a species’ range (Fuller 2012). 

The inconsistency in grassland songbird response to grazing suggests their responses may 

be sensitive to other factors. The conditions under which bison are managed across North 

America vary widely in scale, vegetation type, and herd size. Such differences could be 

important for predicting species’ responses and managing grassland songbird populations 
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successfully. Therefore, to understand the effects of bison grazing on grassland songbirds, it 

must be determined whether grassland songbird responses to bison grazing vary by ecological 

context.  

I examined the density of vesper sparrows (Pooecetes gramineus) and western 

meadowlarks in relation to bison grazing in two ecological contexts. These contexts are defined 

by differences in bison herd size, bison density, spatial scale of bison grazing, and vegetation 

type. I hypothesized that the ecological context would influence how both species responded to 

bison grazing. I predicted that western meadowlarks would show a larger difference in their 

response to grazing, based on their more limited preference for grazing intensity (Bock et al. 

1993). This indicates they would be more sensitive to habitat differences produced by each 

ecological context. I predicted vesper sparrows would show a smaller difference in their response 

to grazing between the ecological contexts, because they are considered a grassland generalist 

(Jones & Cornelly 2002; Lusk & Koper 2013), and are less responsive to changes in grazing 

intensity (Bock et al. 1993). 

 

Study Areas 

To examine the importance of the ecological context of bison grazing, I conducted my 

research in two study sites. The first is the National Bison Range (NBR), in the Mission Valley 

near Moiese, MT. The NBR is federally managed by the U.S. Fish and Wildlife Service and was 

established in 1908 for the conservation of bison. Currently, there are approximately 350 bison in 

the NBR. In the past, bison management consisted of rotating bison among eight pastures during 

summer months and leaving one pasture ungrazed for an entire year (A. Lisk, personal 

communication). Since 2015, bison movement has been unrestricted except to be contained 
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within the boundary of the NBR (A. Lisk, personal communication). The NBR is approximately 

76 km2, and the vegetation is 75% intermountain grassland similar to Palouse prairie. The 

remaining area consists of conifer forest and riparian habitat. The grasslands are characterized by 

bunchgrasses such as Idaho fescue (Festuca idahoensis), bluebunch wheatgrass (Agropyron 

spicatum), and prairie junegrass (Koeleria macrantha). Intermixed in the grasslands are forbs 

such as arrowleaf balsamroot (Balsamorrhiza sagittata), and low shrubs such as Wood’s rose 

(Rosa woodsia) and snowberry (Symphoricarpus occidentalis).  

 My second study site is the Northern Range of Yellowstone National Park (YNP). YNP 

is federally managed by the National Park Service. There are approximately 5,000 bison in YNP, 

3,500 of which use the Northern Range (Geremia et al. 2014). The Northern Range of YNP 

constitutes a large part of the herd’s summer range and encompasses about 890 km2. Bison 

movements are minimally managed, but boundaries are enforced to contain bison within YNP. I 

conducted surveys in the Lamar Valley. The area is composed of shrub steppe, dominated by 

mountain big sagebrush (Artemisia tridentata), and grass species such as Idaho fescue, 

bluebunch wheatgrass, and prairie junegrass. 

 

Methods 
 
Field Methods: 

To measure avian density in each ecological context, I established sampling plots in areas 

I predicted would represent the spectrum of low to high bison grazing intensity. I measured 

vesper sparrow and western meadowlark density and bison grazing intensity at each plot and 

related these variables using a multi-species abundance model. 

Plot Size: 
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I defined sampling plots at 250 x 250 m (62,500 m2) for three reasons. First, by walking a 

transect through the middle of the plot, we were able to survey for birds up to 125 meters to 

either side. Beyond 125 meters, human detection of birds declines dramatically, so this helps 

ensure that birds detected are within the plot (Ralph et al. 1995). Secondly, this area is 

approximately twice the size of the breeding territory of western meadowlarks, the study species 

with the largest territory size (Lanyon 1956, Aweida 1995). Lastly, the study sites have varying 

topography with steep slopes and drainages. To maximize visibility, I chose a plot size that 

reduced the probability of visual obstructions within the plot. 

Sampling Frame: 

I stratified my plot selection across three levels of bison grazing intensity. I developed 

these bison grazing strata using a habitat suitability index (HSI) (Steenweg et al. 2016, Wiggins 

2016), using slope (U.S. Geological Survey 2013), distance to water (U.S. Geological Survey 

2013), and vegetation type (Landfire 2012). HSI models use a species’ known affinities for 

habitat characteristics to predict suitability of a habitat for a given species. I binned the 

continuous HSI values from both study sites into three strata of bison grazing intensity, using the 

Natural Jenks tool in ArcGIS: Low (0.169-0.459), Medium (0.460-0.611), and High (0.612-

0.795). HSI values range from 0 to 1, with 0 representing the least suitable habitat, and 1 

representing the most suitable habitat for bison. 

I randomly selected plots in each stratum, and sampled plots by the following criteria: 1.) 

the plot contained ≥ 75% grassland or shrub steppe vegetation, and 2.) the plot contained a 

continuous segment of habitat ≥ 75% of the plot (Wiggins 2016). At the NBR site, I sampled 10 

plots in the Low stratum, 30 plots in the Medium stratum, and 30 plots in the High stratum each 

year. Compared to Medium and High stratum (43% and 32% of NBR, respectively), there was 
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less Low stratum available in NBR (approximately 11% of NBR), because much of this area was 

also forested. This resulted in sampling fewer Low stratum plots in this study site. To 

compensate, I sampled a larger number of Low stratum plots at the YNP site. In YNP, I sampled 

30 plots in the Low stratum, 13 plots in the Medium stratum, and 12 in the High stratum in 2016. 

In 2017, I sampled 25 plots in the Low stratum, 8 in the Medium stratum, and 11 in the High 

stratum (Appendix 1, Table A1-1). I selected plots in YNP from an area similar in size to the 

NBR (YNP = 69 km2, NBR = 76 km2). 

Avian Density Surveys:   

To measure grassland songbird density, I used a dependent double observer method as 

described by Nichols et al. (2000) and Tipton et al. (2008), and recently implemented by Golding 

and Dreitz (2017). Because it requires two observers, this method produces a detection rate for 

each species by each observer, and allows me to create corrected density estimates based on 

imperfect detection.  

To execute the dependent double observer method, two observers walk transects through 

the middle of a plot. The primary observer walk first and communicates all adult birds they see 

within the plot to the secondary observer. The secondary observer walks 3-5 meters behind the 

primary observer on the transect, records the birds the primary observer detects, and records any 

additional birds the primary observer fails to detect. Visual confirmation of the bird within plot 

boundaries is required, thus detections in which the bird was heard but not seen were not 

recorded. Observers use rangefinders and binoculars to confirm each bird was within plot 

boundaries. Observers walk slowly, and stop occasionally along the transect to look and listen 

for birds. They switch roles between consecutive surveys.  
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All surveys were conducted in the early morning hours, from dawn until 1000 MDT in 

order to target the hours when birds are most active and easily detectable. Surveys were not 

conducted in rain or winds higher than 24 km/hr due to reduced detectability of birds. In NBR, 

bird surveys were conducted from May 20 to July 7 in 2016 and from May 19 to June 30 in 

2017. In YNP, bird surveys were conducted from June 1 to July 1 in 2016 and from May 31 to 

July 9 in 2017. All plots were sampled twice within a field season. 

Bison Grazing Intensity:  

I measured bison grazing intensity by counting bison patties in each plot. Density of 

patties estimates bison grazing intensity at the patch-level spatial scale and has been shown to 

reflect vegetation responses to grazing intensity (Tastad 2013). Following Sliwinski (2011), 

patties were either individual, well-formed piles, or several closely associated piles. Observers 

counted all patties, regardless of age, representing bison use over recent years. Observers walked 

four bison grazing transects within each plot. Two transects were sampled each time immediately 

following a bird survey in each plot. These transects were located to both sides of the bird 

transect and were midway between the bird transect and the edge of the plot (see Appendix 1, 

Figure A1-1). Observers walked two transects in an East-West direction, and two transects in a 

North-South direction. Observers walked slowly, counting all patties within 1 meter to the left 

and right of the line transect.   

Analytical Methods: 

Correlation Between Covariates:  

I investigated relationships between patty counts and HSI value using pairwise plot 

matrices, summary statistics and linear regressions. I used these methods to explore the 
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relationship between predicted bison grazing and measured bison grazing and to inform my 

conclusions.   

Abundance Model:  

To examine bird response to bison grazing intensity, I used an extension of the 

multispecies dependent double-observer abundance model (MDAM) developed by Golding et al. 

(2017). This model uses a Bayesian framework and incorporates the survey process of the 

dependent double observer method into the likelihood statement, accounting for imperfect 

detection and creating detection-adjusted density estimates.   

The MDAM models the biological and observation processes in a hierarchical way to 

produce coefficient and density estimates. The biological process uses a model in which mean 

species abundance of each species 𝑖𝑖, plot 𝑗𝑗, and year 𝑘𝑘 (ʎ𝑖𝑖,𝑗𝑗,𝑘𝑘) is estimated from the linear model. 

Abundance (𝑢𝑢) of each species 𝑖𝑖 at plot 𝑗𝑗 in year 𝑘𝑘 is then derived from a Poisson distribution 

with mean species abundance as the shape parameter such that:  

𝑢𝑢𝑖𝑖,𝑗𝑗,𝑘𝑘  ~ Poisson (ʎ𝑖𝑖,𝑗𝑗,𝑘𝑘) 

The observation process informs the biological process by modeling observed abundance (𝑦𝑦) for 

species 𝑖𝑖 at plot 𝑗𝑗 in year 𝑘𝑘 and survey 𝑙𝑙 from a multinomial random variable. This variable is a 

function of 𝑢𝑢𝑖𝑖,𝑗𝑗,𝑘𝑘  and the cell probabilities of the three observation outcomes (𝜋𝜋𝑖𝑖,𝑗𝑗,𝑘𝑘) of the 

dependent double observer method (see Golding et al. 2017 for details on cell probabilities).  

These observation outcomes are: 1) the primary observer detects an individual, 2) the secondary 

observer detects an individual that the primary observer fails to detect, and 3) both the primary 

and secondary observers fail to detect and individual.  

𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙 ~ 𝑀𝑀𝑢𝑢𝑙𝑙𝑙𝑙𝑖𝑖𝐵𝐵𝑙𝑙𝑀𝑀𝑖𝑖𝑝𝑝𝑙𝑙 (𝑢𝑢𝑖𝑖,𝑗𝑗,𝑙𝑙,𝜋𝜋𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙) 
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Thus, the likelihood for the observation of a single species is represented by the probability that 

at least one observer detects an individual (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), the probability of detection by the primary 

observer (𝑝𝑝1) and the probability of detection by the secondary observer (𝑝𝑝2) given the counts of 

birds by the primary observer during observation 𝑖𝑖 (𝑦𝑦1𝑖𝑖), the total number of individuals detected 

by either the primary or secondary observer during observation 𝑖𝑖 (𝐶𝐶𝑖𝑖), and the total number of 

individuals available for detection (𝑢𝑢). The likelihood function is as follows: 

𝐿𝐿(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝1,𝑝𝑝2|𝑦𝑦1𝑖𝑖,𝐶𝐶𝑖𝑖,𝑢𝑢) = ���
𝑢𝑢
𝐶𝐶𝑖𝑖
� (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝐶𝐶𝑖𝑖(1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝑁𝑁−𝐶𝐶𝑖𝑖 �

𝐶𝐶𝑖𝑖
𝑦𝑦1𝑖𝑖
� (𝑝𝑝1)𝑦𝑦𝑖𝑖�(1− 𝑝𝑝1)𝑝𝑝2�

𝐶𝐶𝑖𝑖−𝑦𝑦1𝑖𝑖�
𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖=1

 

My data met the three assumptions of the MDAM: 1) the population is closed to 

emigration, immigration, births, and deaths during the sampling period; 2) the detectability of 

both species and individuals does not change between repeating sampling; and 3) the chosen 

distribution suitably describes the biological and observation data. The first assumption was met 

by surveying plots during the breeding season. Birds have higher site fidelity during the breeding 

season as they establish a territory, build a nest, and raise young. This reduces the likelihood that 

individuals immigrated or emigrated from the population. Only adult birds were included in the 

data, as young of the year can readily be distinguished from adults by appearance and behavior. 

Lastly, the data was partitioned by breeding season year, such that deaths between years did not 

violate the first assumption. The second assumption was met by restricting the sampling period. 

Surveys were conducted in the early morning hours, during the breeding season, and in favorable 

weather conditions to assure detection of species and individuals did not vary. The third 

assumption was met by incorporating covariates into the biological and observation models. The 

Poisson distribution assumes animals are distributed randomly on the landscape (Royle 2004), 

and the multinomial distribution is based on the cell probabilities of the dependent double 
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observer method (Golding et al. 2017). The added covariates account for deviation of the data 

from these distributions.       

I developed a model to represent my study design and hypothesis as follows:  

log( ʎ𝑖𝑖,𝑗𝑗,𝑘𝑘)  =  β0𝑖𝑖  +  β1𝑖𝑖 ∗ 𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑖𝑖𝐵𝐵𝑝𝑝𝑗𝑗,𝑘𝑘  +  β2𝑖𝑖 ∗ 𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑖𝑖𝐵𝐵𝑝𝑝2𝑗𝑗,𝑘𝑘  + β3𝑖𝑖 ∗ 𝑦𝑦𝐵𝐵𝑝𝑝𝐵𝐵 +  β4𝑖𝑖 ∗  𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑙𝑙𝑖𝑖𝑙𝑙𝐵𝐵 

+ β5𝑖𝑖 ∗ 𝑦𝑦𝐵𝐵𝑝𝑝𝐵𝐵 ∗  𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑙𝑙𝑖𝑖𝑙𝑙𝐵𝐵 +  β6𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑙𝑙𝑖𝑖𝑙𝑙𝐵𝐵 ∗  𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑖𝑖𝐵𝐵𝑝𝑝𝑗𝑗,𝑘𝑘 + β7𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑙𝑙𝑖𝑖𝑙𝑙𝐵𝐵

∗ 𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑖𝑖𝐵𝐵𝑝𝑝2𝑗𝑗,𝑘𝑘 

I allowed detection (𝑝𝑝) to vary by observer and species. I used uninformative priors for 

parameters β0 –β7, using a normal distribution of N(0, 1000). I ran the model with 3 chains, for 

35,000 iterations each, and a burn-in period of 15,000 iterations. Model convergence was 

assessed using the Gelman-Rubin statistic (Gelman & Rubin 1992) and visual inspection of trace 

plots, autocorrelation, estimate density, and the running mean. I assessed goodness of fit using a 

Bayesian p-value by comparing the estimated deviance values and predicted deviance values for 

each MCMC sample of each observation, following Broms et al. (2016). 

 

Results 
 
 At NBR, field teams completed two surveys of 70 plots in 2016 and 2017. In 2016, field 

teams made 104 observations of vesper sparrows, and 226 observations of western meadowlarks. 

In 2017, field teams made 149 observations of vesper sparrows, and 321 observations of western 

meadowlarks. In 2016, mean patty count per plot ranged from 2 – 85.5 patties (median = 23.5, 

IQR = 26.9), and in 2017 from 1.8-66.8 patties (median = 20.25, IQR = 21.6). See Appendix 1, 

Table A1-1 for more details. Linear regression showed a weak but significant relationship 

between mean patties (averaged between 2016 and 2017) and mean HSI value (R2 = 0.07, p = 

0.02).  
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 At YNP, field teams completed 106 surveys of 53 plots in 2016, and 88 surveys of 42 

plots in 2017. In 2016, they recorded 221 observations of vesper sparrows and 38 observations of 

western meadowlarks. In 2017, they recorded 58 observations of vesper sparrows, and 17 

observations of western meadowlarks. In 2016, mean patty count ranged from 4.0 – 84.0 patties 

(median = 36.0, IQR = 24.3), and in 2017 from 12.8 – 110.8 patties (median = 41.3, IQR = 31). 

See Appendix 1, Table A1-1 for more details. Linear regression showed a moderately strong 

relationship between mean patties (averaged between 2016 and 2017) and mean HSI value (R2 = 

0.39, p < 0.001).   

 The MDAM model converged, with R-hat values less than 1.1 for all parameters. The p-

value for the goodness-of-fit test of the MDAM model was p = 0.34. P-values less than 0.05 or 

greater than 0.95 do not fit the data well (Broms et al. 2016), thus the model has an adequate fit 

to the data. Posterior distributions for parameters from the model indicated that bird densities 

have a positive association with bison patties for both species (Table 2-1). All posterior 

distributions for coefficients are presented on the log-link scale. For vesper sparrows, the mean 

effect of bison patties on density (β1) is 0.37 (95% CRI = 0.20, 0.54) and for western 

meadowlarks is 0.13 (95% CRI = 0.00, 0.25). Both species showed a negative quadratic response 

to bison patties, although the 95% credible interval for vesper sparrows crossed zero (β2 mean = 

-0.14, 95% CRI = -0.30, 0.02) and did not for western meadowlarks (β2 mean = -0.12, 95% CRI 

= -0.24, 0.00). The effect for the interaction between location and bison patties was weakly 

negative for vesper sparrows (β6 mean = -0.10, 95% CRI = -0.41, 0.2) and positive for western 

meadowlarks (β6 mean = 0.54, 95% CRI = -0.05, 1.18). Although the credible interval for this 

effect crossed zero for both species, there was a 0.96 probability that the effect was positive for 

western meadowlarks. The effect for the interaction between location and the quadratic effect of 
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patties was weakly positive for vesper sparrows (β7 mean = 0.13, 95% CRI = -0.06, 0.32) and 

weakly negative for western meadowlarks (β7 mean = -0.17, 95% CRI = -0.51, 0.13). 

 For the fixed effects in the model, there was a strong effect of location for western 

meadowlarks (β4 mean = -1.81, 95% CRI = -2.27, -1.38), no or minimal effect of year (β3 mean 

= -0.02, 95% CRI = -0.25, 0.29), and the interaction between year and location was weakly 

negative (β5 mean = -0.32, 95% CRI = -1.04, 0.38). For vesper sparrows, there were no strong 

fixed effects. See Table 2-1 for a full list of coefficient values. 

 I modeled detection to vary by species and observer. Of 15 observers, detection for 

vesper sparrows ranged from 0.14 (95% CRI = 0.07, 0.24) to 0.80 (95% CRI = 0.45, 0.99). For 

western meadowlarks, observer detection ranged from 0.20 (95% CRI = 0.07, 0.40) to 0.82 (95% 

CRI = 0.58, 0.97). On average, detection for meadowlarks was slightly higher than for vesper 

sparrows, with a mean detection of 0.45 (95% CRI= 0.08, 0.88), compared to a mean detection 

of 0.38 (95% CRI= 0.08, 0.87) for vesper sparrows. 

 Predicted mean plot density for vesper sparrows is higher in YNP, ranging from 1.21 – 

5.05 birds per plot, compared to 1.03 – 3.03 birds per plot in NBR. The optimal grazing intensity 

for vesper sparrows, which is the intensity where they are predicted to reach a maximum density, 

is 60.2 patties per plot in NBR where they reach a density of 3.02 birds per plot (95% CRI = 

2.06, 4.15) (Figure 2-2). The optimal grazing intensity for vesper sparrows in YNP is 110 patties 

per plot, where they reach a density of 5.03 birds per plot (95% CRI = 1.76, 10.70). In NBR, 

mean vesper sparrow density is 1.41 times higher at 60.2 patties per plot (their optimal grazing 

intensity in NBR) than at 110 patties per plot (their optimal grazing intensity in YNP). In YNP, 

mean vesper sparrow density is 1.99 times higher at 110 patties per plot than at 60.2 patties per 

plot. Predicted mean plot density for western meadowlarks is higher in NBR, ranging from 1.65 
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– 4.27 birds per plot, compared to 0.15 – 0.86 birds per plot in YNP. The optimal grazing 

intensity for western meadowlarks is 42.7 patties per plot in NBR and 54.6 patties per plot in 

YNP.  In NBR, western meadowlark density is 1.04 times higher at 42.7 patties per plot than at 

54.6 patties per plot. In YNP, western meadowlark density is 1.1 times higher at 54.6 patties per 

plot than at 42.7 patties per plot (Figure 2-2).  

  

Discussion  
 
 Vesper sparrow density showed a positive association with bison grazing intensity, which 

is consistent with results from Sliwinski (2011). The shape of vesper sparrow response to bison 

grazing was different between NBR and YNP (Figure 2-1), and vesper sparrows showed more 

variability in predicted density based on location-specific responses than western meadowlarks 

(Figure 2-2). However, their positive association with bison grazing intensity (β1), was the only 

important covariate for understanding vesper sparrow density (Table 2-1). Vesper sparrows are 

described as grassland generalists (Jones & Cornely 2002; Lusk & Koper 2013) because they are 

able to utilize a wide range of grassland habitat. This flexibility may explain why neither the 

effect of study location, nor the interaction between study location and patties influenced vesper 

sparrow density.      

 Western meadowlark density showed a positive association with bison grazing intensity, 

and a negative quadratic response to bison grazing intensity, such that the effect of bison grazing 

intensity becomes less positive at higher levels of grazing (Figure 2-1). This is consistent with 

the general trend that western meadowlarks prefer light to moderate grazing (Giezentanner 1970; 

Kantrud & Kologiski 1982, Bock et al. 1993). I observed far fewer western meadowlarks in YNP 

than NBR, and this was reflected in the strong negative effect of location. NBR may be 
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inherently more suitable habitat than YNP due to the higher grass component, resulting in higher 

densities at that location. In NBR, the grass component is 54.5% and the shrub component is 

29.1% of the study area (Landfire 2012). In YNP, the grass component is 24.8% and the shrub 

component is 48.7% of the study area (Landfire 2012). Both McAdoo et al. (1989) and Knick 

and Rotenberry (1995) found western meadowlarks to be associated with a low density of 

shrubs. The high proportion of sagebrush cover in YNP may reduce the availability of suitable 

conditions for western meadowlarks. 

In addition to differences between locations, there is some weak evidence that western 

meadowlarks respond more positively to the same level of bison grazing intensity in YNP than 

they do in NBR. This provides partial support for my prediction that vesper sparrows and 

western meadowlarks would both show location-specific responses, and that the magnitude of 

the effect would be larger for western meadowlarks. The credible interval for the interaction 

between location and patties (β6) crossed zero, and the difference in predicted densities based on 

site-specific optimal grazing intensities was small (Table 2-1 and Figure 2-2). However, there is 

a 0.96 probability that the effect was positive, suggesting the effect may be worth considering in 

management and conservation applications. The differences inherent to each location, such as 

vegetation type, bison herd size and density, and the scale over which bison grazing occurs may 

influence the habitat selection process for western meadowlarks. Other factors such as soil 

productivity and precipitation may also contribute, as they can determine the magnitude of 

grassland songbird response to grazing (Lipsey & Naugle 2017). Though I cannot discern which 

differences may be important from this study, it nonetheless demonstrates that species’ responses 

to bison grazing may differ based on the ecological context.  
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Understanding site-specific responses may be especially important for grassland 

songbirds with more specific habitat requirements and less so for generalists. This could pose a 

challenge when managing a species with more specialized needs for vegetation structure or with 

more vulnerable populations than the western meadowlark. This challenge could be mitigated by 

encouraging a broad range of grazing intensities to create a broad range of vegetation structure. 

Doing so will provide the vegetation structure birds need, regardless of location-specific 

fluctuations in response. This will reduce the need to understand species’ site-specific 

associations with bison grazing intensity. 

An important limitation to this study is the possibility that the patty counts at each study 

site are not equivalent measures of bison grazing intensity. While many studies have successfully 

used dung counts as a measure of herbivore use (Barnes 2001; Hendricks et al. 2005; Manthey & 

Peper 2010), Brodie (2006) notes that fecal decay rates can vary spatially and temporally, 

decoupling the relationship between dung counts and herbivore use. If this is true between NBR 

and YNP, comparable bison patty counts in each location could actually mean different 

intensities of bison grazing. This would mean that differences in avian species’ responses to 

bison grazing by location are actually responses to different intensities of bison grazing. 

Researchers who want to use this method to compare grazing intensity across study sites should 

consider measuring a patty persistence rate to correct for variation in decay rates (Brodie 2006, 

Marquez et al. 2001). 

My study focused on a single parameter (density) that contributes to avian populations.  

However, other demographic parameters may be important for understanding the effect of bison 

grazing on avian populations. Demographic rates such as nest success and reproductive output 

are important indicators of habitat quality, and higher density does not always correlate with 



56 
 

higher reproductive rates (Van Horne 1983; Vickery et al. 1992). Van Horne (1983) suggests this 

is more likely to be true for species that are habitat generalists because they often have high 

reproductive capacities, yet also use many habitat types. Therefore, further research that assesses 

the effects of bison grazing in different ecological contexts on grassland songbirds should also 

include reproductive rates and grassland specialist species to attain a more comprehensive 

understanding of the relationship.  
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Figures and Tables 
 
 
 

 
Figure 2-1: Predicted mean plot density for vesper sparrows (VESP) and western meadowlarks (WEME) across the spectrum of bison 

grazing intensity measured by patty counts in the National Bison Range (NBR) and Yellowstone National Park (YNP) in 2016 and 

2017. Solid lines represent the mean response, and dashed lines represent 95% credible intervals.
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Figure 2-2: Predicted vesper sparrow (VESP) density and western meadowlark (WEME) density by optimal grazing rate. Optimal 

grazing rate is the grazing rate that maximized bird density in the National Bison Range (NBR) and Yellowstone National Park (YNP) 

in 2016 and 2017. The figure demonstrates the predicted bird density at each study site, showing the effect of site-specific responses to 

grazing. Circles represent the mean prediction, and lines represent 95% credible intervals.
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Table 2-1: Coefficient values that affect density of vesper sparrows and western meadowlarks. 

The location parameter and interactions with location indicate the effect of differences between 

the National Bison Range and Yellowstone National Park in 2016 and 2017. Values are 

presented on the log-link scale as mean (95% credible interval; CRI). Bold values show 

estimates with 95% CRI that do not cross zero. 

 

Parameter Vesper sparrow 
 

Western meadowlark  

Intercept (𝛃𝛃𝟎𝟎)  0.77, (0.45, 1.11)  1.42, (1.17, 1.69)  

Patties: linear (𝛃𝛃𝟏𝟏)  0.37, (0.20, 0.54)  0.13, (0.00, 0.25) 

Patties: non-linear (𝛃𝛃𝟐𝟐) -0.14, (-0.30, 0.02) -0.12, (-0.24, 0.00)  

Year:(𝛃𝛃𝟑𝟑)  0.15, (-0.24, 0.51) -0.02, (-0.25, 0.29) 

Location: (𝛃𝛃𝟒𝟒) -0.13, (-0.49, 0.30) -1.81, (-2.31, -1.38) 

Year*location: (𝛃𝛃𝟓𝟓) -0.34, (-0.89, 0.27) -0.32, (-1.12, 0.34) 

Location*patties: linear (𝛃𝛃𝟔𝟔) -0.10, (-0.41, 0.22)  0.54, (-0.05, 1.18) 

Location*patties: non-linear (𝛃𝛃𝟕𝟕)  0.13, (-0.06, 0.32) -0.17 (-0.51, 0.13) 
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Table 2-2: Detection probabilities for vesper sparrow and western meadowlarks at the National 

Bison Range and Yellowstone National Park in 2016 and 2017, listed by observer. Values are 

presented as mean (95% credible interval; CRI). No 95% CRIs crossed zero, because detection 

probabilities range from zero to one. 

Observer ID Vesper sparrow Western meadowlark 

1 0.34 (0.23, 0.47) 0.31 (0.22, 0.42) 

2 0.45 (0.32, 0.58) 0.63 (0.54, 0.71) 

3 0.20 (0.11, 0.32) 0.40 (0.28, 0.54) 

4 0.28 (0.12, 0.51) 0.51 (0.37, 0.64) 

5 0.25 (0.16, 0.35) 0.24 (0.16, 0.33) 

6 0.52 (0.28, 0.77) 0.59 (0.33, 0.82) 

7 0.21 (0.04, 0.49) 0.82 (0.58, 0.97) 

8 0.40 (0.26, 0.56) 0.55 (0.33, 0.77) 

9 0.52 (0.38, 0.65) 0.62 (0.52, 0.71) 

10 0.29 (0.17, 0.44) 0.51 (0.34, 0.69) 

11 0.14 (0.07, 0.24) 0.20 (0.07, 0.40) 

12 0.79 (0.45, 0.99) 0.36 (0.01, 0.93) 

13 0.48 (0.22, 0.77) 0.36 (0.05, 0.78) 

14 0.17 (0.02, 0.45) 0.29 (0.04, 0.69) 

15 0.59 (0.36, 0.82) 0.40 (0.12, 0.74) 
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Appendix 1: Supporting Information 

 
Figure A1-1: The schematic shows the placement of the bird survey transect and bison grazing 

transects in each plot sampled on the National Bison Range and Yellowstone National Park in 

2016 and 2017. The green line represents the bird transect line. Blue lines represent bison patty 

count transects.   
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Table A1-1: The number of plots sampled in each category of predicted bison grazing, and 

associated patty counts on the National Bison Range and Yellowstone National Park in 2016 and 

2017. Patties are reported as median and IQR of mean plot-level measurements. Predicted 

grazing category was determined using a habitat suitability index for bison (Steenweg et al. 

2016). 

Predicted Grazing Category 2016 2017 
 Plots Patties Plots Patties 
National Bison Range N Median IQR N Median IQR 
 Low 10 18.25 19.43 10 19.00 13.23 
 Medium 30 18.50 22.83 30 18.38 23.25 
 High 30 31.25 30.63 30 24.88 20.38 
 Total 70  70  
      
Yellowstone National Park N Median IQR N Median IQR 
 Low 30 32.13 14.56 25 37.75 17.50 
 Medium 13 20.50 29.00 8 38.13 5.56 
 High 12 50.75 19.38 11 70.00 18.00 
 Total 55  42  
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Table A1-2: Bison reintroductions in North America from 2009-2017. The table includes all 

reintroductions to the author’s knowledge, but may not be a comprehensive list. 

 
Location Managing Agency Year Source: 
Janos Biosphere 
Reserve, Mexico 

The Nature Conservancy 2009 https://www.nature.org/ourinitiati
ves/regions/latinamerica/mexico/
explore/bison-homecoming.xml 

Book Cliffs, UT Utah Division of Wildlife 2009  https://www.nps.gov/articles/biso
n-bellows-6-30-16.htm 

Fort Peck Indian 
Reservation, MT 

Fort Peck Fish and Game 
Department 

2012 http://www.nytimes.com/2012/04
/27/us/bison-return-to-montana-
prairie.html 

Fort Belknap 
Reservation, MT 

Fort Belknap Fish and 
Wildlife Department 

2013 https://www.usatoday.com/story/
news/nation/2013/08/23/wild-
bison-released-on-prairie 
/2694415/ 

Larimer County, 
CO 

Larimer County Natural 
Resources 

2015 http://csu-cvmbs.colostate.edu 
/academics/bms/ARBL 
/Pages/bison.aspx 

Blackfeet Indian 
Reservation, MT 

Blackfeet Nation Fish and 
Wildlife Department 

2016 http://flatheadbeacon.com/2016/0
4/13/a-native-homecoming/ 

Banff National 
Park, Canada 

Parks Canada 2017 http://www.pc.gc.ca/en/pn-
np/ab/banff/info/gestion-
management/bison 

Wind River 
Reservation, WY 

Eastern Shoshone Tribe 2017 https://www.fws.gov/news/blog/i
ndex.cfm/2017/5/16/ 
Bison-Return-to-Wind-River-
Reservation 
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Appendix 2: Study Area Figures 
 

 
 
 
Figure A2-1: Map of the coterminous United States of America showing the location of the two 

study locations. The orange dot represents the National Bison Range study site and the blue dot 

represents the Yellowstone National Park study site. Map image credit: 

http://www.clker.com/clipart-gray-u-s-map.html. 

 
 
 
 
  

 

 

 

       Legend 
 
= National Bison Range 
= Yellowstone National Park  
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Figure A2-2: Map of the National Bison Range study area and 70 plots surveyed for 

grassland and shrubland songbirds in 2016 and 2017. 

Map by: Wiggins, Christine. Habitat Suitability Index for National Bison Range and Lamar Valley, 
Yellowstone National Park. April 2016. Using: ArcGIS  Model Builder. Version 10.2. Redlands, CA: 
Environmental Systems Research Institute, Inc., 2013.  
Imagery: USDA, 2015, National Agriculture Imagery Program. Accessed April 20, 2016 at 
https://gis.apfo.usda.gov/arcgis//rest/services 
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Figure A2-3:  Map of the Yellowstone National Park study area and plots sampled for grassland and shrubland songbirds. All 53 

plots were sampled in 2016, and 42 of the plots shown were sampled in 2017.  

Map by: Wiggins, Christine. Habitat Suitability Index for National Bison Range and Lamar Valley, Yellowstone National Park. April 2016. Using: 
ArcGIS  Model Builder. Version 10.2. Redlands, CA: Environmental Systems Research Institute, Inc., 2013.  
Imagery: USDA, 2015, National Agriculture Imagery Program. Accessed April 20, 2016 at https://gis.apfo.usda.gov/arcgis//rest/services 
 

 

            

https://gis.apfo.usda.gov/arcgis/rest/services%3Chttps:/gis.apfo.usda.gov/arcgis/rest/services
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  Figure A2-4: Map of the distribution of predicted bison grazing intensity based on the habitat 

suitability index values for the National Bison Range study area.  

Map by: Wiggins, Christine. Habitat Suitability Index for National Bison Range and Lamar Valley, Yellowstone 
National Park. April 2016. Using: ArcGIS  Model Builder. Version 10.2. Redlands, CA: Environmental Systems 
Research Institute, Inc., 2013.  
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Figure A2-5: Map of the distribution of predicted bison grazing intensity based on the habitat suitability index values 

for the Yellowstone National Park study area. All 53 plots were sampled in 2016, and 42 of the plots shown were 

sampled in 2017.  

Map by: Wiggins, Christine. Habitat Suitability Index for National Bison Range and Lamar Valley, Yellowstone National Park. April 2016. 
Using: ArcGIS  Model Builder. Version 10.2. Redlands, CA: Environmental Systems Research Institute, Inc., 2013.  
 



77 
 

Appendix 3: Additional Field Data Collected 
 
Methods 

Canopy Height   

I measured canopy height on the same transects where I counted bison patties. Observers 

took a canopy height measurement every 50 meters, for a total of 16 canopy height 

measurements per plot. Observers placed a 20x50 cm piece of cardboard on top of the canopy, 

then recorded canopy height to the nearest half centimeter (Tastad 2013). Observers also visually 

estimated the proportion of grass, forb, shrub, and bare ground/rock below the board. 

Other Grazer Pellets  

I counted pellets of other ungulates present in the study areas such as pronghorn antelope, 

elk, white-tail deer, and mule deer to control for the impact they may have on vegetation. 

Observers counted piles of pellets within 1 meter to the left and right of the same transects used 

for counting bison patties.   

 

Relationships Among Variables  

National Bison Range 

In 2016, mean canopy height ranged from 10.41 – 26.78 cm (median = 18.3, IQR = 4.7), 

and in 2017 from 12.75 – 26.31 cm (median = 17.0, IQR = 4.32). In 2016, mean pellets per plot 

ranged from 0.3 – 69.5 piles (median = 5.5, IQR = 14.7), and in 2017 from 0.0 – 32.0 piles 

(median = 1.5, IQR = 5). Canopy height had a weakly negative log-linear relationship with pellet 

counts (p < 0.001, R2 = 0.20), and HSI value (p < 0.001, R2 = 0.20), and a non-significant 

relationship with patty counts (p = 0.39, R2 = 0.01, square root transformation on canopy height 
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and patty counts). Pellets had a weakly negative log-linear relationship with bison patties (p < 

0.001, R2 = 0.17). See Figure A3-1 for distributions and correlations among variables. 

 

Yellowstone National Park  

In 2016, mean canopy height ranged from 5.0 – 31.7 cm (median = 16.1, IQR = 8.1), and 

in 2017, from 6.4 – 29.0 cm (median = 18.5, IQR = 3.7). In 2016, pellets ranged from 0.0 – 34.5 

piles (median = 1.3, IQR = 3.1), and in 2017, from 0.0 – 22.3 piles (median = 2.8, IQR = 3). 

Linear regression showed a non-significant relationship between canopy height and pellet counts 

(p = 0.31, R2 = 0.02), a weak but significant negative relationship between canopy height and 

HSI (p = 0.005, R2 = 0.14), and a stronger negative relationship between canopy height and patty 

counts (p < 0.00002, R2 = 0.30). Pellets showed no significant relationship with patty counts (p = 

0.09, R2 = 0.05). See Figure A3-2 for distributions and correlations among variables. 

 

Discussion   

At both study sites, canopy height was negatively correlated with HSI value, indicating 

lower canopy height in areas that are more valuable for bison. However, canopy height was more 

related to pellet counts than patty counts in NBR, and was more related to patty counts than 

pellet counts in YNP. Additionally, pellet counts were negatively correlated with patty counts in 

NBR, but had no relationship in YNP. These results are consistent with the relationships between 

patty counts and HSI at each site. In NBR, patty counts and HSI had a weak relationship (p = 

0.02, R2 = 0.07), and there was a stronger relationship at YNP (R2 = 0.39, p < 0.001), potentially 

explaining why the relationship between canopy height and patty counts is decoupled at NBR. 
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I decided not to incorporate these data types into my models of bird occupancy and 

abundance because of concerns about dependence and bias. Canopy height is only one of several 

ways in which bison grazing may affect vegetation structure, and therefore is not a 

comprehensive confirmation of the effect of bison grazing on vegetation structure. The two 

variables are theoretically related to one another, making the explanatory value of canopy height 

vague. I initially measured pellet counts to control for the effect of other ungulates on vegetation 

height. However, I did not identify pellets to species. Relationships between pellet distributions 

and use can vary by species (Neff 1968; Collins & Urness 1981), making this data of 

questionable explanatory value.  
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Figure A3-1: Correlation plots between all untransformed field data collected at the National 

Bison Range study area in 2016 and 2017. Diagonal plots show the smoothed distribution of 

data, and scatter plots show relationships between each pair of data.  Correlation values represent 

R. 
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Figure A3-2: Correlation plots between all untransformed field data collected at the Yellowstone 

National park study are in 2016 and 2017. Diagonal plots show the smoothed distribution of 

data, and scatter plots show relationships between each pair of data. Correlation values represent 

R. 
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