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ABSTRACT 
 

Chairperson: Dr. Michael Mitchell 

Understanding how environmental factors influence wildlife populations is at the heart of 

ecology and management.  Populations and their habitats are, however, inherently dynamic, 

which requires monitoring responses to changes in the environment.  Beyond quantifying 

population dynamics, understanding why populations respond as they do may allow improved 

predictions within and across populations, ideally leading to better management.  Grizzly bears 

(Ursus arctos) and American black bears (U. americanus) have been researched in North 

America for decades, providing excellent opportunities to explore ecological questions involving 

inter- and intraspecific competition and responses to spatial and temporal variation in resources.  

The wealth of data collected on these species may be used to answer ecological questions and 

obtain reliable information for monitoring and management in a rapidly changing world. 

Chapter 1: Why do grizzly and black bear densities vary in space and time?  I used data from 

noninvasive genetic sampling of grizzly and black bears in northwestern Montana with spatially-

explicit capture-recapture models to predict sex-specific density patterns for both species.  In 

addition to intraspecific effects on density, I considered biotic and abiotic factors such as net 

primary productivity and habitat security. 

Chapter 2: Why do detection probabilities of grizzly bears at bear rubs vary within and across 

populations?  Research has shown detection to vary by sex and season, but also across 

populations.  I used data from two large noninvasive genetic sampling studies to explore a suite 

of biotic and abiotic factors that are plausibly related to bear rubbing behavior.  After creating 

predicted density surfaces for both species, I competed models including effects of density, 

terrain characteristics, and sampling effort in mark-recapture models to evaluate support for my 

hypotheses. 

Chapter 3:  Monitoring the performance of any wildlife population can be difficult, and the 

variety of research tools to do so can be overwhelming at times.  To assist black bear managers 

across northeastern North America in identifying suitable tools, I assessed the tradeoffs of 

methods including traditional mark-recapture, spatially-explicit methods, and known fate 

models.  For some methods, I also conducted simulations based on published data to provide 

insights into study design and expectations of model performance. 
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CHAPTER 1 : DISSERTATION OVERVIEW AND INTRODUCTION 

 

The distribution and abundance of a species reflects its relationship with its environment. As 

such, one of the most important questions in ecology is to understand how the processes that 

determine distribution and abundance function in time and space (Brown et al. 1995).  

Populations and the landscapes that they inhabit, however, are rarely homogenous at scales 

relevant to conservation or management efforts.  Fine-scale patterns may appear homogenous, 

yet extrapolate poorly to the population level.  Conversely, coarse-scale patterns can mask the 

heterogeneity that exists at finer scales and that drives how populations perform.  This 

heterogeneity makes linking spatial patterns to population processes such as survival and habitat 

selection a challenge (Wiens et al. 1993).  Further, the specific spatial structuring of population 

performance can play an important role in its overall dynamics, ability to respond to landscape 

changes, and, therefore, viability (Wiegand et al. 2002).  A better understanding of the 

mechanisms behind population performance may allow us to develop spatially-explicit 

monitoring methods, thereby improving our ability to predict detailed population responses to 

landscape changes and focus conservation efforts where they will have the greatest impacts.  

 All populations have inherent variation in how they respond to their environment in both 

space and time.  At its heart, the overall variation in population performance is driven by 

individual-level variation in vital rates such as survival and reproductive output (Caswell 2006).  

Variation in vital rates can in turn be linked to heterogeneous resource availability and use in 

addition to other extrinsic factors such as human caused mortality.  For example, McLoughlin et 

al. (2006) identified a relationship between spatial variation in lifetime reproductive success and 

resource selection in red deer (Cervus elaphus) in Scotland.  Although rare, this study was able 
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to demonstrate how variation in habitat selection can explain differences in individual vital rates 

that can have population-level effects (McLoughlin et al. 2006).  

 Such variation in individual vital rates can manifest as measurable differences in 

abundance, population growth rates, and distribution at scales finer than the population level 

(Mills 2012).  For organisms that interact at a local scale, populations do not respond to large-

scale average conditions; instead it is these finer-scale processes that determine local, and 

thereby overall, population performance (Tilman and Lehman 1997, Wiegand et al. 2002).  

Moreover, variation will exist in how populations perform in the face of interactions among 

numerous dynamic factors including inter- and intraspecific competition and seasonal changes to 

resource availability (Tilman and Lehman 1997).  As such, what is clearly needed is a better 

understanding of what determines spatial and temporal variation in population performance in 

order to answer questions of interest to conservation and management. 

 It is often difficult, however, to detect and monitor such sub-population-level processes 

and to place their role in population-level performance into context (Wiegand et al. 2002).  In 

particular, monitoring changes in abundance and population growth rates, and ultimately linking 

changes to their environmental drivers, continue to challenge research biologists despite a 

sometimes overwhelming number of tools that seem to advance daily (Williams et al. 2002).  

Once a research objective has been well defined, identifying and optimizing sampling methods is 

a key step, but one that often fails to fully incorporate the ecology and behavior of the study 

species.  This can be especially problematic for cryptic species such as grizzly and American 

black bears whose behaviors are difficult to study and may vary with age, sex, or other factors. 

With these challenges in mind, I present the following chapters: 
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Chapter 2: Why do grizzly and black bear densities vary in space and time within a given 

population?  Specifically, how do these species influence the density patterns of the other?  I 

used data from noninvasive genetic sampling of grizzly and black bears in northwestern Montana 

with spatially-explicit capture-recapture models to predict sex-specific density patterns for both 

species.  In addition to intraspecific effects on density, I explored the effects of biotic and abiotic 

factors such as net primary productivity and habitat security on density patterns of these 

sympatric populations. 

Chapter 3: Why do detection probabilities of grizzly bears at naturally occurring bear rubs vary 

within and across populations?  Research has shown detection to vary by sex and season, but 

also across populations.  I used data from two large noninvasive genetic sampling studies 

conducted in northwestern Montana and Banff National Park, Alberta, to explore a suite of biotic 

and abiotic factors that are plausibly related to bear rubbing behavior.  Related to my primary 

hypothesis, the Montana study area had roughly twice the density of grizzly bears as Banff, and 

three times as many black bears.  After creating predicted density surfaces for both species in 

each study area, I competed models including effects of density, terrain characteristics, and 

sampling effort in closed-population mark-recapture models to evaluate support for my 

hypotheses. 

Chapter 4:  Monitoring the performance of any wildlife population can be difficult, and the 

variety of research tools to do so can be overwhelming at times.  To assist black bear managers 

across northeastern North America in identifying suitable tools, I assessed the tradeoffs of 

methods including traditional mark-recapture, spatially-explicit methods, and known fate 

models.  For some methods, I also conducted simulations based on published data to provide 

insights into study design and expectations of model performance. 
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CHAPTER 2 : EVIDENCE OF COMPETITION IN SHAPING 

SEASONAL DENSITY PATTERNS OF SYMPATRIC URSIDS 

 

INTRODUCTION 

The density of animals in a population is one of the metrics of population performance most 

relied upon for assessing and managing wildlife populations (Williams et al. 2002; Karanth et al. 

2004; Fuller et al. 2016).  Density reflects the sum of births, deaths, immigration, and emigration 

for a defined area at a specific period of time, with each rate being influenced by the suitability 

of the local environment to the species’ requirements (Brown et al. 1995; Garshelis 2000).  As 

such, understanding how density is related to the environment remains a fundamental pursuit in 

ecology, and may directly influence efforts to promote the long term viability of a species 

(Andrewartha & Birch 1986; Brown et al. 1995; Karanth et al. 2004).   

 Density of animals is expected to reflect the suitability of habitat for a given population, 

with higher densities being indicative of higher quality habitat, and vice versa (Brown et al. 

1995; Bock & Jones 2004).  Although there are multiple ways in which habitat can be assessed, 

including resource selection functions (Manly et al. 2007) and habitat suitability indices (Brooks 

1997), linking environmental conditions to demographic measures like density should be a 

research priority (Garshelis 2000).  More abundant resources, such as food, thermal and security 

cover, and mating opportunities, should result in larger numbers of individuals per unit area, 

other than situations of attractive sinks (Delibes et al. 2001).  Empirical challenges, however, 

remain daunting as the data and analytical tools needed to identify relationships between 

environmental variation and density are generally lacking (Fahrig and Merriam 1994; Graves et 

al. 2011; Apps et al. 2016). 
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 Within populations, spatial and temporal variation in the suitability and availability of 

resources is a primary driver of the fitness of members of a population ( Brown 1984; Wiegand 

et al. 2002).  This can result in substantial heterogeneity in density patterns within a population, 

which can be further influenced by changing needs related to the life history of individuals 

(Festa-Bianchet 1988; Pulliam et al. 1992).  This intrapopulation variation is particularly difficult 

to explain given the typically coarse temporal and spatial scale of available data (Brown et al. 

1995; Nielsen et al. 2010).  Most studies have therefore used static indices of environmental 

factors at fixed spatial scales based on average movement rates or home range size (Brown et al. 

1995; Wiegand et al. 1999), although exceptions are becoming more common (Ciarniello et al. 

2007; Wiegand et al. 2008; Nielsen et al. 2010). 

 Beyond the intrinsic suitability of an area, the value of resources to individuals can be 

diminished through competition among members of one or more species, potentially creating 

differential impacts on species’ population performance ( Sih et al. 1985; Begon et al. 1996).  

Competition among individuals can take different forms, including interference competition 

where animals directly interact and compete for resources (Murphy et al. 1998; Steinmetz et al. 

2013), or exploitative competition where multiple species attempt to use the same resources 

(Wiens 1993; Linnell & Strand 2000).  Both of these forms of competition can occur within a 

species, between two or more species, or both (Connell 1983; Gurevitch et al. 2000).  Thus, 

effects of competition can be real in the sense of reduced quantities of resources, or perceived in 

the sense that animals may simply avoid areas of higher densities of competitors (Abrahams 

1986; Delibes et al. 2001).   

Quantifying the effects of competition on natural populations, however, has proven to be 

difficult (Connell 1961; Palomares & Caro 1999; Miller et al. 2015).  Although field and 
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laboratory experiments have suggested that the effect size of interspecific competition is often 

greater than that of intraspecific competition (Connell 1983), experimental manipulation of 

populations is rare.  This is particularly true for terrestrial carnivores and species of conservation 

or management concern (Caro and Stoner 2003; Miller et al. 2015), often due to insufficient data 

or sensitivity of analytical methods across multiple species (Mowat et al. 2005; Mattson et al. 

2005; Harrington et al. 2009). 

 To advance understanding of how animals perceive the quality of an area in the presence 

of competition, we examined the seasonal variation in density patterns of two species believed to 

exhibit both exploitative and interference competition on each other.  Across nearly all of their 

range in continental North America, grizzly bears (grizzlies, Ursus arctos) are sympatric with 

American black bears (U. americanus) and have been for at least 13,000 years (Kurten & 

Anderson 1980; Schwartz et al. 2010).  Having diverged >3.5 million years ago (Leonard et al. 

2000), each species has evolved a suite of morphological and behavioral adaptations to better 

exploit specific resources (Herrero 1978).  The front claws of grizzly bears, for example, are well 

adapted to excavating subterranean foods including rodents and tubers, whereas black bears have 

short claws that allow them to climb trees for security and to access tree-borne foods ( Herrero 

1978; Mattson et al. 2005).  In many parts of their shared ranges, however, their diets show 

nearly complete overlap (Jacoby et al. 1999; Mattson et al. 2005), and their digestive efficiencies 

are essentially identical (Pritchard & Robbins 1990).  

 A common assumption is that grizzly bears will dominate direct competitions with black 

bears because adult grizzlies are typically larger and more aggressive than black bears.  While 

there are empirical examples of this (Gunther et al. 2002; Mattson et al. 2005), recent studies 

have shown that there may be more exceptions to this assumption than expected, and the 
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deciding factors of interspecific interactions may have as much to do with motivation and 

perception of risk as with body size ( Miller et al. 2015; Allen et al. 2016).  Actual encounter 

rates, their outcome, and effects on emergent properties (Salt 1979) like population density have 

not been thoroughly evaluated for either species (Schwartz et al. 2010; Mattson et al. 2005). 

 Despite grizzly bears being expected to win direct contests with black bears, competition 

between these species is likely to favor black bears at a population level in areas lacking highly 

concentrated resources such as spawning salmon or garbage dumps (Craighead and Craighead 

1971; Herrero 1978; Mattson et al. 2005).  Where sympatric, black bears can exist at densities 10 

times that of grizzly bears, and are more efficient at exploiting dispersed foods, such as small 

berry patches (Jonkel 1971; Mattson et al. 2005).  The smaller, more intensively used home 

ranges of black bears should also allow them to respond to changes in resource availability more 

rapidly than grizzly bears (Aune 1994; Mattson et al. 2005).  In northwestern Montana, USA, for 

example, foods preferred by bears are often patchy and widely dispersed, with both species 

relying heavily on berries and forbs (Aune 1994; Mattson et al. 2005; McLellan 2011).  Along 

the Rocky Mountain Front in northern Montana, Aune (1994) found substantial overlap in 

grizzly and black bear home ranges, with only subtle differences in habitat use and food habits 

that were likely facilitated by temporal partitioning of shared resources.  Similar diet and range 

overlap was found in the Apgar Mountains of Glacier National Park, Montana, with both bear 

species relying heavily on cowparsnip (Heracleum lanatum) at low elevation in early summer, 

huckleberries (Vaccinium spp) and serviceberries (Amelanchier alnifolia) in mid-summer, with 

similar use of insects, carrion, sedges, and other foods throughout the summer (Shaffer 1971).  

Again, temporal partitioning was believed to explain the high degree of overlap between grizzly 
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and black bear food habits, as has long been proposed (e.g., Wright 1910; Hornocker 1962; 

Jonkel 1971). 

Due to the highly seasonal nature of high quality foods in temperate, mountainous areas, 

both grizzly and black bears rely on hibernation as a strategy to survive long periods of time 

when food resources are especially scarce (Herrero 1978; Hilderbrand et al. 2000).  To acquire 

sufficient energy reserves for hibernation, both species exhibit hyperphagia beginning in late 

summer as berries in particular become abundant, with daily caloric intake increasing 3-4 fold 

(Nelson et al. 1983).  The significance of seasonal peaks in food availability, and the adaptations 

that bears have evolved to deal with them, is a critical but often overlooked component of 

assessing habitat quality for bears (Belant et al. 2006; Wiegand et al. 2008). 

 Recognizing the dietary and physiological similarities of grizzly and black bears, we 

chose to test the hypothesis that interspecific competition influences the population performance 

of bears in a large area known to support populations of both species at high densities (Kendall et 

al. 2008; Stetz et al. 2014).  We further hypothesized that seasonal variation in resource 

availability will be important to how bears perceive habitat quality (Wiegand et al. 2008), and 

seasonal density patterns will change accordingly.  From our hypotheses, we predicted that 

patches of resources used by both species will be sufficiently reduced to produce an 

asymmetrical effect on the density patterns of grizzly and black bears at an intra-population level 

(Mattson et al. 2005).  We also predicted that the effects of interspecific competition on density 

patterns will vary seasonally due to changes in both resource availability and the changing 

behavioral and nutritional needs of bears (Nelson et al. 1983). 

 We also considered potential effects of sexual segregation, where females use lower 

quality areas to avoid interactions with males, on seasonal density patterns of both bear species 
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(Clutton-Brock 1987).  Wielgus and Bunnell (1995) tested three hypotheses of sexual 

segregation in grizzly bears in two populations that were sympatric with black bears.  They 

found inconclusive evidence for the no-avoidance hypotheses, where females do not avoid 

males, or the food hypothesis, where females avoid areas occupied by males that may compete 

for food or even cannibalize subordinate bears as a food source (Wielgus and Bunnell 1995).  

There was, however, support for the sex hypothesis of segregation in one population, with only 

adult females avoiding areas with potentially infanticidal males (Wielgus and Bunnell 1995).  

Similarly, Czetwertynski et al. (2007) found no support for the food hypothesis and limited 

support for the sex hypothesis of habitat segregation for populations of black bears in east-central 

Alberta.  From these hypotheses, we predicted that, if present, sexual segregation would be most 

pronounced during the mating season for both bear species, with males displacing females from 

areas of more suitable habitat. 

 To test our hypotheses, we used data from two large noninvasive genetic sampling (NGS) 

studies in conjunction with spatially-explicit capture-recapture (SECR) models ( Efford 2004; 

Borchers & Efford 2008; Royle et al. 2013).  The basic SECR model combines a state model that 

describes the distribution of activity centers across the sampled area with an observation model 

that relates the probability of detecting an animal at a given site to the distance of that site to the 

center of an animal’s home range (Borchers & Efford 2008).  Advances in SECR now allow the 

use of spatial covariates to relate the variation in density to environmental conditions ( Efford & 

Fewster 2013; Royle et al. 2013), including landscape factors that change over the course of a 

study, without requiring a predetermined spatial resolution of analyses (e.g., average home 

range).  Although relatively new, SECR has been used to estimate density and provide valuable 

insights into how animals respond to their environment for many taxa, including skinks 
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(Oligosoma infrapunctatum; Efford and Fewster 2013), common genets (Genetta genetta; 

Sarmento et al. 2014), and American black bears (Royle et al. 2013), and may provide a novel 

approach to test hypotheses about complex processes including intra and interspecific 

competition. 

 Noninvasive genetic sampling methods are among the most used and useful means to 

sample wildlife populations to estimate demographic values such as survival and abundance 

(Waits & Paetkau 2005), and are particularly well-suited for use with SECR modeling.  Nearly 

any biological material can be used to obtain genotypes for use with capture-recapture models, 

with hair samples being used extensively in bear research and monitoring globally.  There are 

several recognized advantages of NGS over other population sampling methods including less 

restriction to the spatial extent of sampling, permanent genetic identifiers to track detection 

histories, limited disturbances to study animals that may otherwise induce behavioral responses 

to sampling, and typically no limit to the number of individuals that can be detected at a given 

site, unlike with live captures ( Waits & Paetkau 2005; Boulanger et al. 2008).  When used in 

capture-recapture models, NGS methods have been shown to be particularly reliable when 

multiple sources of detections are used (Boulanger et al. 2008) and when applied at spatial scales 

that are large relative to the biology of the species being sampled (Stetz et al. 2014).  When used 

with SECR models, large NGS datasets may provide valuable opportunities to test ecological 

hypotheses as well as inform conservation and management of wildlife populations. 

STUDY AREA 

Our ca. 7,350 km2 study area included all lands within 10km of GNP, truncated at the U.S.–

Canada border (Fig. 2-1), which provided a larger range of land cover, uses, and management 

regimes than found within just GNP.  The area was considered to be a relatively intact natural 
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system, with a nearly complete assemblage of native species, including what are believed to be 

healthy grizzly and black bear populations (Kendall et al. 2008; Stetz et al. 2014).  Fifty-six 

percent of the study area was within GNP, which was largely roadless and managed as 

wilderness, yet received >2 million visitors in 2004 (84% during June-September).  Outside of 

GNP, lands were managed for multiple uses, including hunting, numerous non-consumptive 

recreational activities, and low–density residential development.  There were no recognized 

barriers to bear movement between any parts of the study area (Kendall et al. 2009).  All areas 

adjacent to GNP had spring and fall black bear hunting seasons except Waterton Lakes National 

Park, Alberta.  Hunting of grizzly bears was limited to portions of British Columbia, outside of 

where sampling occurred. 

 Elevation ranged from approximately 900 m to 3,190 m above sea level.  High elevations 

received more precipitation and contained more exposed rock and permanent snow and ice fields 

than did valleys.  Average annual precipitation, much of which was deposited as snow in winter, 

was 63 cm.  The study area spanned the Continental Divide, which effected local climate and 

vegetation composition.  Areas west of the Divide generally received more precipitation and had 

more densely forested areas with less grasslands than the drier areas east of the Divide.  Human 

development is also greater on the west side of the Divide, although there were no areas of 

concentrated development within the sampled area. 

METHODS 

Field Methods 

We used two noninvasive methods concurrently to sample the grizzly and black bear populations 

in our study area: baited hair traps and unbaited bear rubs (Fig. 2-1), neither of which required 

handling of any animals.  Hair traps consisted of a single strand of barbed wire stretched 50 cm 



13 
 

above ground around 3–6 trees to form a corral, at the center of which we poured 3L of a liquid 

lure on a pile forest debris (Woods et al. 1999; Kendall et al. 2009).  We established one hair trap 

per 7x7-km cell for 14 days, after which all hair samples were collected and the trap was moved 

>1 km to decrease the potential for a waning response to the non-rewarding lure (Kendall et al. 

2008).  Hair trapping began 15 June and ran for four 14-day sessions, ending 18 August 2004. 

During 15 June–7 September 2004, we also repeatedly surveyed a network of 1,366 naturally 

occurring bear rubs found along maintained trails and other obvious animal travel routes.  We 

identified bear rubs by evidence of rubbing activity such as snagged hair and smoothed tree bark; 

we did not use lure with bear rubs to either attract bears or elicit a rubbing response (Kendall et 

al. 1992; Stetz et al. 2010).  We affixed several 30-cm strands of barbed wire to each uniquely 

numbered bear rub to improve sample quality and minimize mixing of hairs from more than one 

bear.  As with previous analyses (Kendall et al. 2009; Stetz et al. 2014), hair samples were 

assigned to the two-week sampling occasion in which they were collected. 

 For both methods, we defined a sample as all hairs found on one set of barbs, although 

we also collected hairs left by bears rolling in the lure pile.  All samples were placed in paper 

envelopes pre-labeled with a uniquely numbered bar code, and stored on silica desiccating agent 

until analyzed.  Locations of all hair traps and bear rubs, which we refer to generically as 

detectors, were recorded with handheld Garmin 12 GPS units.  Sample numbers and site 

coordinates were electronically entered into a relational database in order to minimize data entry 

errors (Kendall et al. 2009). 

Genetic analyses 

All genetic analyses were performed by Wildlife Genetics International (Nelson, BC, Canada) 

following the protocols of Woods et al. (1999), Paetkau (2003), and Kendall et al. (2009) to 
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ensure adequate marker power and to minimize genotyping errors.  We determined the species, 

individual identity, and gender of animals that visited our sampling sites by analyzing nuclear 

DNA extracted from hair follicles collected in the field.  We used 7 microsatellite loci to identify 

individual grizzly bears from all hair samples with ≥1 guard hair follicle or ≥5 underfur hairs.  

Due to the large number of putative or known (via a species-specific genetic test) black bear 

samples, we instituted a subsampling routine that used the location of each sample relative to 

others at a given sampling site along with partial genotypes obtained during earlier analyses 

(Stetz et al. 2014).  We used 6 microsatellite loci total to identify individual black bears, plus the 

amelogenin marker (Ennis and Gallagher 1994; Pilgrim et al. 2005) to identify sex of individuals 

of both species.  Our conservative estimate of multilocus genotyping error rate was <0.001 for 

either species, with the probability of 2 full-siblings sharing the same genotype (PSIB) < 0.0018 

for either species (Kendall et al. 2009; Stetz et al. 2014).  Details of our sample sizes, 

subsampling routine, marker power, and error rates for grizzly and black bear analyses can be 

found in Kendall et al. (2009) and Stetz et al. (2014), respectively. 

Modeling density 

We developed a suite of a priori SECR models (Borchers & Efford 2008; Efford & Fewster 

2013) using DNA-based encounter histories to explore how biotic and abiotic landscape 

characteristics are related to density patterns of grizzly and black bears in our study area.  SECR 

models estimate the density of animal activity centers, D, in a user-defined area that is large 

enough that animals residing beyond it have a negligible chance of being detected (Borchers & 

Efford 2008).  We therefore defined an area extending 15km beyond all sampling points based 

on the buffer size suggested by functions in the secr package in R (Efford 2011), which we used 
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for all analyses.  From this 15,204 km2 area, we removed areas of rock, persistent snow and ice, 

and lakes >1 ha, which we considered “non-habitat” for either bear species (Stetz et al. 2014). 

 We were also interested in how seasonal changes to landscape characteristics, including 

density patterns of the sympatric species, may explain variation in density relative to important 

periods in the life history of bears.  Similar to Mace et al. (1996) we defined the period through 

15 July as spring, which contains the peak of the breeding season for both species of bears 

(Jonkel and McCowan 1971; Mace and Waller 1997).  Based on changes in which foods bears 

prefer (Mace and Jonkel 1983; Zeger et al. 1993), we defined the subsequent month as early 

summer, and the final month as late summer, during which time bears’ diets consist largely of 

fleshy fruits (Mace and Jonkel 1986; Raine and Kansas 1989).  We therefore parsed our 

detection data into three approximately one-month periods for each species and sex for use in 

SECR analyses. 

 For each of these time periods, we developed spatial covariates that we hypothesized 

could influence density of black and grizzly bears.  We considered two biotic habitat variables, 

landcover class and the enhanced vegetation index (EVI; Huete et al. 2002), which, alone or in 

combination with other variables, pertain to availability of bear foods (Zedrosser et al. 2011).  

We derived both biotic variables from 2004 MODIS 500m datasets (Pettorelli et al. 2014; 

Nemani & Running 1997).  The EVI has been shown to have good sensitivity to monitoring 

temporal and spatial variation in photosynthetic output across a range of conditions, including 

mountainous regions that show strong seasonal productivity patterns (Villamuelas et al. 2015).  

The EVI has also been shown to outperform other remotely sensed vegetation indices in areas of 

high biomass, and to be more robust to contamination from exposed soils or atmospheric 

conditions such as smoke from wildfires (Huete et al. 2002; Pettorelli et al. 2014).  We 
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hypothesized three ways in which EVI could reflect the quality of resources available to bears.  

First, EVI values could reflect the energetic value of emergent foods such as grasses and sedges, 

particularly during spring (Posse & Cingolani 2004).  Second, there may be a lag between the 

height of photosynthetic activity of plants and the production of berries and other late-summer 

foods (Holden et al. 2012).  Third, the cumulative amount of photosynthetic activity may reflect 

the energy content of numerous food species including ants (Bentley 1976) and grasses and 

shrubs (Gamon et al. 1995).  We therefore calculated the average EVI value for each 500m pixel 

from the two 16-day scenes that most closely aligned with each one-month modeling season (Fig 

2-1) as a covariate in SECR analyses.  Due to potential lag effects, we also considered models 

with EVI values from each season to explain subsequent seasons’ density patterns.  Finally, to 

compare cumulative EVI to within-season values, we created a variable that was the sum of the 

average values across time periods.  

 Land cover type can influence how animals use an area, and thereby population density, 

through variable productivity and accessibility of preferred foods, thermoregulation, and escape 

cover, among other reasons ( Clark et al. 1993; Ciarniello et al. 2007; Carter et al. 2010).  

Further, how animals use a given cover type may change seasonally according to life history 

traits (Nielsen et al. 2010).  We therefore classified each 500m pixel in our study area as 

consisting of one of six landcover classes: forest, shrublands, grasslands, permanent wetlands, 

urban, and croplands.  We chose these classes because they have been shown (Waller & Mace 

1997; Apps et al. 2016) or hypothesized ( Jonkel 1971; Ciarniello et al. 2007) as being important 

factors in the density of grizzly and black bear populations.  We also included abiotic factors that 

have been hypothesized as important predictors of bear density, including terrain roughness, 

elevation, and habitat security, for modeling variation in density (Fig. 2-1) ( Apps et al. 2006; 
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Graves et al. 2011).  For elevation, we resampled a 30m DEM to 250m pixels using bilinear 

interpolation, which retained sufficient resolution to capture topographic variation in the vicinity 

of detectors.  As an index of terrain roughness, we used the relative topographic position, which 

may reflect soil and hydrological profiles that influence biological diversity and productivity 

(Jenness 2002).  We calculated this index using the resampled 250m DEM, both of which we 

standardized for use in SECR models.  Finally, areas that provide greater security for wildlife 

species are generally expected to support higher animal densities due to lower anthropogenic 

disturbance and mortalities (Woodroffe & Ginsberg 1998).  For an index of habitat security, we 

assigned national or provincial parks or protected areas to have the highest security; other 

federal, state, provincial, and tribal lands to have medium security; and private lands to have the 

lowest security, similar to Mace et al. (1996) and Graves et al. (2011) (Fig. 2-1). 

 To test hypotheses related to how density of sympatric species and conspecifics influence 

bear density patterns, we first developed suites of models using the covariates above to create 

predicted density surfaces for each species, sex, and season combination.  This first modeling 

stage did not include densities of sympatric species or conspecifics as covariates.  We ranked 

model support at this stage using AICc, and used model averaging based on AICc weights to 

account for model selection uncertainty (Burnham & Anderson 2001).  We then created 

additional SECR models including these density surfaces as explanatory, spatially-explicit 

covariates.  We also considered total density of each species, and species combined, as 

covariates in our models.  We did not use predicted density covariates in subsequent models of 

the data used to build the initial models.  We then ranked model support for each complete suite 

of models using AICc. 
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 In addition to modeling density, the observation sub-model of SECR models the process 

of detecting animals by explicitly considering animal movements in relation to the characteristics 

and distribution of detectors.  Two parameters comprise the observation submodel: g0 is the 

probability of detecting a given animal at its activity center, and sigma (σ) is the spatial scale 

parameter describing how detection probability declines with increasing distance between the 

activity center and each detector.  For all SECR models, we used a binomial observation model 

with a halfnormal detection function to relate the probability of detection to distance from the 

predicted home range center, which is unobserved and assumed stationary.  We modeled hair 

traps and bear rubs as different types of proximity detectors (Efford et al. 2004), and used non-

binary usage coding to directly account for variation in sampling effort (Efford et al. 2013; Stetz 

et al. 2014).  As with density, we modeled the observation process separately for each species, 

sex, and season, and considered time (t) effects on detection. 

The detection process can also be modeled using spatial covariates, including those that 

change over time, to relate variation in detection to landscape features.  To improve overall 

model performance, we therefore included biotic and abiotic covariates that we hypothesized 

could explain detection of grizzly and black bears.  Beyond potentially improving model fit, the 

use of covariates relaxes the assumption of circular home ranges (Royle et al. 2013), although 

simulations suggest that SECR models are robust to such violations even without the use of 

covariates (Stenhouse et al. 2015).   

 We used ArcGIS (v. 10.2; ESRI) to derive spatial covariate values and assign them to 

detectors, and we added covariates to the habitat mask using functions in the secr package 

(Efford 2012).  Computational limitations precluded using all-combinations model selection 

methods such as stepwise AIC (Yamashita et al. 2007).  Within each full suite, we considered 
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models with an AICc value within 2 units of the top model to be supported by the data (Symonds 

& Moussalli 2011).  We also visually inspected parameter estimates and standard errors for signs 

of models failing to run successfully (O’Brien & Kinnaird 2011).  We present complete SECR 

model selection results in Appendix A. 

RESULTS 

Hair collection and genetic analyses 

During 15 June-18 August, 2004, we established one hair trap in each of 150 7x7 km cells during 

four 14-day sessions (Fig. 2-1).  We collected 5,645 bear hair samples from 550 hair traps, of 

which 1,193 and 1,890 were classified as grizzly and black bear, respectively.  From these, we 

identified 248 individual grizzly bears (147 F, 101 M), and 468 black bears (249 F, 219 M).  We 

also collected 3,493 hair samples from 4,860 surveys of 1,366 bear rubs during 15 June-7 

September, 2004.  Of these, 833 and 956 were classified as grizzly and black bear, respectively.  

From these, we identified 154 individual grizzly bears (66 F, 88 M), and 223 black bears (89 F, 

134 M).  In total, we identified 309 individual grizzly bears (170 F, 139 M), and 597 black bears 

(303 F, 294 M).  We assigned all grizzly (Table 2-1) and black bear (Table 2-2) detections into 

one of six 14-day occasions, which we then parsed into our three seasons.  Details of detection 

and recapture frequencies are reported in Table 2-3. 

Bear density 

Our most supported models of female grizzly bear density for the spring season contained a 

single covariate, the predicted total density of black bears during the same time period (Table 2-

4; Fig. 2-3), which was negative and significant (i.e., the 95% confidence interval did not include 

zero; Tables 2-4, 2-5).  Top models for early summer female grizzly bear density included 

predicted density of male grizzlies with an additive effect of spring EVI, which were also both 
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negative and significant (Tables 2-4, 2-5).  Similar to spring model results, total predicted 

density of black bears was the only supported covariate for late summer, which was negative but 

not significant (Table 2-5).   

 Top models for male grizzly bears in spring contained only the predicted density of 

female grizzlies during the same time period (Table 2-4; Fig. 2-3), which was positive and 

significant (Table 2-5).  Top models for early summer contained total predicted bear density with 

an additive effect of terrain roughness, both of which were negative but only total predicted 

density was significant.  Similarly, top late summer models included only total predicted density 

of bears, which was negative and nearly significant. 

 Female and male black bears had the same top model during spring, with total predicted 

density of grizzly bears being the sole supported covariate (Table 2-4; Fig. 2-4), which was 

negative and significant for both sexes (Table 2-6).  Largely in contrast with grizzlies, top 

density models for both sexes of black bears in early and late summer did not include any 

covariates of predicted bear density.  Top models for early summer density of female black bears 

included a positive relationship with spring EVI and a negative relationship with terrain 

roughness, both of which were significant.  Late summer models contained the same covariates 

as early summer, although the positive relationship between EVI and density was no longer 

significant; a significant negative relationship with terrain roughness remained (Table 2-6). 

 Similar to female black bears, top density models for male black bears had positive and 

significant relationships with spring EVI in both early and late summer (Table 2-6; Fig. 2-4).  

Density in early summer was also significantly higher in areas we defined as low habitat 

security, and lowest in areas of moderate security, although this relationship was not significant.  
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Spring EVI was the only supported covariate for late summer density of male black bears (Table 

2-3). 

 The detection components of supported SECR models varied considerably both within 

and across species and seasons, with the exception that detection probabilities were always 

higher with hair trap data than bear rubs (Appendix A).  Generally, detection probabilities were 

highest for grizzly bears in areas of higher EVI and elevation, and tended to increase over time.  

A relationship between density of conspecifics or sympatric species and detection was partially 

supported, with most seasons showing a positive relationship for both sexes (Table 2-7).  Female 

grizzly bears in early summer had a small negative relationship with total bear density, although 

the effect was not significant.  The spatial scale parameter, sigma, for grizzly bears was generally 

smaller in areas of higher EVI and higher density of bears (Table 2-7), although few covariates 

had any support based on AICc.  Estimated home range sizes calculated from sigma values (Noss 

et al. 2012) were 331 km2 (95% CI: 278-396 km2) for female and 535 km2 (95% CI: 476-600 

km2) for male grizzly bears.  Estimates were similar to those made from radiocollared bears in a 

nearby study, with female home ranges averaging 216 km2 (95% CI: 62-668 km2) and males 

averaging 720 km2 (95% CI: 449-1179 km2; Mace and Waller 1996). 

 We found less consistency with explaining detection of black bears.  Detection 

probabilities were generally higher in areas we defined as providing greater security, although 

this relationship was reversed in late summer for male black bears (Table 2-8).  Forests, 

shrublands, and areas with lower total predicted density of bears also had a negative relationship 

with detection rates.  The spatial scale parameter for black bears had a negative relationship to 

home ranges with a larger proportion of forest and grasslands, and a positive relationship to areas 

of higher total predicted bear density, EVI, and greater security (Table 2-8).  Elevation had a 
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positive relationship with sigma, although it was not significant (Table 2-8).  Estimated home 

range size for female black bears was 74 km2 (95% CI: 72-76 km2), which is consistent with 

Mattson et al. (2005) who reported a range of 24-137 km2 for populations sympatric with grizzly 

bears.  Estimated home range size for male black bears was 415 km2 (95% CI: 401-429 km2), 

which was intermediate between more forested areas west of the Continental Divide (62 km2; 

Chilton-Radandt 2006) and the more open Rocky Mountain Front (1405 km2; Stevens and 

Gibeau 2005). 

DISCUSSION 

Our results are consistent with the hypothesis that competition among ecologically similar 

species influences how animals perceive the suitability of their environment, which can manifest 

as reduced local densities of even a larger, more aggressive competitor.  Evidence of this was 

strongest with female grizzly bears, which exhibited reduced densities in areas of higher black 

bear densities in two of three seasons.  Further, we observed potential effects of competition on 

density patterns for both sexes of both species in at least one season each.  In nearly every case 

where density was related to the sympatric species’ density, the relationship was negative, 

significant, and was the only supported factor. 

 We found partial support for the hypothesis that seasonal variation in resource 

availability influences how bears perceive habitat quality, as areas of higher primary productivity 

contained higher local densities of black bears in most seasons.  For both sexes of black bears, 

spring EVI was predictive of both early and late summer density, consistent with our hypothesis 

that photosynthetic activity in the spring would result in more abundant bear foods such as 

huckleberries later in the year.  Conversely, we found little evidence of a relationship between 

primary productivity and grizzly bear density.  In fact, the only time EVI was found to be 
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predictive for grizzly bear density was a negative relationship between females in early summer 

and spring EVI, contrary to our predictions.  This finding may be explained by considering the 

strongly positive relationship between EVI and black bear density in both early and late summer.  

We hypothesize that EVI may have acted as a proxy for black bear density in our model, as the 

relationships were similar.  Further, our next best model for density of female grizzly bears 

during this season contained total bear density as the only factor, although support was limited 

(Appendix A). 

 Collectively, our results provide limited support for the hypothesis that more 

topographically complex areas support more abundant and diverse foods, at least with respect to 

the density of bears in such areas.  Specifically, terrain roughness was important in predicting 

female black bear density in early and late summer, although the direction of the relationship 

changed between seasons.  We hypothesize that this may reflect the use of flatter valley bottoms 

when grasses and emergent foods are abundant, with a transition to more topographically 

complex areas in late summer as berries ripen, similar to the findings of Apps et al. (2006) in a 

nearby population. 

 Surprisingly, we found no support for relationships between density patterns of either 

species and landcover type or elevation, both of which have been found elsewhere ( Mowat et al. 

2005; Apps et al. 2006).  We do not propose that bears respond indifferently to different 

landcover types, nor that these relationships are temporally invariable, and we expect that they 

may help explain variation in bear density in some populations.  As with previous studies, we 

recognize that our landcover categories may not adequately capture how bears perceive their 

environment and may miss potentially valuable resources such as army cutworm moths (Euxoa 

auxiliaris) or understory vegetation (Apps et al. 2006).  Conversely, elevation is a generic factor 
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not directly linked to specific biological processes, even though it may be correlated with 

seasonal density of bears.  Our results suggest that the other factors we considered, particularly 

effects of competition and primary productivity, were in fact better suited to explain variation in 

density than factors used in previous analyses. 

 We also found very little support for our hypothesis that habitat security influences 

densities of bears in this area.  In the only case where a significant relationship existed, the effect 

was opposite of our predictions, with areas assigned to the lowest security having the highest 

density of male black bears in early summer.  This suggests that, during the seasons we 

investigated, bears’ perception of security has less influence on their space use than the other 

factors we considered, although other indices of security may produce different results.  Finally, 

we found that areas expected to provide the least security (private lands) were predicted to have 

higher densities of male black bears than the highest security areas (parks), with the lowest 

density predicted for intermediate security areas, which included national forest and tribal lands.  

Although regulated black bear hunts occurred before and after our sampling, we hypothesize that 

our results could reflect the fact that the majority of anthropogenic disturbance and mortality 

occurred on these multiple-use lands, with lower levels of mortality occurring on private lands 

and protected areas.  This suggestion reinforces the complex relationship between many 

carnivore populations, whether hunted or not, and concepts of habitat security (Mitchell & 

Hebblewhite 2012). 

 The relationship we observed between male and female grizzly bear densities in spring 

and early summer is consistent with bear behaviors reflecting sexual segregation during their 

breeding season.  Male grizzly density in spring had a significant positive relationship with 

female grizzly density, the only positive relationship between densities that we observed.  Based 
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on this and the significantly negative relationship that female grizzly density had with male 

density in the following season, we can hypothesize that females were still responding to 

pursuant males and avoiding areas that may pose greater risk to dependent offspring from 

infanticidal males (Steyaert et al. 2012).  That female grizzly bears had negative relationships 

with either conspecific or sympatric species densities in every season suggests that they are more 

sensitive to competition than other classes of bears.   

 We found that black bear density, whether alone or as part of total bear density, was 

important in predicting the density of both sexes of grizzlies in most seasons.  Although we also 

found that black bear density had a negative relationship with grizzly density during spring, 

black bears showed a markedly different pattern in later seasons, with higher EVI being 

positively related to density of both sexes for early and late summer.  Had we observed a 

negative relationship between densities of both species across all seasons, it could be possible 

that each species was showing preference for different resources or that one species was 

excluding the other.  Instead, we found that the effect on density patterns was more efficiently 

described by a single value (i.e., density of the sympatric species) than the potentially complex 

interactions of multiple environmental factors.  That black and grizzly bears showed such 

differences during summer supports the notion that our analyses were able to identify plausible 

relationships between density patterns of both species and the conditions that we hypothesized to 

be important.  

 A common challenge in efforts to explain variation in animal density is that there are 

often limited data on measures of population performance like density, and the tools to analyze 

those data lack the power to identify relationships with environmental conditions.  As with 

traditional capture-recapture methods (Boulanger et al. 2008), the concurrent use of multiple 
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types of detection data is a particularly powerful approach that has been shown to improve the 

quality of SECR analyses (Sollmann et al. 2013; Stetz et al. 2014; Kendall et al. 2016), and 

should be considered whenever possible. 

  Few analytical methods have evolved more rapidly than SECR models, having advanced 

from simple estimates of population density (Efford 2004) to providing inference into animal 

space use (Royle et al. 2013) and population growth rates (Whittington & Sawaya 2015) in just a 

matter of years.  Similar to our study, Royle et al. (2013) used NGS detection data of American 

black bears in New York, USA, to evaluate resource selection during a two-month period.  

Genetic analyses of hair samples collected at 103 sites identified 33 individual bears, with 14 

recapture events.  From these data, the authors concluded that bear density and elevation had a 

positive association, and that SECR models can reliably explain space use even without the use 

of telemetry data (Royle et al. 2013). 

 In our study, we used NGS data from 550 hair traps and 1,366 bear rubs, which yielded a 

total of 1,699 detections with 510 recaptures of over 900 bears.  The computational demands of 

running SECR models with large datasets required that we use a high performance computing 

cluster with 22 nodes, each with 16 cores and up to 128 GB of memory, with a peak performance 

of 13 teraflops (http://hpc.mtech.edu/).  Nonetheless, we were unable to successfully run every a 

priori model.  Although our results reflect well over 50,000 hours of run time and over 1,200 

models, we recognize that our analyses reflect just one realization of the complex ecological 

processes that we are attempting to explain.  Rapid advances in data collection methods, 

analytical methods, and computing power will continue to allow more complex ecological 

questions to be addressed.  We propose that using large-scale detection data in a SECR 

framework may provide opportunities to test hypotheses that, although long-held in ecology, 



27 
 

have seen little attention in practice, including the potential effects on density and space use that 

competition between sympatric species may exert. 

 Understanding how ecologically similar species partition resources is vitally important to 

linking concepts of habitat quality with population performance (Amarasekare 2003).  Although 

a fundamental component in niche theory (Chase & Leibold 2003), interspecific competition has 

rarely been considered in habitat studies, with the focus remaining on behavior-based resource 

selection (Garshelis 2000; Morris 2003).  Further, most empirical studies that have considered 

effects of competition have used species distribution models that provide little insight into 

demographic consequences of competition ( Belant et al. 2006; Sozio & Mortelliti 2016).  Our 

results suggest that competition among black and grizzly bears plays a significant role in how 

these species perceive habitat quality, with measurable effects on the performance of both 

populations that changed seasonally.  This supports the call to include effects of competition in 

research to test ecological theory and in applied research to inform conservation (Fisher et al. 

2013). 
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TABLES 
 

Table 2-1. Summary of grizzly bear detection data, by sex and sampling method, used in spatially-explicit capture-recapture analyses 

of grizzly and black bear density.  Sample collection occurred in northwestern Montana, between 15 June-7 September, 2004. 

 

  

Seasona 

  

Spring Early summer Late summer 

Hair trap effortb 

 

1918 1946 1904 1932 - - 

Bear rub effortc 

 

5433 12026 13459 16657 26055 19563 

        Hair trap 

       No. unique males 

 

35 33 19 46 - - 

No. male detections 

 

40 37 19 49 - - 

        No. unique females 

 

39 30 60 64 - - 

No. female detections 

 

42 34 62 71 - - 

        Bear rub 

       No. unique males 

 

20 35 33 24 35 14 

No. male detections 

 

58 93 54 46 51 23 

        No. unique females 

 

0 10 11 16 28 18 

No. female detections 

 

0 10 13 18 35 24 
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        Total 

       No. unique males 

 

50 57 49 68 35 13 

No. male detections 

 

98 130 73 95 50 22 

No. recapturesd 

 

140 72 29 

        No. unique females 

 

39 39 69 74 28 18 

No. female detections 

 

42 44 75 89 34 23 

No. recaptures 

 

13 44 14 

        a Each season consists of two 14-day sampling occasions.  Hair traps were active for spring 

and early summer only. 

b The total number of days that hair traps were available to detect bears per two-week 

sampling occasion. 

c The number of days since the previous survey of a given bear rub summed across all bear 

rubs surveyed in a given occasion. 

d The total number of recaptures within a given session regardless of detector type. 
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Table 2-2. Summary of black bear detection data, by sex and sampling method, used in spatially-explicit capture-recapture models.  

Sampling occurred in northwestern Montana, 2004. 

 

  

Seasona 

  

Early summer Early summer Early summer 

Hair trap effortb 

 

1918 1946 1904 1932 - - 

Bear rub effortc 

 

5433 12026 13459 16657 26055 19563 

Hair trap 

       No. unique males 

 

92 74 41 40 - - 

No. male detections 

 

98 78 41 40 - - 

        No. unique females 

 

95 82 54 47 - - 

No. female detections 

 

95 85 57 48 - - 

        Bear rub 

       No. unique males 

 

10 42 36 39 30 27 

No. male detections 

 

20 65 47 44 34 27 

        No. unique females 

 

3 15 24 14 26 31 

No. female detections 

 

4 17 30 17 33 44 
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Total 

       No. unique males 

 

96 111 73 77 30 27 

No. male detections 

 

118 143 88 84 34 27 

No. recapturesd 

 

80 36 5 

  

     

   

No. unique females 

 

97 96 75 60 26 31 

No. female detections 

 

99 102 87 65 33 44 

No. recaptures 

 

27 27 23 

  a Each season consists of two 14-day sampling occasions.  Hair traps were active for spring 

and early summer only. 

b The total number of days that hair traps were available to detect bears per two-week 

sampling occasion. 

c The number of days since the previous survey of a given bear rub summed across all bear 

rubs surveyed in a given occasion. 

d The total number of recaptures within a given session regardless of detector type. 
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Table 2-3.  Distribution of the combined number of detections of individual grizzly bears (Ursus arctos) and American black bears (U. 

americanus) by sex and season at hair traps and bear rubs in Montana, USA, 2004.  Also shown is the observed and expected number 

of individual bears detected for the most supported model.  The expected number was calculated as 𝐸(𝑛) =  ∫ 𝑝. (𝑋)𝐷(𝑋)𝑑𝑋, with 

p.(X) is the probability a given individual was detected at least once and D(X) is the expected density at X for the most supported 

model. 

 

   

Distribution of number of detections 

 

No. individuals 

Species Sex Season 1 2 3 4 >5 Total   Observed Expected 

Grizzly F Spring 61 11 1 0 0 86 

 

73 73.12 

  

Early Summer 85 28 5 2 0 164 

 

120 118.55 

  

Late Summer 30 12 1 0 0 57 

 

43 42.96 

            

 

M Spring 47 15 9 6 11 228 

 

88 87.92 

  

Early Summer 66 17 6 0 7 168 

 

96 96 

  

Late Summer 31 5 4 0 3 72 

 

43 42.95 

            

            Black F Spring 150 22 1 1 0 201 

 

174 174.13 

  

Early Summer 107 12 4 1 1 152 

 

125 124.94 

  

Late Summer 41 6 4 3 0 77 

 

54 53.99 

            

 

M Spring 135 35 6 3 2 261 

 

181 181.74 

  

Early Summer 109 19 5 1 1 172 

 

135 135.04 

  

Late Summer 52 3 1 0 0 61 

 

56 56 
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Table 2-4. The most supported SECR model, based on AICc, for seasonal density of grizzly bears (Ursus artctos) and American black 

bears (U. americanus) in northwestern Montana, USA, 2004.  Number of estimated parameters (K), model deviance, AICc, and model 

weight (wi) are shown.  Complete model results can be found in Appendix A. 

 

Species Sex Season D K Deviance AICc wi 

Grizzly F Spring Black bear density in spring 10 518.88 542.43 0.14 

 
 

Early 

summer 

Male grizzly bear density in early summer  

+ Spring EVIa 
10 1087.08 1109.10 0.54 

 
 

Late 

summer 
Black bear density in late summer 9 539.08 562.54 0.108 

 M Spring Female grizzly bear density in spring 9 1853.23 1873.54 0.26 

 
 

Early 

summer 
Total bear density in early summer + terrain roughness 12 1485.28 1513.39 0.48 

 
 

Late 

summer 
Total bear density in early summer 6 778.34 792.67 0.07 

Black F Spring Grizzly bear density in spring 12 932.38 958.32 0.37 

 
 

Early 

summer 
Spring EVI + terrain roughness 8 926.44 943.67 0.44 

 
 

Late 

summer 
Spring EVI + terrain roughness 6 721.18 734.97 0.08 

 M Spring Grizzly bear density in spring 9 1692.06 1711.11 0.61 
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Early 

summer 
Spring EVI + Habitat security  19 1257.68 1302.28 0.32 

 
 

Late 

summer 
Spring EVI 4 579.92 588.70 0.08 

a EVI: enhanced vegetation index (Huete et al. 2002) 
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Table 2-5. Model averaged estimates, standard errors, and 95% confidence intervals from the most supported full likelihood spatially-

explicit capture-recapture density models for grizzly bears (Ursus arctos) in northwestern Montana, 2004, by sex and season.  Each 

season represents two 14-day sampling occasions. 

 

Species Sex Season Density submodel parameters β SE LCL UCL 

    
    Grizzly F Spring Baseline densitya 1.072 0.449 0.488 2.359 

   
Total black bear density in spring -0.092 0.024 -0.139 -0.045 

  
 

 
    

  

Early 

summer 
Baseline density 

1.273 0.397 0.700 2.313 

   

Male grizzly bear density in early 

summer 
-1.545 0.380 -2.289 -0.800 

   
Spring EVI -0.508 0.104 -0.711 -0.305 

    
    

  

Late 

summer 
Baseline density 

2.396 1.010 1.085 5.295 

   
Total black bear density in late summer -0.013 0.037 -0.086 0.059 

    
    

 
M Spring Baseline density 0.960 0.317 0.511 1.805 

   
Female grizzly bear density in spring 0.189 0.082 0.028 0.350 

  
 

 
    

  

Early 

summer 
Baseline density 

0.036 0.052 0.005 0.287 

   
Total bear density in early summer -0.202 0.070 -0.341 -0.064 

   
terrain roughness 1.277 0.815 -0.321 2.875 

    
    

  
Late Baseline density 0.148 0.183 0.022 0.981 
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summer 

   
Total bear density in early summer -0.127 0.067 -0.255 0.007 

    
    a Density is reported in bears per 100km2 at the base level of covariates. 
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Table 2-6. Model averaged estimates, standard errors, and 95% confidence intervals from the most supported full likelihood spatially-

explicit capture-recapture density models for American black bears (Ursus americanus) in northwestern Montana, 2004, by sex and 

season.  Each season represents two 14-day sampling occasions. 

Species Sex Season Density submodel parameters β SE LCL UCL 

    
    Black F Spring Baseline density 11.795 2.158 8.265 16.832 

   
Total grizzly bear density in spring -0.180 0.078 -0.333 -0.028 

  

Early 

summer 
Baseline density 

14.304 3.148 9.339 21.908 

   
Spring EVI 0.969 0.251 0.477 1.460 

   
terrain roughness -0.700 0.279 -1.246 -0.154 

  

Late 

summer 
Baseline density 

3.324 1.509 1.423 7.766 

   
Spring EVI 0.077 0.079 -0.079 0.233 

   
terrain roughness 1.115 0.514 0.108 2.122 

 
M Spring Baseline density 7.409 0.789 6.017 9.124 

   
Total grizzly bear density in spring -0.502 0.155 -0.807 -0.198 

  

Early 

summer 
Baseline density 

11.918 3.518 6.763 21.002 

   
Spring EVI 0.937 0.301 0.348 1.527 

   
Low security 1.417 0.484 0.468 2.366 

   
Medium security -0.139 0.423 -0.969 0.690 

  

Late 

summer 
Baseline density 

20.603 9.795 8.505 49.906 

   
Spring EVI 1.089 0.425 0.257 1.921 

a Density is reported in bears per 100km2 at the base level of covariates. 
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Table 2-7.  Parameter estimates and 95% confidence intervals from the most supported full likelihood spatially-explicit capture-

recapture detection sub-models for grizzly bears (Ursus arctos) in northwestern Montana, 2004, by sex and season.  g0 is the 

estimated detection probability at the home range center; sigma (σ) is the spatial scale parameter relating detection probability to 

distance from the home range center in meters.  Each season represents two 14-day sampling occasions. 

 

Sex Season 
Detection 

parameter (g0) 
β LCL UCL 

Detection 

parameter (σ) 
β LCL UCL 

F Spring Baseline 0.015 0.001 0.038 Baseline 1674.475 1269.683 2208.318 

  
Spring EVI 1.159 0.321 1.998 Spring EVI -0.552 -0.945 -0.158 

          

 
Early summer Baseline 0.012 0.007 0.018 Baseline 4374.224 3775.689 5067.640 

  

Total bear density 

in early summer 
-0.009 -0.029 0.012 

    

          

 
Late summer Baseline 0.000 0.000 0.001 Baseline 1970.784 1439.701 2697.774 

  

Total black bear 

density in late 

summer 

0.045 -0.008 0.098 

Total black bear 

density in late 

summer 

0.022 0.001 0.042 

          
M Spring Baseline 0.019 0.010 0.027 Baseline 3321.965 2779.124 3970.837 

  

Male grizzly 

density in spring 
0.689 0.227 1.152 

Male grizzly 

density in spring 
-0.346 -0.512 -0.180 

          

 
Early summer Baseline 0.003 0.002 0.005 Baseline 4409.197 3882.796 5006.963 

      
Forest -0.379 -0.657 -0.101 

      
Grassland -0.131 -0.419 0.158 

      
Shrub -4.475 -4.475 -4.475 

          

 
Late summer Baseline 0.001 0.001 0.002 Baseline 5027.973 4158.661 6079.002 

 
 

Total EVI 0.273 0.109 0.436 
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Female grizzly 

density in late 

summer 

0.372 -0.339 1.082 
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Table 2-8.  Parameter estimates and 95% confidence intervals from the most supported full likelihood spatially-explicit capture-

recapture detection sub-models for American black bears (Ursus americanus) in northwestern Montana, 2004, by sex and season.  g0 

is the estimated detection probability at the home range center; sigma (σ) is the spatial scale parameter relating detection probability to 

distance from the home range center in meters.  Each season represents two 14-day sampling occasions. 

Sex Season 
Detection parameter 

(g0) 
β LCL UCL 

Detection 

parameter (σ) 
β LCL UCL 

F Spring Baseline 0.027 0.009 0.045 Baseline 1845.934 1396.988 2439.156 

  Forest -1.336 -2.248 -0.425 Forest -1.336 -2.248 -0.425 

  Grassland -1.479 -2.513 -0.445 Grassland -1.479 -2.513 -0.445 

  
Shrub 0.083 -1.071 1.237 Shrub 0.083 -1.071 1.237 

  
        

 
Early summer Baseline 0.097 0.027 0.167 Baseline 1017.287 835.850 1238.109 

  

Total bear density in 

early summer 
-0.080 -0.124 -0.036 

Total bear density 

in early summer 
0.029 

0.014 0.044 

  
        

 
Late summer Baseline 0.003 0.001 0.005 Baseline 1266.230 1012.507 1583.532 

  

Total bear density in 

late summer 0.013 -0.029 0.055 

    
  

Terrain roughness -0.196 -0.568 0.175 

    
  

        M Spring Baseline 0.013 0.009 0.017 Baseline 3959.068 3531.434 4438.486 

  Spring EVI -0.288 -0.784 0.206 Spring EVI 0.307 0.095 0.518 

  

Total bear density in 

spring 
0.014 -0.009 0.037 

    
  Security (low) -1.410 -2.804 -0.016 

    
  Security (medium) -0.599 -0.944 -0.254 

    
  

        
 

Early summer Baseline 0.001 0.000 0.001 Baseline 4413.681 3239.445 6013.555 

  Security (low) -0.538 -3.761 2.298 Security (low) -0.163 -1.477 1.152 

  Security (medium) -1.953 -2.949 -0.957 

Security 

(medium) 
1.043 

0.644 1.442 
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Elevation 0.757 -0.004 1.517 

  
        

 
Late summer Baseline 0.001 0.000 0.001 Baseline 1999.196 1310.663 3049.437 

  

Total bear density in 

early summer 
0.019 -0.021 0.058 

    

  

Security (low) 2.389 0.939 3.840 

    

  

Security (medium) 0.340 -0.400 1.080 
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Figure 2-1. (A) Location of study area in northwestern Montana.  Locations of (B) 550 hair traps in relation to landcover class derived 

from 2004 MODIS imagery, and (C) 1,366 surveyed bear rubs in relation to level of security for bears.  Hair collection occurred in 

2004 from 15 June – 18 August for hair traps and 15 June - 7 September for bear rubs. 
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Figure 2-2. (A-C) Maps showing changes in average 500m EVI values for each one-month period, beginning 15 June 2004, with 

Glacier National Park (GNP) outlined in black for reference.  (D-E) Average EVI for spring and early summer 2004, relative to the 

2003 Robert fire, with fire severity shown in (F). 
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Figure 2-3. Predicted density of grizzly bears by sex and season using the most supported SECR model based on AICc values.  We 

conducted sampling during June-September, 2004, on all lands in Montana within 10 km of Glacier National Park, which is shown in 

black outline.  EVI is the enhanced vegetation index.   

 

  



55 
 

 

 Spring Early summer Late summer 

F
em

al
e 

b
la

ck
 b

ea
r 

 
Top model: total grizzly bear density in 

spring  

 
Top model: spring EVI + terrain 

roughness 

 
Top model: terrain roughness  

M
al

e 
b
la

ck
 b

ea
r 

 
Top model: total grizzly bear density in 

spring  

 
Top model: habitat security + spring 

EVI  

 
Top model: spring EVI 

 

 



56 
 

Figure 2-4. Predicted density of black bears by sex and season from the most supported SECR model based on AICc values.  We 

conducted sampling during June-September, 2004, on all lands in Montana within 10 km of Glacier National Park, which is shown in 

black outline.  EVI is the enhanced vegetation index.   
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APPENDIX A. SUPPLEMENTAL MATERIALS 

Table 2-S 1.  Model selection results from spatially-explicit capture-recapture models grizzly bears (Ursus arctos) and American black 

bears (U. americanus) in northwestern Montana, USA, 2004.   

Definitions: K: number of estimated parameters; logLik: log-likelihood; AICc: Aikaike Information Criterion value adjusted for small 

sample size; dAICc: difference of AICc value between given model and the top model; AICcwt: AICc model weight; time: model run 

time in seconds. D: density; g0: probability of detection at the home range center; sigma: spatial scale parameter.  Session: species, 

sex, season (1=spring, 2=early summer, 3=late summer); example: BB M3 = black bear, male, late summer.  Model notation: rtp: 

relative terrain position (terrain complexity); elev: standardized elevation;  elevcat: categorical elevation; TYPE: type of detector; 

categorical hair trap or bear rub; t: time; security: categorical index of habitat security; landcover: categorical landcover type; evi: 

enhanced vegetation index, Julian date of first scene, Julian date of last scene (example: evi177257 = sum of EVI values during Julian 

days 177-257); predicted density surfaces (prdD): species+sex+season (example: bbf3prdD = black bear female, 3rd season [late 

summer]).   

Session Model K logLik AICc dAICc AICcwt time 

GB F1 D~bbt1prdD g0~TYPE + evi177193trap sigma~evi177193trap 7 -263.835 542.43 0.00 0.13 104875 

GB F1 D~bbt1prdD g0~TYPE:t sigma~1 8 -262.611 543.47 0.08 0.13 36945 

GB F1 D~bbt1prdD g0~TYPE + ttl1prdDtrap sigma~ttl1prdDtrap 7 -264.529 544.78 1.39 0.07 41823 

GB F1 D~bbt1prdD g0~TYPE sigma~1 5 -267.229 545.35 1.96 0.05 6776 

GB F1 D~bbt1prdD g0~TYPE:t sigma~ttl1prdDtrap 9 -262.259 545.38 1.98 0.05 58697 

GB F1 D~bbt1prdD g0~TYPE + bbT1prdDtrap sigma~bbT1prdDtrap 7 -264.845 545.41 2.02 0.05 79394 

GB F1 D~bbt1prdD + gbm1prdD g0~TYPE:t sigma~1 9 -262.577 546.01 2.62 0.04 19657 

GB F1 D~bbt1prdD g0~TYPE:t + evi177193trap sigma~1 9 -262.591 546.04 2.65 0.04 664260 

GB F1 D~bbt1prdD g0~TYPE + gbM1prdDtrap sigma~gbM1prdDtrap 7 -265.432 546.59 3.20 0.03 15270 

GB F1 D~bbt1prdD g0~TYPE + rtp sigma~1 6 -266.706 546.69 3.29 0.03 4443 

GB F1 D~bbt1prdD g0~TYPE sigma~ttl1prdDtrap 6 -266.864 547.00 3.61 0.02 13373 

GB F1 D~bbt1prdD g0~TYPE + bbT1prdDtrap sigma~1 6 -266.876 547.02 3.63 0.02 38156 

GB F1 D~bbt1prdD g0~TYPE + gbM1prdDtrap sigma~1 6 -266.999 547.27 3.88 0.02 11098 

GB F1 D~bbt1prdD g0~TYPE:t + evi177193trap sigma~evi177193trap 10 -261.925 547.40 4.01 0.02 86042 

GB F1 D~bbt1prdD g0~TYPE + evi177193trap sigma~1 6 -267.094 547.46 4.07 0.02 74811 

GB F1 D~bbt1prdD g0~TYPE + t sigma~1 6 -267.118 547.51 4.12 0.02 8808 

GB F1 D~bbt1prdD + evi177193 g0~TYPE sigma~1 6 -267.173 547.62 4.23 0.02 9405 

GB F1 D~bbt1prdD + gbm1prdD g0~TYPE sigma~1 6 -267.186 547.64 4.25 0.02 2978 

GB F1 D~bbt1prdD g0~TYPE + ttl1prdDtrap sigma~1 6 -267.200 547.67 4.28 0.02 10364 
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Session Model K logLik AICc dAICc AICcwt time 

GB F2 D~evi177193+gbm2prdD  g0~TYPE+elevcat  sigma~1 1 -543.542 1109.10 0.00 0.54 239332 

GB F2 D~evi177193+gbm2prdD  g0~TYPE+elevcat  sigma~gbM2prdDtrap 11 -543.159 1110.76 1.66 0.23 175311 

GB F2 D~evi177193+gbm2prdD  g0~TYPE+ttl2prdDtrap+elevcat  sigma~1 11 -543.395 1111.23 2.13 0.18 975016 

GB F3 D~bbt3prdD  g0~elevcat  sigma~bbT3prdDtrap 9 -269.543 562.54 0.00 0.11 236213 

GB F3 D~ttl3prdD  g0~elevcat  sigma~bbT3prdDtrap 9 -269.561 562.58 0.04 0.11 401384 

GB F3 D~gbm3prdD  g0~elevcat  sigma~bbT3prdDtrap 9 -269.588 562.63 0.09 0.10 323679 

GB F3 D~rtp  g0~elevcat  sigma~bbT3prdDtrap 9 -269.596 562.65 0.11 0.10 301981 

GB F3 D~bbt3prdD  g0~elevcat  sigma~ttl3prdDtrap 9 -269.745 562.95 0.40 0.09 150784 

GB F3 D~ttl3prdD  g0~elevcat  sigma~ttl3prdDtrap 9 -269.757 562.97 0.43 0.09 303233 

GB F3 D~bbt3prdD  g0~elevcat  sigma~1 8 -271.676 563.59 1.05 0.06 15946 

GB F3 D~bbt3prdD  g0~elevcat+bbT3prdDtrap  sigma~1 9 -270.246 563.95 1.41 0.05 125857 

GB F3 D~ttl3prdD  g0~elevcat  sigma~1 8 -272.002 564.24 1.70 0.05 36033 

GB F3 D~bbt3prdD+elev  g0~elevcat  sigma~1 9 -270.692 564.84 2.30 0.03 34355 

GB F3 D~bbt3prdD  g0~elevcat  sigma~1 12 -265.660 565.72 3.18 0.02 53373 

GB F3 D~bbt3prdD  g0~elevcat+bbT3prdDtrap  sigma~bbT3prdDtrap 10 -269.457 565.79 3.25 0.02 176193 

GB F3 D~bbt3prdD+evi177193  g0~elevcat  sigma~bbT3prdDtrap 10 -269.507 565.89 3.35 0.02 376805 

GB F3 D~bbt3prdD+gbm3prdD  g0~elevcat  sigma~bbT3prdDtrap 10 -269.518 565.91 3.37 0.02 135138 

GB F3 D~bbt3prdD+gbm3prdD  g0~elevcat  sigma~bbT3prdDtrap 10 -269.550 565.97 3.43 0.02 135265 

GB F3 D~bbt3prdD  g0~elevcat  sigma~gbF3prdDtrap 9 -271.397 566.25 3.71 0.02 27927 

GB F3 D~bbt3prdD  g0~t+elevcat  sigma~bbT3prdDtrap 10 -269.729 566.33 3.79 0.02 643602 

GB F3 D~bbt3prdD  g0~elevcat+gbF3prdDtrap  sigma~1 9 -271.603 566.66 4.12 0.01 27902 

GB F3 D~bbt3prdD  g0~elevcat+gbM3prdDtrap  sigma~1 9 -271.675 566.81 4.26 0.01 10205 

GB F3 D~bbt3prdD+rtp  g0~elevcat  sigma~1 9 -271.676 566.81 4.27 0.01 10954 

GB F3 D~bbt3prdD  g0~elevcat  sigma~1 8 -273.629 567.49 4.95 0.01 16217 

GB M1 D~gbf1prdD  g0~TYPE+gbM1prdDtrap+security  sigma~gbM1prdDtrap 9 -926.614 1873.54 0.00 0.26 63206 

GB M1 
D~gbf1prdD+bbt1prdD+elev  g0~TYPE+bbT1prdDtrap+security  

sigma~bbT1prdDtrap 11 -925.157 1875.79 2.25 0.09 340482 

GB M1 
D~gbf1prdD+bbt1prdD+elev  g0~TYPE+gbM1prdDtrap  

sigma~gbM1prdDtrap 9 -927.861 1876.03 2.49 0.08 72820 

GB M1 D~gbf1prdD  g0~TYPE+gbF1prdDtrap+security  sigma~gbM1prdDtrap 9 -928.016 1876.34 2.80 0.06 210076 

GB M1 
D~gbf1prdD+bbt1prdD+elev  g0~TYPE+bbT1prdDtrap  

sigma~bbT1prdDtrap+security 11 -925.483 1876.44 2.90 0.06 459122 

GB M1 
D~gbf1prdD+bbt1prdD+elev  g0~TYPE+gbM1prdDtrap+security  

sigma~bbT1prdDtrap 11 -925.643 1876.76 3.22 0.05 278357 

GB M1 
D~gbf1prdD+bbt1prdD+elev  g0~TYPE+bbT1prdDtrap  

sigma~bbT1prdDtrap 9 -928.330 1876.97 3.43 0.05 90009 
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GB M1 D~gbf1prdD  g0~TYPE+gbM1prdDtrap+security  sigma~ttl1prdDtrap 9 -928.679 1877.67 4.13 0.03 269677 

GB M1 
D~gbf1prdD+bbm1prdD+elev  g0~TYPE+bbT1prdDtrap+security  

sigma~bbT1prdDtrap 11 -926.112 1877.70 4.16 0.03 380303 

GB M1 
D~gbf1prdD+bbt1prdD+elev+rtp  g0~TYPE+bbT1prdDtrap+security  

sigma~bbT1prdDtrap 12 -924.781 1877.72 4.19 0.03 736071 

GB M1 
D~gbf1prdD+bbt1prdD+elev  g0~TYPE+bbT1prdDtrap+gbF1prdDtrap  

sigma~bbT1prdDtrap 10 -927.538 1877.93 4.40 0.03 196492 

GB M1 
D~gbf1prdD+bbt1prdD+elev  g0~TYPE+gbM1prdDtrap  

sigma~bbT1prdDtrap 9 -928.860 1878.03 4.49 0.03 122014 

GB M1 D~ttl1prdD  g0~TYPE+bbT1prdDtrap+security  sigma~bbT1prdDtrap 9 -928.924 1878.16 4.62 0.03 371259 

GB M2 D~ttl2prdD+rtp  g0~TYPE:t  sigma~landcover 12 -742.816 1513.39 0.00 0.48 329886 

GB M2 D~ttl2prdD  g0~TYPE:t  sigma~landcover 11 -744.432 1514.01 0.62 0.35 369175 

GB M3 D~ttl2prdD  g0~t+evi177257trap  sigma~1 6 -389.168 792.67 0.00 0.07 21812 

GB M3 D~ttl2prdD  g0~t+evi177257trap  sigma~evi177257trap+rtp 8 -386.492 793.22 0.55 0.05 96032 

GB M3 D~ttl2prdD  g0~evi177257trap  sigma~evi177257trap+rtp 7 -388.023 793.25 0.58 0.05 24973 

GB M3 D~ttl2prdD  g0~evi177257trap  sigma~evi177257trap 6 -389.459 793.25 0.58 0.05 13320 

GB M3 D~ttl2prdD+rtp  g0~evi177257trap  sigma~1 6 -389.499 793.33 0.66 0.05 55931 

GB M3 D~ttl2prdD  g0~evi177257trap+rtp  sigma~1 6 -389.565 793.46 0.79 0.05 34424 

GB M3 D~bbm3prdD  g0~evi177257trap  sigma~1 5 -390.928 793.48 0.81 0.04 11281 

GB M3 D~ttl3prdD  g0~evi177257trap  sigma~1 5 -391.022 793.67 1.00 0.04 25406 

GB M3 D~bbt3prdD  g0~evi177257trap  sigma~1 5 -391.156 793.93 1.26 0.04 10787 

GB M3 D~ttl2prdD  g0~evi177257trap+gbF3prdDtrap  sigma~1 6 -389.920 794.17 1.50 0.03 14444 

GB M3 D~ttl2prdD  g0~evi177257trap  sigma~rtp 6 -390.003 794.34 1.67 0.03 19997 

GB M3 D~bbt3prdD+rtp  g0~evi177257trap  sigma~1 6 -390.046 794.43 1.76 0.03 10496 

GB M3 D~ttl2prdD  g0~evi177257trap  sigma~gbM3prdDtrap 6 -390.100 794.53 1.87 0.03 15441 

GB M3 D~bbt3prdD+elev+rtp  g0~evi177257trap  sigma~1 7 -388.672 794.54 1.88 0.03 25105 

GB M3 D~elev+ttl2prdD  g0~evi177257trap  sigma~1 6 -390.258 794.85 2.18 0.02 33306 

GB M3 D~ttl2prdD  g0~evi177257trap+ttl3prdDtrap  sigma~1 6 -390.299 794.93 2.26 0.02 591707 

GB M3 D~ttl2prdD+rtp+elev  g0~evi177257trap  sigma~1 7 -388.870 794.94 2.27 0.02 65044 

GB M3 D~ttl2prdD  g0~evi177257trap  sigma~ttl3prdDtrap 6 -390.367 795.07 2.40 0.02 93692 

GB M3 D~ttl2prdD  g0~evi177257trap  sigma~security 7 -388.957 795.11 2.45 0.02 16095 

GB M3 D~evi177225+ttl2prdD  g0~evi177257trap  sigma~1 6 -390.438 795.21 2.54 0.02 48941 

GB M3 D~ttl2prdD  g0~evi177257trap  sigma~bbT3prdDtrap 6 -390.444 795.22 2.55 0.02 93904 

GB M3 D~evi209225+ttl2prdD  g0~evi177257trap  sigma~1 6 -390.452 795.24 2.57 0.02 44545 

GB M3 D~ttl2prdD  g0~security+evi177257trap  sigma~1 7 -389.058 795.32 2.65 0.02 31626 

GB M3 D~evi209225+bbt3prdD  g0~evi177257trap  sigma~1 6 -390.502 795.34 2.67 0.02 110562 
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GB M3 D~ttl2prdD  g0~evi177257trap+gbM3prdDtrap  sigma~1 6 -390.545 795.42 2.76 0.02 55423 

GB M3 D~ttl2prdD  g0~t+evi177257trap  sigma~evi177257trap+gbF3prdDtrap 8 -387.631 795.50 2.83 0.02 98156 

GB M3 D~evi209225+ttl2prdD  g0~evi177257trap  sigma~1 6 -390.663 795.66 2.99 0.02 146870 

GB M3 D~bbt3prdD+elev  g0~evi177257trap  sigma~1 6 -390.693 795.72 3.05 0.01 7207 

GB M3 D~evi177257  g0~evi177257trap  sigma~1 5 -392.154 795.93 3.26 0.01 10697 

GB M3 D~bbf3prdD  g0~evi177257trap  sigma~1 5 -392.167 795.96 3.29 0.01 9008 

GB M3 D~ttl2prdD  g0~t+evi177257trap+rtp  sigma~evi177257trap+rtp 9 -386.251 795.96 3.29 0.01 66764 

GB M3 D~gbf2prdD  g0~evi177257trap  sigma~1 5 -392.407 796.44 3.77 0.01 62999 

GB M3 D~gbf3prdD+evi177225  g0~evi177257trap  sigma~1 6 -391.117 796.57 3.90 0.01 17400 

GB M3 D~gbm2prdD  g0~evi177257trap  sigma~1 5 -392.517 796.66 3.99 0.01 102271 

GB M3 D~evi209225+gbf3prdD  g0~evi177257trap  sigma~1 6 -391.236 796.81 4.14 0.01 124333 

GB M3 D~gbf3prdD+evi177257  g0~evi177257trap  sigma~1 6 -391.410 797.15 4.49 0.01 16783 

GB M3 D~gbf3prdD  g0~evi177257trap  sigma~1 5 -392.795 797.21 4.54 0.01 11046 

GB M3 D~ttl2prdD+security  g0~evi177257trap  sigma~1 7 -390.099 797.40 4.73 0.01 35238 

GB M3 D~elev  g0~evi177257trap  sigma~1 5 -392.929 797.48 4.81 0.01 19230 

BB F1 D~gbt1prdD  g0~TYPE+landcover+ttl1prdDtrap  sigma~landcover 12 -466.192 958.32 0.00 0.37 274705 

BB F1 D~gbt1prdD  g0~TYPE+landcover  sigma~landcover 11 -467.716 959.06 0.74 0.25 30616 

BB F1 
D~gbt1prdD  g0~TYPE+landcover+ttl1prdDtrap  

sigma~landcover+ttl1prdDtrap 13 -466.081 960.44 2.12 0.13 165532 

BB F1 D~gbt1prdD  g0~TYPE+landcover  sigma~landcover 15 -464.666 962.37 4.05 0.05 135349 

BB F1 D~gbt1prdD  g0~TYPE+landcover+ttl1prdDtrap  sigma~landcover 16 -463.721 962.91 4.59 0.04 1E+06 

BB F2 D~evi177193+rtp  g0~TYPE+ttl2prdDtrap  sigma~ttl2prdDtrap 8 -463.216 943.67 0.00 0.44 366112 

BB F2 D~evi177193+rtp  g0~TYPE+ttl2prdDtrap  sigma~bbF2prdDtrap 8 -463.548 944.34 0.66 0.31 601566 

BB F2 D~evi177193+rtp  g0~TYPE+bbF2prdDtrap  sigma~bbF2prdDtrap 8 -464.398 946.04 2.36 0.13 98649 

BB F3 D~evi177225+rtp  g0~t  sigma~1 6 -360.590 734.97 0.00 0.08 10744 

BB F3 D~rtp  g0~t  sigma~1 5 -361.156 733.56 1.41 0.04 3873 

BB F3 D~rtp  g0~t+rtp  sigma~1 6 -360.609 735.00 1.44 0.04 11355 

BB F3 D~rtp+evi177257  g0~t  sigma~1 6 -360.654 735.09 1.53 0.04 9901 

BB F3 D~rtp  g0~t  sigma~gbM3prdDtrap 6 -360.868 735.52 1.96 0.03 6429 

BB F3 D~rtp+ttl3prdD  g0~t  sigma~1 6 -360.873 735.53 1.97 0.03 18728 

BB F3 D~bbt2prdD+rtp  g0~t  sigma~1 6 -360.971 735.73 2.17 0.03 4916 

BB F3 D~rtp  g0~t+bbM3prdDtrap  sigma~1 6 -360.979 735.75 2.18 0.03 33065 

BB F3 D~rtp  g0~t+ttl3prdDtrap  sigma~1 6 -360.980 735.75 2.19 0.03 295163 

BB F3 D~rtp  g0~t+evi177257trap  sigma~1 6 -360.983 735.75 2.19 0.03 197788 

BB F3 D~rtp  g0~t  sigma~bbT3prdDtrap 6 -361.101 735.99 2.43 0.02 33895 
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BB F3 D~rtp  g0~t  sigma~bbM3prdDtrap 6 -361.103 735.99 2.43 0.02 46034 

BB F3 D~rtp  g0~t  sigma~ttl3prdDtrap 6 -361.114 736.02 2.45 0.02 216549 

BB F3 D~ttl1prdD  g0~t  sigma~1 5 -362.403 736.06 2.50 0.02 20854 

BB F3 D~rtp  g0~t  sigma~rtp 6 -361.144 736.08 2.51 0.02 12406 

BB F3 D~rtp  g0~t  sigma~evi177257trap 6 -361.156 736.10 2.54 0.02 20135 

BB F3 D~rtp  g0~rtp  sigma~rtp 6 -361.327 736.44 2.88 0.02 19351 

BB F3 D~rtp  g0~rtp  sigma~rtp 6 -361.327 736.44 2.88 0.02 4543 

BB F3 D~evi177225+rtp  g0~1  sigma~t 6 -361.332 736.45 2.89 0.02 5621 

BB F3 D~rtp  g0~t:rtp  sigma~1 6 -361.398 736.58 3.02 0.02 13915 

BB F3 D~rtp  g0~t:gbT3prdDtrap  sigma~1 6 -361.511 736.81 3.25 0.02 7550 

BB F3 D~rtp  g0~rtp  sigma~1 5 -362.873 737.00 3.43 0.01 3752 

BB F3 D~evi177225+rtp  g0~1  sigma~1 5 -362.875 737.00 3.44 0.01 4340 

BB F3 D~gbt2prdD+rtp  g0~1  sigma~1 5 -362.893 737.04 3.47 0.01 11052 

BB F3 D~evi177225+rtp  g0~t  sigma~t 7 -360.329 737.09 3.53 0.01 4547 

BB F3 D~evi177225  g0~t  sigma~1 5 -363.000 737.25 3.69 0.01 2748 

BB F3 D~rtp  g0~t+rtp+ttl3prdDtrap  sigma~1 7 -360.408 737.25 3.69 0.01 126847 

BB F3 D~rtp  g0~t+rtp+bbM3prdDtrap  sigma~1 7 -360.407 737.25 3.69 0.01 330460 

BB F3 D~rtp  g0~t+rtp+evi177257trap  sigma~1 7 -360.442 737.32 3.76 0.01 108257 

BB F3 D~rtp  g0~t+security  sigma~1 7 -360.442 737.32 3.76 0.01 9006 

BB F3 D~evi177225+rtp+ttl2prdD  g0~t  sigma~1 7 -360.457 737.35 3.79 0.01 17845 

BB F3 D~rtp  g0~t+elevcat  sigma~1 9 -357.660 737.41 3.85 0.01 63632 

BB F3 D~evi177257  g0~t  sigma~1 5 -363.087 737.42 3.86 0.01 20781 

BB F3 D~rtp  g0~t  sigma~security 7 -360.496 737.43 3.87 0.01 8373 

BB F3 D~gbt2prdD  g0~t  sigma~1 5 -363.102 737.46 3.89 0.01 8759 

BB F3 D~gbt2prdD  g0~t  sigma~1 5 -363.102 737.46 3.89 0.01 9914 

BB F3 D~rtp  g0~t+bbM3prdDtrap  sigma~gbM3prdDtrap 7 -360.555 737.55 3.98 0.01 80029 

BB F3 D~bbf2prdD  g0~t  sigma~1 5 -363.181 737.61 4.05 0.01 5730 

BB F3 D~ttl3prdD  g0~t  sigma~1 5 -363.230 737.71 4.15 0.01 12762 

BB F3 D~bbt2prdD  g0~t  sigma~1 5 -363.268 737.79 4.23 0.01 6139 

BB F3 D~rtp  g0~gbT3prdDtrap  sigma~1 5 -363.309 737.87 4.31 0.01 8720 

BB F3 D~rtp  g0~bbM3prdDtrap  sigma~1 5 -363.324 737.90 4.34 0.01 15073 

BB F3 D~ttl2prdD  g0~t  sigma~1 5 -363.327 737.91 4.34 0.01 8619 

BB F3 D~rtp+elev  g0~1  sigma~1 5 -363.463 738.18 4.61 0.01 4486 

BB F3 D~rtp  g0~evi177257trap  sigma~1 5 -363.485 738.22 4.66 0.01 8276 

BB F3 D~elev  g0~t  sigma~1 5 -363.511 738.27 4.71 0.01 11398 
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BB F3 D~rtp  g0~t+ttl3prdDtrap+evi177257trap  sigma~1 7 -360.925 738.29 4.72 0.01 244085 

BB F3 D~rtp  g0~t+ttl3prdDtrap  sigma~ttl3prdDtrap 7 -360.927 738.29 4.73 0.01 64454 

BB F3 D~rtp  g0~t:bbF3prdDtrap  sigma~1 6 -362.267 738.32 4.76 0.01 9672 

BB F3 D~gbt3prdD  g0~t  sigma~1 5 -363.554 738.36 4.80 0.01 5415 

BB F3 D~security+rtp  g0~t  sigma~1 7 -361.034 738.50 4.94 0.01 19815 

BB F3 D~rtp  g0~t  sigma~ttl2prdDtrap 9 -358.215 738.52 4.96 0.01 58785 

BB M1 D~gbt1prdD  g0~TYPE+security+evi177193trap  sigma~evi177193trap 9 -846.026 1711.11 0.00 0.60 524791 

BB M1 D~elev  g0~TYPE+security+evi177193trap  sigma~evi177193trap 9 -847.487 1714.03 2.92 0.14 259372 

BB M1 
D~elev  g0~TYPE+security+evi177193trap+ttl1prdDtrap  

sigma~evi177193trap 10 -846.611 1714.52 3.41 0.11 339759 

BB M1 
D~elev  g0~TYPE+security+evi177193trap  

sigma~evi177193trap+ttl1prdDtrap 10 -847.057 1715.41 4.30 0.07 430579 

BB M2 
D~evi177193+security  g0~TYPE+security+elevcat  

sigma~security+elevcat 19 -628.833 1302.28 0.00 0.33 2E+06 

BB M2 D~evi177193  g0~TYPE+security+elevcat  sigma~security+elevcat 17 -632.025 1303.28 1.01 0.20 806088 

BB M2 D~evi177193+elev  g0~TYPE+security+elevcat  sigma~security+elevcat 18 -630.722 1303.34 1.06 0.19 581078 

BB M2 
D~evi177193+ttl2prdD  g0~TYPE+security+elevcat  

sigma~security+elevcat 18 -631.980 1305.86 3.58 0.05 2E+06 

BB M2 
D~evi177193+bbf2prdD  g0~TYPE+security+elevcat  

sigma~security+elevcat 18 -632.001 1305.90 3.62 0.05 641166 

BB M2 
D~evi177193+elev+bbf2prdD  g0~TYPE+security+elevcat  

sigma~security+elevcat 19 -630.669 1305.95 3.67 0.05 273380 

BB M2 D~bbf2prdD  g0~TYPE+security+elevcat  sigma~security+elevcat 17 -633.435 1306.10 3.82 0.05 562270 

BB M3 D~evi177193  g0~1  sigma~1 6 -287.717 589.15 0.00 0.08 8964 

BB M3 D~bbf3prdD+security  g0~1  sigma~1 4 -290.381 589.55 0.40 0.07 6034 

BB M3 D~bbf3prdD  g0~ttl2prdDtrap  sigma~1 5 -289.520 590.24 1.09 0.05 61962 

BB M3 D~bbf3prdD+rtp  g0~1  sigma~1 5 -289.533 590.27 1.12 0.05 9166 

BB M3 D~bbf3prdD+evi177257  g0~1  sigma~1 5 -289.567 590.34 1.19 0.04 19174 

BB M3 D~bbf3prdD+elev  g0~1  sigma~1 5 -289.667 590.54 1.39 0.04 12176 

BB M3 D~evi177257+security  g0~1  sigma~1 6 -288.582 590.88 1.73 0.03 28728 

BB M3 D~bbf3prdD+evi177193  g0~1  sigma~1 5 -289.861 590.92 1.77 0.03 14181 

BB M3 D~bbf3prdD  g0~t  sigma~1 5 -289.887 590.97 1.82 0.03 9228 

BB M3 D~bbf3prdD  g0~rtp  sigma~1 5 -289.951 591.10 1.95 0.03 4986 

BB M3 D~bbf3prdD  g0~1  sigma~bbF3prdDtrap 5 -289.955 591.11 1.96 0.03 7268 

BB M3 D~bbf3prdD  g0~1  sigma~security 6 -288.776 591.27 2.12 0.03 6813 



63 
 

Session Model K logLik AICc dAICc AICcwt time 

BB M3 D~bbf3prdD+evi177193+security  g0~1  sigma~1 7 -287.549 591.43 2.28 0.03 18104 

BB M3 D~gbt3prdD+bbf3prdD+security  g0~1  sigma~1 7 -287.580 591.49 2.34 0.03 24573 

BB M3 D~bbf3prdD  g0~evi241257trap  sigma~ttl2prdDtrap 6 -288.969 591.65 2.50 0.02 76785 

BB M3 D~bbf3prdD  g0~security  sigma~1 6 -289.089 591.89 2.74 0.02 12066 

BB M3 D~bbf2prdD  g0~1  sigma~1 4 -291.580 591.95 2.80 0.02 5523 

BB M3 D~bbf3prdD+security  g0~bbM3prdDtrap  sigma~ttl2prdDtrap 8 -286.462 591.99 2.84 0.02 304735 

BB M3 D~evi177257+security+rtp  g0~1  sigma~1 7 -287.930 592.19 3.04 0.02 18760 

BB M3 D~ttl2prdD+evi177257+security  g0~1  sigma~1 7 -287.942 592.22 3.07 0.02 10620 

BB M3 D~evi177257  g0~1  sigma~1 4 -291.914 592.61 3.46 0.01 10257 

BB M3 D~ttl3prdD+security  g0~1  sigma~1 6 -289.504 592.72 3.57 0.01 27915 

BB M3 D~evi177257+rtp  g0~1  sigma~1 5 -290.789 592.78 3.63 0.01 11723 

BB M3 D~ttl2prdD  g0~1  sigma~1 4 -292.039 592.86 3.71 0.01 9844 

BB M3 D~bbt2prdD  g0~1  sigma~1 4 -292.063 592.91 3.76 0.01 8813 

BB M3 D~gbt3prdD+bbf3prdD  g0~evi241257trap  sigma~1 6 -289.600 592.91 3.76 0.01 4187 

BB M3 D~gbt3prdD+bbf3prdD  g0~1  sigma~evi177257trap 6 -289.620 592.96 3.81 0.01 49758 

BB M3 D~gbt3prdD+bbf3prdD  g0~gbT3prdDtrap  sigma~1 6 -289.631 592.98 3.83 0.01 66811 

BB M3 D~gbt3prdD+bbf3prdD  g0~1  sigma~evi241257trap 6 -289.663 593.04 3.89 0.01 10904 

BB M3 D~gbt3prdD+bbf3prdD  g0~1  sigma~t 6 -289.697 593.11 3.96 0.01 69858 

BB M3 D~gbt3prdD+bbf3prdD  g0~t  sigma~1 6 -289.700 593.11 3.96 0.01 12398 

BB M3 D~bbf3prdD  g0~bbT3prdDtrap+gbT3prdDtrap  sigma~1 6 -289.729 593.17 4.02 0.01 10276 

BB M3 D~gbt3prdD+bbf3prdD  g0~bbM3prdDtrap  sigma~1 6 -289.759 593.23 4.08 0.01 25771 

BB M3 D~bbf3prdD  g0~t:evi241257trap  sigma~1 6 -289.762 593.24 4.09 0.01 27521 

BB M3 D~gbt3prdD+bbf3prdD  g0~evi177257trap  sigma~1 6 -289.766 593.25 4.10 0.01 60160 

BB M3 D~gbt3prdD+bbf3prdD  g0~evi177225trap  sigma~1 6 -289.766 593.25 4.10 0.01 8782 

BB M3 D~ttl3prdD+rtp+security  g0~1  sigma~1 7 -288.632 593.60 4.45 0.01 7507 

BB M3 D~bbf3prdD  g0~bbF3prdDtrap  sigma~bbF3prdDtrap 6 -289.954 593.62 4.47 0.01 13868 

BB M3 D~bbm2prdD  g0~1  sigma~1 4 -292.520 593.82 4.67 0.01 11450 

BB M3 D~bbf3prdD  g0~bbM3prdDtrap+security  sigma~ttl2prdDtrap 8 -287.380 593.82 4.67 0.01 14513 

BB M3 D~gbt3prdD+bbf3prdD  g0~security  sigma~1 7 -288.833 594.00 4.85 0.01 3176 
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CHAPTER 3 : EXPLAINING VARIATION IN DETECTION 

PROBABILITIES OF GRIZZLY BEARS AT NATURALLY 

OCCURRING BEAR RUBS. 

 

INTRODUCTION  

Monitoring population dynamics is a priority for agencies responsible for managing wildlife 

populations, particularly for conservation-reliant species (Scott et al. 2010).  Monitoring 

programs should ideally both inform managers on the status and trends of populations as well as 

improve understanding of how environmental change and management actions influence those 

dynamics (Nichols & Williams 2006).  Reliable estimates of population parameters such as 

density and population growth rate are, however, often difficult to acquire, particularly within 

short enough time frames to identify and address threats before they become irreversible.  

Further, monitoring programs need to be affordable, flexible, and preferably impose limited 

disturbance to the animals being studied.  Beyond the potential social and ethical values attached 

to reducing disturbance, doing so may reduce behavioral responses of animals that can lead to 

biased demographic parameter estimates (Boulanger et al. 2004; Cattet et al. 2008). 

 Advances in sampling methods have greatly expanded the tools available for population 

monitoring, particularly noninvasive methods that require little if any disturbance to animals.  

Remote cameras, for example, have been used to estimate density in many populations, including 

tigers (Panthera tigris) and other species with coat patterns that allow individual identification 

(Karanth et al. 2004; Noss et al. 2012).  Camera detection data can also be used to monitor 

changes in occupancy, even of species without individually identifiable markers, such as grizzly 

bears (Ursus arctos), which are difficult to study given they tend to exist at low densities, in 

remote areas, and are capable of moving large distances (Steenweg et al. 2016). 
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 Noninvasive genetic sampling (NGS) provides similar benefits to remote cameras with 

the added power to identify cryptic individual animals and track their detections over space and 

time (Waits & Paetkau 2005).  Such detection data are well-suited for use in traditional and 

spatially-explicit capture-recapture (SECR) methods, and have been used in dozens of studies to 

produce estimates of density and population growth rate, as well as species’ distributions and 

genetic status (e.g., Kendall et al. 2009; Sawaya et al. 2012).  The efficacy of NGS has made it 

possible to design study areas many times larger than animals’ home ranges, which further 

reduces biases related to edge effects (Boulanger & McLellan 2001) or focusing on areas of high 

quality habitat that may bias estimates in smaller study areas that  ( Smallwood & Schonewald 

1998; Yoccoz et al. 2001). 

 Perhaps for more than any other taxonomic group, NGS methods have been used to 

assess and monitor populations of grizzly and black bears (U. americanus) across North 

America.  For grizzly bears, most studies have used baited sites placed pseudo-systematically in 

grid cells ranging from 25-100 km2, based on the expected home range size of female bears, to 

ensure adequate detection rates (Boulanger et al. 2004).  Bears are attracted to the sites by the 

prospect of obtaining food (i.e., carrion), although many studies have used non-rewarding lures 

to minimize behavioral responses (Boulanger et al. 2002).  The density and overall number of 

sites, quantity and nature of lure, and whether sites are moved between sessions are all design 

factors that can influence detection probabilities, and thereby reliability of parameter estimates, 

of bears (Boulanger et al. 2004; Wilton et al. 2016).  Further, any number of uncontrollable 

factors such as rain that can wash away lure, annual or seasonal variability in natural foods 

(McCall et al. 2013), or large scale disturbances like wildfires can add to the inherent 

heterogeneity in detection rates at these sites. 
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 Because of these and other factors, heterogeneity in detection probabilities remains a 

fundamental challenge in estimating demographic parameters using capture-recapture (CR) 

methods ( Schwarz & Seber 1999; Boulanger et al. 2004), which can result in severe biases if not 

properly modeled (Hines and Nichols 2001; Link 2003).  Several statistical approaches to 

mitigate effects of detection heterogeneity have been developed, including the use of individual 

covariates (Huggins 1991), mixture models that partition animals into ≥2 groups that have 

relatively homogenous detection rates (Pledger 2000), and random effects that allow each 

individual’s detection probability to differ from the population mean (Gimenez & Choquet 

2010).  Effective use of such extensions, however, requires meeting additional assumptions, such 

as having covariate values for every sampled individual, having a large number of sampling 

occasions, and all animals having a non-zero detection probability (Boulanger et al. 2008). 

 In addition to advances in the CR models themselves, the use of detection data from >1 

sampling method has been shown to be particularly effective at reducing bias and improving 

precision of demographic parameter estimates with both traditional ( Boulanger et al. 2008; 

Sawaya et al. 2012) and  spatial CR methods (Stetz et al. 2014; Kendall et al. 2016; Morehouse 

& Boyce 2016).  Secondary sampling methods can be more efficient than increasing sampling 

intensity with a single method, and can reduce the effects of heterogeneity by exposing more 

animals to detection ( Dreher et al. 2007; Kendall et al. 2009), even if a segment of the 

population has low or zero probability of detection in one of the methods (Boulanger et al. 2008).  

Several such secondary sampling methods have been used with bear NGS studies, including 

detections at highway crossing structures (Sawaya et al. 2012), animals known to be on the study 

area through live capture or harvest (Dreher et al. 2007), or detected through hair samples 

collected at bear rubs (Karamanlidis et al. 2007; Kendall et al. 2008; Stetz et al. 2010). 
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 Throughout the ranges of both grizzly and black bears, rubbing on trees, powerpoles, and 

other structures is an ubiquitous behavior, the foundation of which is poorly understood (Burst & 

Pelton 1983; Green et al. 2003; Karamanlidis et al. 2007).  Regardless of the motivation for 

rubbing, several large-scale CR studies have used genetic samples collected at bear rubs to 

increase the number of bear detections and thereby improve the precision of demographic 

parameter estimates.  For example, Kendall et al. (2009) combined detections at bear rubs with 

those at baited sites to improve the precision of the first population-wide estimate of abundance 

for grizzly bears in the Northern Continental Divide Ecosystem (NCDE) of Montana.  Despite 

being a secondary sampling method, 155 male and 120 female grizzly bears were detected at 

bear rubs, representing an estimated 53% and 26% of their respective total abundance (Kendall 

et al. 2009).  Taking advantage of the known ages of bears handled during other research and 

management actions, Kendall et al. (2009) concluded that bears of all sex-age classes were 

detected at bear rubs.  Like other sampling methods, however, detection rates were not uniform 

across classes, nor can age be determined from genetic samples (Kendall et al. 2009).  

Simulations using similar data found that CR analyses that combined detection data from 

multiple sampling methods to be robust to this and other forms of detection heterogeneity 

(Boulanger et al. 2008). 

 Recognizing the potential for bear rubs to generate a large number of bear detections, 

Stetz et al. (2010) used simulations to evaluate the power of bear rub surveys to estimate 

population growth rates for the grizzly bear population in the NCDE.  Based on empirical 

detection rates and using robust-design Pradel (1996) models, they determined that detection 

events from bear rubs alone could detect a 3% annual decline in abundance within 6 years with 

80% power (Stetz et al. 2010).  Other scenarios such as increasing or fluctuating abundance, 
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however, required additional years’ data to achieve the desired power assuming the same 

detection rates. 

 In the first empirical study to use bear rub detection data to estimate population growth 

rates, Sawaya et al. (2012) repeatedly surveyed >300 bear rubs in the Bow Valley of Banff 

National Park (BNP) during 2006 to 2008.  They analyzed their detection data with robust-

design Huggins-Pradel open population models in program MARK (White et al. 2001) that use 

detections from multiple sampling occasions within each year to estimate demographic 

parameters both within and across years (Kendall and Nichols 1995).  In addition to abundance 

estimates, Sawaya et al. (2012) obtained precise estimates of apparent survival and population 

growth rates, which suggested that grizzly abundance was declining in this area.  In contrast to 

Kendall et al. (2009), annual detection probabilities for male and female grizzly bears were 

identical, and substantially higher (86%), although there were similar seasonal changes in 

detection rates in both studies.  Such high detection probabilities led the authors to conclude that 

bear rub surveys alone can produce reliable estimates of multiple population parameters of value 

to management, in short time periods, without the need to handle bears or use more intensive 

sampling efforts such as hair traps (Sawaya et al. 2012).  The difference in results between these 

studies, despite very similar sampling and analytical methods, highlights how little is known 

about the underlying processes related to detection rates of bears at bear rubs.  And although 

previous research has attempted to explain the behavioral motivation of bear rubbing behavior 

(Clapham et al. 2012), results have been far from conclusive and do not relate directly to 

explaining detection probabilities. 

 To inform study design and improve understanding of detection probabilities of grizzly 

bears at bear rubs, we used data from two NGS studies (Kendall et al. 2009; Sawaya et al. 2012) 
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to model detection as a function of factors related to bear biology and sampling intensity.  We 

hypothesized that bear density plays a primary role in the detection process based on our 

observation that bears in the lower density population of BNP had higher detection probabilities 

than bears in the higher density areas of Montana.  Among the possible explanations for this 

relationship is potential behavioral differences between bears in populations of different 

densities, for example, bears in higher density areas potentially being less inclined to use 

maintained trails or to engage in rubbing.  Alternatively, different detection rates could reflect 

differences in home range sizes, which have been found to be negatively related to density in 

some populations (Kjellender et al. 2004; Bjornlie et al. 2014).  The larger home ranges and 

associated larger movements of lower density populations may enable bears to encounter more 

bear rubs, thereby increasing detection opportunities (Pollock et al. 1990; Wilton et al. 2016).  

We also hypothesized that landscape factors related to bear movement or habitat preferences 

may influence detection, such as increased use of trail systems in areas of higher terrain 

complexity or dense forest cover, as bears use trails to move between resource patches (Herrero 

et al. 1986; Green and Mattson 2003).  Increased use of trails would result in bears encountering 

more bear rubs and thus likely having greater detection rates.  We further hypothesized that bears 

may be more inclined to use trails in areas that they perceive to contain fewer risks, which may 

also change seasonally in response to changing human uses on the landscape, as has been 

observed in other populations (Woodruffe 2000; Coltrane and Sinnott 2015).  The level of trail 

use by females bears in particular may also be related to sexual segregation, where females are 

expected to avoid areas occupied by adult males that may be cannibalistic or infanticidal 

(Clutton-Brock 1987; Wielgus and Bunnell 1995).  Based on this theory and empirical 

observations, we hypothesized that detection probabilities of females would be lowest during the 
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mating season when adult males are moving large distances searching for mating opportunities.  

As risk of males displaying infanticidal behavior declines after the mating season, we predict 

increasing female use of trails, leading to higher detection probabilities.  Finally, we 

hypothesized that the effect of sampling effort on detection can be better explained at the 

individual home range level than as a time covariate as is commonly used in bear mark-recapture 

modeling (e.g., Kendall et al. 2009).  Although these factors likely influence detection of both 

males and females, we expect differences in their effect size and how they interact over the 

course of sampling seasons. 

To test our hypotheses, we used two approaches to model detection probability with 

Huggins (1991) models in program MARK (White et al. 2001), which allow the use of 

individual, group, and time-varying covariates.  We first combined encounter histories from both 

studies, which that allowed us to directly evaluate support for our hypotheses across populations.  

We then developed independent model sets for each study area to take advantage of the longer 

sampling season in the Banff study area, and to compare with results from the joint study area 

analysis. 

STUDY AREA 

The ca. 6,600 km2 Glacier National Park (GNP) study area included all lands within 10 km of 

GNP, truncated at the U.S.–Canada border (Fig. 3-1), which provided a larger range of land 

cover, uses, and management regimes than found within just GNP.  Sixty-seven percent of the 

study area was within GNP, which was largely roadless and managed as wilderness, yet received 

>2 million visitors in 2004 (84% during June-September).  Outside of GNP, lands were managed 

for multiple uses, including hunting, numerous non-consumptive recreational activities, and low–

density residential development.  The study area contained no recognized barriers to bear 
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movement, and was considered to be a relatively intact natural system with a nearly complete 

assemblage of native species (Kendall et al. 2009).  All areas adjacent to GNP had spring and fall 

black bear hunting seasons except Waterton Lakes National Park, Alberta; grizzly bears were not 

legally hunted during our study. 

 Elevation ranged from approximately 900 m to 3,190 m above sea level.  Higher 

elevations received more precipitation and contained the majority of exposed rock and 

permanent snow and ice fields.  Average annual precipitation was 63 cm, the majority of which 

was deposited as snow in winter.  The study area was bisected north to south by the Continental 

Divide, which had dramatic effects on local climate and vegetation composition.  Areas west of 

the Divide generally received more precipitation and had more forested areas with less 

grasslands than the drier areas east of the Divide.  Human activities and development were 

greater on the west side of the Divide, although no heavily developed areas existed within the 

study area itself. 

 The ca. 3,900 km2 study area in Banff National Park included approximately 56% of 

BNP, concentrated in the southeastern part of the park (Fig. 3-2).  In contrast to our GNP study 

area, BNP contains a town with approximately 8,000 residents, a major transportation corridor 

with both the Trans-Canada Highway and a railroad line, and is only 120 km from a major 

human population center (Calgary, AB).  To reduce wildlife-vehicle collisions and improve 

animal movement across this corridor, a series of wildlife crossing structures with extensive 

fencing to encourage their use have been built (Sawaya et al. 2012).  The BNP study area also 

contained nearly all species that were present prior to European settlement and was considered to 

be relatively intact outside the developments associated with the Bow Valley transportation 

corridor. 
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 Although the BNP study area was located entirely east of the Continental Divide, weather 

patterns were still strongly affected by it, with more snow typically accumulating in the western 

parts of the park.  Annual precipitation averaged 47 cm, the majority of which falls as rain during 

summer months.  Elevation ranged from 1,350 m to 3,450 m above sea level, with higher 

elevation receiving more snowfall.  The heavily glaciated features produced broadly similar 

vegetative conditions to GNP with lower elevations being dominated by forests and upper 

elevations consisting more of exposed rock, snow, and ice.  Bears in both study areas rely 

heavily on berries to obtain sufficient fat reserves for hibernation, with huckleberries being 

dominant in GNP and buffaloberry (Shepherdia canadensis) in BNP (Martinka 1976; Hamer and 

Herrero 1987). 

 Both GNP and BNP contained extensive networks of hiking trails that provided access to 

most lands within both study areas.  In BNP there are over 1,000 km of trails, with over 1,100 

km in GNP.  Areas to the west and south of GNP on state and national forests also contained 

maintained trails for the full extent of our sampling area, although we relied on more 

opportunistic identification of survey routes, such as powerpole lines, on tribal lands to the east 

of GNP. An important difference between our study areas was the considerably higher density of 

grizzly bears in GNP (> 30/1000 km2; Kendall et al. 2008) than BNP (15/1000 km2; Whittington 

and Sawaya 2015).  Pronounced differences in black bear density were also present, with 

114/1000 km2 in GNP (Stetz et al. 2014) and 37/1000km2 in BNP (Sawaya et al. 2012), 

suggesting there were 2.5 and 3.8 times more black bears than grizzly bears in BNP and GNP, 

respectively.  These differences have been hypothesized to be due to lower productivity in BNP 

than GNP (Sawaya et al. 2012), as well as higher rates of human-caused bear mortality in this 

part of BNP. 
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METHODS 

Field methods 

In our GNP study area, Kendall et al. (2009) conducted bear rub surveys during 15 June – 7 Sep, 

2004.  Identification and preparation of bear rubs, sample collection and storage methods, and 

data quality control were described in Kendall at al. (2009).  Field crews were trained to identify 

naturally-occurring bear rubs based on physical attributes, including surfaces worn smooth by 

bear rubbing activity, game trails leading to the rub, and the presence of bear hair samples.  No 

bait or attractant was used with bear rub sampling.  We attempted to identify and monitor every 

bear rub that could be reliably relocated at 14-day intervals, which limited searching for bear 

rubs on maintained trails and similar travel routes.  Bear rub density was variable (Fig. 3-1), 

although it is reasonable that every bear in the study area had an opportunity to be detected at 

one or more surveyed rubs during the sampling season. 

 Protocols for identifying, establishing, and surveying bear rubs in BNP were nearly 

identical to those in GNP.  In BNP, bear rub surveys were conducted during 22 May – 27 

October, again with relatively short average interval between surveys (�̅� = 18.5 day).  For both 

study areas, hair samples collected during the first survey of each bear rub were not included in 

detection histories as we could not determine when they were deposited (Kendall et al. 2008). 

Genetic analyses 

For both study areas, we considered all hairs found on a set of barbs to constitute a unique 

sample, which we stored on a silica drying agent until genetic analyses were performed by 

Wildlife Genetics International (Nelson, BC, Canada).  We attempted to obtain multilocus 

genotypes for samples with ≥1 guard hair follicle or ≥5 underfur hairs using 7 microsatellite loci 

following the protocols of Paetkau (2003) and Kendall et al. (2009).  For samples that met 
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quality thresholds, we determined species, individual identity, and sex, for which we used the 

amelogenin marker (Pilgrim et al. 2005). 

 For GNP, average observed heterozygosity was 0.73, with 8.6 alleles per locus on 

average.  Our conservative estimate of multilocus genotyping error rate was <0.001, with the 

probability of 2 full-siblings sharing the same genotype (PSIB) < 0.0018 (Kendall et al. 2009).  

Details of our GNP sample sizes, marker power, and error rates can be found in Kendall et al. 

(2009).  Observed heterozygosity for BNP was similar (0.77), as was the average number of 

alleles per locus (�̅�  =7.3), and PSIB at 0.0007.  Exhaustive error checking and an independent 

suite of 13 microsatellite markers that concurred with initial results suggested that BNP 

multilocus genotyping error rates were <0.001 as with our GNP results.  Unlike GNP, we only 

genotyped one sample per bear rub per visit, thereby reducing the total number of analyzed 

samples by half.  Based on previous results in BNP and GNP (J. Stetz and M. Sawaya, 

unpublished data), we believe that no bears were excluded from the analysis, although some 

detection opportunities may have been missed.  The fact that bears often leave hairs on multiple 

bear rubs within the same sampling occasion suggests that any missed detections would not 

affect encounter histories used in traditional CR models (Sawaya et al. 2012).  As with previous 

analyses (Kendall et al. 2009; Sawaya et al. 2012; Stetz et al. 2014), hair samples were assigned 

to the two-week sampling occasion in which they were collected. 

Modeling detection probability at bear rubs 

We developed suites of a priori models to explore the effects that biotic and abiotic factors may 

have on detection probabilities of grizzly bears at bear rubs.  We first developed models 

containing detection events from both study areas.  For these models, we used the sampling 

occasions in BNP that most closely aligned with sampling in GNP, treating each study area and 
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sex combination as a unique group in MARK.  We then developed independent suites of models 

for each study area, for which we included all detection events.  To allow the use of group, 

individual, and temporal covariates in understanding variation in detection, we used Huggins 

closed-population models with random effects (Huggins 1991; Gimenez & Choquet 2010) in 

program MARK (White et al. 2001).  The Huggins model maximizes the conditional likelihood, 

where the total population abundance, N, is conditioned out of the likelihood.  The allows the use 

of individual covariates to improve estimates of detection and recapture probabilities, with 

abundance then being a derived parameter (Huggins 1991).  The random effects extension 

models the heterogeneity in detection probabilities at the individual level as an additive effect, 

which allows using AIC methods (Burnham & Anderson 2001) to compare support for models 

with and without random effects (Gimenez & Choquet 2010).  For all models, we treated sexes 

as different groups, as previous studies have consistently found differences in detection rates at 

bear rubs for males and females (e.g,. Kendall et al. 2009; Sawaya et al. 2012). 

 Our primary hypothesis was that density of conspecifics influences rubbing behavior and 

thereby the number of opportunities to detect individual bears.  To test this hypothesis, we used 

spatially-explicit capture-recapture models (Borchers & Efford 2008) to generate predicted 

density surfaces for each sex in each study area (Fig. 3-1), which we then included as individual 

covariates in CR models.  Briefly, SECR combines a state model that describes the distribution 

of home range centers with an observation model that relates the probability of detecting an 

animal at a given site to the distance of that site from the center of an animal’s home range 

(Borchers & Efford 2008).  SECR models estimate the density of animal activity centers, D, in a 

user-defined area that is large enough that animals residing beyond it have a negligible chance of 

being detected (Borchers & Efford 2008).  We therefore used the buffer size suggested by 
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functions in the secr package in R (Efford 2011) for male grizzly bears to define the state space 

for each study area (GNP=18km; BNP=29km).  By treating the distribution of home range 

centers as an inhomogeneous Poisson process and maximizing the full likelihood, SECR 

methods can relate variation in environmental conditions to variation in density through the use 

of spatial covariates as (Efford & Fewster 2013; Royle et al. 2013).  We considered 

combinations and interactions of several environmental factors, including elevation, net primary 

productivity as measured by the enhanced vegetation index (EVI; Huete et al. 2002), and 

sympatric species density, to explain variation in density patterns.  We assessed model support 

based on AICc (Burnham & Anderson 2001), and used model averaging when creating density 

surfaces. 

In addition to modeling density, the observation sub-model of SECR models the process 

of detecting animals by explicitly considering animal movements in relation to the characteristics 

and distribution of detectors.  Two parameters comprise the observation submodel: g0 is the 

probability of detecting a given animal at its activity center, and sigma (σ) is the spatial scale 

parameter describing how detection probability declines with increasing distance between the 

activity center and each detector.  For all SECR models, we used a binomial observation model 

with a halfnormal detection function to relate the probability of detection to distance from the 

predicted home range center, which is unobserved and assumed stationary.  We modeled each 

sampling methods (e.g., hair trap, crossing structure) as a different type of proximity detectors 

(Efford et al. 2004), and used non-binary usage coding to directly account for variation in 

sampling effort (Efford et al. 2013; Stetz et al. 2014).  As with density, we modeled the 

observation process separately for each species, sex, and season, and considered time (t) effects 

on detection. 
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The detection process can also be modeled using spatial covariates, including those that 

change over time, to relate variation in detection to landscape features.  To improve overall 

model performance, we therefore included biotic and abiotic covariates that we hypothesized 

could explain detection of grizzly and black bears.  Beyond potentially improving model fit, the 

use of covariates relaxes the assumption of circular home ranges (Royle et al. 2013), although 

simulations suggest that SECR models are robust to such violations even without the use of 

covariates (Stenhouse et al. 2015).   

 For our SECR analyses, we included detection data from intensive hair trapping efforts in 

both GNP and BNP that were conducted concurrently with bear rub surveys.  In GNP, 550 hair 

traps yielded an additional 209 detections of 147 females, and 145 detections of 101 males 

(Kendall et al. 2009; Stetz 2016).  In BNP, 210 hair traps yielded an additional 65 detections of 

38 females, and 34 detections of 19 males.  We also included detections of bears at 20 wildlife 

crossing structures in BNP (Sawaya et al. 2012), which yielded 15 detections of 5 females and 28 

detections of 4 males.   

 We also hypothesized that density of black bears may influence grizzly bear detection 

rates at bear rubs, as these species have very similar life histories (Aune 1994; Mattson et al. 

2005), and are known to use the same bear rubs throughout both study areas (Sawaya et al. 2012; 

Stetz et al. 2014).  We therefore developed independent suites of SECR models for both GNP 

and BNP to create sex-specific predicted density surfaces of black bears.  As with predicted 

densities of grizzly bears, we calculated the average density of black bears in each grizzly bear 

idealized home range, as described below.  We used these values as well as total bear densities as 

individual-level covariates in MARK models.  Additional details of SECR methods and results 

can be found in Stetz (2016) and Appendix B.   
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 To create individual covariates, we first plotted the predicted home range center of each 

bear from our top SECR models in ArcGIS (v.10.2; ESRI).  For each study area, we then 

estimated the home range radius based on the spatial scale parameter, σ, following Noss et al. 

(2012; Fig. 3-1) separately for each sex, as home ranges of male bears are typical several times 

larger than those of females (Aune 1994; Bjornlie et al. 2014).  Assuming a bivariate normal 

distribution, these home range radii are expected to include 95% of animal locations, although 

they may overestimate movements in the presence of sparse detection data (Noss et al. 2012).  

We then buffered each home range center by the appropriate home range radius to create an 

idealized home range (Stetz et al. 2014), within which we calculated the average density of male, 

female, and total grizzly bears, black bears, and both species combined. 

 To test our hypotheses related to how landscape factors may influence grizzly bear 

detection at bear rubs, we first considered the relative topographic position of Jenness (2002) as a 

measure of terrain roughness, which we derived from a 250m digital elevation model.  For 

landcover type, we classified each 500m pixel as consisting of one of six landcover classes that 

have been found to potentially influence bear space use and density: forest, shrublands, 

grasslands, permanent wetlands, urban, and croplands (Waller & Mace 1997; Apps et al. 2016).  

In GNP, we used 2004 MODIS 500m datasets (Nemani & Running 1997; Pettorelli et al. 2014) 

to classify landcover, whereas we used the North American Land Change Monitoring System 

(Latifovic et al. 2012) in our BNP study area due to classification issues with MODIS data 

during our study.  For habitat security, we defined areas within national or provincial parks as 

having the highest security, other public and tribal lands as medium security, and private lands as 

the lowest security (Mace et al. 1996).  For each of these factors, we again used the average 

values within each idealized home range as individual covariates for CR models. 
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 Previous studies have found that detection probabilities of grizzlies at bear rubs can be 

partially explained by variation in sampling effort (Kendall et al. 2008, 2009), although sampling 

effort was used as a strictly temporal covariate that assumed equal effects on both sexes and over 

time.  To improve on this, Stetz et al. (2014) developed an individual-level covariate that 

quantified effort using an idealized home range based on each bear’s average capture location 

buffered by the sex-specific mean-maximum distance moved (Dice & Clark 1953).  We modified 

this approach to use the idealized home range derived from SECR models, within which we 

summed the number of days that all bear rubs surveyed in each 14-day sampling occasion were 

available to collect hair (BRE; Tables 3-1 and 3-2).  Finally, the extent that an animal’s home 

range extends beyond the sampled area likely effects its detection probability, as has been found 

in several studies (Boulanger & McLellan 2001; Kendall et al. 2009; Stetz et al. 2014).  We 

therefore calculated the distance from the predicted center of each bear’s home range to the edge 

of the sampled area (DTE) as a covariate in CR models. 

RESULTS 

Hair collection and genetic analyses 

A total of 5,046 visits to 1,366 bear rubs were conducted in our GNP study area during 15 June-

15 September, 2004, from which 3,517 putative bear hair samples were collected (Table 3-1).  

Multilocus genotypes were obtained for 903 samples (25.6%), from which 144 unique bears 

were identified (83 M, 61 F).  Males were detected more often than females, with 326 and 98 

total detection events, respectively.  For CR analyses, we collapsed detections to one per 

individual per sampling occasion, resulting in 169 and 76 detections for males and females, 

respectively.  In GNP we also detected 294 male and 303 female black bears a total of 468 and 
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307 times, respectively, at hair traps and bear rubs.  In BNP, we detected 25 male and 44 female 

black bears a total of 65 and 88 times, respectively, across our three sampling methods. 

 In our BNP study area, 2,822 surveys of 485 bear rubs were conducted during 22 May - 

27 October, 2008 (Table 3-2).  Surveys yielded 2,430 hair samples, 398 (16.4%) of which 

produced multilocus genotypes of 68 grizzly bears (44M, 24 F) total.  As in GNP, males were 

detected more often than females, with 266 and 81 detections, respectively.  These resulted in 

124 and 60 detection events of male and female grizzly bears, respectively, for CR analyses.   

During sampling occasions 2-7, which correspond to bear rub surveys in GNP, 1,760 visits to 

455 bear rubs were conducted in BNP, from which 1,660 hair samples were collected.  From 

these, 37 and 19 male and female bears were detected a total of 172 and 48 times, respectively.  

These resulted in 81 and 29 detection events of males and females, respectively, for use in the 

joint study area analysis models. 

Modeling detection at bear rubs 

Results of our joint analysis suggested that the most important factors in explaining detection 

probabilities at bear rubs were the amount of sampling effort in each bear’s idealized home 

range, bear density, terrain complexity, and proportion of home range in areas of high security 

(Table 3-4).  Consistent with previous studies, sampling effort was the most supported 

explanatory covariate, with greater effort resulting in higher detection probabilities for both 

sexes and study areas (β=0.79, SE=0.10; Table 3-5).  Male bears had higher detection 

probabilities than females in both study areas through early August, beyond which female 

detection was equal to or greater than males, particularly in BNP (Fig. 3-3).  Surprisingly, there 

was no support for modeling GNP and BNP as different groups, with the top model that included 

a group effect having ΔAICc = 14.6. 
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 Consistent with our predictions, detection probabilities showed a negative relationship 

with total bear density (β= -0.10, SE=.017; Fig. 3-4).  Models including total grizzly bear 

density, female or male grizzly bear density, or total bear density had nearly equal support.  

Models with just black bear density had little support (i.e., ΔAICc>4) in the joint analysis.  

Contrary to predictions, bears with home ranges consisting of greater terrain complexity and 

higher habitat security had lower detection probabilities (βterrain= -0.40, SE=0.14; βsecurity= -0.20, 

SE=0.16; Table 3-5).  We found little support for effects of distance to edge or landcover type on 

detection, which were also inconsistent with our predictions. 

 Results from the individual study area models were broadly similar to the joint analysis, 

with detection probabilities varying by time and sex, increasing with greater sampling effort, and 

decreasing in areas of higher bear density (Table 3-6).  Conversely, there was greater support for 

the distance to edge covariate in the individual study areas than in the joint analysis.  The effect, 

however, differed between the areas, with detection probabilities in GNP being slightly higher 

for bears with activity centers closer to the edge of the study area (βDTE= -0.03, SE=0.01).  In 

GNP there was also support for a negative relationship between detection probability and the 

proportion of bears’ idealized home ranges that consisted of high security areas (βhigh= -0.67, 

SE=0.31).  Finally, there was strong support for a negative relationship between total bear 

density and grizzly bear detection probability at bear rubs in GNP, particularly for females 

(βfemale= -0.40, SE=0.22; βmale= -0.17, SE=0.12). 

 Unlike the other model sets, there was support for including random effects on detection 

probability in the BNP models (Table 3-6).  In addition to sampling effort and distance to edge 

(β= 0.68, SE=0.15), all supported models in BNP included a negative relationship between 

detection and total black bear density, with similar values for males and females (βfemale= -0.37, 
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SE=0.33; βmale= -0.37, SE=0.20).  There was also support for negative relationships between 

detection probability and the proportion of forest cover (β= -0.24, SE=0.17) and terrain 

complexity (β= -0.09, SE=0.20), although effects were not conclusive. 

DISCUSSION 

Our results suggest that grizzly bear detection probabilities may be influenced by factors not 

previously considered in CR studies using bear rub detection data, including bear density, terrain 

complexity, and habitat security at the level of individual home ranges.  Our results also found 

that, consistent with numerous bear NGS studies, detection varied by sex and over time, with 

sampling effort being the most important explanatory factor.  We found these results to be 

generally consistent for our two study areas, despite the GNP study area having approximately 

2.5 and 4 times higher densities of grizzly and black bears, respectively, than BNP. 

 Our joint study area analysis approach allowed us to consider a larger range of conditions 

that individual bears were exposed to than study area-specific analyses, as well as increasing 

sample size (Boulanger et al. 2002).  Despite the differences between these populations, there 

was no support for treating them as distinct groups.  This is likely explained by our individual-

level sampling effort covariate that has seen strong support in our models, as well as previous 

studies (Stetz et al. 2010; Sawaya et al. 2012).  We believe that treating sampling effort as either 

a temporal covariate (e.g., Kendall et al. 2016) or a group effect based on sampling intensity (i.e., 

hair trap cell size; Boulanger et al. 2002) does not capture the heterogeneity of exposure to 

sampling sites as effectively as our individual-based approach.  We recognize that it is 

impossible to determine each bear’s true encounter rate with bear rubs, even with the use of GPS 

collars and remote cameras at each site.  Our approach does, however, directly link known 

sampling effort in space and time with our best prediction of each animal’s home range.  Given 
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the ability of grizzly bears to move large distances in short time periods, it is reasonable that 

every bear rub assigned to a given bear’s idealized home range was, in fact, available to detect 

that bear in ≥1 occasion. 

 Consistent with our predictions, we found a negative relationship between bear density 

and grizzly bear detection probability at bear rubs.  One plausible explanation for this could be 

the larger home ranges of bears in lower density areas like our BNP study area resulting in bears 

encountering more bear rubs and thereby increasing detection rates (Table 3-7; McLoughlin et al. 

2003; Bjornlie et al. 2014).  Our sampling effort covariate, however, which is a function of home 

range size, should have controlled for this effect.  Given the large numbers of bear rubs 

monitored in both study areas, it is also unlikely that lower detection rates were a function of 

missed detections, particularly in GNP where we analyzed every hair sample that met our quality 

threshold (i.e., ≥1 guard hair or 5 under-fur hairs; Kendall et al. 2009).  Further, we found 

considerably higher detection probabilities in BNP (Fig. 3-3), where we analyzed 1 sample per 

bear rub visit.  If subsampling resulted in a large number of missed detections, we would expect 

the opposite pattern.  We hypothesize that grizzly bear rubbing behavior is somehow intrinsically 

related to bear density or the associated changes in home range size.  This is appears to be 

particularly important for female grizzly bears in BNP, which had twice the average detection 

probability (�̂�BNP=0.11, SE=0.06; �̂�GNP=0.05, SE=0.02) and twice as many rubs in their idealized 

home range on average compared to GNP bears (�̅�BNP=56.2, SD=22.1; �̅�GNP=28.5, SD=18.1; 

Table 3-7). 

 Several results from our joint analysis were contrary to predictions, including lower 

detection probabilities for grizzly bears with home ranges containing less terrain complexity and 

forest cover, both of which we hypothesized to be related to movement rates.  Whereas we 
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hypothesized that greater terrain complexity may lead bears to use maintained travel routes and 

thereby encounter more bear rubs, it may be that movement was less constrained in flatter areas, 

resulting in higher encounter rates.  The limited support for a relationship between forest cover 

and detection probabilities may be related to less variation in home range composition for bears 

in GNP than BNP.  Also contrary to predictions, we found lower detection probabilities in areas 

of higher habitat security.  We suggest that this could be confounded by the fact that the highest 

densities of bears, namely in the heart of GNP, had the largest proportion of their home ranges in 

high security areas (Fig. 3-1). 

 In contrast to previous bear NGS studies (e.g., Boulanger and McLellan 2001; Stetz et al. 

2014), our analysis found little support for detection probability being influenced by the distance 

from a bear’s home range center to the edge of sampling.  Further, the relationship was negative, 

suggesting that bears residing closer to the edge of a study area had higher detection 

probabilities, which is contrary to the predicted effect (Boulanger and McLellan 2001).  We 

suggest that this effect, too, may be confounded with habitat security, as bears living near the 

edge of the study area had a greater proportion of their home range in medium security areas, 

which tended to have lower bear densities and thus higher detection probabilities. 

 Other than sampling effort being the most supported explanatory factor in predicting 

grizzly bear detection probabilities in both GNP and BNP study areas (Table 3-6), we observed 

several differences both between the joint analysis and between the individual study areas.  

Distance to edge was strongly supported for both GNP and BNP individually, although the 

relationships were different for each study area.  Consistent with predictions, there was a strong 

positive relationship between distance to edge and detection probability for bears in BNP.  As 

with the joint analysis, however, this relationship was negative for bears in GNP.  As 
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hypothesized above, this may be confounded with the lower densities of bears toward the edge of 

the study relative to within the borders of GNP.  This is also consistent with lower detection rates 

for bears residing in lower security areas, which, again, coincide with areas of lower bear 

densities.  Support for a negative relationship between total predicted bear density and detection 

probabilities was also strongly supported for the GNP study area.  In the BNP study area, 

however, total black bear density was negatively related to detection probability, with limited 

support for an effect of total bear density (ΔAICc=2.55).  We suspect that this was largely driven 

by several grizzly bears that we detected a single time that had home ranges centered on areas 

with the highest predicted black bear density in the study area. 

 That we found partially contradictory results is not uncommon in noninvasive CR studies 

of bears.  For example, camera trapping studies in Minnesota found that adult males were among 

the least likely to be detected (Noyce et al. 2001), whereas they were the most likely to be 

detected in Montana (Mace et al. 1994).  Although these differences could be due to the timing 

of the studies, Noyce et al. (2001) determined that individual differences between bears not 

related to age, sex, or other measurable factors was responsible for the observed heterogeneity in 

detection, consistent with conclusions from a mark-resight study of grizzly bears in Alaska 

(Miller et al. 1997). 

 As the dominant method for bear NGS studies, there has been considerably greater effort 

to explain variation in detection with hair trap sampling than with bear rubs.  For example, 

several studies have found that the closest distance of a bear to a hair trap is predictive of 

detection rates, although this, too, can vary influenced by quality of lure, precipitation, wind 

patterns, and other individual biases (Boulanger et al. 2004; Sollman et al. 2009; Wilton et al. 

2016).  These studies typically recommend increasing trap density to improve detection rates, 
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however, doing so can quickly become cost prohibitive (Kendall et al. 2009).  The emphasis of 

trap density and configuration (e.g., Sun et al. 2014) also ignores a fundamental component of 

hair trap studies, namely that site placement is ultimately based on human perceptions of ideal 

locations to detect bears.  Poor site selection, lure quality, or trap construction may lead to failing 

to attract bears, or to capture hair when a bear does visit a site (Ebert et al. 2010), all of which 

may exacerbate heterogeneity in detection rates and are essentially impossible to model. 

 Multiple hair trapping studies have also found lower detection probabilities for grizzly 

bears that had been previously live captured, suggesting an avoidance response to baited sites 

(e.g., Boulanger et al. 2004; Kendall et al. 2009).  The opposite effect was observed by 

Boulanger et al. (2002), however, with collared bears having higher detection rates than non-

collared bears, although this may have been related to differences between the exposure of 

resident and transient bears to hair traps.  Study design has also been implicated in introducing 

bias in detection across sexes (Boulanger et al. 2004), despite this effect being observed in most 

bear NGS studies (but see Boulanger and McLellan 2001). 

 Unmodeled heterogeneity in detection probabilities can lead to strong bias in population 

estimates and their associated estimates of variance (Pollock et al. 1990; Cubaynes et al. 2010; 

Gimenez & Choquet 2010), and remains a persistent challenge in CR analyses.  Causes of 

heterogeneity can be related to differences in the opportunity to detect individuals, which can be 

a function of animal movement rates, geographic and demographic closure, and intensity of 

sampling.  Further, inherent differences between individuals related to age, sex, or previous 

experiences (e.g., live capture), among others, can also induce heterogeneity into the detection 

process (Pollock et al. 1990).  As individual heterogeneity is expected to exist to some degree in 

nearly all NGS studies ( Lukacs & Burnham 2005; Boulanger et al. 2008), a better understanding 
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of the relationships between a species’ behavior and population sampling methods is essential for 

reliable and efficient sampling design (Sollmann et al. 2012).   

 Particularly when used in conjunction with other sampling methods ( Pollock et al. 1990; 

Boulanger et al. 2008), bear rub detection data provide a valuable tool to improve the accuracy 

and precision of population estimates useful in managing bear populations.  As with any 

sampling method, however, potential biases exist with bear rub detection data, the most 

commonly cited being that males are detected at higher rates than females (e.g., Kendall et al. 

2008, 2009; Morehouse and Boyce 2016).  Although sampling in late summer and fall alleviates 

much of this bias, recognizing such issues and designing studies to minimize their effects is 

critical to obtaining reliable insights into population status and trends.  Further, any given 

sampling method may not be appropriate for every research objective, and bear rubs are no 

exception.  For example, Boulanger et al. (2008) found that abundance estimates for female 

grizzly bears using bear rub data alone were significantly lower and less precise than estimates 

from joint hair trap-bear rub data.  And although SECR methods show great promise in 

improving density estimates using NGS data, we are not aware of any published SECR analyses 

using bear rub-only data.  We suggest that such as comparison would be valuable given the 

interest in using bear rubs to monitor grizzly and black bear populations (Stetz et al. 2010; 

Morgan Henderson et al. 2015; Morehouse & Boyce 2016). 

 Our results provide insights into the potential underlying mechanisms causing 

heterogeneity in detection probabilities of grizzly bears at bear rubs, and should be useful in 

improving future study designs.  We suggest that bear rub surveys should avoid, or at least be 

less sensitive to, some of the factors thought to induce detection heterogeneity in hair trap 

sampling.  Passive sampling methods such as those based on bear rubbing behavior should not be 
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influenced by history of previous capture, behavioral responses to sites that do, or do not, 

provide a food reward, or unpredictable weather events (Ebert et al. 2010).  Further, unlike with 

hair trap, remote camera, or live trap placement, bear rubs offer a powerful advantage by 

providing direct evidence of bear use of a site.  Bear use of bear rubs occurs with or without 

human influence, and we know of no evidence of bears changing their rubbing behavior based on 

human presence or sample collection.  Further, the efficiency of establishing and repeatedly 

surveying large numbers of bear rubs across large areas is a major strength when considering that 

CR models that account for detection heterogeneity require large sample sizes (Skalski et al. 

2005; Boulanger et al. 2004; Ebert et al. 2010).  
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TABLES 
 

Table 3-1. Results from bear rub surveys in our Glacier National Park, MT, study area.  We 

conducted surveys between 15 June - 15 September, 2004. 

 

     

No. unique 

bears 

Occasion 

No. bear 

rubs1 

Bear rub 

effort2 

No. 

samples 

No. grizzly bear 

samples3 M F 

1 176 5433 410 91 18 0 

2 788 12406 765 227 35 7 

3 767 13499 568 132 37 12 

4 704 17325 556 133 28 14 

5 1155 26904 688 165 33 25 

6 1177 19915 530 86 18 18 

Total 1366 95482 3517 834 83 61 

1 The total number of bear rubs includes all bear rubs surveyed at least once. 

 2 Bear rub effort is the sum number of days that all bear rubs surveyed in a given 

occasion were available to collect hair. 

3 The number of grizzly bear samples includes only those samples with 

accepted multilocus genotypes. 
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Table 3-2.  Results from bear rub surveys in our Banff National Park, AB, study area.  We 

conducted surveys between 22 May - 27 October, 2008.  Shaded cells represent sampling 

occasions that correspond with sampling in our Glacier National Park study area (Table 3-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

No. unique 

bears 

Occasion 

No. bear 

rubs1 

Bear rub 

effort2 

No. 

samples 

No. grizzly 

bear samples3 M F 

1 48 3043 197 48 14 0 

2 172 3156 347 52 12 0 

3 229 4529 304 52 15 1 

4 308 5614 230 34 17 5 

5 270 5302 221 25 10 5 

6 319 6290 254 39 10 7 

7 372 8066 304 55 15 11 

8 308 6483 252 34 10 7 

9 282 5986 168 25 8 7 

10 269 5585 101 17 6 3 

11 73 2073 52 17 6 4 

Total 497 56127 2430 398 44 24 

1 The total number of bear rubs includes all bear rubs surveyed at least once. 

2 Bear rub effort is the sum number of days that all bear rubs surveyed in a 

given occasion were available to collect hair. 

 3 The number of grizzly bear samples includes only those samples with 

accepted multilocus genotypes. 
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Table 3-3.  Distribution of the combined number of detections of individual grizzly bears (Ursus arctos) and American black bears (U. 

americanus) by sex at all sampling sites in our Glacier and Banff National Park study areas.  Also shown is the observed and expected 

number of individual bears detected for the most supported model.  The expected number was calculated as 𝐸(𝑛) =  ∫ 𝑝. (𝑋)𝐷(𝑋)𝑑𝑋, 

with p.(X) is the probability a given individual was detected at least once and D(X) is the expected density at X for the most supported 

model. 

 

Study 

area   

Distribution of number of detections 

 

No. individuals 

Species Sex 1 2 3 4 >5 Total   Observed Expected 

G
la

ci
er

 

Grizzly F 90 44 22 9 5 307 

 

170 169.99 

 

M 52 34 18 7 28 468 

 

139 138.99 

           Black F 223 57 9 8 6 430 

 

303 302.92 

 

M 181 73 29 7 5 494 

 

295 294.99 

  
 

        
 

B
an

ff
 

Grizzly F 6 2 2 3 14 149 

 

27 26.99 

 

M 11 6 4 1 23 315 

 

45 45.06 

           Black F 24 10 3 3 4 88 

 

44 43.99 

 

M 9 9 1 4 2 65 

 

25 24.82 
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Table 3-4.  Model selection results for explaining grizzly bear detection probabilities at bear rubs from Huggins (1991) models in 

program MARK.  Sampling occurred during 15 June - 15 September, 2004, in Glacier National Park, and 6 June – 3 September, 2008, 

in Banff National Park.  Sigma=random effect of individual heterogeneity on detection probability, with sigma(-) indicating no 

random effect was included, and sigma(.) including a random effect; t = detection allowed to vary by time; rtp = relative topographic 

position; bre = bear rub sampling effort; high/med = index of habitat security; forest/grass/shrub = proportion of home range assigned 

to that landcover type; gb = grizzly bear; bb = black bear. 

Modela Deviance 

Num. 

Par ΔAICc 

AICc 

Weight 

Model 

Likelihood 

sigma(-), (sex*t)+bre+rtp+high  1155.53 14 0.00 0.12 1.00 

sigma(-), (sex*t)+bre+rtp+total gb density 1156.42 14 0.89 0.08 0.64 

sigma(-), (sex*t)+bre+rtp+female gb density  1156.49 14 0.95 0.08 0.62 

sigma(-), (sex*t)+bre+rtp+med+total bear density 1154.61 15 1.13 0.07 0.57 

sigma(-), (sex*t)+bre+rtp+total bear density 1156.84 14 1.31 0.06 0.52 

sigma(-), (sex*t)+bre+rtp+male gb density 1156.84 14 1.31 0.06 0.52 

sigma(-), (sex*t)+bre+rtp+forest  1156.97 14 1.43 0.06 0.49 

sigma(-), (sex*t)+bre+dte+rtp 1156.98 14 1.45 0.06 0.48 

sigma(-), (sex*t)+bre+rtp 1157.02 14 1.48 0.06 0.48 

sigma(-), (sex*t)+bre+rtp+high+total bear density  1155.13 15 1.65 0.05 0.44 

sigma(-), (sex*t)+bre+rtp+high+total gb density 1155.19 15 1.71 0.05 0.43 

sigma(-), (sex*t)+bre+rtp+high+male gb density 1155.47 15 1.99 0.05 0.37 

sigma(-), (sex*t)+bre+rtp+med  1158.31 14 2.78 0.03 0.25 

sigma(.), (sex*t)+bre+rtp+total gb density 1156.42 15 2.94 0.03 0.23 



97 
 

sigma(-), (sex*t)+bre+rtp+grass  1159.54 14 4.00 0.02 0.14 

sigma(.), (sex*t)+(female+total bb density, male+total 

bear density)+bre  1161.66 13 4.08 0.02 0.13 

sigma(-), (sex*t)+bre+rtp+shrub  1159.72 14 4.19 0.02 0.12 

sigma(-), (sex*t)+(female+total bb density, male+total 

bear density)+bre+rtp  1157.84 15 4.35 0.01 0.11 

sigma(.), (sex*t)+(female*t*male gb density, 

male+total bear density)+bre+rtp  1149.88 19 4.64 0.01 0.10 

sigma(-), (sex*t)+bre+total gb density 1162.42 13 4.84 0.01 0.09 
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Table 3-5.  Model averaged parameter estimates and associated cumulative AICc weights from Huggins (1991) models to explain 

detection probabilities of grizzly bears using detection data from our Glacier and Banff National Parks study areas.  Results are from 

models in Table 3-4 with ΔAICc ≤2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 Cum.   95% CI 

Parameter AICc wt β SE LCL UCL 

Bear rub effort 0.80 0.79 0.10 0.59 0.99 

Relative topographic position 0.80 -0.40 0.14 -0.67 -0.12 

High security 0.27 -0.20 0.16 -0.52 0.12 

Total bear density 0.19 -0.10 0.17 -0.43 0.23 

Total grizzly bear density 0.13 -0.11 0.16 -0.43 0.21 

Male grizzly bear density 0.11 -0.05 0.17 -0.38 0.27 

Female grizzly bear density 0.08 -0.12 0.16 -0.43 0.20 

Medium security 0.08 0.25 0.16 -0.07 0.57 

Distance to edge 0.06 -0.03 0.16 -0.34 0.28 

Forest cover 0.06 -0.04 0.16 -0.36 0.29 
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Table 3-6.  Results for the most supported models of grizzly bear detections at bear rubs from Huggins (1991) models in program 

MARK.  Sampling occurred during 15 June - 15 September, 2004, in our Glacier National Park study area and during 22 May - 27 

October, 2008, in Banff National Park.   

  

Modela Deviance 

Num. 

Par ΔAICc 

AICc 

Weight 

Model 

Likelihood 

B
an

ff
 

sigma(.) (sex*t)+bre+dte+total bb density  658.21 24 0.00 0.17 1.00 

sigma(.) (sex*t)+bre+dte+forest+total bb density 656.23 25 0.17 0.16 0.92 

sigma(.) (sex*t)+bre+dte+rtp+total bb density 656.77 25 0.70 0.12 0.70 

sigma(.) (sex*t)+bre+dte+(sex*total bb density)  658.21 25 2.14 0.06 0.34 

sigma(.) (sex*t)+bre+dte+forest  660.45 24 2.25 0.06 0.33 

      

G
la

ci
er

 

sigma(-), (sex*t)+bre+dte+low+total bear density 803.64 15 0.00 0.25 1.00 

sigma(-), (sex*t)+bre+dte+low+rtp+total bear density 803.23 16 1.67 0.11 0.43 

sigma(-), (sex*t)+bre+dte+low+(sex*total bear density)  803.41 16 1.84 0.10 0.40 

sigma(-), (sex*t)+bre+low+total bear density 807.63 14 1.92 0.10 0.38 

sigma(-), (sex*t)+bre+med+total bear density 808.88 14 3.16 0.05 0.21 

 sigma(-), (sex*t)+bre+dte+low+rtp+(sex*total bear density) 803.00 17 3.51 0.04 0.17 
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Table 3-7.  Estimated per-occasion detection probability, �̂�, from the most supported models of grizzly bear (Ursus arctos) detections 

at bear rubs from Huggins (1991) models in program MARK for Glacier and Banff National Parks.  Also shown are the estimated 

spatial scale parameter, σ, from the most supported spatially-explicit capture-recapture models, estimated home range sizes derived 

from σ using the equation from Noss et al. (2012), and the number of bear rubs per idealized home range by sex and study area.  

Sampling occurred during 15 June - 15 September, 2004, in our Glacier National Park study area and during 22 May - 27 October, 

2008, in Banff National Park   

 

    

Home range 

 

No. rubs per idealized home range 

Study area Sex Avg. �̂� (SE) σ (SE) Estimate 95% CI   min max avg SD 

Glacier F 0.05 (0.02) 4196 (190) 331 278-396 

 

0 92 28.50 18.05 

 

M 0.13 (0.04) 5330 (157) 535 476-600 

 

0 255 95.89 52.63 

           Banff F 0.11 (0.06) 3173 (303) 189 125-267 

 

10 95 56.15 22.12 

 

M 0.18 (0.6) 8189 (372) 1262 1057-1508 

 

10 197 80.57 47.71 
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FIGURES 

 

 

Figure 3-1.  (A) Location of our Banff National Park and Glacier National Park (GNP) study areas.  (B) Locations of bear rubs 

surveyed during June-September, 2004, in our GNP study area with an example of a predicted density surface from spatially-explicit 

capture-recapture (SECR) models.  (C) Predicted activity centers from SECR models for all grizzly bears used in our analyses.  For 

visual clarity, we show the idealized home ranges of six bears.  We defined home ranges by buffering each activity center by the sex-

specific home range radius calculated in R as (qchisq(0.95,2)0.5)×(sigma) (Noss et al. 2012), where sigma was the spatial scale 

parameter from the most supported SECR models. 

 

(A) 

 

(B) 

 

(C) 
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(A) 

  

(B) 

  

 

Figure 3-2.  (A) Locations of bear rubs surveyed during May-October, 2008, in our Banff National Park study area with an example of 

a predicted density surface from spatially-explicit capture-recapture (SECR) models.  (B) Predicted activity centers for grizzly bears 

from SECR models.  The idealized home ranges for four bears are also shown. 
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(A)  (B) 

 

Figure 3-3.  Estimated detection probabilities for male and female grizzly bears in our (A) Glacier National Park (GNP) and (B) Banff 

National Park (BNP) study areas.  Sampling occasions lasted 14 days each during 15 June - 15 September, 2004, in GNP, and 22 May 

- 27 October, 2008, in BNP.  Estimates and standard errors (bars) are from model-averaged Huggins (1991) models in program 

MARK 
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Figure 3-4.  Individual covariate plot showing relationship of predicted total bear density on capture probabilities of male and female 

grizzly bears from joint Glacier and Banff National Park study areas.  Results are from the most supported Huggins model for the 

fourth sampling occasion.  Shaded areas are 95% confidence intervals 

 

 

 

 

 

 

 



105 
 

APPENDIX B.  SUPPLEMENTAL MATERIALS 
 

Table 3-S1. Complete model selection results for grizzly bear (Ursus acrtos) detections at bear rubs from Huggins (1991) models in 

program MARK.  Sampling occurred during 15 June - 15 September, 2004, in our Glacier National Park, USA, study area. 

Modela Deviance 

Num. 

Par ΔAICc AICc Wts 

Model 

Likelihood 

sigma(-), (sex*t)+low+bre+dte+total bear density 803.64 15 0.00 0.25 1.00 

sigma(-), (sex*t)+low+bre+rtp+dte+total bear density 803.23 16 1.67 0.11 0.43 

sigma(-), (sex*t)+(sex* total bear density)+low+bre+dte  803.41 16 1.84 0.10 0.40 

sigma(-), (sex*t)+low+bre+total bear density 807.63 14 1.92 0.10 0.38 

sigma(-), (sex*t)+med+bre+total bear density 808.88 14 3.16 0.05 0.21 

sigma(-), (sex*t)+(sex* total bear density)+low+bre+rtp+dte  803.00 17 3.51 0.04 0.17 

sigma(-), (sex*t)+(sex* total bear 

density)+low+bre+rtp+dte+forest  803.22 17 3.73 0.04 0.15 

sigma(-), (sex*t)+low+bre+rtp+total bear density 807.63 15 3.99 0.03 0.14 

sigma(-), (sex*t)+low+bre+dte+total bb density 807.65 15 4.00 0.03 0.13 

sigma(-), (sex*t)+high+bre+total bear density 809.78 14 4.07 0.03 0.13 

sigma(-), (sex*t)+bre+total bear density 811.92 13 4.14 0.03 0.13 

sigma(-), (sex*t)+dte+bre+total bear density  809.97 14 4.25 0.03 0.12 

sigma(-), (sex*t)+bre+rtp+dte+total bear density 808.14 15 4.50 0.03 0.11 

sigma(-), (sex*t)+forest+bre+total bear density 810.56 14 4.85 0.02 0.09 

sigma(.), (sex*t)+bre+total bear density 811.31 14 5.59 0.02 0.06 
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sigma(-), (sex*t)+rtp+bre+total bear density 811.39 14 5.68 0.01 0.06 

sigma(-), (sex*t)+(sex* total bear density)+bre  811.49 14 5.78 0.01 0.06 

sigma(-), (sex*t)+shrub+bre+total bear density 811.86 14 6.15 0.01 0.05 

sigma(-), (sex*t)+(male+total bear density)+low+bre+rtp+dte  807.74 16 6.17 0.01 0.05 

sigma(-), (sex*t)+(male+total bear density)+bre  815.21 13 7.43 0.01 0.02 

sigma(-), (sex*t)+(male+male gb density)+bre  815.28 13 7.50 0.01 0.02 

sigma(-), (sex*t)+dte+bre  815.47 13 7.69 0.01 0.02 

sigma(-), (sex*t)+bre+total gb density  815.52 13 7.74 0.01 0.02 

sigma(-), (sex*t)+(male+female gb density)+low+bre+rtp+dte  809.39 16 7.82 0.01 0.02 

sigma(-), (sex*t)+low+bre+rtp+dte  811.96 15 8.32 0.00 0.02 

sigma(-), (sex*t)+(male+female gb density)+low+bre+rtp+dte  809.97 16 8.40 0.00 0.02 

sigma(-), (sex*t)+bre  816.31 13 8.53 0.00 0.01 

sigma(-), (sex*t)+dte+bre+total gb density  815.04 14 9.32 0.00 0.01 

sigma(.), (sex*t)+bbt+bre  815.24 14 9.52 0.00 0.01 

sigma(-), (sex*t)+dte+bre+male gb density  815.47 14 9.76 0.00 0.01 

sigma(-), (sex*t)+low+bre+rtp+dte+total gb density 811.38 16 9.82 0.00 0.01 

sigma(-), (sex*t)+(male+female gb density+male gb 

density)+low+bre+rtp+dte  809.38 17 9.89 0.00 0.01 

sigma(-), (sex*t)+(male+female gb density, total bear 

density)+low+bre+rtp+dte  811.79 16 10.22 0.00 0.01 

sigma(-), (sex*t)+low+bre+rtp+dte+male gb density 811.96 16 10.39 0.00 0.01 
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sigma(-), (female+T, male*t)+bre+total bear density 830.85 10 16.90 0.00 0.00 

sigma(-), (female+T)+bre total bear density 850.21 5 26.07 0.00 0.00 

sigma(-), (sex*T)+bre+total bear density 849.73 6 27.62 0.00 0.00 

sigma(-), (sex+t)+bre+total bear density 845.70 9 29.70 0.00 0.00 

sigma(-), (sex*t)+total bear density  856.60 12 46.76 0.00 0.00 

sigma(-), (sex*t) 861.08 11 49.18 0.00 0.00 

sigma(.), (sex*t) 860.18 12 50.33 0.00 0.00 

sigma(.), (female+T, male*t) 875.73 9 59.73 0.00 0.00 

sigma(.), (sex*T) 895.89 5 71.75 0.00 0.00 

sigma(.), (sex+t) 890.32 8 72.28 0.00 0.00 

sigma(.), (sex+T) 915.61 4 89.45 0.00 0.00 
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Table 3-S2. Complete model selection results for grizzly bear (Ursus arctos) detections at bear rubs from Huggins (1991) models in 

program MARK.  Sampling occurred during 22 May - 27 October, 2008, in Banff National Park 

 

Model Deviance 

Num. 

Par 

Delta 

AICc AICc Wts 

Model 

Likelihood 

sigma(.) (sex*t)+bre+dte+total bb density  658.21 24 0.00 0.17 1.00 

sigma(.) (sex*t)+bre+dte+total bb density+forest  656.23 25 0.17 0.16 0.92 

sigma(.) (sex*t)+bre+dte+total bb density+rtp 656.77 25 0.70 0.12 0.70 

sigma(.) (sex*t)+bre+dte+(sex*total bb density)  658.21 25 2.14 0.06 0.34 

sigma(.) (sex*t)+bre+dte+forest  660.45 24 2.25 0.06 0.33 

sigma(.) (sex*t)+bre+dte+total bear density 660.76 24 2.55 0.05 0.28 

sigma(.) (sex*t)+bre+dte  662.99 23 2.65 0.05 0.27 

sigma(.) (sex*t)+bre+dte+(sex*rtp)  658.81 25 2.74 0.04 0.25 

sigma(.) (sex*t)+bre+dte+forest+total bear density  659.21 25 3.14 0.04 0.21 

sigma(.) (sex*t)+bre+dte+med  661.48 24 3.27 0.03 0.19 

sigma(.) (sex*t)+bre+dte+high  661.86 24 3.65 0.03 0.16 

sigma(.) (sex*t)+bre+high+total bear density 661.93 24 3.72 0.03 0.16 

sigma(-) (sex*t)+bre+dte  666.25 22 3.78 0.03 0.15 

sigma(.) (sex*t)+bre+dte+med+total bear density  659.90 25 3.83 0.03 0.15 

sigma(.) (sex*t)+bre+dte+total gb density  662.59 24 4.39 0.02 0.11 

sigma(.) (sex*t)+bre+dte+low  662.79 24 4.58 0.02 0.10 
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sigma(.) (sex*t)+bre+dte+rtp  662.91 24 4.70 0.02 0.10 

sigma(-) (sex*t)+bre+dte+med  665.18 23 4.84 0.02 0.09 

sigma(.) (sex*t)+bre+dte+(female+total bb density, male+total 

bear density)  661.24 25 5.17 0.01 0.08 

sigma(.) (sex*t)+bre+dte+(sex*total bear density)  661.79 25 5.72 0.01 0.06 

sigma(.) (sex*t)+bre  668.73 22 6.26 0.01 0.04 

sigma(.) (sex*t)+bre+dte+(sex*total gb density)  662.59 25 6.52 0.01 0.04 

sigma(.) (sex*t)+(sex*bre)  668.50 23 8.15 0.00 0.02 

sigma(.) (sex*t)+bre+total bear density  668.71 23 8.37 0.00 0.02 

sigma(.) (sex*t)+dte+total bear density 679.06 23 18.72 0.00 0.00 

sigma(.) (sex*t)+dte  682.90 22 20.43 0.00 0.00 

sigma(.) (sex*t)+(sex*dte)  682.07 23 21.73 0.00 0.00 

sigma(.) (sex*t)+dte+total gb density 682.81 23 22.47 0.00 0.00 

sigma(.) (sex+t)+bre+dte  703.24 15 26.03 0.00 0.00 

sigma(-) (sex*t) 712.08 20 45.37 0.00 0.00 

sigma(.) (sex*t) 711.49 21 46.89 0.00 0.00 

sigma(-) (sex*t)+total bear density  711.03 22 48.56 0.00 0.00 

sigma(.) (sex*T) 751.05 5 53.26 0.00 0.00 

sigma(-) (sex+t) 748.84 12 65.40 0.00 0.00 

sigma(.) (sex+T) 770.79 4 70.98 0.00 0.00 

sigma(.) (sex*t)+bre+male gb density+dte  887.93 1 182.07 0.00 0.00 
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sigma(.) (sex*t)+(female+male gb density, male+female gb 

density)+bre+dte  889.43 3 187.59 0.00 0.00 
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CHAPTER 4 : POPULATION MONITORING OPTIONS FOR AMERICAN BLACK 

BEARS IN THE NORTHEASTERN UNITED STATES AND EASTERN CANADA  

 

INTRODUCTION 

By the first half of the twentieth century, American black bear (Ursus americanus) populations 

in many areas in North America had substantially declined from historic levels due to excessive 

killing by humans for their fur, meat, and fat, and to reduce conflicts with humans (Hristienko 

and McDonald 2007).  As awareness of their ecological and cultural value grew, black bears 

were classified as a game species in most jurisdictions.  Consequently, population recovery from 

overexploitation was an important management goal in the 1960s through early 1990s (Miller 

1990).  In recent decades, bear populations throughout North America have increased in 

abundance and distribution as a result of habitat recovery and conservative hunting regulations 

(Fig. 4-1) (Garshelis and Hristienko 2006, Scheick and McCown 2014).  Forty states in the U.S., 

12 Canadian provinces and territories (all except Prince Edward Island), and 6 states in northern 

Mexico have black bear range (Scheick and McCown 2014).  In a survey of states and provinces 

(hereafter, jurisdictions) with black bear populations in both 1988 and 2001, 32 jurisdictions 

reported population increases during that time period, 10 jurisdictions reported stable 

populations, and 2 reported declines (Hristienko and McDonald 2007).   

Concomitant with increasing and expanding bear populations, human-bear conflicts have 

increased in 34 jurisdictions (Hristienko and McDonald 2007).  Accordingly, black bear 

management in many portions of North America has gradually shifted from population recovery 

to enhancing harvest opportunities and reduction of human-bear conflicts (Organ and 

Ellingwood 2000).  This is particularly true for jurisdictions in northeastern North America, 

where hunting of black bears has been the primary mechanism to pursue population objectives in 
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a cost-effective manner (Sawaya et al. 2013b).  Hunting is a significant source of funding for 

wildlife conservation and management activities in many northeastern jurisdictions (eastern 

Canada and the northeastern U.S.).  In Pennsylvania for example, residents are required to 

purchase bear hunting licenses, totaling more than $2 million in revenue per year.  Also, 

conservation funds are generated in the U.S. from a tax on sporting arms and ammunition (i.e., 

Federal Aid in Wildlife Restoration Act; 16 U.S.C. 669-669i; 50 Stat. 917).  These funds may be 

applied toward habitat management, land acquisition, conflict reimbursement programs, 

research, or other activities to foster wildlife management and conservation.  Although hunting 

remains the primary mechanism for bear management in most areas, and is considered the 

primary management tool in 70% of northeastern jurisdictions (Sawaya et al. 2013b), hunting 

participation and revenues are declining across most of the region, as across most of North 

America (U.S. Census Bureau 2006).  Increasing and expanding black bear populations across 

the region, combined with decreasing hunter participation and revenue, present substantial 

challenges to successful black bear management (Hristienko and McDonald 2007).  Ultimately, 

managers need to be able to link population parameter estimates such as density and population 

growth rates with the drivers of population change to effectively implement adaptive 

management to accomplish their objectives (Nichols and Williams 2006).   

 Clearly, wildlife management agencies need reliable information and tools to effectively 

respond to changing management circumstances without putting long-term viability of bear 

populations at risk.  In some areas, agencies faced with increasing bear populations need 

information on how best to reduce human-bear conflicts, and on population monitoring methods 

that allow them to determine if management actions are having the desired effects (Organ and 

Ellingwood 2000).  A further challenge in this region is that populations often cross geopolitical 
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boundaries, where jurisdictions may have different management objectives or priorities.  

Nonetheless, coordinating efforts across wildlife management programs may yield benefits from  

data compatibility, complementary methods, and economies of scale (Lindenmayer and Likens 

2010)  to better meet the shared objective of sustainable bear populations in the Northeast 

(Garshelis and Hristienko 2006). 

There are many rapidly evolving techniques for population monitoring, but uncertainty 

about applicability and efficacy of each technique can make it difficult for wildlife managers to 

decide which methods are most appropriate to assess their success in reaching management 

objectives (Garshelis and Hristienko 2006).  Some population monitoring methods lack sufficient 

precision to detect small but meaningful changes in population parameters and may not be 

feasible at spatial and temporal scales most beneficial to managers, or may provide little 

information on underlying population processes (Coster et al. 2011).  More importantly, many 

ecological monitoring programs lack well-defined objectives and neglect sources of variation or 

uncertainty (Yoccoz et al. 2001, Nichols and Williams 2006), with financial constraints often 

determining the scope of programs and the techniques considered (Caughlan and Oakley 2001).   

 Given these challenges, the Northeastern Black Bear Technical Committee was interested 

in evaluating black bear management and monitoring options for jurisdictions in the northeastern 

U.S. and eastern Canada, taking into consideration the range of agency resources, bear 

population status, and management objectives present across this large and diverse region.  Our 

overall goal was to assess available methods that incorporate statistical rigor and precision, 

feasibility, and cost-effectiveness for a range of population scenarios and management objectives 

that we developed working closely with bear biologists and managers from across the Northeast 

and beyond.  Our specific objectives were to (1) provide an overview of current status and 
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management of American black bears in the region, (2) produce an accessible review of reliable 

techniques to estimate population parameters and monitor population trends, and (3) provide 

guidance to agencies to better enable them to choose monitoring tools that best meet their 

management objectives and available resources.  Although wildlife managers in the Northeast 

provided the impetus for this work, our findings are broadly applicable to bear management 

across North American jurisdictions and beyond. 

MATERIALS AND METHODS 

Study Area 

Northeastern North America (hereafter referred to as the Northeast, Fig. 4-1) is characterized by 

diverse geographic and climatic conditions, landcover types, and land management regimes, 

which result in a wide range of suitable black bear habitat types, ranging from Atlantic Coastal 

Wetlands in the east and north to Interior Highlands in the west (Alexander 1967).  The granitic 

Appalachian Mountains dominate much of the region, reaching their highest elevation at Mt. 

Washington, New Hampshire (1,917 m), with the Atlantic Ocean being the eastern and northern 

borders for many of the jurisdictions responsible for managing black bears.  The climate of the 

13 U.S. states within the study area is classified as humid mid-latitude, with cold winters, warm 

summers, and distinct autumn and spring seasons (Alexander 1967).  The climate of the 6 

Canadian Provinces is generally colder with shorter summers and more days of lingering snow, 

so forests typically produce less hard and soft mast.  Daylight is much longer in summer so 

lowland habitats can produce an abundance of berries that are consumed by bears (Young and 

Ruff 1982). 

 Forests in Connecticut, Delaware, Maryland, New Jersey, Pennsylvania, Rhode Island, 

Virginia, and West Virginia are predominated by oak (Quercus spp.) and hickory (Carya spp.), 
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which provide abundant hard mast for black bears in autumn (Ryan 2009).  The forests of Maine, 

New Hampshire, New York, Ontario, Quebec, and Vermont primarily consist of maple (Acer 

spp.), American beech (Fagus grandifolia), and paper birch (Betula papyrifera), with only beech 

providing a valuable, but variable, source of hard mast (McLaughlin et al. 1994).  Massachusetts 

is a transition zone between those 2 major forest types.  Southern Newfoundland, Nova Scotia, 

and Prince Edward Island are dominated by relatively unproductive boreal spruce-fir forests, 

which transition to barren ground near the Atlantic Coast and above the Arctic Circle.  Forest 

regeneration after logging and extensive land clearing for agriculture from the early 1700s 

through the mid-1900s has resulted in a notable expansion of forest habitat (Hall et al. 2002), 

which may have been a contributing factor to increasing black bear populations in the Northeast. 

 The Northeast is one of the most densely populated areas in North America because of its 

agricultural productivity, proximity to waterways, and early history of settlement.  The region is 

home to almost 100 million people with 72 million people inhabiting the northeastern U.S. and 

23 million residing in eastern Canada.  The sizes of jurisdictions vary widely:  Rhode Island and 

Prince Edward Island each are <6,000 km2 whereas Quebec is nearly 1.4 million km2.  The 

lowest density of humans in the Northeast occurs in Newfoundland, whereas the greatest 

densities are concentrated near New York City, New York and Toronto, Ontario.  The 13 United 

States included in our study area contain almost 25% of the entire U.S. population of >311 

million people, but constitute only 7% of the total land area (681,748 km2) (U.S. Census Bureau 

2010).  Almost 70% of the entire Canadian population of >33 million people resides in the 6 

provinces of our study area, while occupying only 32% of the total land area of Canada 

(Statistics Canada 2011). 
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 Human populations in the Northeast are experiencing dramatic variation in growth rates 

among jurisdictions.  Between 2000 and 2010, the U.S. population grew by 9.7%, but the 

average population growth rate in the 13 northeastern United States was only 4.7% (U.S. Census 

Bureau 2010).  Between 2006 and 2011, Canada’s population grew by 5.9%, whereas eastern 

Canadian provinces grew by 11.4% (Statistics Canada 2011).  Ontario and Delaware, which 

differ considerably in size and density, experienced approximately 15% growth from 2000 to 

2010.  Other jurisdictions recorded less growth but only Newfoundland reported a decrease in 

the human population.  

 About 232,000 black bears inhabit the 3.6 million km2 encompassed by our study area, 

although density and population growth rates vary greatly among jurisdictions (Noyce 2011).  

Historically, the entire Northeast was occupied by black bears (Feldhamer et al. 2003).  At 

present, no resident black bear populations exist in Delaware or Prince Edward Island (Fig. 4-1), 

but during the past two decades, bear range has expanded in Connecticut, Massachusetts, New 

Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia, and sightings 

recently have been reported in Delaware (Scheick and McCown 2014).   

 High and increasing human densities in the Northeast, combined with increasing bear 

numbers and close proximity of bears to humans in many areas, have resulted in increased 

human-bear conflicts in recent years.  Twelve of 17 jurisdictions in the Northeast occupied by 

black bears reported increasing human-bear conflicts between 2000 and 2010 (Noyce 2011).  

Black bears are omnivorous and are often drawn to anthropogenic foods such as garbage, bird 

feeders, and agricultural crops.  Although black bear attacks on humans are rare, incidents do 

occur and have resulted in injuries or death, costly litigation, and negative perceptions of bears 

by the public.  Also, vacation or retirement properties owned by urban residents are becoming 
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more commonplace in the Northeast and the owners often have little experience dealing with 

wild animals.  Such changing dynamics present many challenges to black bear managers in the 

Northeast.  Noyce (2011) reported that 53% of black bear management jurisdictions in the 

Northeast had experienced an increase in human-bear conflicts over the preceding 10 years, with 

no jurisdictions reporting a decrease.  Despite the rapid growth in bear populations and in 

human-bear conflicts reported in Noyce (2011), 67% of northeastern bear managers we surveyed 

indicated that <40% of their populations were at or beyond social carrying capacity.   

 Bear hunting has a long history in the Northeast.  Of the 17 jurisdictions that have black 

bear populations, 14 use hunting as a primary management tool (Noyce 2011).  Other population 

management tools have been proposed (e.g., immunocontraception, relocation) but few, if any, 

are deemed adequately effective or economically feasible at the spatial and temporal scales of 

concern to management agencies. 

Population Parameters for Monitoring  

Regrettably, monitoring of wildlife populations often consists of simply following trends in 

population abundance or other parameters with little understanding of what is driving the trend 

and how to modify it (Nichols and Williams 2006).  Here, we use the term monitoring to 

describe the estimation of demographic parameters useful for assessing biological aspects of 

wildlife population performance across multiple years.  This includes improving our 

understanding of the drivers of those parameters and ideally obtaining estimates of parameter 

precision.   

 Obtaining estimates of demographic parameters for black bears requires intensive and 

often expensive study designs to achieve reasonable levels of accuracy and precision (Settlage et 

al. 2008, Harris et al. 2011).  Estimates that are accurate (low bias) and precise (low uncertainty) 
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are the most beneficial to wildlife management (Mills 2013).  Perhaps the most dangerous are 

estimates that are precise but inaccurate, as they may lead managers to have false confidence in 

their decisions.  Some parameters are inherently more difficult to reliably estimate than others 

and there is no universal definition of reliability that is suitable in all situations.  What constitutes 

acceptable level of precision will vary by agency or management objective but managers should 

decide a priori how that level should be determined based on how the data are to be used, and 

what are the consequences of a given degree of uncertainty in the chosen monitoring metrics.  

Although Pollock et al. (1990) suggested that estimates with coefficients of variation <20% are 

probably acceptable for wildlife management decision making, there has never been a formal 

analysis of how the precision of estimates can influence the success of management actions.  

Consequently, researchers should work with managers to determine acceptable levels of 

precision based, in part, on how the results will be used.  In the following, we describe 

population parameters that may be useful to monitor effects of bear management actions, 

empirical examples and estimation challenges of each, and techniques used to overcome those 

challenges. 

Abundance and density - indirect estimates  

Abundance remains one of the most important parameters to bear managers, particularly in 

jurisdictions that use harvest quotas, to monitor temporal changes in population status and to 

gain a better understanding of population dynamics (Nichols and Hines 2002, Lukacs and 

Burnham 2005).  Abundance estimates themselves are, however, only implicitly tied to a defined 

spatial extent.  To make meaningful comparisons across, or track changes within, populations, it 

is necessary to make this relationship explicit by defining the area to which an abundance 

estimate relates (Dice and Clark 1953, Wilson and Anderson 1985).   
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 Generally, precision of abundance estimates increases with greater sampling intensity, 

which usually means greater cost.  Thus, most managers must consider the tradeoffs between 

sampling intensity (i.e., cost) and reliability (i.e., accuracy and precision).  Abundance is usually 

thought of as a discrete number of animals inhabiting a particular space and time, but indirect 

measures of abundance, or indices, may potentially be useful depending on the management 

objective (Lancia et al. 2005).  Reliable indices can provide insights into population trend in 

response to perturbations, which may be all that is needed for certain jurisdictions, and can cost 

far less than a population estimate.  The best indices are those that have a known, linear 

correlation with population size.  Non-linear relationships can be useful as well if the curvilinear 

form can be quantified.  Unfortunately, the strength and shape of the relationships for most 

indices of black bear abundance have not been investigated.  Below, we discuss commonly used 

methods to estimate black bear abundance, beginning with indirect and followed by direct 

estimation methods. 

Bait-station index 

Bait-stations have been used by >15 wildlife management agencies in North America as an 

indirect estimate of black bear abundance (Garshelis 1990).  The method evolved from pre-

baiting for black bear trapping (Johnson and Pelton 1980), and involves establishing a series of 

bait-station routes, often along roads or trails.  Bait, often opened cans of sardines or bakery 

products, is suspended by a string from a tree branch about 3 m above the ground at each of a 

series of sampling sites.  A bear visiting the site will generally climb the tree to obtain the bait, 

leaving claw marks as an indication that the site was visited.  Baits are usually checked after 5–7 

days and the proportion of visited bait sites is used as an index of abundance.  Bait-station 

surveys are usually conducted annually to monitor bear population trends. 
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 Several potential problems exist with bait-station surveys.  First, a site not being visited 

does not mean that bears are not in the area of the bait; 20–30% of bait sites are often not visited 

even where bear densities are high.  Therefore, detection is not perfect (i.e., <100%) and can 

vary by factors not associated with population abundance, such as fluctuations in natural bear 

foods or live trapping efforts in the vicinity of bait stations (Brongo et al. 2005a).  Further, the 

relationship is likely curvilinear and asymptotic because bear populations may continue to 

increase even when the bait-station index has reached 100%.  Another potential issue is that this 

method may add to the food-conditioning of bears, whereby they become less wary of humans, 

similar to effects of trapping with bait (Ternent and Garshelis 1999, Brongo et al. 2005a).   

 The only rigorous evaluations of bait-station surveys and population trend were 

performed by Clark et al. (2005) and Rice et al. (2001).  Clark et al. (2005) found that bait-

station indices were not a good predictor of population growth on a 330-km2 study area in Great 

Smoky Mountains National Park, Tennessee.  Bait-station indices were, however, correlated with 

indices of acorn abundance, suggesting that the availability of natural foods affected visitation 

rates.  Rice et al. (2001) used a power analysis and concluded that bait-station surveys in Idaho 

could detect large declines in abundance (i.e., 50% over three years), whereas surveys in 

Washington lacked adequate power to detect even gross population declines.  Year-to-year 

fluctuations in bait-station indices are likely affected by sampling error and extraneous factors 

such as natural food availability, so we view bait stations as a method potentially capable of 

detecting gross population trends over a long period of time (i.e., decades) in a broad 

geographical context (i.e., multi-state or province wide), which clearly will not be adequate for 

many populations.  Occupancy estimation methods might be used with detections based on bait-

station data if the sites were surveyed repeatedly (MacKenzie et al. 2006).  Given such data, 
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Royle et al. (2005) described methods for directly estimating abundance, but this has not been 

attempted with bears.  Finally, bait-station data could be used as auxiliary data for integrated 

population models to improve estimates of population parameters, but these methods are still in 

development (Chandler and Clark 2014). 

Observations 

We define observations as any attempt to record, in a standardized way, visual records of bear 

occurrence, either by design (e.g., via remote camera) or incidental (e.g., human-bear conflict 

complaints).  For example, many jurisdictions track annual occurrences of nuisance bear 

complaints received from the public as an indirect measure of bear abundance.  Other 

jurisdictions have recorded observations of bears by the public, usually for small, re-establishing 

populations.  These types of observational data are affected by factors other than population 

abundance (e.g., mast failures usually coincide with increasing nuisance bear complaints or road 

kills), so these data should only be used as a general measure of population trend.  Additionally, 

road kill data are affected by traffic volume, which has been steadily climbing for decades 

throughout eastern North America (van Manen et al. 2012).  Considering factors such as the 

increasing popularity of remote cameras, greater efforts to monitor wildlife-vehicle collisions 

(e.g., smartphone apps), and the general increase in the number of potential observers, relying on 

ad hoc observation data is unlikely to provide reliable insights into population trends. 

 Formalized observational air or ground surveys for black bears are, however, feasible in 

areas where cover is sparse and bears are easily detected (Schwartz et al. 2002), but except in 

more northerly units of some Canadian provinces, this method is usually not used in the 

Northeast.  Sightability is strongly dependent on cover type (e.g., meadows, alpine); however, 

methods exist to estimate sightability and correct for its influence on observations, including 
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double sampling and multiple observers (Samuel et al. 1987, Lubow and Ransom 2016).  

Observations may be easier to obtain at known feeding sites (e.g., garbage dumps, berry 

patches), but the same assumptions and complexities with using nuisance reports probably apply.   

Remote cameras are seeing ever increasing use as an indirect measure of abundance, or at least 

occupancy (Burton et al. 2015, Steenweg et al. 2016), even for species that cannot be 

individually identified (i.e., marked).  Advances in camera and sensor technologies including the 

ability to record thousands of images between visits and long-lasting batteries have reduced 

earlier issues of differential success among camera types (Kelly and Holub 2008) and small 

sample sizes (Mace et al. 1994b).  Further, as camera costs have declined, it is now feasible to 

cover large areas following statistical sampling designs (Burton et al. 2015).  Issues remain, 

however, with designing studies to minimize variable detection rates among different age classes 

or seasonal differences in movement rates, similar to other noninvasive sampling techniques 

(Long et al. 2012).   

Harvest data 

Jurisdictions with hunting seasons monitor annual harvest and many require physical checking of 

harvested bears to obtain data on sex, weight, age (e.g., cementum annuli analysis of teeth) 

(Stoneberg and Jonkel 1966, Harshyne et al. 1998), and collect tissue for genetic analyses.  

Stable harvest trends may suggest that the bear population is in fact remaining stable, given some 

knowledge of hunter effort.  Of course, an important assumption is that harvest opportunities and 

reporting levels are known (or constant).  For example, declining populations may sometimes 

show stable trends in harvest for a period of years because more hunting effort (i.e., more hunters 

afield, more hunter days) is being invested.  Given that harvest indices can be sensitive to 



123 
 

sampling variation (Diefenbach et al. 2004), harvest trend data should be considered insensitive 

to all but gross population changes at best and misleading at worst.   

 If effort can be quantified (e.g., number of hunter days), the harvest per unit effort 

(sometimes referred to as catch per unit effort or CPUE) could be calculated and used as an 

index of abundance (Harley et al. 2001).  Variables other than population abundance affect 

hunter success (e.g., weather, duration of hunt, methods allowed) and would have to be included 

in any CPUE models, but positive relationships have been demonstrated elsewhere (e.g., for 

moose [Alces alces], Schmidt et al. 2005).  Analyses of fisheries data, however, have indicated 

CPUE can remain stable while abundance declines (Hilborn et al. 1992).  Further, even under the 

best conditions, precision of CPUE indices of abundance is generally low compared with other 

estimators of abundance (Harley et al. 2001). 

Abundance and density - direct estimates 

Although indices may be capable of detecting large magnitude changes in abundance, direct 

enumeration of abundance will be more suitable to support common management objectives, 

particularly those involving harvest.  Ideally, however, abundance estimates are tied to a defined 

area and reported in terms of animals per unit area (i.e., density).  For example, maintaining 

viable harvest levels usually benefits from having reliable estimates of population abundance 

(N).  The simplest population enumeration concept is a census or total count, whereby every 

animal in the population can be observed and counted (Mills 2012).  In that special case, the 

detection or capture probability (p) equals 1 (i.e., perfect detection).  In most instances, however, 

detection probabilities are not perfect (p < 1) and only a portion of the population is captured or 

detected (C).  In those cases, population size can be estimated if that proportion (p) is known, 

where N = C/p (Otis et al. 1978).   Consequently, almost all abundance estimation methods focus 
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on the estimation of p and a variety of methods (i.e., mark-recapture, mark-resight, search-

encounter, occupancy) have been developed for such purposes.   

 Heterogeneity in detection rates is a major concern with mark-recapture abundance 

estimates for bears because it is prevalent, difficult to account for in models, and can result in 

biased estimates (Pollock et al. 1990, Boulanger et al. 2004c).  For example, larger bears may be 

able to step over the barbed wire at a hair snare, resulting in lower capture probabilities than 

smaller bears, which would produce an abundance estimate that is biased low.  A variety of 

methods have been developed to detect and account for this bias (e.g., Pledger mixture models, 

Huggins individual heterogeneity models, Jackknife models) but they may not perform well 

when capture probabilities are low (Huggins 1991, Pledger 2000, Boulanger et al. 2004b, 

Laufenberg et al. 2013).   

 The most popular method for estimating p for bears is capture-mark-recapture (CMR).  

The basic assumptions are that the population is closed to additions or removals, marks are not 

lost and are read correctly, and all animals have the same probability of capture (Williams et al. 

2002).  Biases may be difficult to discern, but can be prevalent even in large-scale studies 

(Garshelis and Noyce 2006).  Violation of some or all of these assumptions is common (e.g., ear 

tag loss, mortality, trap shyness) and sophisticated methods have been developed to estimate or 

reduce such biases.  For example, open population estimators have been developed when 

geographic (immigration and emigration) or demographic (births and deaths) closure violations 

occur between sampling occasions (Jolly 1965, Seber 1965).  Black bears are particularly prone 

to some sampling biases, such as geographic closure violation, and these issues should be taken 

seriously when designing CMR studies (Settlage et al. 2008, Laufenberg et al. 2013). 
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 Great variation exists in the design of mark-recapture studies that can lead to violating 

assumptions and affect parameter estimates.  For example, black bear researchers have used both 

rewarding (e.g., bakery products) and non-rewarding lures (i.e., scents) to entice bears to enter 

sampling sites.  Rewarding lures have commonly been used in eastern North America to attract 

bears, but bears may exhibit a positive behavioral response, which can result in negatively biased 

abundance estimates if not modeled appropriately or if data are too sparse to detect the effect.  

Further, if bait at a site is consumed, it may be more difficult to entice bears that subsequently 

encounter the site to enter.  Researchers in the western U.S. and Canada have often used a 

mixture of aged cattle blood and decomposed fish with success, but recapture probabilities are 

lower than for rewarding lures, which can lead to problems in modeling capture heterogeneity 

(i.e., differences in capture probability among individuals not related to previous capture).  This 

can be exacerbated by negative behavioral responses following live capture, which can be 

difficult to know for all bears in a population (Kendall et al. 2009).  Following the marking of 

animals, the ability to recapture them is central to mark-recapture studies and the effects of lure 

or bait on detections should be further explored, which is no simple task.   

 The density of trap sites on the landscape is also a key determinant influencing detection 

probabilities.  For example, one assumption for mark-recapture studies is that all animals have 

the same probability of capture regardless of their location on the landscape, which can easily be 

violated if large gaps exist in site distribution.  Although equal detection rates are rarely realistic, 

studies to estimate abundance should be designed to ensure that all animals have at least some 

opportunity to be detected in more than one sampling occasion, which can often be improved 

through use of multiple sampling methods.  Thus, at a minimum, trap spacing should be no 

greater than the smallest seasonal home-range diameter of bears within the sampled area 
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(Boulanger et al. 2004b, 2006).  Because most hair sampling surveys take place in summer and 

black bear home ranges are smaller for females than males, summer home ranges of females are 

thus useful for guidance.  

 Below, we discuss some of the more commonly used methods to obtain detection data for 

use with estimating bear density, then discuss some of the models themselves.  For mark-resight, 

traditional mark-recapture, and the newer spatially-explicit capture-recapture models, we 

performed simulations using empirical data from the Northeast to give an overview of how these 

models perform across a broad range of population and sampling conditions. 

Live-capture data 

A variety of techniques have been used to obtain observation data for estimating p.  Live capture 

is a common form of initial marking and recapturing.  Live capture is relatively expensive but 

allows for the attachment of radio transmitters and collection of age and sex data along with 

other individual attributes to use as covariates to improve estimating capture probabilities or for 

other purposes.  Live capture studies for bears often have small sample sizes and limited 

geographic extent, although exceptions exist (e.g., ~600 ear-tagged bears per year in 

Pennsylvania; Ternent 2006).  Even for relatively small efforts, data on animals marked during 

live-capture projects can be used to augment detection data from other methods such as through 

genetic sampling (e.g., Kendall et al. 2009), or used in mark-resight models (Mace et al. 1994b), 

as discussed below. 

Biomarker data 

Biomarkers such as tetracycline and radioisotopes have been used with some success in black 

bear populations in Michigan and Minnesota to estimate abundance, although there are issues 

regarding assumptions of the method and potential social concerns (Garshelis and Visser 1997).  
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For example, radioisotopes are effective markers but, where bears are hunted, there is concern 

about health risks posed by consuming meat of marked bears.  Baits laced with non-toxic 

tetracycline, which fluoresces in bone tissue under ultraviolet light, have been used in Minnesota 

and Michigan to estimate statewide bear populations (Garshelis and Visser 1997, Belant et al. 

2011).  Tooth or rib samples were obtained from hunter-killed bears and examined under a 

microscope to detect the tetracycline.  Cautions include the failure of tetracycline to fluoresce in 

some tooth samples (because of inadequate dosage or slow growth during some seasons and in 

old animals), markers fading over time in bone samples, and bears emigrating from the sampled 

area, all of which positively biases estimates of population size.  Further, if non-target species 

take a significant proportion of the tetracycline baits, which are used to infer the number of 

marks in the population, estimates will be positively biased.  Wide spacing between baits is 

necessary to ensure that individual bears do not consume >1 bait.  Additionally, animals that are 

more prone to consume tetracycline baits may also be more prone to harvest, thereby introducing 

bias (Garshelis and Noyce 2006).  The method is attractive because most jurisdictions in the 

Northeast occupied by black bears allow hunting, which would enable easy access to recapture 

samples, although this may not represent a random sample of the marked population (Garshelis 

and Visser 1997).  Unfortunately, biomarkers do not enable researchers to individually identify 

animals, which limit the choice of population estimators that can be used.  Biomarker projects in 

New Hampshire and New York were unsuccessful because of low bait consumption and 

insufficient marking of bears (A. Timmins, New Hampshire Fish and Game Department; J. 

Hurst, New York Department of Environmental Conservation; personal communication). 
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Noninvasive genetic sampling data 

Mark-recapture methods based on DNA extracted from bear hair or scat samples have become 

among of the most widely used research and monitoring tools across North America and beyond 

(Boersen et al. 2003, Tredick and Vaughan 2009, Latham et al. 2012, van Manen et al. 2012, 

Karamanlidis et al. 2015).  Rather than capturing and marking animals directly, biological 

samples (usually hair or scat) are collected and genotyped, thus producing records of capture 

analogous to those that might be obtained by live capture and marking with ear tags.  This is 

largely due to technical breakthroughs in the 1990s based on polymerase chain reaction (PCR), 

enabling small amounts of DNA from hair or scat to be amplified and then genotyped (Foran et 

al. 1997).  Woods et al. (1999) devised a hair trap by stringing barbed wire around a series of 

trees to form an enclosure around a baited center.  This type of sampling is often referred to as 

noninvasive genetic sampling because, following medical terminology, biological samples are 

obtained without breaking the skin.  An added benefit of noninvasive genetic sampling data is 

that it can be used to estimate other population parameters in addition to abundance (e.g. 

population growth, survival, reproduction) and to understand how bear populations are 

demographically and genetically connected (Proctor et al. 2005, Sawaya et al. 2013a).  

 Noninvasive genetic sampling, however, is not without its challenges.  The DNA in hair 

and scat samples is often of low quantity and quality compared with blood or tissue samples and 

thus may be prone to genotyping errors (allelic dropout, false alleles; Taberlet et al. 1999, Mills 

et al. 2000).  This can lead to animals losing their “marks”, thereby introducing spurious 

individuals into the sample.  Not only does this inflate the minimum count, but it lowers 

detection probabilities, both of which contribute to overestimates of population abundance 

(Taberlet et al. 1999).  Also, if the ability to reliably distinguish individuals (i.e., marker power) 
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is insufficient, it may not be possible to distinguish between closely related individuals, leading 

to underestimates of abundance (Mills et al. 2000).  Methods have been developed to identify 

and minimize genotyping errors from datasets, however, substantially reducing the influence of 

these errors on population estimates (Taberlet et al. 1997, 1999, Paetkau 2003, McKelvey and 

Schwartz 2004).  Pilot genetic sampling studies should be conducted to ensure that desired 

genotypic discrimination and genotyping success rates can be achieved (Kalinowski et al. 2006, 

Settlage et al. 2008).  In small isolated bear populations with low genetic variation, a greater 

number of markers may be required for successful genotyping.  Wildlife managers may be 

reluctant to embrace genetic monitoring methods because unfamiliarity with methods and 

models (Schwartz et al. 2007).  Stetz et al. (2011) developed an online resource for managers to 

help bridge this barrier (http://alaska.fws.gov/gem/mainPage_1.htm). 

 One potential concern with noninvasive genetic sampling is that >1 bear can leave hair 

samples on the same barb, resulting in a mixed sample.  As part of a large laboratory test, 

Kendall et al. (2009) submitted >800 blind samples, including 115 intentionally mixed samples 

consisting of hair from closely related (i.e., full siblings) bears.  Their results were conclusive in 

that no discrepancies among known individual genotypes (e.g., spurious genotypes) were 

detected.  Mixed samples should not constitute a major problem as long as standard laboratory 

protocols and error checking procedures are used (Paetkau 2003).  Researchers may select 

different heights of wire depending on the physical characteristics (i.e., body size) of bears in the 

sampled population.  Ideally, every adult bear that enters a hair trap would leave hair as they pass 

over or under the wire, but a number of studies have documented lower detection rates for males 

than females (Sawaya et al. 2012).  One contributing factor for this difference may be that males 

have different molting schedules or may be tall enough to step over the wire without leaving 
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hair.  Because male detection probabilities are often lower than females at hair traps, some 

researchers have used two strands of barbed wire set at approximately 40 and 60 cm or 20 and 50 

cm in an attempt to capture more males (Drewry et al. 2013, O’Connell-Goode et al. 2014, 

Wilton et al. 2014).  Laufenberg and Clark (2014) found that none of 13 cubs that were known to 

be present on their study area were detected at sites that used a 2-wire configuration.  Also, of the 

30 genotypes from live-captured bears that matched noninvasive genotypes, 0, 3, and 17 were 

first detected as cubs, yearlings, and 2-year olds, respectively.  Thus, vital rate estimates based 

on similar wire configurations for black bears most likely exclude cubs of the year. 

 In eastern North America, where bear home ranges are relatively small and bear densities 

can be high, hair traps often need to be less than a few kilometers apart to avoid gaps in the 

sampling coverage that can lead to some individuals not being able to be detected (Settlage et al. 

2008).  Further, in these populations the high density of sampling sites can yield a large number 

of hair samples, leading to untenable lab expenses.  In those cases, DNA analysis of only a 

subset of the total number of hair samples collected may be an option (Tredick et al. 2007, 

Settlage et al. 2008, Dreher et al. 2009).  Excessive subsampling likely reduces detection 

probabilities, however, so minimizing the likelihood of missing individuals is important  

(Laufenberg et al. 2013). This can be aided by, for example, using auxiliary information such as 

partial genotypes to target samples for complete analysis (Stetz et al. 2014).  Conversely, 

analyzing a single sample per site-visit may favor detection of individuals that leave larger 

clumps of hair, which may have a high probability of successful genotyping, resulting in capture 

biases (Augustine et al. 2014).   

 Subsampling may also make it more difficult to model behavioral biases because of 

missed detections.  For example, the first occasion that an animal is captured may actually be a 
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recapture of an animal whose hair was previously collected but not genotyped (Laufenberg et al. 

2013).  Such undetected positive trap responses can lead to overestimation bias of N (Augustine 

et al. 2014).  Subsampling also assumes that individual hair captures are independent, which may 

not be the case with, for example, animals traveling in family groups.  In these situations, 

animals would not be randomly sampled (i.e., only 1 of the group can be selected) resulting in a 

potential bias.  More work needs to be done to address issues caused by subsampling. 

 Another consideration is whether or not to move hair traps between sampling sessions.  

Leaving sites in place and rebaiting them takes considerably less work than moving them, but 

capture probabilities are generally greater when sites are moved when no food rewards are used 

(Boulanger et al. 2006).  Sites with rewarding lures may have greater detection rates when they 

are not moved due to a positive behavioral response.  Many other variables may influence hair 

trap capture probabilities, including weather conditions that can affect sample quality and lab 

standards for genetic analysis.  Previous live captures can negatively affect capture probabilities 

with hair traps as bears may develop wariness of similar sites (Boulanger et al. 2008, Kendall et 

al. 2009).  Similar to other bear species, American black bears rub on trees, posts, and other 

objects and may provide an opportunity to collect high-quality hair samples for use in mark-

recapture studies.  Hair from rubs was used to successfully estimate grizzly and black bear 

abundances in Glacier National Park, Montana (Kendall et al. 2008, Stetz et al. 2014).  

Researchers used detections from bear rubs and hair traps to estimate grizzly and black bear 

abundance in Banff National Park, Alberta (Sawaya et al. 2012) but found very low bear rub 

detection rates for black bears relative to grizzlies.  Hair collected at wildlife crossing structures 

(Sawaya et al. 2012), harvest samples (Dreher et al. 2007), and from nuisance or research bears 
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(Kendall et al. 2009) have also been used in conjunction with samples from hair traps to reduce 

effects of detection heterogeneity from a single sample source.   

 Although hair traps are generally used for genetic sampling (Long et al. 2012), Clevenger 

et al. (2010) used barbed wire strung across wildlife crossing structures to collect bear hair and 

this method could be adapted to any type of known crossing location.  Hirth et al. (2002) found 

ample black bear hair for genetic analysis on bark and broken twigs of crab apple trees (Malus 

pumila) when bears were climbing trees to eat ripening fruit in fall.  They suggested that, given 

the broad distribution of current and abandoned orchards in the Northeast, sampling in apple 

orchards could potentially replace or augment DNA collection from hair traps, but this would 

need be evaluated on a per-project basis (Hirth et al. 2002).  Bear scat can provide a source of 

DNA as well.  Studies have shown the use of scat detection dogs greatly improves efficiency of 

scat surveys (Wasser et al. 2004, Long et al. 2007), but low microsatellite amplification rates can 

still severely limit detection probabilities.  Considerable effort has been directed at identifying 

the best methods for scat collection (e.g., swab of epithelial cells from surface of the scat) and 

storage, but with current technologies, capture probabilities typically remain too low to use scat 

alone for abundance estimation (Murphy et al. 2007).  Newer techniques, however, such as 

single nucleotide polymorphisms (SNPs), are providing demonstrable improvements in 

genotyping success rates across a range of sample types and conditions for many species, as well 

as allowing insights into other population genetic questions involving traits under natural 

selection (Allendorf et al. 2010).  Also, estimators based on the use of scat detector dogs within a 

spatially unstructured grid may work well for estimating bear abundance in the future 

(Thompson et al. 2012, Davidson et al. 2014). 
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Mark-resight methods 

Mark-resight models attempt to estimate p via marking a subset of a population and 

reencountering some proportion of those marked animals through sightings (e.g., remote 

cameras).  They differ from strictly live-capture methods because all animals marked during a 

single marking event do not have to be captured and handled again.  Sightings of marked and 

unmarked individuals are recorded during sighting surveys, which also differs from standard 

mark-recapture methods.  Advantages to mark-resight methods include reduced costs due to 

requiring only a single capture (i.e., marking) event, the reduced potential for harming animals 

during physical capture and chemical immobilization (Cattet et al. 2008), or biasing estimates by 

modifying the behavior of captured individuals (Moa et al. 2001).  A key component of the 

mark-resight method is that the number of marked animals available for resighting must be 

known or at least estimable.  One way that likely satisfies this requirement is to mark animals 

immediately before resighting efforts take place.  If this is not possible and enough time elapses 

between marking and resighting occasions, it may be necessary to use radio collars, for example, 

to determine how many marked animals are present (Higgs et al. 2013).  For large or long-term 

studies, this may be cost-prohibitive.  Although this requirement can be overlooked for some 

models (e.g., the Minta-Mangel estimator, Minta and Mangel 1989), the necessity of large 

sample sizes and other assumptions led to limited use (McClintock et al. 2009), although 

extension of this class of models and access to analytical tools has increased their popularity 

(McClintock and White 2009, Higgs et al. 2013). 

 As with any study, it is important to first define the population with respect to geographic 

boundaries and time periods of interest (Pollock 1991).  Other design criteria include whether it 

is feasible to mark a reasonable number of animals with field-readable marks and whether marks 
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are individually identifiable.  While the latter is not strictly necessary (Table 4-1), individual 

identification is essential for the use of heterogeneity models, which are typically useful in black 

bear abundance estimation due to the prevalence of detection heterogeneity in essentially all 

sampling methods.  Another consideration is whether animals are resighted with replacement or 

not.  Sampling with replacement is appropriate for remote camera studies where animals may 

visit more >1 camera station during the resighting period.  Sampling without replacement occurs 

when individuals may be detected at most once per resighting occasion.  Although the 

parameters being estimated for either situation are the same, the choice of estimator is not (Table 

4-1). 

 Mark-resight methods to estimate abundance of black bears is challenging because 

individual identification is difficult without supplemental marking.  To remedy this, Mace et al. 

(1994b) and Martorello et al. (2001) affixed colored ear streamers to live-captured bears that 

were later observed at camera stations, with capture histories being generated from the photos.  

Advantages of the technique are that the remote cameras are relatively inexpensive to operate 

and lack of avoidance behavior typically associated with live trapping.  Drawbacks include the 

inability to identify individuals because of poor picture quality or the head position of the bear, 

streamers can break or fall out, and the method may raise ethical issues about encumbering an 

animal with such tags and the undesirable aesthetics to wildlife observers (Murray and Fuller 

2000).  Further, resighting rates can be dramatically affected by external factors such as weather 

or changes in availability of natural foods that can influence bear movement rates (Mace et al. 

1994b).  Observations of marked bears by airplane have also been used to estimate bear 

abundance (Miller et al. 1997), but that technique is largely infeasible in the Northeast due to 

heavy canopy cover.  Mark-resight methods based on natural marks have been successfully used 
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on species that exhibit differences in pelage or other physical characteristic (e.g., tigers 

[Panthera tigris], Royle et al. 2009; Asiatic black bears [Ursus thibetanus], Ngoprasert et al. 

2012) but black bears often are not naturally visually identifiable.  This class of models has 

recently seen rapid improvements, with more powerful and flexible likelihood-based methods 

being readily accessible to researchers and managers (McClintock and White 2012).  These new 

methods can make use of detections of animals that are unmarked, marked, individually marked, 

and combinations of the three; populations that are or are not geographically closed; and by 

sampling with or without replacement (Table 4-1).  These models may provide powerful, 

economical alternatives to other observation methods in the future. 

Mark-resight abundance simulations 

Because many black bear managers in the Northeast obtain data from live-captured bears (Noyce 

2011), we explored the potential to use mark-resight with the Poisson log-normal estimator 

(PNE, McClintock and White 2009).  The PNE model requires individually identifiable marks, 

but does not require that the number of marks be known (i.e., in case of emigration from the 

study area), although the number of marks is often determined via telemetry prior to camera 

surveys.  As with other robust-design mark-recapture models (Ivan et al. 2013), the assumption 

of geographic closure may be relaxed with the PNE model given an estimate of the proportion of 

time radiocollared bears spend off the study area.   

 We simulated a population of 600 bears with a 50:50 sex ratio.  For each sex, we treated 

100 bears as known (i.e., marked), with a mean detection probability of 0.55 and 0.5 for males 

and females respectively, similar to detection rates from Matthews et al. (2008).  We used 

apparent survival rates of 0.85 and 0.9 for males and females, respectively, based on plausible 

values for black bears in the northeast (Table 4-5).  We assumed a 0.05 probability that an 
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individual transitions to an unobservable state (i.e., leaves the study area), with a 0.5 probability 

that they return to being available for resighting.  We ran simulations in program MARK for 500 

iterations, and assessed model performance based on percent relative bias (PRB), coefficient of 

variation (CV), and confidence interval coverage (CIC; percent of runs where the true value is 

within the confidence interval).  We calculated PRB as the difference between the estimated 

parameter value and truth (i.e., the value used to generate simulated data; PRB = 

[(estimate−truth)/truth] × 100%). 

 Over the set of parameters we considered, model performance was generally poor (Table 

4-2).  Male abundance estimates had an average negative bias of 28%, with females being 

negatively biased by 21%.  Estimates for both sexes were precise, with CV=9%.  This 

combination of high precision with significantly biased estimates resulted in poor CIC, 

particularly for males (5.6%).  Females were slightly better (CIC=23.7%), although still far 

below nominal values.  Even without simulating heterogeneity in detection rates, the models 

performed poorly and present the dangerous scenario of precise but biased estimates. 

Traditional mark-recapture 

Mark-recapture data analysis is an active area of research and a variety of methods have been 

developed to deal with sampling biases and data types.  Perhaps the greatest contribution to the 

access to these methods is the development of Program MARK (White and Burnham 1999) 

software that is free, relatively user-friendly, and is adaptable to a wide array of data types.  This 

software package has made it possible for field biologists to analyze their own data using 

sophisticated maximum likelihood estimation methods.  Also, recent developments in the use of 

hierarchical models employing Bayesian analytical methods have enabled those estimators to be 

more routinely used (Gardner et al. 2009). 
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 Capture heterogeneity is a major concern with all types of mark-recapture abundance 

estimates and a variety of methods have been developed to model such biases but they may not 

perform well when capture probabilities are low (Huggins 1991, Pledger 2000, Boulanger et al. 

2004b, Laufenberg et al. 2013).  The effect of capture heterogeneity can also be reduced with the 

use of multiple sampling methods (Dreher et al. 2007, Boulanger et al. 2008).  For example, 

researchers in Pennsylvania mark bears by live-trapping whereas they are recaptured (recovered) 

via harvest, which can be used to augment other types of detection data, thus reducing sampling 

biases (e.g., Dreher et al. 2007).  Finite mixture models that categorize individuals into ≥2 groups 

that share similar traits (Pledger 2000), or random effects models that allow individual detection 

to differ from the population mean (Coull and Agresti 1999, Gimenez and Choquet 2010) have 

been shown to perform well (Laufenberg and Clark 2014).  It is also now common to use 

individual covariates such as each animal’s average distance to the edge of the sampling grid in 

the case of non-spatial mark-recapture models (Boulanger and McLellan 2001), history of 

previous live capture (Boulanger et al. 2004c, van Manen et al. 2012), and time-varying 

sampling effort (Sawaya et al. 2012, Efford et al. 2013) to improve model performance.  Despite 

continuing advances in modeling, detection heterogeneity remains a concern for all types of 

mark-recapture estimation methods. 

 Because of relatively large home ranges of bears, one of the greatest challenges in using 

closed population models for estimating abundance is violation of the assumptions of geographic 

closure (Boulanger and McLellan 2001, Gardner et al. 2009).  If geographic closure is violated, 

estimated abundance is that of the super-population (i.e., includes animals moving on and off the 

study area; Crosbie and Manly 1985, Kendall 1999).  Sampling large areas can reduce such 

violations, but resource limitations may result in a sampling intensity too sparse for reliable 
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parameter estimation (Boulanger et al. 2004b).  Regardless, not knowing the geographic bounds 

to which the abundance estimate applies persist and estimates of density (N/area sampled) are 

difficult to interpret.  A number of ad hoc methods have been proposed for estimating the 

sampled area (Karanth and Nichols 1998) but such approaches have no true statistical foundation 

and, therefore, may produce biased density estimates (but see Stetz et al. 2014). 

Mark-recapture simulations 

We evaluated a number of black bear mark-recapture study designs by conducting closed-

population abundance simulations using estimates of detection probability spanning the range 

found in the primary literature, focusing on studies conducted in the Northeast (Appendix C).  

Using the Program R (Team 2013) package WiSP (Wildlife Simulation Package, Zucchini et al. 

2002), we simulated populations ranging in true abundance N from 100 to 900 in increments of 

100 individuals (Table 4-3), within square study areas with sampling grids composed of 100 or 

200 sampling sites on each side, each with uniform bear density.  We assumed that sampling 

effort was constant across k occasions (k = 5, 7, or 10), depending on the particular simulation.  

This is reasonable as most mark-recapture studies deploy the same number of traps each 

occasion, although the number and length of occasions may vary.  We used a minimum per-

occasion capture and recapture probability of 0.005 (i.e., assuming that all bears had at least 

some opportunity to be detected), a maximum per-occasion value of 0.5, and we assumed no 

change in detection across occasions (i.e., no behavioral response).  All simulations used a 

jackknife model to allow for the variation in detection probabilities imposed by the simulated 

sampling design (Burnham and Overton 1978, Otis et al. 1978).  We derived nonparametric 

bootstrap 95% confidence intervals with 99 runs.  To assess performance, we estimated the 
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average relative bias and coefficient of variation across replicates and assessed confidence 

interval coverage.  We provide annotated code in Appendix C. 

 For those simulation scenarios with adequate data for models to converge, estimates 

showed decreasing bias and increasing precision as true population abundance and the number of 

sampling occasions increased (Fig. 4-2).  One exception, however, was decreasing CIC due to 

overly precise estimates as abundance increased with the smaller study area scenario.  For all but 

the sparsest scenarios, the coefficient of variation (CV) remained below 20%, and was rarely 

>10% for populations of ≥200 animals.  These results suggest that, across a range of population 

sizes, the detection probabilities achieved in black bear mark-recapture studies in the Northeast 

have been adequate for robust abundance estimates.  As expected, larger study areas produced 

less biased and more precise estimates than did smaller study areas.  Near nominal coverage was, 

however, achieved for the majority of scenarios and bias rarely exceeded 5% for populations of 

≥300 animals.  Higher detection probabilities and more complex models would likely result in 

even more precise estimates although examples of such data (e.g., mixture probabilities) were 

rare in the literature and likely too specific to a particular region or study to be useful in 

simulations.  We reiterate that studies designed to maximize detection probabilities while 

minimizing heterogeneity induced by closure violation or other factors will produce the most 

reliable estimates.  Proper modeling (e.g., using covariates) and supplementary data can reduce 

estimate bias, but more complicated models also tend to require larger sample sizes and detection 

rates (Boulanger et al. 2004c).   

Spatially-explicit mark-recapture 

To address the challenges with defining the spatial extent to which abundance estimates pertain, 

spatially explicit capture-recapture (SECR) models have been developed that combine elements 
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of distance sampling with mark-recapture estimation (Efford 2004, Borchers and Efford 2008, 

Royle et al. 2013b).  Unlike non-spatial capture-recapture models that ignore the spatial location 

of detection sites, SECR models use the spatial distribution of sites to estimate home-range size 

and detectability, assuming that the probability of detection is greatest at the home range center 

and detectability decays as a function of distance from the center (see Borchers 2012 for a 

nontechnical review of SECR models).  SECR models use maximum likelihood (Borchers and 

Efford 2008) or Bayesian methods (Gardner et al. 2009, Royle et al. 2013b) to estimate detection 

probabilities.  Obbard et al. (2010) conducted a comparison of density estimators for black bears 

in Ontario and concluded that density estimates from SECR models were lower and presumably 

less biased than estimates from non-spatial mark-recapture models.  Their study design, 

however, deployed sites along secondary roads and used a rewarding bait, which could have 

induced a behavioral response.  Conversely, Stetz et al. (2014) compared traditional and SECR 

density estimates of black bears in Glacier National Park, MT, using two concurrent genetic 

sampling methods and found no difference in point estimates or their precision.  The authors 

attributed this to sampling a large area relative to bear home ranges and the use of >1 sampling 

method, despite a trap density lower than typically used for black bears (Stetz et al. 2014). 

 SECR methods are most commonly used to directly estimate population density, but 

estimation of abundance is also possible and may be more robust to spatial heterogeneity in 

capture probabilities than are strictly non-spatial methods.  Efford and Fewster (2013) found that 

spatially explicit models for estimating N were robust to gaps in detector spacing and 

heterogeneous animal distributions.  One important advantage of SECR models is that the 

correlation of density at individual trap sites with habitat covariates can be directly integrated 

into the estimation process, enabling researchers to predict density in areas not sampled (Drewry 
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et al. 2013).  Finally, SECR methods are based on estimating the relationship between detection 

probability and distance of the trap from an estimated home range center; it is not necessary that 

every animal has the same probability of capture regardless of its location within the sampling 

grid.  This enables researchers to employ a series of intensive trap clusters placed within the 

context of a larger overall study area, enabling the estimation of abundance and density in areas 

not sampled, perhaps with the help of habitat and other covariates (Drewry et al. 2013, Efford 

and Fewster 2013).  Clusters or arrays must, however, take a sample that is representative of the 

area of extrapolation or severely biased estimates may result (Wilton et al. 2014).   

 Expanding on recent advances in mark-resight and spatially explicit capture-recapture 

models, Sollman et al. (2013) developed a spatial mark-resight model that combines spatially-

referenced resighting data (e.g., remote camera stations) and telemetry data.  Such an approach is 

particularly advantageous if sampling stations are placed too far apart (Sollman et al. 2012) or 

when animals are not always individually identifiable (Chandler and Royle 2013).  The telemetry 

data are used to inform estimation of movement-related parameters (Sollman et al. 2013).  

Applications of SECR models are myriad and represent a fertile area for future research, 

including monitoring changes in density patterns using open population models.  SECR models 

are not a panacea, however, because non-spatial individual heterogeneity issues persist as do 

some biases associated with other estimators of abundance such as differential detection rates 

between males and females that can produce biased density estimates. 

 Despite assumptions that SECR models are less biased than traditional approaches, it is 

usually impossible to discern the degree of bias in a parameter estimate from a field study.  

Estimates of precision are typical, but as noted above, even the most precise estimates can be 

severely biased, which is perhaps the most dangerous result upon which to base policy or 
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management decisions.  Therefore, simulations are typically used to estimate and compare the 

potential biases and precision of estimation methods and study designs.  In such simulations, 

populations with known characteristics (e.g., abundance, survival rate) are created by the user, 

and then “sampled” according to the prospective study design.  For example, Boulanger et al. 

(2004a) used simulated detection data to estimate the bias of grizzly bear abundance estimates in 

hair trapping studies due to the heterogeneity in cub capture probabilities.  They were able to 

evaluate the performance of multiple study designs (i.e., size and number of grid cells with hair 

traps) and thereby make recommendations on study design that reduce this form of 

heterogeneity.  Simulation studies such as those have become instrumental in designing bear 

research and monitoring programs (Boulanger et al. 2008, Stetz et al. 2010, Laufenberg et al. 

2013). 

Spatially explicit capture-recapture density simulations 

We conducted simulations in Program R to evaluate the performance of SECR methods to 

inform study design for estimating density of black bear populations.  We conducted experiments 

covering a range of plausible sampling scenarios and population parameters based on the 

literature (Appendix C), focusing on the maximum likelihood approaches of Borchers and Efford 

(2008).  To perform the simulations, we used the secr package (Efford 2012) to generate and 

sample populations, then derive estimates of density from which we assessed bias and precision 

relative to true density.  Again, we estimated bias as the average PRB across replicates and 

precision based on the average CV and average CIC. 

 We conducted a large number of SECR simulation scenarios resulting in approximately 

1,400 combinations of parameters (Table 4-4).  We assumed a half-normal function to relate 

detection rate to the distance between an animal’s estimated home range center and a given 
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proximity detector.  We also assumed detection was uniform across sampling events, and the 

population was demographically closed, given most bear studies occur when births and deaths 

are at their minimum.  We simulated populations ranging from 10-150 bears per 100 km2 to 

cover the majority of density estimates from the literature in the Northeast.  We varied detection 

at the home range center, g0, from 0.05-0.15, with the spatial scale parameter, sigma, ranging 

from 400-3,000m.  For sampling design variables, we considered trap spacing from 1,000-

3,000m, with 5, 7, or 10 sampling occasions.  Finally, we considered sampling grid sizes of 

10×10 and 25×25 sites, with a mask buffer ≥4 times the sigma value.  We provide annotated 

code in Appendix C. 

 Results of SECR simulations were generally similar across the two grid sizes we 

considered, with the biggest exception being that data-rich scenarios (i.e., high density) 

consistently failed because of computer memory constraints for a 25×25 trap layout, regardless 

of distance between traps.  Similarly, for the 10×10 grid, we excluded spurious results for several 

low-density scenarios from further consideration.   

 Our SECR simulation results indicated the greatest bias in density estimates, both 

positive and negative, occurred for low-density populations, with smaller home ranges (i.e., the 

spatial scale parameter, σ), and with greater spacing of sampling sites.  Specifically, low-density 

populations were more likely to produce positively biased estimates, even with high detection 

rates, with large home ranges relative to site spacing.  Negative bias was also associated with 

small home ranges in conjunction with large site spacing, even with high detection rates and 

slightly higher population density.  Low CIC (95%) for 10 × 10 grids also occurred with sparse 

data scenarios, such as low-density populations with small σ and large site spacing, with a lesser 

effect due to detection probability or number of sampling occasions.  Only 21% of scenarios with 
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the smallest home range achieved nominal (95%) CIC, however, these estimates were heavily 

biased and CIC was achieved simply because of poor precision that resulted in large confidence 

intervals.  We found the same pattern of poor precision for 25 × 25 grids, but with only 15% of 

scenarios achieving 95% CIC.  The number of sampling occasions seemed to be the least 

influential parameter overall, although more occasions did result in greater precision, particularly 

among sparse data scenarios.  We observed the same patterns for 25 × 25 grids but associated 

CVs were consistently better than the 10 × 10 grid scenarios. 

 In summary, SECR model performance was best in low density populations, with 

relatively large home ranges, and larger sampling areas.  Detection probability, site spacing, and 

number of occasions were less important.  The smaller study area scenarios were less consistent 

in terms of the influence of population density and detection rate on model performance, 

although home range size, both in absolute terms and relative to site spacing, again was the most 

important factor in model performance.  Thus, given the level of sampling typical of black bear 

DNA-based mark-recapture studies, our results suggest that SECR models may produce biased 

and imprecise estimates for populations when home ranges are small relative to the sampling 

intensity.   

 Our simulation results are consistent with empirical estimates of Wilton et al. (2014), 

who compared two sampling designs for SECR models using DNA-based detections of black 

bears in Missouri.  They found that intensive sampling designs covering a smaller geographic 

area produced more precise estimates than more extensive, lower-density sampling of the same 

area due largely to sparse recaptures in the latter (Wilton et al. 2014).  More importantly, density 

estimated from the intensive sampling design was 5.5 times greater than from the extensive 

design, reinforcing the significance of trap spacing to produce reliable estimates (Wilton et al. 
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2014).  Our results are also similar to those of Sun et al. (2014), who found that study design 

parameters such as sample site spacing were directly linked to the reliability of inference from 

spatial models.  Conversely, Stetz et al. (2014) used a larger trap spacing originally designed to 

sample the sympatric grizzly bear population in conjunction with detections at bear rubs in 

SECR models.  Despite the sparse sampling intensity relative to black bear home range size and 

moderate subsampling, they produced precise (i.e., CV<18%), sex-specific density estimates.  

Further, density estimates were nearly identical to those obtained by traditional closed-

population abundance models with an effective sample buffered by ½ the mean maximum 

distance moved by bears during the study (Stetz et al. 2014) , contrary to several studies that 

routinely report lower density estimates from SECR models (Obbard et al. 2010, Noss et al. 

2012).  This was likely a function of sampling a large area (4,100 km2; approximately 66 times 

larger than average male home ranges in this region), which served to reduce edge effects (Stetz 

et al. 2014). 

 Although SECR methods appear to overcome some of the fundamental challenges of 

estimating density, techniques continue to see rapid development.  For example, recent extension 

of SECR models to incorporate landscape resistance suggests that models using Euclidian 

distance between activity centers and sampling sites to estimate σ may drastically underestimate 

density (Royle et al. 2013a).  Again, these models are undergoing rapid growth and require 

further theoretical development, simulation, and empirical evaluation. 

Survival 

Abundance is probably the most difficult population parameter to estimate.  Estimates of 

survival, however, may be useful in place of abundance for monitoring effects of harvest, 

evaluating harvest changes, and better understanding population dynamics (Sorensen and Powell 
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1998).  Furthermore, black bear population growth is particularly sensitive to changes in adult 

female survival (Beston 2011) and survival estimates are not as sensitive to the detection biases 

that plague abundance estimates, making robust estimation possible with less cost and effort.  

Estimates may be biased, however, if a representative sample of the population is not acquired or 

if undetected permanent emigration occurs. 

 Black bear survival can be estimated by tracking their fates with radio collars or by mark-

recapture techniques, noninvasive or otherwise.  Survival typically varies with age and sex and, 

ideally, survival would be estimated for bears of every age, sex, and reproductive status (i.e., 

females with and without cubs or yearlings).  Fortunately, little information is usually lost by 

pooling data into age categories (e.g., old adults [8+ yrs], young adults [3–8 yrs], subadults [2–3 

yrs], and cubs of the year [<1 yr]).  Annual survival rates are calculated as the proportion of each 

age or sex class that survived each year.  While it may be easier to pool data into cohorts such as 

these, it may limit the ability to reduce bias relative to individual-based analyses.   

Radiotelemetry methods 

The most common method to estimate bear survival is to capture animals, radiocollar them, and 

monitor their signals to determine if, when, and why the animal died.  Estimating survival with 

radiotelemetry data does not require that locations be obtained, but the status (dead, alive, 

unknown) must be monitored regularly and frequently, preferably over a number of years to 

estimate annual variation.  Adult females are often targeted in telemetry survival studies because 

population growth rates are most sensitive to survival of that population segment (Beston 2011).  

Cub and yearling survival are other population parameters of interest to managers and 

expandable radio collars that allow for substantial body growth have been developed for cubs 

and yearlings (Vashon et al. 2003).  Whichever age classes are monitored, it is important to 
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determine sample sizes needed to provide an estimate that will meet study objectives.  For 

example, if an agency desires to detect a 5% decrease in annual adult female survival, it is 

important to know how many radio-collared animals would be required to meet that objective.  

In general, precision of survival estimates can be high (e.g., confidence interval width <0.10) 

even when sample sizes are moderate (e.g., 20–30 females/year), although Brongo et al. (2005b) 

suggested that this requires monitoring for at least five years to obtain reliable estimates of trend.  

Further, large samples may be required to isolate sampling variance from process variance in 

parameter estimates (Harris et al. 2011, Mace et al. 2012). 

 Modern radio collars often have activity sensors that emit uniquely pulsed mortality 

signals when collar stops moving, presumably indicating the animal has died.  If the carcass can 

be recovered, the cause of death may be determined which is usually not possible with mark-

recapture methods.  Radiotelemetry methods have greatly improved in recent years because of 

the integration of Global Positioning System (GPS) technology, satellite data transfer 

capabilities, smaller and lighter transmitter designs, and increased battery life.  GPS collars have 

revolutionized the study of wildlife with the sheer volume of highly accurate location data that 

may be stored in the collar, sent to handheld receivers, or even sent directly to satellites and 

emailed to researchers.  An added advantage of radiotelemetry methods for estimating survival is 

that other attributes of bear ecology (e.g., fine-scale movements, habitat use) can be examined as 

well. 

 Annual survival can be calculated by dividing the number of living animals after 1 year 

by the number originally collared.  That calculation is accurate, however, only if all animals are 

collared at the same time and every animal is located on every occasion.  If an animal is captured 

and collared halfway through the study period, for example, the survival estimate for the 



148 
 

population will be biased high because that animal has already survived half the sampling season 

whereas another animal that may have died is no longer available for sampling.  Procedures have 

been developed to accommodate different starting dates for survival data (staggered entry 

design), which base survival rates on short intervals of time (e.g., 1 week) and whereby the 

number of surviving animals is divided by the number at risk, excluding animals whose signal 

was not located during that interval (Kaplan and Meier 1958, Pollock et al. 1990).  The product 

of the individual survival rates during those sampling intervals (e.g., 52 weeks) produces an 

unbiased estimate of the annual survival rate.  The method, in effect, estimates the time of death 

as the mid-point of the sampling interval.  Thus, it is important in telemetry-based survival 

studies that the animals are located frequently and regularly.  The Kaplan-Meier known-fate 

method has been implemented in Program MARK to estimate survival, thus enabling users to 

use information-theoretic methods for model selection.  If telemetry data are not regularly 

collected, it may still be possible to obtain a reliable estimate of survival using nest survival 

models, also in Program MARK.  Such data are sometimes referred to as staggered entry data.  

Unfortunately, no goodness-of-fit test for known-fate models is available.  Therefore, there 

currently is no way to evaluate fit or adjust estimates of variance to account for possible 

overdispersion.  In addition to monitoring adult survival, cub and yearling survival can be 

monitored by visually observing radio-collared adult females with cubs throughout the non-

denning period (Elowe and Dodge 1989).  Oftentimes, cubs can be treed and counted while the 

female remains nearby.  Litter and cub survival can likewise be estimated using the known-fate 

or nest survival methods. 
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Mark-recapture methods 

Black bear survival can also be reliably estimated with mark-recapture methods.  Because 

emigration usually cannot be distinguished from mortality with mark-recapture methods, 

survival estimates from these models actually represent apparent survival (φ) which is the 

probability an animal lived and remained on the study area.  With this method, animals are 

captured and marked (either traditionally or using genetic sampling) and their recaptures are 

monitored over time (usually years).  A number of estimators using mark-recapture data have 

been developed, of which the Cormack-Jolly-Seber (CJS) method (Cormack 1964, Jolly 1965, 

Seber 1965) is most commonly used because it estimates only 2 parameters, detection probability 

(p) and φ.  Other methods such as Jolly-Seber (Jolly 1965, Seber 1965) or robust design (Pollock 

1982, Kendall et al. 1995) are more general because other population parameters can be 

estimated (e.g., abundance, population growth).  The robust design combines open and closed 

population models by sampling multiple times within each year over the course of multiple 

years.  The within-year (i.e., secondary) occasions allow estimation of detection probabilities and 

abundance, whereas across-year (i.e., primary) occasions allow estimation of other parameters 

such as survival, immigration, and temporary emigration from the study area.  These models can 

accommodate covariates and can be extended to multi-state data types (Brownie et al. 1993) to 

estimate transition probabilities between different states, for example, between breeder and non-

breeder status.  One advantage of estimating survival with mark-recapture methods is that 

survival estimation is not as prone to capture biases as other parameters (e.g., N).   

 Finally, there may be potential to use band recovery methods, which are commonly used 

to estimate survival rates in birds, but have yet to be applied to bears.  Brownie et al. (1985) 

developed a method whereby animals are tagged each year for a successive number of years and 
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tags are recovered when those animals are harvested or found dead.  The advantage of that 

technique is that parameter estimates are not sensitive to capture biases (particularly capture 

heterogeneity) in the marking process (Nichols et al. 1982, Pollock and Raveling 1982).  In 

addition to survival, the method also provides an estimate of recovery rate, the proportion of the 

marked animals that are killed and retrieved by hunters and then identified as a marked animal 

(Mace et al. 1994a).  If marked animals do not emigrate from the area where the samples are 

recovered (i.e., hunted areas), the method returns true estimates of survival (S) rather than 

apparent survival (φ).  However, if a large proportion of the marked population emigrates outside 

the areas open for hunting, the estimate of S will be biased low.  Overall, data would have to be 

collected over a longer period of time and at greater expense to detect a 10% difference in 

survival compared with some other options discussed previously.  The major advantage is that 

relatively few sample sites would have to be established and their spatial locations would be less 

strict than for estimating abundance because recapture rates are not being estimated, resulting in 

savings in personnel time required to obtain samples.   

Survival simulations 

To explore the influence that sample size, duration of study, and population characteristics have 

on the precision of survival estimates from radiotelemetry data, we conducted a suite of 

simulations in MATLAB using code modified from Harris et al. (2011) with published vital rate 

estimates of northeastern black bears (Table 4-5).  Briefly, this simulation routine allows the user 

to vary parameters related to sample design (i.e., the number of individuals per age class 

monitored over a designated number of years) and population characteristics including cub, 

yearling, subadult, and adult survival, and fecundity.  The model also uses variances of vital rate 

estimates to assess uncertainty in survival (or reproduction or population growth) estimates as 
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the number of years of monitoring increases.  Parameter estimation can then be viewed in terms 

of the tradeoffs between sample size and precision, thereby providing an informed starting point 

for project design.  The simulation routine also allows for defining covariance of vital rates, for 

example cub and yearling survival, although we followed the suggestion of Harris et al. (2011) 

and did not include such effects because of limited evidence of covariance in the literature.  

Another factor not included in our simulations is the removal of sampling variance.  Because of 

typically small samples, estimating and removing sampling variance is rarely done, resulting in 

less precise estimates from known-fate models (Harris et al. 2011).  Whenever possible, 

however, sampling variance should be accounted for when estimating vital rates.  

 We reviewed the literature for estimates of vital rates for black bear populations in the 

Northeast, drawing on the summary provided by (Beston 2011).  We initially considered 

combinations of estimates representing either best- or worst-case scenarios (i.e., highest or 

lowest vital rates from across studies), with the intent of capturing the extreme situations that 

managers may encounter with similar analyses.  We elected, however, to use more realistic 

combinations of vital rates from real populations that black bear managers may be familiar with 

(Table 4-5).  As an example population with lower values for the vital rates of interest, we chose 

a study in east-central Ontario (Kolenosky 1990).  For an example of greater vital rates, we 

combined estimates from 3 studies in Virginia (Table 4-6).  In all cases, variance of vital rate 

estimates were from the same study as the vital rate estimates themselves.  In addition to using 

estimates from different populations, we varied the number of animals and the number of years 

monitored for each vital rate.  For a small population design, we used combinations of 10 or 30 

animals monitored per age class for 3, 5, 10, and 20 years.  For a large population design, we 

used combinations of 30 or 100 animals monitored per age class for the same range of years.  For 
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more details on simulation methods, see Harris et al. (2011), Doak et al. (2005), and our 

annotated MATLAB code (Appendix C). We assessed precision of estimates based on their CV.   

 For all age classes, survival estimates were least precise (largest CV) for the lower vital 

rate population (i.e., Ontario) with the smallest number of individuals (n = 10) monitored (Fig. 4-

3).  The lowest CVs were obtained with the largest sample size (n = 100) for all age classes, 

although the influence of low or high vital rates was less consistent.  Specifically, adult and 

subadult survival rate estimates were most precise for the “low” scenario, whereas cub and 

yearling survival were most precise for the “high” scenario.  These results likely reflect the 

magnitude of variance in the vital rate estimates used (Table 4-6), as cub and yearling estimates 

were more precise for the “high” population, and subadult and adult estimates were more precise 

for the “low” population. 

 We obtained rapid gains in precision up to 10 years of monitoring, with gains declining 

between 10 and 20 years (Fig. 4-3).  In fact, CVs for all time period scenarios within each age 

class were within ~5% after 20 years of monitoring.  As a general rule, increasing the years of 

sampling from 3 to 10 resulted in the same improvement in precision of estimate as increasing 

the number of individuals monitored from 10 to 100 per age class. 

Reproduction 

Black bear populations in the Northeast have relatively high fecundity (i.e., number of female 

cubs/breeding age female/year) and low age of first reproduction (i.e., primiparity; Beston 2011; 

Table 4-5).  Reliable estimates of reproduction are important for predicting population growth 

rates and can reflect annual fluctuations in habitat conditions.  Measures of female reproductive 

success for black bears include litter size, cub sex ratio, age of primiparity, and fecundity.  These 

data are often used in concert with survival and age structure data to project population growth 
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using matrix or individual-based models.  Primiparity, litter size, and cub sex ratios for black 

bears are usually estimated by radio-marking and monitoring female bears in den sites.  True 

litter sizes will seldom be known because mortality occurs immediately after (and even prior to) 

birth.  Thus, litter size estimates depend on when the cubs are counted, which can lead to 

estimation errors.  For example, if litter sizes are based on placental scars (Klestil 2014) and cub 

survival is based on radio telemetry of cubs beginning at about 2 months of age, cub recruitment 

will be overestimated because mortality between birth and 2 months is not accounted for. 

Reproductive tract methods 

Female black bear reproductive tracts can be examined to count corpora lutea on ovaries and 

placental scars on the walls of the uterus.  Corpora lutea indicate the number of eggs that were 

shed in the mammalian reproductive process each reproductive cycle and placental scars indicate 

the number of embryos that were implanted (Stickley 1962, Kordek and Lindzey 1980, Klestil 

2014).  Consequently, the average number of corpora lutea is generally greater than the number 

of placental scars because not all eggs will be fertilized and implanted.  Similarly, not all 

placental scars will become successfully birthed fetuses, and that number will typically be 

greater than cub counts in winter dens.  Reproductive tracts can only be obtained from dead 

bears and are thus dependent on harvest.  

Den visits 

Visiting black bear dens in winter can provide data on a number of reproductive parameters.  

Bear cubs are born in the den and may experience mortality prior to emerging in spring. 

Therefore, entering dens to count newborns provides a reliable estimate of litter size and sex 

ratio (McDonald and Fuller 2001, Samson and Huot 2001), unless mortality occurred prior to the 

den visit, which is difficult to confirm.  The proportion of cubs observed the following year in 
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dens as yearlings can be used to estimate cub survival.  Conversely, 1-year recruitment can be 

directly estimated (the number of female cubs recruited into the 1-year-old age class per adult 

female).  Research suggests that remote photography methods could be used in conjunction with 

den visits to improve accuracy of reproductive and cub survival estimates (Bridges et al. 2004).    

Direct observations 

Throughout most of their forested range, black bears generally have low sightability.  Thus, 

unless bears are radio-collared, visual observations for estimating reproductive parameters is 

typically not feasible in the Northeast.  In open habitats or places where black bears develop 

strong preferences for foraging locations (e.g., berry patches, garbage bins, agricultural fields), 

observations may be used for estimating age of first reproduction and fecundity.  If a relatively 

large sample of radio-collared females exists and den visits are not feasible or risk cub 

abandonment, researchers can use telemetry to approach them to tree cubs in the field after den 

emergence.  This technique enables estimation of litter size, cub and yearling survival, age of 

primiparity, and fecundity, assuming dependent offspring can be reliably associated with their 

mother, which may be difficult given that females are known to occasionally adopt cubs (Alt 

1984).  As with known-fate analyses, observations should be frequent to obtain sufficient 

precision and to reduce bias from undercounting that sometimes occurs using this method.  

Differences in sightability due to group size, landcover and topography, individual behaviors, 

and survey effort must all be considered when relying on observation data, particularly when few 

marked individuals are availed to help calibrate results (Jonkel 1971). 

Mark-recapture methods 

One alternative to estimating recruitment that does not necessarily require handling animals is 

through mark-recapture modeling.  Specifically, the Pradel (1996) temporal symmetry models, 
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which use detection histories both forward and backward in time, can provide robust estimates of 

not only realized population growth (λ), but recruitment (f), apparent survival (φ), and seniority 

(γ).  Apparent survival, which includes both true survival and emigration, models detection 

events in standard forward-time, conditional on the first detection of individuals.  Recruitment 

can be derived as a function of φ and γ, the latter being defined as the probability that, if an 

animal was alive and in the population in time period i, it was also alive and in the population at 

i−1. Seniority, which is the proportion of the population that was detected in the previous 

sample, can be viewed as the reverse-time analogue of survival (Pradel 1996; Hines and Nichols 

2002). Simulation studies have explored the performance of Pradel models for estimating these 

important parameters (Hines and Nichols 2002, Stetz et al. 2010), concluding that estimates are 

generally unbiased and precise, given reasonable amounts of data.  Further, empirical studies 

with bears and other taxa have compared Pradel to traditional methods (Sandercock and 

Beissinger 2002, Clark and Eastridge 2006), and have found them to perform at least as well, 

potentially providing useful insights into the causes of population change as well as precise 

estimates (Boulanger et al. 2004a). 

Genetic methods 

Although outside the scope of our evaluation, it is worth noting that in some special cases it may 

be possible to measure recruitment by directly documenting reproduction through parentage 

analyses (i.e., pedigrees).  For small, intensively monitored populations it may be possible to 

derive precise estimates of reproduction and recruitment via pedigrees (Kasworm et al. 2007).  

For larger populations, however, it may be difficult to sample a large enough proportion of the 

population to do so. 
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Fecundity simulations 

In addition to providing estimates of precision for survival, the simulations described in the 

Survival section allowed us to evaluate influence of sample size and variance on precision of 

fecundity estimates.  We again used the MATLAB simulation routine of Harris et al. (2011) with 

the vital rate estimates presented in Table 4-5, varying the sample size and number of years of 

monitoring (see annotated MATLAB code, Appendix C). 

 Similar to results of the adult survival simulations, the differences between the fecundity 

of these populations was quite pronounced, with a considerably lower, but more precise, estimate 

for the Ontario population compared with the composite Virginia scenario.  As with adult 

survival, the greatest gains in precision were obtained from increasing the sample size of radio-

monitored bears as opposed to duration of monitoring (Fig. 4-4).  We observed the same general 

improvement in precision as the duration of monitoring increased, with the most rapid gains 

occurring in early years.  Again, increasing the sampling duration from 3 to 10 years was 

approximately equivalent to increasing sample size from 10 to 30 or from 30 to 100 individuals 

per age class (Fig. 4-4). 

Population Growth 

Population growth refers to changes in abundance over time (i.e., increases, decreases, or no 

change) reflecting the cumulative influences of birth, death, immigration, and emigration on the 

demography of a population (Pollock et al. 1990, Mills 2012).  Population growth is the most 

important parameter to many black bear managers, and there are many potentially reliable 

methods to estimate it even across a large gradient of population densities, trajectories, and 

funding levels.  Across most of black bear range, however, Garshelis and Hristienko (2006) 

found that state and provincial estimates of black bear abundance over time often reveal growth 
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patterns that differed from true trends.  Although they speculate these discrepancies were 

sometimes due to managers using conservative estimates to avoid overharvest (Garshelis and 

Hristienko 2006), they may also be due in part to movements of bears among jurisdictions, 

which could easily confound estimates of density or growth rate (Pollock et al. 1990, Kendall et 

al. 1995). 

 Such movements across management boundaries may also result in source-sink dynamics 

(Pulliam 1988) if differences in habitat or management are strong enough to influence survival or 

reproduction among subpopulations.  And similar to the findings of Garshelis and Hristienko 

(2006), failure to account for meta-population dynamics may mask the true performance of the 

larger population.  Given the extensive opportunities for exchanges of animals among 

populations, or at least jurisdictions, in the Northeast, regional bear management would benefit 

by considering the operational definition of sources and sinks developed by Runge et al. (2006) 

where a source is any population that has a net positive contribution to the growth of itself (via 

recruitment) and other populations (via emigration).  As such, it is possible that a population that 

appears to be experiencing negative growth could in reality be a source if it is successfully 

exporting a large number of animals to surrounding populations (Mills 2012, Newby et al. 2013).  

Recognizing such dynamics could provide valuable insights into larger population processes 

including how bears respond to differences in management and habitat across this diverse region. 

 In its simplest form, population growth is calculated by dividing population size during a 

particular period of time by population size of the previous time period, λ = Nt/Nt-1 (i.e., realized 

population growth).  This differs from projected population growth rate estimates, which use 

estimates of population vital rates such as survival and reproduction to predict how the 
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population will change in the future.  Below, we discuss various advantages and disadvantages of 

each measure, along with a range of methods to estimate them. 

Population reconstruction 

Population reconstruction has been used to monitor bear population growth and estimate 

abundance, recruitment, survival, and harvest rate.  The technique has been used in fisheries 

management for decades (Fry 1949, Pope 1972), but was popularized for wildlife management 

by Downing (1980), who estimated minimum population size and trend for white-tailed deer 

(Odocoileus virginianus).  The technique is based on total harvest by year and a sample of ages 

of harvested animals to back-calculate the age distribution at the time the oldest animals were 

born, thus estimating minimum population size.  The population size estimate is a minimum 

because deaths from causes other than harvest are not included.  The greatest advantage of 

Downing reconstruction is that it requires only the total annual harvest and a subsample of 

annual harvest with age data (Downing 1980).  Thus, no additional costs are incurred other than 

cementum annuli analysis to age a subsample of the harvested population.  Davis et al. (2007) 

found that such reconstruction techniques performed best when harvest rates were high and 

natural mortality was low, as may be the case with bears in the Northeast.  The authors also 

found, however, that the estimates of λ could be negatively biased if harvest rates trended even 

moderately upward (1%/yr) or were highly variable.  This could be the case in many jurisdictions 

because bear harvests are greatly affected by food availability and other factors, and many 

changes in harvest regulations have occurred in recent years. 

 Population reconstruction relies on the assumption that harvest and natural mortality rates 

do not change over time.  Additionally, this method is based on the assumption of a stable age 

distribution and a constant harvest reporting rate.  Population reconstruction relies on a number 
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of other assumptions that are difficult to meet in many wildlife studies.  Williams et al. (2002) 

provided a comprehensive critique of population reconstruction and identified 3 main flaws of 

the method: 1) survival estimates are inferred from a population model; 2) biases in the 

reconstruction will manifest themselves in the estimates; and 3) even if assumptions are met, 

estimates of sampling variation will not include the sampling error of the harvest.  Also, 

Williams et al. (2002) suggested that population reconstruction based on age-at-harvest data 

alone is theoretically flawed because the method does not account for non-hunting mortality and 

the age and sex distribution of the harvest is probably not reflective of the sampled population.  

They concluded that population reconstruction should not be considered if more reliable 

estimation methods are available (Williams et al. 2002).   

 To address these and other problems, Gove et al. (2002) introduced maximum likelihood 

methods to estimate harvest rates and population size given auxiliary data on survival from 

radiotelemetry and hunter reporting rates from a telephone survey.  One of the advantages of 

using maximum likelihood techniques for population reconstruction is that various assumptions 

(e.g., constant harvest, increasing harvest) can be tested using information-theoretic methods 

(Burnham and Anderson 1998) and statistical uncertainty can be measured.  Recently, attention 

has been placed on model evaluation for statistical population reconstruction through the use of 

residual analyses, sensitivity analyses, and model predictions as reviewed in Skalski et al. 

(2012).  Model evaluation differs from model selection (i.e., based on AIC values) in that 

goodness-of-fit measures are used to determine how well the observed data match what is 

expected given a certain model.  Model selection, however, is simply the relative support for 

each model among a given set of models that may, in theory, all be inappropriate (Johnson and 

Omland 2004).  Thus, model evaluation precedes model selection and averaging, but does not 
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replace it.  One suggested approach is to delete one or more consecutive year’s data from the 

beginning or end of the series to determine model stability.  If results change substantially, it is 

likely that inadequate data are being used.  Estimability of such population reconstruction models 

requires auxiliary data, as even the simplest of models is over-parameterized when only age-at-

harvest data are used (Skalski et al. 2012).  These auxiliary data can include catch per unit or 

harvest effort, index data, mark-recapture, or radiotelemetry data (Skalski et al. 2007, 2012).  

Such combinations would permit an integrated analysis of data collected by many jurisdictions, 

be more statistically rigorous, and provide estimates of precision for all parameters.  Further, 

statistical population reconstruction models appear robust to pooled age classes (i.e., when actual 

ages are not known), providing greater flexibility of use (Skalski et al. 2012).  Unfortunately, 

these relatively complex methods are still in development and a detailed treatment is beyond the 

scope of our review. 

Integrated population models 

Integrated population models can be used to estimate population growth for black bears by 

integrating multiple types of data.  One advantage of integrated models is that they can 

synthesize various relevant data into a single analysis.  This approach can be considered similar 

to Downing (1980) population reconstruction methods that are scaled by intermittent abundance 

estimates, but that can also be used to investigate relationships between harvest rates and factors 

such as hunter effort.  These methods can be particularly powerful in populations where hunting 

is the primary source of bear mortality, which is true for most managed bear populations 

(Garshelis 1990, Beston 2011).  Fieberg et al. (2010) used this approach to synthesize age-at-

harvest data, periodic large-scale estimates of abundance, and measured covariates thought to 

affect black bear harvest rates.  The authors concluded that integrated population models were 
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unbiased and hold great promise for black bear population monitoring, but they recognized the 

assumption of age distribution being representative of the greater population may often be 

unreasonable.  Instead of maximum likelihood, Conn et al. (2008) used Bayesian analysis to 

estimate similar population parameters for black bears, again by coupling age-at-harvest data 

with mark-recapture data.  Further, Chandler and Clark (2014) used Bayesian analysis coupled 

with mark-recapture data to develop a spatially-explicit integrated population model.  The 

computational and conceptual complexities of this approach are considerable, and we refer 

readers to Buckland et al. (2004), Abadi et al. (2010), and Schaub and Abadi (2011) for detailed 

reviews. 

Demographic analyses 

Growth rate can be estimated from vital rate statistics in matrix or individual-based projection 

models but may require robust estimates of population size, age- and sex-specific survival and 

fecundity, sex ratios, population age or stage structure data, and age of primiparity (Clark and 

Eastridge 2006, Clark et al. 2010).  Sometimes called life-table methods or demographic 

analyses (Harris et al. 2011), they are data intensive, often requiring both mark-recapture and 

radiotelemetry techniques.  Also, harvest rates can easily be accommodated in population 

projections to evaluate different management alternatives.  Like any projection, assumptions are 

usually based on constant environmental conditions and variance, so these models should be 

updated often as uncertainty increases dramatically the longer the time period of the projection 

(Caswell 2001).   

 Matrix population models to estimate population growth and can be used with either age-

based or stage (e.g., juvenile, adult) data.  The age-based Leslie (1945) matrix requires that each 

animal either die or advance to the next age, which is always a constant time step.  Conversely, 
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stage based, or Lefkovitch (1965), matrices are more flexible, allowing animals to transition 

between any, or remain in the same, stage.  As the exact age of bears can be difficult to 

determine, stage-based matrices are more commonly used, although defining stages important to 

bear biology, and to which animals can be reliably assigned, is important (Mills 2012). 

 Assuming vital rates of a population remain relatively constant, most matrices will 

eventually converge on a stable stage (or age) distribution, although these can be disturbed by 

management actions or harvest, at least temporarily.  Stochastic models can address natural or 

management related variance in population processes by either randomly selecting from a range 

of known values or by drawing vital rates from a distribution of values.  Given that increasing 

variance in population processes tends to decrease growth rates, it is important to include these 

effects in projection models whenever possible (Doak et al. 2005).   

 For long-lived species that tend to produce few offspring with high survival, such as 

black bears, population growth rates are generally more sensitive to adult female survival than 

reproductive rate (Pfister 1998, Gaillard and Yoccoz 2003).  In other words, changes to adult 

survival rates are expected to have a larger effect on population growth than other vital rates.  

Given that the magnitude of vital rates is not uniform (e.g., survival rates are always 0-1 whereas 

reproduction can be in the thousands), sensitivities are often scaled to describe how a 

proportional change in a vital rate results in a proportional change in population growth (Doak et 

al. 2005).  These rescaled values, called elasticities, can be compared across studies, can be 

summed to predict overall effects on a population, and can be used to obtain insights into how a 

population will respond to changes in vital rates due to any number of causes via sensitivity 

analyses (Mills 2012).  A number of matrix-based software tools (e.g., Poptools; PopTools 

version 3.2.5 http://www.poptools.org/) have been developed that enable users to perform 
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sensitivity analyses and to explore the effects that perturbations to vital rates have on population 

growth.  Other, individual-based models have been used to model bear population growth (e.g., 

Riskman, GAPPS, R package demoniche).  The alternate-year breeding in black bears is more 

easily accommodated in these individual-based models and thus have particular appeal. 

 Precision of life table-based estimates of population growth are strongly correlated with 

the precision of age-specific vital rate estimates.  Because black bear population growth is most 

sensitive to changes in adult and subadult female survival and fecundity, precise estimation of 

those parameters is particularly important to obtain reliable estimates of projected population 

growth (Freedman et al. 2003, Mitchell et al. 2009).  Generally, the precision and accuracy of 

vital rate estimates increases with the number of individuals monitored and the duration of 

monitoring (Harris et al. 2011).  Even with long-term monitoring, many life table analyses 

estimate λ imprecisely with 95% confidence intervals (CIs) that often overlap 1.0, indicating the 

possibility of a stable, declining, or increasing population.  Perhaps the most difficult parameter 

required for many projection models is an estimate of the standing age distribution.  Unless a 

population is sampled almost completely, some age and sex classes are usually more susceptible 

to sampling, which can lead to bias (Conn and Diefenbach 2007).  It is possible to project 

asymptotic population growth assuming a stable age distribution, but this is probably rare for 

black bears because of their long lifespan and annual fluctuations in abundance of food 

resources. 

Population projection simulations 

We again used a MATLAB simulation routine modified from Harris et al. (2011) to explore the 

influence of study design, vital rate values, and vital rate variances on estimates of population 

growth rate based on matrix projections using survival and fecundity rate estimates.  Managers 
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are typically most interested in the lower bound of λ estimates, so we assessed precision of λ 

estimates based on the width of 90% confidence intervals, which produces a 5% probability that 

the estimate falsely exceeds true λ, assuming accurate estimates are used with a reasonable 

model (Harris et al. 2011).  We used vital rate estimates and variances from the published 

literature on northeastern black bears (Table 4-6) to parameterize the simulations. 

 For all scenarios, precision rapidly improved as the number of monitoring years increased 

with relatively small gains between 10 and 20 years of monitoring (Fig. 4-5).  Consistent with 

Harris et al. (2011), we found the greatest improvements in precision for all scenarios by 

increasing the number of monitored litters.  When considering single vital rates, however, the 

greatest improvement in precision for the lower vital rate scenarios (i.e., Ontario) was gained 

through monitoring more adults, whereas the higher vital rates scenarios (i.e., Virginia) showed 

the greatest improvement by monitoring fecundity more intensively.  This latter finding may 

seem somewhat contradictory to expectations given the known importance of adult female 

survival on population projections (Garshelis et al. 2005, Beston 2011), and may have been due 

to the very small variance used in the lower vital rate scenairo.  Variance of adult survival 

estimates is, however, typically low so gains in precision can be more easily accomplished with 

other vital rate estimates, as others have found (Mitchell et al. 2009).  This tendency to canalize 

traits (Gaillard and Yoccoz 2003) of greatest importance to population growth has been observed 

in a large number of long-lived species (Gaillard et al. 1998).  An important consideration is that 

density dependent responses are likely to manifest in such canalized or buffered traits later than 

in more variable stages, such as juvenile survival (Gaillard et al. 1998). 
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Mark-recapture 

The most intuitive method of estimating population growth rate is to compare estimates of 

abundance at two or more points in time.  Consequently, time series of abundance estimates have 

often been used to estimate λ, which may appear problematic given the challenges we discussed 

previously, but there are some potential advantages to this approach.  For example, if N is 

consistently biased over time, the ratio (λ) may be relatively unbiased.  Further, many of these 

estimators allow the use of covariates to improve estimate bias and precision, including the 

effects of variable sampling effort or environmental factors influencing sampling or animal 

behavior.  Conversely, time series are often short relative to the dynamics of studied populations, 

making it difficult to detect, let alone explain, differences in abundance over time (Humbert et al. 

2009).   

 As with other techniques to estimate population growth, time series analyses should 

include estimates of both process and sampling variance, although this has often not been the 

case (Mills 2012).  In fact, two of the most well-known approaches to estimate growth rates fail 

to incorporate both forms, with one attributing all variance to observation error (Caughley 1977), 

whereas the other assumes that abundance is known exactly and all variance is due to population 

processes (Dennis et al. 1991).  Although these may work reasonably well if the source of 

variance is strongly skewed (e.g., populations are essentially censused) and the appropriate 

method used, such situations are rare.  More likely, the opportunity for substantial and 

confounded variance in both observation and population processes can be better accommodated 

by the exponential growth state-space model of Humbert et al. (2009).  This model has been 

shown to work well under a wide range of conditions (i.e., magnitude and nature of variance), 

although it requires a minimum of five abundance estimates over a 10-year period (Mills 2012).  
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In fact, the authors suggest that investing resources in obtaining fewer, more precise estimates is 

better than more frequent, less precise ones (Humbert et al. 2009, Mills 2012). 

 Open-population mark-recapture models are generally more robust to capture 

heterogeneity biases than are abundance estimators (Pollock et al. 1990, Schwarz 2001).  Based 

on that notion, Pradel (1996) and Schwarz and Arnason (1996) developed maximum likelihood 

methods for estimating population growth (λ) directly from mark-recapture data without the need 

for estimating N.  These temporal symmetry models use detection data with normal ordering in 

time to estimate recruitment (f) and seniority (γ) concurrently with using the data in reverse order 

to estimate apparent survival (φ) (Hines and Nichols 2002).  When used with the robust-design 

(Kendall et al. 1995) these models can also estimate abundance.  Subsequent research has shown 

that the Pradel method is robust to moderate capture heterogeneity, the most difficult of all 

capture biases to estimate (Schwarz 2001, Hines and Nichols 2002, Marescot et al. 2011).  Clark 

and Eastridge (2006) used the Pradel model with live-capture data in a small population of black 

bears in Arkansas collected over a period of 5 years to produce a precise (CV=7%) estimate of 

population growth.  Those estimates were consistent with estimates from hair-sampling and 

population modeling based on radiotelemetry data.  The Pradel model has been used to 

investigate the effect of salmon availability on grizzly bear population growth in British 

Columbia, Canada (Boulanger et al. 2004a).  More recently, bear rub tree detection data were 

successfully used with a Pradel model in Banff National Park, Alberta, to estimate λ for grizzly 

bears (Sawaya et al. 2012).    

 Mark-recapture methods not only evaluate changes in the population over time, but 

enable researchers to evaluate the proximate causes of the population trend (e.g., survival, 

fecundity).  Also, detection probabilities can be lower than those desired for estimating 
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abundance with closed or robust design methods, thus making this technique more cost effective.  

Hines and Nichols (2002) found, however, that behavioral differences among animals could lead 

to biased estimates, particularly with short-term data sets.  Sampling sites should be 

systematically spaced so that all bears have a reasonable opportunity for detection and locations 

should be changed annually to reduce behavioral bias.  Recent work on adapting Pradel (1996) 

models to spatially explicit data may relax some of those restrictions (Royle et al. 2013b). 

Open population mark-recapture simulations 

We conducted a suite of open population simulations with the Pradel (1996) model in program 

MARK to provide reference points for estimating population growth rate in black bear 

populations in the Northeast.  Again, we reviewed the literature and extracted estimates of λ, φ, 

and p from DNA-based mark-recapture studies (Table 4-7).  We simulated populations of 100 or 

500 bears that were either monotonically increasing (λ = 1.05) or decreasing (λ = 0.95) for 5 or 

10 years, with moderate or relatively high detection probabilities (0.38 or 0.70, respectively).  

We conducted 250 replicates per scenario, and assessed model performance with average PRB, 

CV, and CIC.   

 Results of our simulations using the Pradel model based on noninvasive detections found 

that all scenarios produced unbiased (i.e., PRB < 1%) and precise (i.e., CV < 5%) estimates of 

population growth rate.  Simulations based on larger populations and longer studies performed 

best.  Despite being unbiased, however, those scenarios had extremely small confidence intervals 

resulting in low CIC values (Fig. 4-6).  Population abundance did not seem to affect CIC, but 

reflecting the decreasing CV of estimates, longer studies tended to have poorer CIC than shorter 

studies.  Greater detection probabilities did not effectively improve estimator performance; even 

the near doubling of female detections from p = 0.38 to p = 0.7 resulted only in a 1.4% 
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improvement in CV for the sparsest data scenario (i.e., scenario 2, smaller and declining 

population with lower survival).  Our results suggest that even with relatively small populations 

and moderate detection probabilities, robust, sex-specific estimates may be obtained within 5 

years of sampling.  These population and sampling parameters are very similar to those of 

(Coster et al. 2011) who conducted a study on a small area (223 km2) with 51 grid cells of 5.2 

km2.   

 Tradeoffs will exist with field studies, which will almost certainly encounter capture 

biases, annual variation in λ and φ, and the realities of sampling wild populations.  Data from 

field studies, however, can allow use of more complex models to accommodate those realities, 

including robust design or mixture models that make use of covariates and potentially multiple 

data types (Boulanger et al. 2004a, 2006, 2008; Stetz et al. 2010).  Therefore, these scenarios 

should be viewed as a starting point for exploring more realistic study designs depending on the 

specific objectives, population characteristics, and available resources. 

Population Monitoring Scenarios 

We provide study design options for monitoring American black bear populations based on the 

collective findings from published studies and results of our simulation analyses.  Although we 

initially developed these scenarios and study design options for jurisdictions in the Northeast, 

they are applicable to most black bear populations in North America.  For simplicity, we focus 

our discussion and evaluation of black bear monitoring options on the methods that have been 

used in previous research in the Northeast (Table 4-8) for estimating the two population 

parameters most important to managers: abundance and population growth.  We present our 

evaluation of monitoring options for 6 population scenarios developed in collaboration with 

biologists and managers familiar with the challenges of monitoring bear populations across this 
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region.  We considered situations ranging from small to large population sizes and from 

declining to stable or increasing population trends.  We based our population size classes of 

small, (N ≤ 500), medium (N = 500–2,500) and large (N > 2,500) on the range of black bear 

population sizes found in Northeastern jurisdictions or management units.  We pooled 

monitoring options for stable and increasing populations because most managers already classify 

population trends accordingly.  Although some managers may not know the exact status of their 

populations, the scenarios we present here should provide useful guidance for study design.  

Small, declining population (N ≤ 500, λ < 1.0) 

Populations with this status are of the greatest management concern and advantages of 

monitoring should be carefully weighed against the potential disadvantages.  For example, 

mortality due to capture and handling is an increasing concern as population size becomes 

smaller because management efforts are often directed to increasing adult survival.  Managers 

may consider monitoring adult survival rather than population growth for small, declining 

populations.  Accurate and precise estimates are particularly important for small, declining 

populations because there is little room for error.  The value in monitoring smaller populations 

has been questioned, however, because resources could be used more effectively to secure 

habitat or reduce human-bear conflicts.  Nonetheless, we recommend using DNA-based mark-

recapture (e.g., robust design Pradel model) to estimate abundance and population growth for 

small, declining populations because this method does not involve capture or handling, is 

affordable at small scales, can provide precise estimates of λ in a shorter time period compared 

with radiotelemetry, and may provide insights into drivers of population changes through use of 

covariates (Table 4-6). 
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 Because DNA-based mark-recapture abundance estimates for small populations generally 

have poorer precision than larger populations, managers must compensate by increasing 

sampling effort (e.g., number of occasions, number of sampling sites per unit area) to achieve the 

same level of precision.  For example, a large population study may achieve a CV < 20% for 

abundance with 4 sampling occasions, whereas a small population would require at least 7 

occasions to obtain a CV < 20%.  Open population or SECR models should be considered as 

smaller areas may amplify capture heterogeneity because a large proportion of animals have 

home ranges extending beyond the edge of sampling grid. 

Small, stable or increasing population (N ≤ 500, λ ≥ 1.0) 

Black bear populations of this size are typically not harvested so population reconstruction is not 

an option (Table 4-8).  If the population is small and growing, then an index such as bait-station 

surveys may be sufficient to monitor gross changes in abundance or assess range expansion.  

Managers interested in estimating abundance or population growth should consider DNA-based 

mark-recapture methods.  Population growth aside, these methods provide the best baseline data 

on population size, density, and sex ratios to use as benchmarks to gauge future population 

dynamics related to management actions.  Radiotelemetry may also be considered to estimate 

population growth, but managers should be aware that at least 5 years of monitoring will be 

required, and more if vital rates are highly variable, to obtain a precise estimate.  Again, because 

DNA-based mark-recapture abundance estimates for small populations generally have lower 

precision than larger populations, managers must compensate by increasing sampling intensity 

(e.g., number of occasions, number of sampling sites) to achieve their desired level of precision.     
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Medium, declining population (N = 500–2,500, λ < 1.0) 

We suggest that managers interested in abundance, or more appropriately, density, use DNA-

based mark-recapture as these methods provide the most reliable estimates (Table 4-8).  

Managers interested in monitoring population growth may consider using either DNA-based 

mark-recapture or radiotelemetry-based methods.  Radiotelemetry-based methods may be 

inappropriate when the age distribution of the population is believed to be non-stable or if 

management decisions must be made prior to acquiring sufficient data to use projection models 

(Table 4-8).  Although both methods are suitable for estimating population growth, if capture-

related mortality is not a concern, radiotelemetry is the better method to use for this scenario as it 

may detect the drivers of trends better than mark-recapture methods (Table 4-9), which may be 

valuable to long-term management.   

Medium, stable or increasing population (N = 500–2,500, λ ≥ 1.0) 

DNA-based mark-recapture may be a viable option for managers interested mainly in monitoring 

population growth because that can be accomplished with lower capture probabilities, meaning 

that fewer samples need to be genotyped and sites could be sampled for fewer occasions.  When 

estimating abundance, however, the number of sample sites needed for larger populations may 

be daunting, particularly if home-range sizes are small.  In such cases, estimating population 

growth rates using radiotelemetry-based methods may be a better alternative.   

Large, declining population (N > 2,500, λ < 1.0) 

As described previously, sampling requirements may be too intensive to make DNA-based mark-

recapture feasible for estimating abundance of large populations, and may not be the most 

important parameter for effecting sound management.  Population growth projection using 

radiotelemetry or DNA-based mark-recapture with open population models would probably be 
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better alternatives.  Also, the economies of scale are better for radiotelemetry than for DNA-

based mark-recapture because the precision of parameter estimates from known-fate models is 

independent of population size, whereas costs increase with population size for DNA-based 

studies (i.e., more samples collected and more bears to identify).       

Large, stable or increasing population (N > 2,500, λ ≥ 1.0) 

A common scenario among North American jurisdictions are large, stable or increasing black 

bear populations.  In these areas, the establishment of regional monitoring programs is an 

important consideration, particularly where bear populations are shared among multiple 

jurisdictions (e.g., Pennsylvania and New York, or Maryland and West Virginia in the 

Northeast).  Pooling resources to collaboratively monitor population growth using radiotelemetry 

or DNA-based mark-recapture techniques would provide long-term benefits.  We suggest that 

managers interested in estimating abundance of these large populations use DNA-based mark-

recapture because this method provides the most reliable estimates.  This would most likely 

entail a series of estimates for population subsets and using extrapolation techniques.  As in the 

previous example, use of population projection or estimation of population growth using mark-

recapture methods is a more reasonable regional or jurisdiction-wide approach, although SECR 

methods based on cluster sampling may make DNA mark-recapture more feasible at these scales. 

CONCLUSIONS 

Many suitable monitoring options exist for black bear managers and there is no single 

appropriate method for all bear populations and management objectives.  One of the greatest 

dilemmas for bear managers today is that the monitoring methods that provide the most accurate 

and precise estimates of population parameters (i.e., radiotelemetry, DNA-based mark-recapture) 

are also the most expensive.  Less expensive methods are ultimately a poor investment when 
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money and resources are used to collect data that reveal little about bear populations and provide 

limited inference regarding the drivers of population change. 

 When developing a program for black bear population monitoring, managers should first 

identify the parameter(s) of interest (e.g., abundance and density, survival and reproduction, 

population growth) that would meet well-defined management objectives.  Selection of 

monitoring techniques should then focus on assessing which techniques can produce estimates 

with the desired level of accuracy and precision.  Once these techniques have been identified, 

managers can then consider the potential advantages and disadvantages of each, along with any 

special considerations (e.g., data collection requirements), to select effective techniques 

monitoring program (Table 4-8).  
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TABLES 
 

Table 4-1.  Mark-resight model assumptions and requirementsa (from McClintock and White 

2012). 

 

Model 

Number of 

marks known 

Marks are 

individually 

identifiable 

Geographic 

closure 

Sample with 

replacement 

Immigration-

emigration logit-normal  

Required Not required Not required Not allowed 

Logit-normal  Required Not required Required Not allowed 

(Zero-truncated) 

Poisson 

log-normal  

Not required Required Required Allowed 

a Note that all models require demographic closure within primary sampling occasions. 
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Table 4-2.  Parameter definitions and values used in mark-resight simulations of the Poisson log 

normal estimator (PNE) (McClintock and White 2009) in program MARK to simulate estimation 

of American black bear population abundance. 

 

 

Simulation inputs Estimates from simulations 

Parameter Definition Value PRBa CVb CICc 

Nmale Abundance (M) 300 -27.7% 9.1% 5.6% 

Nfemale Abundance (F) 300 -21.2% 9.2% 23.7% 

nmale No. known marks (M) 100    

nfemale No. known marks (F) 100    

Σ Individual detection rate 

heterogeneity 
0 

   

αmale Mean detection rate (M)d 0.55    

αfemale Mean detection rate (F) 0.5    

Umale No. unmarked individuals (M) 200    

Ufemale No. unmarked individuals (F) 200    

ϕmale Apparent survival (M) 0.85    

ϕfemale Apparent survival (F) 0.9    

γ'’ Transition probabilitye 0.05    

γ' Probability of not 

transitioning to previous state 0.5 
   

a PRB = percent relative bias ((estimate – truth) / truth) × 100%. 
b CV = coefficient of variation. 
c CIC = percent of simulations with confidence interval including true abundance. 
d Mean detection rate for primary sampling occasion. 
e The probability of leaving the study area (i.e., transition from observable to unobservable state). 
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Table 4-3.  Population and sampling parameters used in closed population abundance 

simulations with WiSP package (Zucchini et al. 2007) in program R.  Minimum and maximum 

capture probabilities were per occasion (k).  Not every combination was run because of 

computational limitations. 

 

Study area 

dimension (no. 

grid cells east-

west) 

Study area 

dimension 

(no. grid cells 

north-south) 

 

Population 

abundance (N) 

 

No. sampling 

occasions (k) 

Min. 

capture 

probability 

(p) 

Max. 

capture 

probability 

(p) 

100, 200 100, 200 100–900 5, 7, 10 0.005 0.5 
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Table 4-4.  Population and sampling parameters used in SECR simulations of American black 

bear (Ursus americanus) populations using the secr package (Efford 2012) in Program R.  Not 

all combinations were run because of computational limitations. 

 

Density (no. 

bears/km2) g0a σ b (m) 

No. sampling 

occasions (k) Grid size 

Site spacing 

(m) 

0.1 0.05 400 5 10 × 10 1,000 

0.5 0.10 1,000 7 25 × 25 2,000 

1.0 0.15 2,000 10  3,000 

1.5 0.20 3,000    

 0.25     

a g0 = average detection probability at the individual’s center of activity. 
b σ = shape of the half-normal detection function; we converted σ into an estimate of home-range 

radius in R using (qchisq(0.95, 2)0.5)* σ. 
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Table 4-5.  American black bear (Ursus americanus) survival and reproductive rate estimates from studies in the northeastern United 

States and eastern Canada. 

    

Jurisdiction 

Adult 

female 

survivala 

Subadult 

female 

survival 

Cub 

survival 

Age at 

first 

reproduction 

Average 

litter size Fecundity Reference 

MA 0.87      Cardoza, personal communicationb 

MA  0.66 0.59 3.70   Elowe and Dodge (1989)b 

MA   0.53-0.63    Fuller (1993)b 

MA   0.74    McDonald and Fuller (2001)b 

ME 0.96 0.78 0.79 4.91  0.58 McLaughlin (1998)b 

ME 0.84 0.76 0.65 5.10  0.61 McLaughlin (1998)b 

ME 0.96 0.71 0.59 4.47  0.58 McLaughlin (1998)b 

NH 0.87  0.74    Timmins (2008)b 

NJ 0.94  0.72 3.00   McConnell et al. (1997)b 

NJ   0.70    New Jersey (2004) b 

ON 0.87 0.78 0.46 7.81   Obbard and Howe (2008)b 

ON  0.86 0.44 6.70   Obbard and Howe (2008)b 

ON 0.84 0.76 0.53 6.17  0.46 
Yodzis and Kolenosky (1986), Kolenosky 

(1990)b 

PA   0.84 3.20 3.00  Alt (1980, 1981, 1989)b 

PA 0.59      Diefenbach and Alt (1998)b 

PA    3.53  0.62 Ternent and Sittler (2007)b 

QC 0.85  0.71 6.00  0.47 Jolicoeur et al. (2006)b 

QC 0.96   5.33  0.58 Jolicoeur et al. (2006)b 

VA 0.93  0.70 4.00  0.50 Carney (1985)b 

VA  0.78 0.72    Hellgren (1988)b 

VA 0.87   4.00 2.30 0.57 Hellgren and Vaughan (1989)b 

VA 0.73  0.73 3.89  0.66 Kasbohm et al. (1996)b 
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VA 0.81      Klenzendorf (2002)b 

VA  0.87     Lee and Vaughan (2005)b 

VA   0.70 2.83  0.69 (Ryan 1997)b 

VA 0.92 0.90 0.87 3.80 2.50  Bridges et al. (2011) 

VT   0.26 5.33  0.87 Hammond (2002)b 

WV 0.76 0.79  3.11 2.65  
Ryan (2009) 

 
a We defined an adult bear as >3 years old and subadults as bears 2–3 years old. 
b See Table S1 in Beston (2011) 
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Table 4-6.  Estimates for American black bear (Ursus americanus) vital rates and their variances 

used in demographic analysis simulations. 

 

 

 Vital rate estimates Variance estimates 

Rates 

Cub 

Sa 

Yrlg 

S 

Subad 

S 

Adult 

S Fecundity 

Cub 

S 

Yrlg 

S 

Subad 

S 

Adult 

S Fecundity 

Lowb 0.53 0.76 0.87 0.84 0.4570 0.00778 0.00793 0.00213 0.00063 0.00049 

High 0.73
c 

0.87
d 

0.93c 0.93e 0.6875c 0.00493 0.00435 0.00360 0.00271 0.02000 

a Survival estimate. 
b Kolenosky (1990); 241 adult females monitored. 
c Ryan (1997); 34 bears monitored (6M, 28F). 
d Lee and Vaughan (2005); 54 yearling bears monitored (34M:20F). 
e Carney (1985). 
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Table 4-7.  Population and sampling parameters used with Pradel (1996) open population model 

simulations in program MARK to estimate population growth rate of American black bear 

(Ursus americanus) populations. 

 

 

Scenario N λ φM φF pM pF 

No. 

years 

1 100 or 500 0.95 0.93 0.87 0.4 0.38 5 or 10 

2 100 or 500 0.95 0.85 0.80 0.4 0.38 5 or 10 

3 100 or 500 1.05 0.93 0.87 0.4 0.38 5 or 10 

4 100 or 500 1.05 0.85 0.80 0.4 0.38 5 or 10 

5 100 or 500 0.95 0.93 0.87 0.7 0.70 5 or 10 

6 100 or 500 0.95 0.85 0.80 0.7 0.70 5 or 10 

7 100 or 500 1.05 0.93 0.87 0.7 0.70 5 or 10 

8 100 or 500 1.05 0.85 0.80 0.7 0.70 5 or 10 
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Table 4-8.  Suitability of monitoring methods for estimating population parameters for American 

black bears (Ursus americanus) in the Northeast. 
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Parameter of interest 

         

Abundance + + 
 

+ ++ + + + + 

Density 
  

+ + ++ + + + + 

Survival 
  

++ + + + + + + 

Reproduction 
  

++ + + + + + + 

Population growth + + ++ + ++ + + + + 

 
         

Advantages 
         

Proven track record of precise estimates 
 

+ ++ 
 

++ + 
   

Identify individual bearsc 
  

+ 
 

++ + + + 
 

Determine sex ratio 
 

+ + + ++ + + + 
 

Provide data on multiple wildlife species 
        

++ 

Can also examine genetic structure and 

dispersal   
+ 

 
++ + + 

  

Can be used with other sampling methods 
  

+ + + + + + + 

No additional costs if harvest monitoredd 
 

+ 
    

+ 
  

Can identify drivers of parameter  
  

++ 
 

+ 
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Disadvantages 
         

Relatively expensive 
  

- 
 

- - 
  

- 

Logistically difficult 
  

-- - -- - 
  

- 

Capture, handling, or removal required 
 

- -- 
  

- - 
  

Baiting bears may lead to habituation -- 
 

- -- - - 
   

Concern for human consumptione 
  

-- - 
 

- 
   

Dependent on constant harvest and 

mortality  
-- 

       

Cannot positively identify species (i.e., 

bears) 
-- 

  
- 

     

Individual marks can be lost 
  

- 
  

-- 
 

- 
 

 
         

Special considerations 
         

Provides coarse data on many individualsc 
    

++ + + + 
 

Provides fine-scale data on few   

      individuals   
++ 

      

Best for heavily harvested populations  

     (>20%)  
++ 

   
+ + 

  

Best for highly visible populations 
     

+ 
 

++ 
 

Requires specialized lab/field equipment  
  

+ + + + 
  

+ 

>1 year of data collection required 
 

++ ++ + 
 

+ + 
  

>5 years of data collection required 
 

++ ++ 
      

>10 years of data collection required 
 

++ + 
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Table 4-9.  Ability of various estimation methods to detect different factors of American black 

bear (Ursus americanus) population growth rates. 
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Excessive human-caused mortality 

         Excessive legal hunting 
 

+ ++ + + 
 

+ 
  

Unreported mortality (e.g., poaching) 
 

+ ++ 
 

+ 
    

Hunting-related mortality 
 

+ ++ + + 
 

+ 
  

Conflict bears 
 

+ ++ 
 

+ + + 
  

Net emigration 
         

Disturbance 
 

+ ++ + + 
    

Decline of habitat quality 
 

+ + + + 
    

Attractive sinks 
 

+ ++ + + 
    

Density-dependent dispersal 
 

+ ++ + + + 
   

Increased road or trail density 
         

Vehicle collisions 
 

+ 
 

+ 
     

Access for hunters or poachers 
 

+ ++ + + 
    

Fragmented habitats 
 

+ + + + 
    

Intraspecific killing 
         

Related to high density 
 

+ ++ + + 
    

Reduced carrying capacity 
 

+ + + + 
    

Skewed sex ratio 
 

+ + + ++ + + 
  

Hunger 
 

+ ++ + + 
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Poor reproduction 
         

Decline of habitat quality 
 

+ + 
 

+ + 
   

Displacement from high-quality 

habitat  
+ ++ 

 
+ 

    

Advanced age in female cohort 
 

++ ++ 
 

+ + + 
  

High cub mortality 
         

Predation 
  

+ 
      

Poor nutrition 
  

++ 
      

Disease 
  

+ 
      

Accidents (e.g., vehicle collisions) 
  

++ 
      

Orphaning 
  

++ 
      

 
         

Other useful analytical abilities 
         

Habitat modeling, fine-scale 
 

+ ++ + + + + 
  

Occurrence modeling, coarse-scale 
 

+ ++ + ++ + + + + 

Core and linkage habitat prediction 
 

+ ++ + ++ + + 
  

Coarse bear movement info 
 

+ ++ + ++ + + 
  

Movement data, fine-scale 
 

+ ++ + + + + 
  

Population estimation 
 

+ + + ++ + + 
  

Condition of the bears, health, disease 
 

+ ++ + 
 

+ + + + 

Diet studies, fine-scale (species of 

food)  
+ ++ + + + + 

  

Diet studies, coarse-scale (isotope) 
 

+ ++ + ++ + + 
  

Fragmentation and connectivity 
 

+ ++ + ++ + + 
  

Sex and age structure  
 

++ ++ + + + + 
  

Home-range size or overlap, dispersal 
 

+ ++ + + + + 
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FIGURES 
 

 

 

 

Figure 4-1. American black bear (Ursus americanus) distribution in North America.  From 

Scheick and McCown (2014).  Bear distributions were mapped by state and provincial biologists 

using 36-km2 hexagonal grid cells to identify primary and secondary occupied range 
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Figure 4-2. Percent relative bias (PRB) of estimates of American black bear (Ursus americanus) 

abundance estimates as a function of the number of sampling occasions (7 or 10), true abundance 

(ranging from 200-1,000), and study area dimensions (i.e., number of sampling sites per side of 

trapping grid, either 100 or 200).  Simulations performed with WiSP package (Zucchini et al. 

2007) in program R.  PRB = percent relative bias; CIC = confidence interval coverage. 
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Figure 4-3. Age class-specific estimates of precision for survival estimates of American black 

bears (Ursus americanus) from radiotelemetry data as a function of sample size and number of 

years monitored (3, 5, 10, or 20).  “Low” vital rates are from Ontario (Kolenosky 1990); “high” 

vital rates are a composite from Virginia populations (see citations in Table 5).  Here we define 

adult as >3 year old and subadult as 2-3 years old.  Note that the y-axes differ. 
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Figure 4-4.  Age class-specific estimates of precision for fecundity estimates from radiotelemetry 

data of American black bears (Ursus americanus)as a function of sample size and number of 

years monitored (3, 5, 10, or 20).  “Low” vital rates are from Ontario (Kolenosky 1990); “high” 

vital rates are a composite from Virginia populations (see citations in Table 5).   
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Figure 4-5. Width of 90% confidence intervals on lambda estimates for population growth rate 

simulations of American black bears (Ursus americanus) as a function of years monitored, 

sample size, and vital rates.  “Low” vital rates are from Ontario (Kolenosky 1990); “high” vital 

rates are a composite from Virginia populations (see citations in Table 5).   
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Figure 4-6. Selected results of program MARK population growth rate simulations for American 

black bears (Ursus americanus).  Scenario numbers are the same as in Table 7; e.g., “Scenario 1–

5” corresponds to a declining population with high apparent survival and low detection rates with 

5 years of monitoring.  Open symbols represent populations of N = 100 and closed symbols N = 

500. 
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APPENDIX C.  SUPPLEMENTAL MATERIAL  
 

Table 4-S1.  Noninvasive genetic sampling literature summary.   

Summary of publications related to the use of noninvasive genetic sampling methods to estimate 

black bear population parameters and model capture probabilities.   

Reference Site name Year 

State/Prov

ince 

Area 

(km2) 

Coster et al. (2011)  Pittsburg 2006 NH 196 

Coster et al. (2011)  Milan 2006 NH 223 

Coster et al. (2011)  Pittsburg 2007 NH 196 

Coster et al. (2011)  Milan 2007 NH 223 

Tredick and Vaugahn (2009)  

Great Dismal Swamp 

NWR 2001 VA 175 

Tredick and Vaugahn (2009)  Pocosin Lakes NWR 2002 NC 115 

Tredick and Vaugahn (2009)  Alligator River NWR 2003 NC 150 

Tredick and Vaugahn (2009)  

Great Dismal Swamp 

NWR 2002 VA 175 

Tredick and Vaugahn (2009)  Pocosin Lakes NWR 2003 NC 115 

Tredick and Vaugahn (2009)  Alligator River NWR 2004 NC 150 

Dreher et al. (2007)  

Northern Lower 

Peninsula 2003 MI 36,848 

Mowat et al. (2005)  Sout-central Selkirks 1996 BC 5,226 

Mowat et al. (2005)  North-central Selkirks 1996 BC 4,640 

Poole et al. (2002) Prophet Plateau 1998 BC 5,413 

Poole et al. (2001) Prophet Mountains 1998 BC 3,114 

Mowat et al. (2005)  Yellowhead 1999 BC 5,352 

Mowat et al. (2005)  Parsnip Plateau 2000 BC 3,016 

Mowat et al. (2005)  Parsnip Mountains 2000 BC 3,636 

Mowat et al. (2005)  Bowron 2001 BC 2,494 

Tredick et al. (2007)  

Pungo Unit of Pocosin 

Lakes, NWR 2002 NC 50 
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Tredick et al. (2007)  St. Johns 2001 FL 967 

Gardner et al. (2010)  Fort Drum 2006 NY 157 

Belant et al. (2005)  Stockton Island 2002 WI 41 

Belant et al. (2005)  Sand Island 2002 WI 12 

Bittner et al. (2013) Alleghany/Garrett County 2000 MD 2152 

Settlage et al. (2008), Laufenberg 

et al. (2013)                  

Great Smoky Mountains 

NP 2003 TN 200 

Boersen et al. (2003) Tensas River Tract 1999 LA 329 

Immell and Anthony (2008)  Steamboat 2003 OR 112 

Immell and Anthony (2008)  Toketee 2003 OR 155 

Immell and Anthony (2008)  Steamboat 2004 OR 138 

Immell and Anthony (2008)  Toketee 2004 OR 145 

Settlage et al. (2008)  

Great Smoky Mountains 

NP 2003 TN 160 

Settlage et al. (2008)  3 National Forests 2003 

NC, SC, 

GA 329 

Triant et al. (2004)  Inland 1999 LA 208 

Triant et al. 2004)  Coastal 1999 LA 142 

Stetz et al. 2014 Glacier NP 2004 MT 4,100 

Stetz et al. 2014 Glacier NP 2005 MT 4,100 

Obbard et al. (2010) 11 WMUs 

2004, 

2005 ON 

 Sawaya et al. (2012) Banff NP 2006 AB 2,246 

Sawaya et al. (2012) Banff NP 2008 AB 2,247 
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4-S2.  R Code for Closed Population Abundance Simulations 

 

## NEBBTC Simulation of closed population abundance estimation using routines in ## the R 

package 'WiSP'. Modified by Jeff Stetz and Mike Sawaya  

 

## WiSP is not on CRAN - must be downloaded from developer website: ## 

http://www.ruwpa.st-and.ac.uk/estimating.abundance/WiSP/index.html 

 

## I had to extract files to a folder not in C:\Program Files, then copy/paste to C:\Program 

Files\R \R-2.15.1\library 

 

 

## ---- set working directory ------------------------ 

setwd('C:\...\'); getwd() 

require(wisp); require(rgl); require(xlsx) 

x.len <- c(100,200) study region 

y.len <- c(100,200) study region 

ngroups <- seq(400,900,by=100) this is the number of individuals 

occ <- c(5,7,10) occasions 

for(x in 1:length(x.len)) { for(y in 1:length(y.len)) { 

for(n in 1:length(ngroups)) { for(o in 1:length(occ)) { 

for(repl in 1:50){ 

my.region <- generate.region(x.length=x.len[x], y.width=y.len[y]) 

dimensions (aka survey region) 

my.density <- generate.density(my.region, southwest=1, (simple plane in this case) 

southeast=1, northwest=1) #plot.density.population(my.density) 

resolution plots can slow things down 

my.pop.pars <- setpars.population(my.density, number.groups=ngroups[n], 

population (here, #groups=#individuals) size.method="user", 

# 

# x-dimension values for # y-dimension values for Number of groups; for us # Number of 

sampling 

# Creates population 

# Defines density surface # 3D wire plot; high 

# Number of animal groups in 

# Method of how animal group 

sizes are determined; 

size.min=1, size.max=1, size.mean=1, 

size values - if 'size.method' has been set to user. 

only active if 'size.method' set to 'poisson' 

reflecting individuals are independently detected exposure.method="beta", 

# 'size.method = "user"' allows the user to enter possible group size values and their probabilities. 

# Method of how group exposure is determined. 'method = beta' for Poisson-distributed group 

exposure values; 

user provides possible group exposure values and their probabilities. 

exposure.min=0, exposure.max=1, 
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exposure values (only used when 'exposure.method = user'. 

exposure.mean=0.5, (only if 'exposure.method = beta'). 

exposure.shape=0.1, 

Beta distribution (only if 'exposure.method = beta'). 

type.values = c("Male","Female"), properties for animal groups. 

# If 'method = user' the 

# Lower and upper bounds of # Mean group exposure value # Shape parameter of the 

# Vector of possible type 

# Vector of possible group # min, max, and mean size 

# I've set group size to 1,type.prob = c(0.45,0.55)) # Vector of respective type my.pop <- 

generate.population(my.pop.pars) 

# summary(my.pop) 

#plot.population(my.pop, type='details', show.sizes=T, show.exp=T, dsf=0.75, title='my.pop') 

my.cr.design.pars <- generate.design.cr(my.region, # Capture-recapture design parameters; 

n.occ=occ[o], effort=rep(1,occ[o])) # number of occasions; relative effort across occasions 

"effort=c(1,1,1,1,1)" 

my.sample.cr.pars <- min/max values 

my.point.est.crMh <- point.est.crMh(my.cr.sample,num.mix =2,init.N =-1) # Currently set to 

model Mh with 2 mixtures 

#summary(my.point.est.crMh) # Currently have summaries turned off to limit clutter 

my.interval.est.crMh <- int.est.crMh(my.cr.sample,num.mix =2,init.N =-1, # Nonparametric 

bootstrap CIs with 99 runs 

ci.type='boot.nonpar', nboot=99, plot=F) #summary(my.interval.est.crMh) 

##---- A new row for a dataframe with each element, for instance ---------------------------------- 

if(my.pop.pars$size.method=="user"){ groupsize=mean(my.pop.pars$size.values) 

} if(my.pop.pars$size.method!="user"){ 

groupsize=my.pop.pars$size.mean } 

#A single row of the table 

new.row <- data.frame(Nhat.ind=my.interval.est.crMh$boot.mean$Nhat.ind, 

effort=my.cr.design.pars$effort[1], 

occasions=my.cr.design.pars$number.occasions, 
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SE=my.interval.est.crMh$se$Nhat.ind, replicate=repl,x=x.len[x],y=y.len[y],ngroup=ngroups[n], 

nindivid=ngroups[n]*groupsize,occ=occ[o], 

min.cp.mark=my.sample.cr.pars$theta0.marked, 

max.cp.mark=my.sample.cr.pars$theta0.marked, 

min.cp.unmark=my.sample.cr.pars$theta1.unmarked, max.cp.unmark=my.sample.cr.pars 

$theta1.unmarked ) 

##---- Within a loop, you do the following to add the new row to your table (or create a table) 

if(exists("out.table")){ 

out.table <- rbind(out.table,new.row) 

} if(!exists("out.table")){ 

out.table <- new.row 

probabilities. 

# was pmin.unmarked=0.01, pmax.unmarked=0.25, # Re/capture probability 

setpars.survey.cr(my.pop, my.cr.design.pars, pmin.marked=0.01, pmax.marked=0.25, 

improvement=0) # Improvement in detection my.cr.sample <- 

generate.sample.cr(my.sample.cr.pars) 

across sessions #summary(my.cr.sample) 

} 

}#end repl 

##---- Save output to .xlsx file; static destination file name --------------------------------------- 

##---- Destination .xlsx has to be created first (one time); worksheets added after that ------------- 

filespot <- ("C:/.../NEBB.wisp.sims.output.xlsx") 

##---- Dynamic worksheet name; worksheet added to common destination file ----------------------

------ 

##---- R will return an error if worksheet with same name exists or if file is open ------------------ 

SaveExcel <- write.xlsx(out.table, filespot, 

sheetName=paste("XY",x.len[x],y.len[y],"N",ngroups[n],"Occ",occ[o], 

"Mh.005.5",sep="."), col.names=T, row.names=F, append=T) 

rm(out.table) 

}#end o 

}#end n }#end y 
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}#end x 

### ---- Simulations based on conditions defined above -------------------------- # 

#my.Mh.cr.sim <- point.sim.crMt(pop.spec=my.pop.pars, 

'mypop' and 'mydens' allows randomization 

# design.spec=my.cr.design.pars, 

# survey.spec=my.sample.cr.pars, B=99, seed=123456) 

repllicates; setting seed makes it replroducible # 

# using user defined # B=num 

#save(out.table,file=paste("wisp.X",x,"Y",y,"N",n,"Occ",o,"Mh.005.5.RData", sep=".")) # 

#summary(my.Mh.cr.sim) 

##plot(my.Mh.cr.sim) 

# 

# 

## Suggested citation: 

## Zucchini, W., Borchers, D.L., Erdelmeier, M., Rexstad, E. and Bishop, J. 2007. 

## WiSP 1.2.4. Institut fur Statistik und Okonometrie, Geror-August-Universitat Gottingen, ## 

Platz der Gottinger Seiben 5, Gottingen, Germany. 
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4-S3:  R Code for Spatially-Explicit Capture-Recapture Simulations 

## An R function to run a suite of SECR simulations 

## Modified from Murray Efford's 2012-05-31 code by J.Stetz and A.Mynsberge 

 

## Set working directory 

setwd('C:/…/Simulations/secr/Results');  

 

require(secr) 

 

runsim <- function(nrepl = 25, outputfile = 'sim.output.RData') { 

 

## ---- Parameter values ---------------------------------------------- 

    D <- c(0.001, 0.005, 0.01, 0.015)                               

    g0 <- c(0.05, 0.01, 0.15) 

    sigma <- c(400,1000, 2000, 3000) 

 

## ---- Design variables ---------------------------------------------- 

    spacing <- c(1000, 2000, 3000)            

    occasions <- c(5,7,10) 

    nspacing <- length(spacing) 

    noccasions <- length(occasions) 

 

## ---- Grid dimensions ------------------------------------------------ 

    nx <- 25; ny <- 25 

                              

## ---- Simulation variables  ------------------------------------------     

    buff <- 15000                               

 

## ---- array to hold results ------------------------------------------ 
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    output <- array(dim = c(nspacing, noccasions, 3, nrepl)) 

#    output.SE <- array(dim = c(nspacing, noccasions, nrepl)) 

#    output.CV <- array(dim = c(nspacing, noccasions, nrepl)) 

    dimnames(output) <- list(spacing, occasions, c("est","se","cv"),NULL) 

#    dimnames(output.SE) <- list(spacing, occasions, NULL) 

#    dimnames(output.CV) <- list(spacing, occasions, NULL) 

 

    cat('Starting simulations', date(), '\n') 

    flush.console() 

## ---- loop over replicates, spacing, and noccasions ------------------ 

    for (r in 1:nrepl) { 

        for (sp in 1:nspacing) { 

            grid <- make.grid (nx = nx, ny = ny, spacing = spacing[sp]) 

            for (nocc in 1:noccasions) { 

                temppop <- sim.popn (grid, D = D, buffer = buff) 

                tempCH <- sim.capthist (grid, popn = temppop, 

                    detectfn = 0, noccasions = occasions[nocc], 

                    detectpar = list(g0 = g0, sigma = sigma)) 

                     

## bracketing with try() allows us to continue if there is an error in secr.fit 

                tempfit <- try (secr.fit (tempCH, detectfn = 0, buffer = buff,  

                    trace = FALSE, verify = FALSE, 

                    start = log(c(D,g0,sigma))), silent = TRUE) 

                if (!inherits(tempfit, 'try-error')) { 

                    temppred <- unlist(predict(tempfit)['D',]) 

  ## here we save only the relative SE of D-hat...replace as desired    

                    output[sp,nocc,"est",r] <- temppred['estimate'] 

                     output[sp,nocc,"se",r]<-temppred['SE.estimate'] 

                     output[sp,nocc,"cv",r]<-temppred['SE.estimate'] / temppred['estimate']  
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                 } 

                 else{ 

                 cat("!\n") 

                 } 

             } 

         } 

         cat('Completed replicate', r, date(), '\n') 

         flush.console() 

         save(output, file = outputfile) 

         #save(output.SE, file = gsub("output","output.SE.",outputfile)) 

         #save(output.CV, file = gsub("output","output.CV.",outputfile)) 

     } 

     output 

 } 

  

## ---- Output filename is NOT dynamic -------------------------------- 

runsim (nrepl = 25, outputfile = 'sim.output.D.005.g0.15.sigma.3000.25b.RData') 

 

 

##---- Convert sigma to home range in km2 ------------------------------ 

for (hr in 1:length(sigs)) { 

 homerange = ((sigs*(qchisq(0.95,2)^0.5))^2)*3.1415} 

homerange/1000000 

##---- NEBBTC secr simulation output extraction, formatting, and analysis ------------------------- 

##---- Manual file selection; mix of static and dynamic outputs ----------------------------------- 

##---- J. Stetz and M. Sawaya - last modified 05 August 2012 --------------------------------------  

 

require(xlsx) 
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setwd('C:/…./Simulations/secr/Results');  

 

##---- Provide filename within parantheses; influde suffix ".RData" ------------------------------- 

 

filename="sim.output.D.001.g0.05.sigma.1000.10.RData" 

load(filename) 

dim(output) 

dimnames(output) 

id<-dimnames(output) 

spacing=id[[1]] 

occ=id[[2]] 

rep=dim(output)[3] 

for(i in 1:length(spacing)){ 

 for(j in 1:length(occ)){ 

 

   new.rows=data.frame(spacing=spacing[i],occasions=occ[j],  

   rep=1:25,estimate=output[spacing[i],occ[j],"est",], 

   SE=output[spacing[i],occ[j], "se",], 

   CV=output[spacing[i],occ[j], "cv",]) 

  if(exists("out.table")){  

   out.table=rbind(out.table,new.rows) 

  } 

  else{ 

   out.table=new.rows 

   

  } 

 } 

} 
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##---- Name components coming from file name -------------------------------------------------------- 

##---- Requries that the naming convention stays the same ------------------------------------------- 

##---- The "\\" are to take the special meaning out of the period ----------------------------------- 

##---- Note that there are some factors (vs. numeric); changed later -------------------------------- 

 

out.table$D=unlist(strsplit(filename,"\\."))[[4]] 

out.table$g0=unlist(strsplit(filename,"\\."))[[6]] 

out.table$sigma=unlist(strsplit(filename,"\\."))[[8]] 

out.table$gridsize=unlist(strsplit(filename, "\\."))[[9]] 

out.table$filename=(filename) 

d = unlist(strsplit(filename,"\\."))[[4]] 

g = unlist(strsplit(filename,"\\."))[[6]] 

sig = unlist(strsplit(filename,"\\."))[[8]] 

gr = unlist(strsplit(filename, "\\."))[[9]] 

strsplit(filename,"\\."); sapply(out.table,"class") 

 

##---- Converting whole columns, hence use of sapply function --------------------------------------- 

 

#formatC(out.table$est, digits=4, format="f", flag=0, ignoreNA=T, zero.print=T)               

 

out.table[,sapply(out.table,"class")=="factor"] <- 

sapply(out.table[,sapply(out.table,"class")=="factor"],"as.character") 

out.table[, c(7:10)] <- sapply(out.table[, c(7:10)], as.numeric) 

out.table$D=(out.table$D/1000); out.table$g0=(out.table$g0/100) 

 

##---- Convert 'Inf' SE's to 'NA' for calculating CIs and/or confidence interval coverage ('CIC') -- 

is.na(out.table$SE)=!is.finite(out.table$SE) 

out.table$PRB=((out.table$estimate-out.table$D)/out.table$D) 
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out.table$lowCI=(out.table$estimate-

(1.96*out.table$SE));out.table$upperCI=(out.table$estimate+(1.96*out.table$SE))  

 

#out.table$CIC=ifelse((out.table$estimate<out.table$upperCI)&(out.table$estimate>out.table$lo

wCI), 1, 0) 

 

out.table$CIC2=ifelse(((out.table$estimate-

(1.96*out.table$SE))&(out.table$estimate+(1.96*out.table$SE))),1,0) 

 

#out.table 

 

##---- First save output as RData file, then .xlsx -------------------------------------------------- 

 

save(out.table, file=paste("D",d,"g0",g,"sigma",sig,"grid",gr,"frmtd.RData",sep=".")) 

 

##---- Save output to .xlsx file; static destination file name --------------------------------------- 

##---- Destination .xlsx has to be created first (one time); worksheets added after that ------------- 

 

filespot <- ("C:/…/Simulations/secr/Results/NEBB.secr.sims.output.summary.10b.xlsx")  

 

##---- Dynamic worksheet name; worksheet added to common destination file ---------------------- 

##---- R will return an error if worksheet with same name exists or if file is open ------------------ 

SaveExcel <- write.xlsx(out.table, filespot, 

sheetName=paste("D",d,"g0",g,"sigma",sig,"grid",gr,sep="."),   

 col.names=T, row.names=F, append=T) 
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4-S4:  MATLAB Code for Demographic Analysis Simulations 

% Lamvaresti.m: a program to estimate the sampling variance in log stochastic lambda 

%  using approximation formulae from Doak et al. 2005 (equation numbers refer to this  

%  paper and its appendix 3).  

% Further modified from code provided by R. Harris for NEBBTC Technical Report 

% J.Stetz and M.Sawaya - last modified 24 FEb 2013 

 

% You must have the symbolic math toolbox of Matlab  to use this program.  

% This program uses two functions (secder.m and eigenall.m) from the website of  

%  programs that accompany Morris and Doak (2002): www.sinauer.com/PVA/ 

% The general form of data entry used here is quite similar to other, simpler 

%  programs also on this website, including Vitalsens.m and Stochsens.m; reading  

%  through these programs may help you understand the structures used here if you 

%  having trouble. 

 

% One warning: the symbolic logic routines and the simulations to estimate correlations 

%  in beta variable means and variances are time-consuming, with one to several minutes 

%  between different steps. Be patient.  

 

%  25 age classes; 6 vital rates (4 survival, 1 fecundity) - zero correlation throughout 

 

clear all; 

global yrsam kknums mmnums     % global variables used by called functions 

randn('state',sum(100*clock)); % seeding random numbers 

rand('state',sum(100*clock));  % seeding random numbers 

warning off                    % MATLAB:divideByZero 

 

%***************** Parameters that must be input by user *********************** 
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% First, give symbolic names for each vital rate to be used in this program. For the desert 

tortoise,  

%  these are: first, six survival rates (for stages 2-7); next, 5 growth rates (stages 2-6);  

%  and, finally, three fecundities (stages 5-7).  

% These symbolic definitions are given below, and then the vector of these names (Svr) is 

defined. 

 

syms  v1 v2 v3 v4 v5  % vital rates as symbolic variables 

Svr = [v1 v2 v3 v4 v5 ]; % vector of symbolic vital rates  

 

% Next, give the mean Vital rate values: 

 

% CUB surv(v1)=0.87; YEARLING surv(v2)=0.9; SUBADULT (2-3yr) surv(v3)=0.82; 

% ADULT (4+) surv(v4)= 0.92; fecALL(v5)= 0.312 [; fec6+(v5) = 0.350] (note these are 

% fx, not mx values) 

 

% NOTE! INCLUDES ONLY ONE FECUNDITY!! 

%Fx = total # offspring produced during x. 

%mx = fecundity: mean # offspring produced  

realvrmeans = [0.73 0.87 0.933 0.93 0.6875];  

% Then estimated true temporal variances (not standard deviations) of the Vital Rates: 

realvrvars= [0.00493 0.00435   0.0036   0.00271   0.020]; 

% Next, you must say what the distribution is for each vital rate: this program only distinguishes  

%  between beta-distributed variables (coded as 1) and all others, assumed to be fecundities  

%  or similarly distributed parameters (coded 2).  

% I interpret this as survival rates (n=4) are betas, whereas fx (n=2) are 

% fecundities 

vrtypes= [ones(1,4),2];  

% Then, you must give a the full estimated matrix of temporal correlations between the vital 

rates. 
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% We do this here by putting the matrix for the desert tortoise directly in the code (see also 

%  Table 8.2 in Morris and Doak 2002). You could also load a matlab binary data file that has 

your 

% correlation matrix. 

% Harris comment: Seems to me for NCDE griz this should be a 6 x 6 matrix of zeros 

% Kept as all zeros; justification discuss in Harris et al 2011 a little (ie, lack of evidence 

%  in the literature for covarying vital rates, despite logical likelihood 

realcorrmx = [ 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0]; 

 

 % Define how the different vital rates combine to make each matrix element, doing this  

%  by defining the entire symbolic matrix: 

% 25 x 25 Leslie matrix for NEBBTC black bears (25 years based on Beston 2011, from 

Hebblewhite et al. 2003) 

 

symmx = [0 0  0 v5 v5 v5 v5 v5 v5 v5 v5 v5 v5 v5 v5 v5 v5 v5 v5 v5 v5 v5 v5 v5 v5  

       v1  0  0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   

        0 v2  0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   

        0  0 v3 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   

        0  0  0 v3 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   

        0  0  0 0 v4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   

        0  0  0 0  0 v4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   

        0  0  0 0  0  0 v4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   

        0  0  0 0  0  0  0 v4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0     

        0  0  0 0  0  0  0  0 v4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   

        0  0  0 0  0  0  0  0  0 v4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0    

        0  0  0 0  0  0  0  0  0  0 v4  0  0  0  0  0  0  0  0  0  0  0  0  0  0    

        0  0  0 0  0  0  0  0  0  0  0 v4  0  0  0  0  0  0  0  0  0  0  0  0  0    

        0  0  0 0  0  0  0  0  0  0  0  0 v4  0  0  0  0  0  0  0  0  0  0  0  0    

        0  0  0 0  0  0  0  0  0  0  0  0  0 v4  0  0  0  0  0  0  0  0  0  0  0   



224 
 

        0  0  0 0  0  0  0  0  0  0  0  0  0  0 v4  0  0  0  0  0  0  0  0  0  0   

        0  0  0 0  0  0  0  0  0  0  0  0  0  0  0 v4  0  0  0  0  0  0  0  0  0   

        0  0  0 0  0  0  0  0  0  0  0  0  0  0  0  0 v4  0  0  0  0  0  0  0  0  

        0  0  0 0  0  0  0  0  0  0  0  0  0  0  0  0  0 v4  0  0  0  0  0  0  0     

        0  0  0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 v4  0  0  0  0  0  0   

        0  0  0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 v4  0  0  0  0  0   

        0  0  0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 v4  0  0  0  0    

        0  0  0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 v4  0  0  0   

        0  0  0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 v4  0  0  

        0  0  0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 v4  0  ]; 

     

% Now, what are the sampling intensities for each vital rate and the durations of sampling that  

%  you want to have run calculations for? insams is a matrix with columns of sampled number of  

%  individuals used to estimate each vital rate (in the same order as for the means and variances 

%  above) and rows for different sets of these samples to run. For example, the insams defined  

%  below has one set of sampling of 30 individuals for each vital rate, and one set of sampling 

100  

%  individuals for each rate; remember that these sampling patterns can be those used or ones 

you  

%  might want to consider.  

 

insams = [10 10 10 10 10; 30 10 10 10 10; 10 30 10 10 10; 10 10 30 10 10; 10 10 10 30 10; 10 

10 10 10 30; 30 30 10 10 30; 30 30 30 30 30]; 

 

% Then input each sampling duration that you want to consider: each number here is one 

duration to try:  

yrsams = [3 5 10 20]; 

 

% Rename output each time 

outputfilename = 'NEBBTC_Var8.txt'; % The name of the file to save output data to 



225 
 

 

%*************** End of Parameter inputs: Proceeding to calculations 

************************** 

   

%First Step: Basic calculations and estimation of the deterministic vital rate sensitivities 

estiouts=[];                            % The variable to store output data 

realmx = subs(symmx,Svr,realvrmeans);   % Making a matrix of the mean numerical values 

nmx = length(realmx);                   % Size of pop mx. 

nvr = length(realvrvars);               % Number of vital rates 

 

[lambdas,lambda1,W,w,V,v]= eigenall(realmx);    % Use eigenall.m to get eigenvalues 

sensmx = v*w'/(v'*w);                           % Get sensitivities of matrix elements 

vrsens = zeros(1,nvr);                          % Initialize vital rate sens. 

for xx=1:nvr  % A loop to calculate sensitivity for each vital rate 

 % First get derivatives of elements with respect to vital rates: 

 diffofvr = double(subs(diff(symmx,Svr(xx)),Svr,realvrmeans)); 

    vrsensbyelements(:,:,xx) = diffofvr;  

    % Then, sum up to get row of total vital rate sensitivities: 

  vrsens(xx) = double(sum(sum(sensmx.*diffofvr)));  

end; % xx 

% Second Step: Calculate stochastic lambda and its sensitivities to the matrix element means 

mx = realmx; % Set mx equal to the name of stored pop'n matrix  

vrcovmx = realcorrmx.*(sqrt(realvrvars')*sqrt(realvrvars)); % Make a covariance matrix 

tau=(vrsens)*vrcovmx*(vrsens'); % tau as in Tuljapurkar (1991), but estimated by vital rates 

% Estimate  log(lambda_S), the log of stochastic lambda: 

loglamS = log(lambda1) - 0.5*(1/(lambda1^2))*tau;  

 

squloglamderivs=[]; % Here, we are define the three storage variables for the final calcs: 

squVarsums =[]; 
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squCorrsums = []; 

 

for ii=1:nvr % Loop to get the values needed to estimate the derivatives: d(log(lambda_S))/d(vi) 

    kkllsum=0; 

    for kk=1:nvr 

        for ll = 1:nvr 

            dSldi =0;  

            dSkdi =0;            

dSldi = sum(sum( sensmx.*double(subs(diff(diff(symmx,Svr(ll)),Svr(ii)),Svr,realvrmeans)) )); 

dSkdi = sum(sum( sensmx.*double(subs(diff(diff(symmx,Svr(kk)),Svr(ii)),Svr,realvrmeans)) )); 

            for xx = 1:nmx 

                for yy =1:nmx 

dSldi = dSldi+vrsensbyelements(xx,yy,ii)*sum(sum(secder(mx,xx,yy).*vrsensbyelements(:,:,ll) 

)); 

dSkdi = 

dSkdi+vrsensbyelements(xx,yy,ii)*sum(sum(secder(mx,xx,yy).*vrsensbyelements(:,:,kk) )); 

                end 

            end 

            kkllsum= kkllsum+vrcovmx(kk,ll)*(dSldi*vrsens(kk) +dSkdi*vrsens(ll)); 

        end  

    end 

    % The derivatives of log(lambda_S) with respect to each vital rate:     

    loglamderivs(ii) =     vrsens(ii)/lambda1+vrsens(ii)*tau/(lambda1^3) -  

kkllsum/(2*lambda1^2); 

    % The square of each derivative, which multiples with the variance in each rate in equation 2.  

    squloglamderivs(ii) = (loglamderivs(ii))^2;  

    % The sums that multiple with the variances of the variances terms in equation 2: 

    squVarsums(ii) = (1/lambda1^4)*(  sum( vrsens(ii)*vrsens.*sqrt(realvrvars).*realcorrmx(ii,:)) 

)^2; 
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     disp('The vital rate number and sensitivity of log(lambda_S) to this vital rate'); 

     disp([ii,loglamderivs(ii)]); 

end; %ii 

% Finally, the matrix of values that multiple with the variances of correlations in equation 2: 

squCorrsums = (1/lambda1^4)*((sqrt(realvrvars')*sqrt(realvrvars)).*(vrsens'*vrsens)).^2; 

clear v1 v2 v3 v4 v5 Svr symmx; %making space in memory 

 

% Third Step: estimate sampling variance in log(lambda_S)for different sampling patterns  

for ii = 1:length(insams(:,1))% Loop through each set of sampling intensities 

    SamNs = insams(ii,:); % The vector of within year sample sizes to use  

    for jj=1:nvr            % A loop to use simulation to estimate the correlation of means and 

standard  

        if vrtypes(jj) ==1  %  deviations in sampled values for beta-distributed variables: 

            mn = realvrmeans(jj); 

            va = realvrvars(jj); 

            vv = mn*((mn.*(1-mn)/(va))-1); % calculate the beta parameters 

            ww = (1-mn).*((mn.*(1-mn)/(va))-1); 

             aa = betarnd(vv,ww,SamNs(jj),10000); % Draw 10,000 sets of values 

            aavars = var(aa); 

            aaSD= sqrt(aavars); 

            aameans=mean(aa); 

             

            aacov=cov([aaSD',aameans']); 

            vrvrvarcovs(jj) = aacov(1,2); 

        else vrvrvarcovs(jj)=0; 

        end; 

        betacorrcontribut(jj) = 2*vrvrvarcovs(jj).*loglamderivs(jj).*(1/lambda1^2).*(sum( ... 

            vrsens(jj)*vrsens.*sqrt(realvrvars(jj)).*realcorrmx(jj,:)) ); 

        disp('The vital rate number and, next line, beta-value correlation contribution to variance'); 
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        disp(jj); disp(betacorrcontribut(jj)); 

 

    end;    

    clear aa aavars aaSD aameans aacov; % making space in memory 

    for yy=1:length(yrsams); % Loop through the sampling durations 

        yrs = yrsams(yy); % number of years of data 

         

        for xx=1:nvr %loop to estimate  within-year sampling variances of each vital rate: 

            if vrtypes(xx) == 1;   inyrvar(xx) = realvrmeans(xx)*(1-realvrmeans(xx));  end; % 

binomials 

            if vrtypes(xx) == 2;   inyrvar(xx) = realvrmeans(xx);   end; % using Poisson variance for 

fecundities 

        end 

        % Next, estimate the total sampling variance for mean values (equation A6): 

        meanvars = (1/yrs).*(realvrvars+inyrvar./SamNs);    

        % Then, the variances for the corrected variance estimates (equation A9): 

        correctedvarvars = (2*yrs/(yrs-1)^2)*realvrvars.*(realvrvars+2*(inyrvar./SamNs));                         

        SDvars = (correctedvarvars./(4.*realvrvars)); % Transform correctedvarvars to get 

variances of SDs 

        SDvars(isnan(SDvars)) = 0; 

        correlvars = (yrs/(yrs-1)^2)*(realcorrmx.^2 -1).^2; % The variances of the correlations 

         

        % At Last, get the outputs:  

        % 1. The sampling variance in the estimate of deterministic log(lambda): this is also the  

        %     sampling variance in log(lambda_S) generated by sampling variance of the mean vital 

rates:  

        DeterLogLamVar = sum(squloglamderivs.*meanvars); 

        % 2. Sampling variance of log(lambda_S) from just variance in means and variances of 

vital rates:  

        VarLogLamVar   = sum(squloglamderivs.*meanvars+squVarsums.*SDvars ); 
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        % 3. Sampling variance of log(lambda_S) from variances of means, variances, and 

correlations,  

        %      but without the effects of beta variable correlations 

        FullLogLamVar = 

sum(squloglamderivs.*meanvars+squVarsums.*SDvars+0.5*sum(squCorrsums.*correlvars) ); 

        % 4. The best of sampling variance of log(lambda_S) with the effects of beta variable 

correlations 

        FullLogLamVarADDED = FullLogLamVar+sum(betacorrcontribut); 

         

        % Save the data: as now written, the outputs are one row for each combination of sampling 

duration and  

        %  intensity. The columns of data are: sampling intensity for the first vital rate; sampling 

        %  duration; sampling variance (SV) for deterministic log(lambda); SV for log(lambda_S) 

from SV in  

        %  vital rate means and variances; SV for log(lambda_S) from SV in means, variances, and 

correlations;  

        %  SV for log(lambda_S) from all sources; estimated log(lambda_S) for the input 

parameters; and,  

        %  estimated log(deterministic lambda).  

        estiouts = [estiouts;[SamNs(1) yrs  DeterLogLamVar VarLogLamVar FullLogLamVar 

FullLogLamVarADDED  ... 

                    loglamS  log(lambda1) meanvars SDvars ]]; 

        disp('The sampling intensity set, sampling duration set, and sampling variance in 

log(lambda_S)'); 

        disp([ii,yy, FullLogLamVarADDED]);            

    end; %yy 

end; %ii 

save(outputfilename, 'estiouts','-ASCII'); % This saves a file with the data in estiouts 

disp('DONE!'); 

 

 

 



230 
 

4-S5: Mark-Recapture Models  

 

Black bear population parameters (e.g., abundance, density) can be estimated from a variety of 

mark-recapture models, each with their own ability to accommodate assumptions.  Some of these 

assumptions apply to all models (e.g., demographic closure, marks are not lost), whereas other 

assumptions can only be relaxed with specific model types.  Managers should examine the model 

assumptions and decide which ones would apply to their populations before finalizing their 

selections.  Independent of which model type is chosen, managers should gain a thorough 

understanding of the assumptions that apply to their model before making management decisions 

based on its results.  This is particularly important for interpreting density estimates based on 

models that relax the assumption of geographic closure.   

 Although there are many more mark-recapture models than we can possibly cover here, 

the models we presented (Table 4-S6) have the greatest potential to provide reliable estimates of 

population parameters for black bears in the Northeast.  Of these, the Huggins closed-capture 

model (Huggins 1991) has been used most frequently to estimate black bear abundance because 

of its ability to incorporate individual covariates to model detection probabilities (i.e., increase 

estimate precision).  Closed-population mixture models have also been used when individual 

capture heterogeneity is known to bias estimates because of differences in individual detection 

probabilities.  Recently developed SECR models allow for precise estimates while addressing the 

geographic closure assumption, but these models have their own assumptions that may not be 

biologically feasible (e.g., home ranges that are stationary during sampling) or may be violated 

in real-world sampling scenarios (e.g., capture probability highest at home-range center).  When 

demographic or geographic closure is known to be violated, we suggest that managers consider 

an open population model such as Pollock’s robust design (Pollock et al. 1990), which requires 

multiple primary sampling periods (usually years). 
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Table 4-S6.  Assumptions of mark-recapture models for estimating American black bear 

population parameters in jurisdictions of the Northeastern Black Bear Technical Committee.  

Model suitabilitya 
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        Parameter of interest 

       Abundance + + ++ + + + + 

Density + + + ++ + + + 

Survival 

    

+ 

 

++ 

Reproduction 

    

+ 

 

++ 

Population growth 

    

+ 

 

++ 

        Model assumptions 

       Every animal has chance of being readably 

marked + + + + + + + 

Marks are read correctly and not lost + + + + + + + 

Every animal with equal capture probability + 

    

+ 

 Every animal has circular home range 

   

+ 

   Detection probability highest at home range 

center 

   

+ 

   Detection probability can be related to covariates 

  

+ + + + 

 Population has been representatively sampled + + + + + + + 

Population is demographically closed + + + + + + 

 Population is geographically closed + + + 

 

+ + 

 Study area boundaries do not change 

      

+ 

                

a ”++” = most suitable or applicable, “+ = suitable or applicable, null = not suitable or applicable; 

based on synthesis of report findings.   
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4-S7: Statistical Analysis Software  

 

Most of the mark-recapture model types presented in our review can be implemented with one or 

more freely available computer software packages.  These software programs can estimate a 

range of population parameters and offer a number of appealing features (Table 4-S8).  Some of 

the software programs have excellent graphic user interfaces (GUI) which makes obtaining 

parameter estimates easy for wildlife managers.  Caution should always be applied when using 

these programs, however, because even somewhat cryptic settings can have profound effects on 

the reliability of population parameter estimates (e.g., different link functions in Program 

MARK). 

 Among the many software programs available to managers, Program MARK (White and 

Burnham 1999) stands out with the most proven track record of reliable use for estimating black 

bear abundance and population growth.  Program MARK can accommodate a variety of data 

types (e.g., hair snares, bear rubs, telemetry, remote photographs, observations) and can 

implement most mark-recapture models that are commonly used by researchers and managers to 

estimate black bear population parameters (Table 4-S7).        

 Program R packages have particular appeal over stand-alone programs such as MARK 

because they generally offer greater versatility to estimate parameters of interest (Table 4-S8).  

Nonetheless, Program R requires an extensive time investment to adequately learn the 

programming language.  Therefore, managers (or anyone else) may encounter the frustration of a 

steep learning curve to become proficient with producing reliable results.  Advantages to R 

include that the program is free and open source, the programming language is consistent across 

many different packages, extensive online resources are available, and new packages are 

constantly being developed to accommodate new sampling methods and mark-recapture models.            
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Table 4-S8.  Software packages for analyzing mark-recapture models for American black 

bear populations in jurisdictions of the Northeastern Black Bear Technical Committee.  

        Program R packages 

Software suitabilitya 
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Parameter of interest 

      

Abundance + ++ 

 

+ + + 

Density ++ + 

 

++ + + 

Survival 

 

++ 

  

++ 

 Recruitment 

 

++ 

  

++ 

 Population growth b ++ ++ b ++ 

 

       Features 

      Open access software + + + + + + 

Open-source code 

   

+ + + 

Documentation ++ ++ ++ ++ + + 

Graphic user interface ++ + ++ 

  

+ 

Individual covariates + + 

 

+ + + 

Sex-specific parameter estimates + + + + + + 

Simulations ++ ++ ++ + 

 

++ 

              

a ”++” = most suitable or applicable, “+ = suitable or applicable, null = not suitable or applicable; 

based on synthesis of report findings.    

b = new models under development 


