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ABSTRACT 

 

Goodwin, Zachary, Master of Science, Summer 2020                      Environmental Studies 

 

 

Change is the Only Constant: A Snowpack Retention Analysis and Climate Vulnerability 

Road Map for the Skalkaho Creek Sub-Basin 

 

Chairperson: Dr. Len Broberg 

 

Climate change is impacting the whole of North America, although the impacts differ 

depending on regional geography. In the Intermountain West, climate change is 

contributing to lower overall snowpack totals and diminished late season streamflows. 

These changes will likely contribute to vulnerabilities in how much water is available to 

irrigators, municipalities, and fisheries dependent upon a consistent yearly flow of 

meltwater. This paper explores how snowpack retention has changed via the NASA 

dataset Daymet, which provides gridded estimates of weather parameters including Snow 

Water Equivalent in the Bitterroot River Basin of western Montana. This analysis showed 

that snowpack retention from April 1 – June 1 has declined over the period of record 

(1980 – 2018). Secondly, this paper uses the snowpack analysis to explore climate 

vulnerability in the Skalkaho Creek sub-basin and offers suggestions for what a future 

researcher may consider when investigating vulnerability to reduced snowpack retention 

and resultant lower late season streamflows.  
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INTRODUCTION 

Skalkaho Creek rises high in the Sapphire mountain range of far western 

Montana. It drains approximately 134 square miles from east to west before feeding into 

the much larger Bitterroot River just south of Hamilton, Montana. Because of the varied 

topography through which the creek flows, the distinct public and private ownership 

mosaic, and its consistent yearly snowpack, Skalkaho Creek has acted as a dependable 

source of irrigation water for Daly Ditches Irrigation District (DDID) in the downstream 

flats and as a stronghold for native salmonids in the upper reaches. However, that balance 

is potentially tenuous; reports list Skalkaho Creek as critically dewatered, suffering from 

elevated pollutants due to nearby agricultural and irrigation activity, and yet still 

supporting a vibrant fishery (Northwest Power and Conservation Council, 2009; Clark 

Fork Coalition, 2017). Looking into the future the effects of global warming and climatic 

change, the governance reality of overallocated Skalkaho Creek meltwater, and the 

competing demands for that water will potentially contribute to future climate 

vulnerabilities to social-ecological systems.  

Social-ecological systems thinking emerged as a theoretical framework to address 

the disconnect between researchers who study natural systems (i.e. non-human nature) 

and those who study human social systems. It is largely argued that in order to address 

pressing environmental concerns, human social systems and ecological systems must no 

longer be considered as separate entities but rather interdependent systems. Glaser et al. 

(2012) defines this system as “... a complex, adaptive system consisting of a bio-

geophysical unit and its associated social actors and institutions. The spatial or functional 

boundaries of the system delimit a particular ecosystem and its problem context” (p.4).  
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In line with this conception and theoretical framework, Skalkaho Creek can be 

considered a distinct social-ecological system consisting of the native biota occurring 

across the 134 square mile sub-basin as well as the interdependent social actors and 

institutions. Figure 1 below displays a recent conception produced by Dunham et al. 

(2018) that argues for considering rivers as social-ecological systems. On the right-hand 

side are ecological systems that can be envisioned as containing a determined capacity to 

produce riverscape conditions. These conditions then flow to the left-hand side as 

ecosystem goods and services (e.g. water, food, recreation, flood protection, etc.) and are 

then utilized (or not) by the human social system. The use of these goods and services are 

mediated by the social conditions at play, which largely determine the pressures placed 

on the ecological system. This conception of rivers as distinct SESs’ is useful when 

considering Skalkaho Creek, its current ecological system, the flow of those goods and 

services to the human social system, and how the human pressures in turn effect the 

ecological system. This paper will largely focus on the ecological systems’ capacity, 

specifically the climatic conditions effecting water quantity and will offer avenues for 

inquiry into sub-systems and social conditions on-the-ground.  
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Figure 1. Adapted from Dunham et al. (2018) 

In social-ecological systems research, change is a given. All social-ecological 

systems experience change and must adapt to their current bio-geophysical conditions. 

The ability for a system to absorb changes and continue to develop is referred to as its 

resilience. Adger (2006) posits that “... resilience refers to the magnitude of disturbance 

that can be absorbed before the system changes to a radically different state as well as the 

capacity to self-organize and the capacity for adaptation to emerging circumstances” 

(p.269). A system that is more susceptible to various disturbances is considered 

vulnerable.  

In terms of social-ecological systems, vulnerability can be adequately summarized 

as the potential for loss. To better understand how the concept can be applied, the 

following type of questions should be considered: what is being lost; what factors may or 

may not contribute to that loss; will the loss be felt equally across human or non-human 

systems? These questions continue to stretch across academic disciplines. Susan Cutter 

(1996) penned an important vulnerability synthesis piece where she described three 

distinct themes in vulnerability research: vulnerability as a risk/hazard exposure, 



 4 

vulnerability as social response, and vulnerability of places. The third—vulnerability of 

places—is described as a “third direction [that] is emerging [and] combines elements of 

the two, but which is inherently more geographically centered” (Cutter, p.533). This new 

direction opened the door for exploring climate vulnerability as a product of biophysical 

outcomes affecting a particular geographic location and the social response of the people 

inhabiting that locale. 

Neil Adger (2006) refined the definition of vulnerability as the susceptibility to 

harm occurring when social or ecological systems are exposed to stresses associated with 

environmental or social factors and when the systems do not possess the capacity to 

adapt. The concept can be thought of as any variable’s sensitivity to stress divided by the 

system’s current state relative to its likely threshold multiplied by the probability of 

exposure to stress. Another way to conceive of a systems vulnerability is by considering 

how exposed a system is to certain stressors combined with its sensitivity to the same or 

similar stressors minus its adaptive capacity. In essence, social-ecological vulnerability is 

analogous to low levels of system resilience. To put it a bit more elegantly, “V = E + S - 

AC; whereby V= vulnerability; E= exposure; S = sensitivity; AC = adaptive capacity” 

(Bennett et al., 2016). 

Considering vulnerability as it applies to social-ecological systems, the following 

analysis conducted in chapter 1 examines ecosystem capacity through an investigation of 

historical snowpack retention via a Geographic Information System (GIS). The GIS looks 

across the entire Hydrologic Unit Code (HUC) 8 Bitterroot watershed in order to discern 

differences in snowpack retention over time for the sixteen HUC 10 sub-basins that make 

up the larger watershed. This analysis was conducted at the basin scale to consider the 
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Skalkaho Creek sub-basin relative to the 15 other Bitterroot watershed sub-basins in 

terms of snowpack retention. This consideration facilitates a discussion of how 

vulnerable Skalkaho Creek is to diminished snowpack retention and resultant lower late 

season streamflows. In chapter 2, I use the discussion and results from chapter 1 to lay 

out a roadmap for a future researcher to follow with suggestions regarding a full-fledged 

vulnerability assessment of the distinct Skalkaho Creek HUC 10 sub-basin. This roadmap 

acknowledges the nested nature of Skalkaho Creek within the larger Bitterroot HUC 8 

watershed, the water governance reality in Montana, and larger national and global trends 

arguably affecting the system’s functionality. 

All told, the snowpack analysis and subsequent vulnerability roadmap should be 

useful to a future student, governmental, or nongovernmental researcher attempting to 

better understand Skalkaho Creek as a social-ecological system. More importantly, this 

paper should illuminate ways to consider the various contextual elements outlined 

hereafter to better understand current social-ecological complexity and the potentially 

tenuous situation Skalkaho Creek, its dependent irrigators and social system, as well as 

the existing ecological system currently reside.  

Intermountain West Trends Toward Smaller and Smaller Snowpack 

Averages  

Mountain ranges across the western United States act as “water towers” for the 

valleys below, which tend to include human settlements. These water towers typically 

accumulate snow throughout the winter months, store them as snowpack, and slowly 

release that snowpack downgrade throughout the summer season as liquid water. In 

western Montana, including the Bitterroot basin, snowmelt runoff directly provides a 
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large share of water for agricultural uses, human consumption, and aquatic ecosystems. 

Indirectly that same snowmelt contributes to human-induced groundwater recharge, 

which is becoming an increasingly popular source of domestic water supply for both 

Ravalli County residents and municipalities. The variability of this spring runoff is of 

critical importance to irrigation district managers, fisheries’ biologists, and private water-

right holders attempting to balance the myriad demands for the precious meltwater. 

Furthermore the timing has become increasingly variable, and as a general rule, a shift 

toward earlier snowmelt and earlier peak runoff date has been observed across the 

Intermountain West and Western Montana (Mote et al., 2005; Stewart et al., 2005; 

Whitlock et al., 2017). These findings and predictions represent a potent exposure to less 

available meltwater. However, the degree to which water users and fisheries experience 

them depends on how sensitive they are and how much adaptive capacity they possess.  

Findings indicating changes in snowpack behavior prompted Montana researchers 

to take a more critical look at future climate scenarios and their impact to snowpack. The 

Montana Climate Assessment was first published in late 2017 to provide Montanans with 

research-driven predictions. It gives the likelihood of those predictions based on expert 

consensus and amount of credible evidence. The contributors to this publication follow 

guidelines for assessing confidence set by the National Climate Assessment and 

Intergovernmental Panel on Climate Change (IPCC). For clarification and from here on 

out: 

Each key message provided in the Montana Climate Assessment is followed by a 

parenthetical expression of confidence. We asked our authors to assess their confidence 

in the key message by considering a) the quality of the evidence and b) the level of 

agreement among experts with relevant knowledge used to craft the message. We then 

used these two factors and the criteria used in the National Climate Assessment (see 
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graphic below) to assign the confidence ratings expressed in the MCA. (Whitlock et. al., 

2017, “Introduction,” para. 9) 

 

The Montana Climate Assessment points out that as Montana warms over the next 

century, snowpack at mid and low elevations (below 8,000’) is likely to be reduced (high 

agreement; robust evidence); historical observations show that peak spring runoff has 

occurred earlier and earlier in the season and this trend is likely to continue (high 

agreement; robust evidence); and arguably most importantly, earlier snowmelt coupled 

with earlier peak spring runoff is likely to decrease water availability in snowmelt 

dominated watersheds for late-season uses (high agreement; robust evidence) (Whitlock 

et. al., 2017). These predictions are likely to negatively impact meltwater availability 

across the 16 Hydrologic Unit Code (HUC) 10 sub-basins, but these predictions are 

especially of concern for the Sapphire range sub-basins constituting the eastern Bitterroot 

watershed boundary. This boundary does not rise much higher than 8,000’ above sea 

level that the Montana Climate Assessment points out as a relative threshold for concern: 

those areas above 8,000’ are likely to be less impacted than areas below 8,000’ elevation.   

Snowpack accumulation and ablation have been extensively studied in the 

scientific community, and for snowmelt-dominated watersheds the data and predictions 

are critically important. Snowpack accumulation in the Northern Rockies is largely 

driven by global and continental scale climate processes (Selkowitz et al., 2002). 

However, at the watershed level, a complex relationship between “…regional 

precipitation and temperature regimes coupled with landscape and landform factors such 

as elevation, slope, aspect, canopy, and latitude ultimately drive local scale variation of 

snowpack accumulation” (Broberg, 2019). Natural resource managers and farmers, as 

well as others interested in overall snowpack totals, tend to rely on snow water equivalent 



 8 

(SWE) to understand how much liquid water will be made available upon snowpack 

ablation. In large part, the SWE is depended upon because it is unaffected by short-term 

changes in snow depth from settlement, compaction, and spring freeze/thaw events. Most 

importantly, it provides interested parties the most accurate characterization of liquid 

water available for the summer irrigation season.  

It is well understood that as global warming progresses, overall snowpack and 

ablation rates are expected to change. The Northern Rockies are predicted to see 

increased periods of precipitation falling as rain as opposed to snow during the normal 

peak accumulation season (Knowles, Dettinger, & Cayan 2006). Furthermore, studies 

conducted by Mote et al. (2005) and Pederson, Betancourt, and McCabe (2013) have 

documented the links between climate change processes and overall snowpack reductions 

in Intermountain West snowpack. In fact, Pierce et al. (2008) found that up to 60% of 

overall snowpack decline between 1950 and 1999 in the Intermountain West was 

attributable to human carbon emissions and resultant climate change processes. 

Studies have also pointed to the fact that extreme precipitation events (i.e. heavy 

snowfall or abnormal rain events) have an outsized effect on precipitation regimes (Lute 

& Abatzoglou, 2014), and that these events tend to occur when temperatures are at or 

near freezing (O’Gorman, 2014). However, the balance between warming temperatures 

and resulting precipitation as rain is uncertain. While uncertainty may exist regarding 

extreme precipitation events, snowpack observations indicate snowpack has declined 

over the period of record. This negative trend is expected to continue, and, most 

importantly, it is highly likely anthropogenic forcings are playing an outsized role when 

compared to more traditional, non-human drivers of global climate changes. In fact, some 
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projections estimate that snowpack in the western United States will decline by as much 

as 60% in the next 30 years if business-as-usual emissions scenarios remain (Fyfe et al., 

2017). 

Snowpack and streamflow timing studies exist at the watershed (Farjad, Gupta, & 

Marceau, 2016), river basin (Kang et al., 2016), regional (Stewart, Cayan, & Dettinger, 

2005), and global scales (Adams, Hamlet, & Lettenmaier, 2009). However, these studies 

are either too coarse in scale for managers to make informed decisions or the 

methodology by which predictions are made is too onerous for managers and water 

dependent communities to utilize effectively (i.e. complex mathematical model). 

Moreover, irrigation district managers, especially those dependent on smaller HUC 10 

sub-basins, need information at a finer scale than most interpolated climate products 

allow. However, Daymet interpolates SWE across 1km2 pixels, which would allow 

irrigation district managers to assess SWE changes over time at the HUC 10 scale. By 

doing so, these managers could use that information to tease apart challenges to adaption, 

identify opportunities for mitigation, and ultimately help resolve the allocation of water 

resources. Climate change poses myriad threats to Montana, the Pacific Northwest, and 

North America at-large, which include: increasing overall average temperatures, 

changing hydrologic regimes, increasing prevalence and severity of drought, and the 

resultant challenges to human society.  

For many Bitterroot sub-basins (Skalkaho Creek included), the available surface 

water is largely controlled by irrigation districts who manage and maintain water 

distribution infrastructure and deliver that water to all district members provided they pay 

membership dues. DDID is one such example of this water management system. DDID, 



 10 

like many other irrigation districts, is dependent on a certain amount of snowmelt realized 

as irrigation water each year. However, access to this surface water is unequally 

distributed and limited by year-to-year hydrographic variations. It is reasonable to argue 

that Skalkaho Creek is overallocated in terms of irrigation water, let alone that which 

would be necessary to support a sustainable fishery. In fact, a local Hamilton, Montana, 

resident and DDID employee informed me that if DDID wanted to fill all of their 

Skalkaho Creek water rights during the regular irrigation season, they would “run the 

creek dry” (personal communication, September 1, 2018). Additionally, a local 

newspaper has corroborated fears regarding low water years on Skalkaho Creek and 

stress to various downstream users as a result (Backus, 2013). These observations are 

corroborated by Figure 2, taken from the United States Geological Survey (USGS) 

showing yearly hydrographs for Skalkaho Creek from 1958 - 1983. Unfortunately, stream 

gauges on Skalkaho Creek are no longer operational, and thus current data is unavailable. 

However, this data does provide insight into average flows from the past. Of importance 

to DDID are distinct peaks of typically around 600 cubic feet per second (cfs) in early 

summer and a quick decline to under 100 cfs by mid to late summer. DDID holds at least 

22 separate rights for irrigation water ranging from 1 cfs to 53 cfs and with priority dates 

from 1865 to 1891. In total, these various water rights to Skalkaho Creek meltwater add 

up to 318 cfs for the period of April 1 through October 31 each and every year.  
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Figure 2. Skalkaho Creek hydrograph from 1958 to 1983. From U.S. Geological 

Survey, 2020, National Water Information System data available on the World Wide 

Web (USGS Water Data for the Nation), accessed June 10, 2017, at 

URL https://waterdata.usgs.gov/nwis/ 

 

The reality of water shortages in times of below average snowpack or above 

average ablation is further complicated by the legislative closure of further claims to 

Bitterroot Valley surface water due to potential overallocation. Rapid population growth, 

increased subdivision of large parcels, a continuous flow of new water right applications, 

and a lack of accurate records pertinent to historic water claims gave the state of Montana 

reason to close the Bitterroot River Basin and all of its tributaries to new surface water 

allocation effective March 29, 1999. This closure was intended to give the DNRC time to 

sort out all of the claims, and it meant that the Montana Department of Natural Resources 
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and Conservation (DNRC) could not process a new surface water right application until 

after all Bitterroot watershed surface water rights had been adjudicated. Now a little over 

twenty years later, the closure is still in effect. The combination of diminishing surface 

water availability and a rigid governance structure that prioritizes the earliest use above 

all else presents a complex or “wicked” problem for DDID and other valley 

appropriators.  

Wicked problems, as first introduced by Rittel and Webber (1973), are 

characterized as those problems which are ill-defined and rely upon human judgement for 

resolution. These problems are different from more traditional natural scientific pursuits 

or problems which can be readily defined and that may have findable solutions. On the 

contrary, wicked problems occur at the intersection between science and policy and 

therefore are infused with societal, cultural, and historical context.  

The irrigation district, its members and otherwise affected non-members, and their 

associated dependencies on and interactions with the hydrologic regime and resultant 

naturally occurring non-human life can be considered a distinct social-ecological system. 

Broadly defined a “distinct social-ecological system” is a system consisting of a bio-

geophysical unit and its associated social actors. This concept argues and is built upon the 

foundation that human social systems and naturally occurring ecosystems cannot be 

considered without the other because they are inextricably connected. However, social-

ecological systems (SES) also interact with one another across space, time, and can be 

considered at nested scales. These temporal and hierarchical considerations are known as 

a “panarchy.” This concept beckons researchers to consider the myriad connections 

between one SES and another when analyzing a particular piece of the puzzle at a finite 
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focal scale. Considering the above definitions and concepts, I will focus the following 

analysis and roadmap on the distinct social-ecological system encompassing the distinct 

Skalkaho Creek HUC 10 sub-basin while acknowledging its nested nature. 

Research Design 

A case study differs from all other research methods in that it is not a 

methodological framework. It is rather a means of inquiry that spans disciplines and can 

thus employ numerous methodological approaches (Hesse-Biber & Leavy, 2011). I used 

a mixed-methods approach, initially employing a GIS to examine snowpack retention 

through time via Daymet snow water equivalent (SWE) data and then sought to validate 

Daymet against observed SNOTEL SWE records. This snowpack analysis provides a 

jumping-off point and informs potential subsequent considerations: by DDID members 

whose water comes exclusively from Skalkaho Creek; for other irrigation districts and 

their members whose water originates from a finite source; or to inform valley-wide 

economic trends. This consideration of vulnerability will be conducted in the spirit of 

Adgers’ (2006) conception as the equation: V = E + S - AC; whereby V= vulnerability; 

E= exposure; S = sensitivity; AC = adaptive capacity. For instance, DDID is exposed to 

the various consequences of a rapidly changing climate, and as such, the district and its 

Skalkaho Creek users will likely face more frequent water shortages. These shortages 

will likely be driven by diminished snowpack totals, earlier onset of spring snowmelt, 

and lower late season flows as a result. Users’ sensitivities will more likely have to do 

with individual users’ distance to main lateral, purpose for water usage and size of 

operation, understanding of district by-laws, and other yet unidentified factors.  
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CHAPTER 1: SNOWPACK ANALYSIS 

Material & Methods 

To ground my analysis of the irrigation district and its challenges, I first assessed 

snowpack retention over time. This analysis shed light on the potential spatial differences 

in exposure to snowpack loss and heightened ablation rates. To do this, I employed a 

methodology outlined by Broberg (2019) which utilizes Daymet data from 1980 - 2018 

and investigates snowpack retention over time. Daymet was chosen because it is the only 

gridded climate product with a fine enough scale (1km x 1km) to compare HUC 10 

watersheds, and it is one of the few products to interpolate SWE. I looked at the 

Bitterroot basin at-large in order to compare the various HUC 10 sub-basins to each other 

based strictly on snowpack retention over time. To calculate this sub-basin retention, I 

derived SWE values for April 1 and June 1 for the time period 1980 - 2018 via Google 

Earth Engine and imported those rasters to ArcMap for subsequent work with ArcGIS 

Spatial Analyst. Finally, I calculated mean SWE for April 1 and June 1 for each 

watershed polygon for each year from 1980 - 2018. Snowpack retention to changing 

climatic conditions was then estimated by [(June 1 SWE/HUC 10 sub-basin)/ (April 1 

SWE/HUC 10 sub-basin)]*100 to yield a snowpack retention metric (% retention). This 

metric will allow for a more nuanced analysis and discussion of Skalkaho Creek, DDID, 

and the dependent social-ecological system when viewed in comparison to other 

Bitterroot Valley sub-basins or irrigation districts.  

 In order to verify, corroborate, and justify April 1 and June 1 as adequate dates to 

assess snowpack retention, I first investigated average air temperature and temperature 

maximum trends for two SNOpack and TELemetry (SNOTEL) sites located within the 
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Skalkaho Creek watershed: Daly Creek (figure 3) and Skalkaho Summit (figure 4). Daly 

Creek SNOTEL station is located just off a small Daly Creek tributary at an elevation of 

5780’ and precise location of latitude (46° 10’ 59”) longitude (113° 51’ 0”). Just 

upstream along Daly Creek from the Daly Creek SNOTEL site lies Skalkaho Summit 

SNOTEL site. This site sits just below the rugged ridgeline that make up the Sapphire 

Mountain range. Skalkaho Summit SNOTEL site sits at an elevation of 7250’ and precise 

latitude (46° 15’ 0”) longitude (113° 46’ 0”).  

 

Figure 3. Daly Creek SNOTEL site temperature record from 1989 to 2018. 
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Figure 4. Skalkaho Summit SNOTEL site temperature record from 1989 to 2018. 

Figures 3 and 4 based on Bitterroot Basin SNOTEL stations show a gradual 

warming trend over the time period 1989 - 2018. The approximately 5.0°F rise in 

temperature from 1989 - 2018 falls in line with Whitlock et al. (2017) who noted that 

across Montana temperatures have increased between 1950 and 2015, and that change in 

temperature were most pronounced during winter and spring. Put another way, figures 5, 

6, 7, and 8 display the difference for each year from the average temperature for that 

SNOTEL site period of record and the respective month. Again, the difference from the 

average is generally lower than average for the period 1989 - 2002 and generally above 

average for the period 2002 - 2018.  
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Figure 5. Skalkaho Summit SNOTEL site March temperature average difference 

from the mean over the period of record. 

 

Figure 6. Skalkaho Summit SNOTEL site May temperature average difference 

from mean over the period of record. 
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Figure 7. Daly Creek SNOTEL site May temperature average difference from the 

mean over the period of record. 

 

 

Figure 8. Daly Creek SNOTEL site March temperature average difference from 

the mean over the period of record. 
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One potential effect of this observed warming trend is an earlier beginning to the 

spring snowmelt season. Assuming the warming trend continues at the current pace, 

ablation rates and runoff onset timing will likely be higher and earlier during the spring 

snowmelt season. This result has consequences for both the human social and economic 

systems that rely on consistent yearly flows to replenish reservoirs, fill irrigation canals, 

and provide recreational opportunities along healthy rivers and streams. Natural 

ecosystems, too, are accustomed to such predictable seasonal hydrologic variation. Past 

conditions ensured enough water to facilitate migratory behavior and relatively cool 

stream temperatures crucial to many species’ biology. This warming trend validates the 

investigation of snowpack retention rate change over time, and how well Daymet predicts 

this trend when compared at the pixel level to SNOTEL observations.  

Importantly, Daymet calculates SWE by requiring inputs: Tmin, Tmax, and 

precipitation. Daymet temperature observations come from two sources: National 

Climate Data Center and SNOTEL (Thornton et al., 2016). Approximately twenty-five 

years ago, a field campaign was launched that lasted through the mid-2000s to replace 

these SNOTEL sensors due to likely temperature bias. Recently, Oyler et al. (2015) found 

that SNOTEL temperature sensors significantly bias both Tmin and Tmax, and the new 

sensors appear to be biasing Tmin towards warmer readings. This bias is more 

pronounced during the relatively colder winter months, but it is also present during the 

spring snowmelt season.  

Due to the above findings, I also sought to validate SWE derived from Daymet 

with SWE as measured at the five Bitterroot Watershed SNOTEL sites: Skalkaho 

Summit, Daly Creek, Twin Lakes, Twelvemile Creek, and Nez Perce Camp. This 
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validation was performed by converting SWE (in.) to SWE (kg/m2). First, SWE (in.) was 

converted to a snowload (lbs/ft2) estimate by multiplying SWE (in.) by 5.2 (Natural 

Resource Conservation Service, n.d). After converting to snowload, I converted snowload 

to the metric equivalent through multiplying lbs/ft2 by 4.88. This resulted in a comparable 

value to Daymet, which calculates SWE as kg/m2. However, Daymet is a gridded raster 

mosaic with individual pixels measuring 1km x 1km, so for each pixel, Daymet assigns 

what could be considered an average kg/m2  for the entire km2 . This value was then 

compared to Daymet SWE derivations for model fit and consistency.  
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Results  

            Snow Water Equivalent is an important metric for Intermountain West 

communities dependent on a consistent yearly pulse to recharge streams, provide 

irrigation potential, and sustain drinking water supplies. Analysis of Daymet data at the 

HUC 10 sub-basin level indicates an overall decline in SWE retention from April 1 - June 

1 (see figure 9) for the entire HUC 8 Bitterroot River Watershed. Additionally, two 

SNOTEL sites that regularly record snowpack on June 1, Twin Lakes and Skalkaho 

Summit, have also seen a decline in amount since 1989 (see figures 11 and 14, 

respectively). Interestingly, all five of the SNOTEL sites have trended slightly upwards in 

April 1 SWE values. However, a closer inspection of April 1 SWE values via Daymet 

(see figure 9) shows a probable decrease in April 1 SWE values when looking at the 

entire sub-basin. This data point underscores the importance of considering snow 

accumulation across a particular geography and not just in one fixed location. 

Furthermore, the observed increase of April 1 SNOTEL SWE values and observed 

declines in June 1 SNOTEL SWE values lends credibility to conclusions that snowpack 

ablation is likely occurring earlier in the spring snowmelt season, which is consistent with 

the upward temperature trends observed at the two Skalkaho Creek SNOTEL sites. 
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Figure 9. April 1 SWE values calculated via Daymet dataset.  
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Figure 10. Retention percentages over time for the 16 HUC 10 sub-basins of the 

HUC 8 Bitterroot River watershed as calculated via Daymet data.  
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Figure 10 shows that SWE retention, as calculated with Daymet data, has dropped 

over 30 percentage points for all HUC 10 sub-basins except Miller Creek, which has 

dropped approximately 25 points and now hovers just above zero. This trend brings into 

focus the likely reality of less available freshwater for both human social systems and 

naturally occurring ecological processes, especially in the late summer. The steady 

downward trend in snowpack retention over time falls in line with the abovementioned 

various predictions laid out in the 2017 Montana Climate Assessment.  

            Figure 11 (pictured below) geospatially displays the mean retention percentage 

distribution across the 16 Bitterroot Watershed sub-basins for the years 1980 - 2018 and 

breaks them down into four quartiles. While the overall retention has diminished for all 

basins, the figure shows that those basins on the west side that make up the Bitterroot 

Range likely being more retentive now and moving forward than those on the eastern 

Sapphire side. This is likely due to the Bitterroot Range having significantly more land 

above 8,000’ than the relatively lower on average Sapphire Range. For example, the 

highest point in the Bitterroot Range is Trapper Peak (10,157’) compared with Kent Peak 

(8,999’) the Sapphire Range high point.  
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Figure 11. Mean retention percentage (1980 - 2018) for all HUC 10 sub-basins 

ranked and displayed as quartiles.  
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Figures 12, 13, 14, 15, and 16 below display the results from the Daymet 

validation exercise. For the five SNOTEL sites investigated, April measurements do not 

line up well at all. For instance, the index of agreement calculated for April 1 values at 

Daly Creek SNOTEL site were >0.5, which indicates paltry agreement between the 

observed and predicted values. This trend of low agreement was noted for all April 1 

values with Nez Perce Camp and Twelvemile Creek faring a bit better with index of 

agreements of 0.57 and 0.53, respectively. June 1 values, on the other hand, revealed 

more varied results. The three lower elevation SNOTEL sites: Daly Creek (figure 16), 

Twelvemile Creek (figure 13), and Nez Perce Camp (figure 14) revealed almost zero 

agreement between the observed and predicted values. However, June 1 measurements 

line up much better at the two relatively higher elevation sites: Twin Lakes (figure 12) 

and Skalkaho Summit (figure 15) with index of agreement values at 0.72 and 0.84, 

respectively. Overall, this lack of model validation and inconsistent correlations point to 

Daymet being able to only do so much for managers looking to leverage it in order to 

make recommendations at the HUC 10 sub-basin level.  
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Figure 12. A visualization of how consistent Daymet is at predicting SWE values 

when comparing them to SWE values as observed at Twin Lakes SNOTEL station.  

 

 

Figure 13. A visualization of how consistent Daymet is at predicting SWE values 

when comparing them to SWE values as observed at Twelvemile Creek SNOTEL station. 
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Figure 14. A visualization of how consistent Daymet is at predicting SWE values 

when comparing them to SWE values as observed at Nez Perce Camp SNOTEL station.  

 

 

Figure 15. A visualization of how consistent Daymet is at predicting SWE values 

when comparing them to SWE values as observed at Skalkaho Summit SNOTEL station.  
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Figure 16. A visualization of how consistent Daymet is at predicting SWE values 

when comparing them to SWE values as observed at Daly Creek SNOTEL station.  
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that offers SWE as a data point, it is arguably the best, if not only, choice available to 

researchers looking to investigate SWE trends over time at the HUC 10 level. Overall, 

Daymet proves consistent with past trends and research which have noted a precipitous 

decline in snowpack across western Montana. As such, Daymet proves a decent research 

tool for managers looking to examine SWE trends over time. The retention ranking 

scheme, as demonstrated here for the Bitterroot watershed, could offer insight towards 

which HUC 10 sub-basins are more likely to be more resistant to climate change moving 

forward in time. This knowledge can help contextualize the hydrologic reality at the HUC 

10 scale and act as a decision-making starting point or baseline for irrigation managers, 

fisheries biologists, and other interested stakeholders looking to balance the myriad needs 

for variable meltwater.  

Of course, the decisions made with regards to a dataset can only be as good as the 

data being relied upon. In the case of this analysis utilizing Daymet datasets, certain 

results appear problematic if a manager intends to use Daymet to drive decision-making 

at the sub-basin scale. Considering the inconsistent agreement indexes found between 

Daymet and SNOTEL, it is worth considering if there are more appropriate gridded 

climatological products offering more accurate predictions. Oyler et al. (2015) 

recommended using TopoWX as it was the most accurate when predicting temperatures 

across the United States. However, TopoWX only looks to provide more accurate 

temperature trends over time, which does not help researchers in search of more accurate 

gridded SWE estimates. PRISM, on the other hand, offers both temperature and 

precipitation estimates, but instead of differentiating between liquid and frozen water, 

PRISM offers precipitation as rain + melted snow. Additionally, Oyler et al. (2015) found 
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PRISM temperature bias to be fairly similar to the bias found in Daymet. SNOw Data 

Assimilation System (SNODAS) contains snowpack properties, including SWE, and was 

developed by the NOAA National Water Service’s National Operational Hydrologic 

Remote Sensing Center (NOHRSC). It models conditions based on specific point 

observations as well as remotely sensed satellite data. Broberg (2019) found April 1 

SNODAS values to correlate strongly with Daymet. However, that positive correlation 

could be partly due to Daymet accuracy bias towards northerly latitudes pointed out by 

Oyler et al. (2015). As such, an important next step would be to validate SNODAS 

against Daymet in the Bitterroot Watershed to further understand how well Daymet can 

be relied upon as a management tool.  

Another consideration for further validation and to tease out inconsistencies 

between Daymet and SNOTEL are to both find a geographically more precise conversion 

metric for converting SNOTEL values (inches) to Daymet (kg/m2) and to better estimate 

Daymet at the m2 level. The method I employed to convert Daymet pixels to the m2 value 

did not consider the varied topography found in any given square kilometer of 

mountainous regions. The varied topography and interspersion of forests and meadows 

greatly affect how snow settles and compacts across the landscape. As such, SNOTEL 

sites are likely to be located where humans and equipment can access them with relative 

ease. Higher resolution Digital Elevation Models (DEMs) could offer insight into how 

varied a given square kilometer is on the ground, and potentially offer a way forward in 

accounting for that variation.   

The USDA Natural Resources Conservation Service maintain snow course data 

across the Intermountain West, which could offer additional opportunity to validate 
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Daymet SWE values. These sites are “…permanent site[s] that represent snowpack 

conditions at a given elevation in a given area… Generally, the courses are about 1,000 

feet long and are situated in small meadows protected from the wind” (Natural Resources 

Conservation Service, n.d.). As this data is observational and covers a much larger reach 

than much smaller SNOTEL sites, it offers a more nuanced observation of snowpack 

variation across the landscape. However, these snow course sites still exist in areas of 

relative homogeneity and do not completely represent conditions found in any given 

square kilometer.  

Daymet offers the ability for researchers and managers to examine climatologic 

change at a finer scale than any other gridded raster product. However, this fine 

resolution does not come without inconsistencies. Interpolated data like Daymet require 

observational data inputs to interpolate that across physical space. As noted above, 

however, the outputs are only as good as their inputs. For Daymet, the SNOTEL 

temperature station bias noted by Oyler et al. (2015) have hampered the products ability 

to accurately predict SWE across high elevation mountainous regions common to the 

Rocky Mountains. However, even with the temperature bias, temperatures across 

Montana are trending upwards (Whitlock et al. 2017). 

 The combined findings from Daymet and SNOTEL sites, which show a steady 

decline in June 1 SWE values, validate that indeed snowmelt dominated watersheds 

should expect to see lower than average late season flows in the near future. Additionally, 

at the Skalkaho Summit and Daly Creek SNOTEL sites, a precipitous temperature 

increase is also observed for the entire months of March and May. It is important to note 

that these observations may be impacted by the abovementioned sensor bias. 
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Furthermore, the general decline observed in June 1 SWE values for both observational 

data collected at SNOTEL sites and Daymet interpolations combined with an interesting 

upward trend in April 1 SNOTEL SWE values lend credibility to the conclusion that 

snowmelt timing is earlier and overall ablation rates are higher. When factoring 

anthropogenic forcings into this equation, it is reasonable to conclude this trend of 

temperature increase and ablation rates resulting in lower late-season flows is likely to 

continue along its current trajectory. This reality is likely to contribute challenges to both 

the human social systems and naturally occurring ecosystems dependent and accustomed 

to predictable and consistent year-to-year hydrologic fluctuations.  

It is evident that precipitous declines in overall snowpack retention across the 16 

HUC 10 sub-basins of the Bitterroot Watershed represent potent climatological exposures 

that valley residents are variably sensitive to, possess differing levels of adaptive capacity 

to manage, and ultimately are differentially vulnerable to future change involving lower 

snowpack retention, earlier snowpack ablation rates, and resultant diminished late-season 

streamflow. As such, I will now shift focus towards the DDID, Bitterroot Valley and its 

varied residents, and stream ecology, which are all potentially vulnerable to shifting 

hydrologic regimes brought on by climate change, utilizing social-ecological 

vulnerability as a starting point and explore the myriad ways in which a full-scale 

vulnerability assessment might consider some of the interrelated elements identified 

hereafter. 
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CHAPTER 2: SKALKAHO SUB-BASIN CLIMATE VULNERABILITY ROAD MAP 

 Skalkaho Creek, DDID or one of the other 9 irrigation districts, and the Bitterroot 

Valley at-large are all variably exposed to diminished snowpack retention depending on 

sub-basin water source and subsequent lower late-season flows. Important, however, is 

the interconnectedness between meltwater availability and timing and the two dominant 

economic engines: agriculture and tourism. Farms and ranches must have secure, 

consistent, and low-cost access to water in order to maintain business stability and long-

term profitability. These farms are either private appropriators with their own water rights 

or they are members of an irrigation district (such as DDID) and are therefore beholden 

to district by-laws and water availability. Furthermore, the effects regarding changing 

economic circumstances are not ubiquitous throughout the valley. Any changes past, 

present, or future interact with the individual’s socioeconomic reality and that 

individual’s participation in an irrigation district, and, if they participate, how secure the 

districts’ water source is to variable snowpack conditions; how well maintained the 

irrigation infrastructure is; and how well district by-laws reflect and effectively manage 

the allocation of water to all members.  

The Bitterroot Valley at-large and its associated water for irrigation is important 

to agricultural production in the area, and while it has changed a lot over the nearly two 

centuries of Euro-American occupation, agriculture has remained critical to the 

Bitterroot’s social fabric. More recently, however, the amount on non-qualified ag land 

(i.e. agricultural land with under $1,500 in profits) has grown by approximately 24,000 

acres between the 1980s and 2000s (Swanson, 2006). The most up-to-date United States 

Department of Agriculture farm census from 2017 reports Ravalli County as having 
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1,576 total farms. Figure 17 below breaks down the total number of farms into their 

operational size. Interestingly, 1,175 of these farms are less than 50 acres in size.  

 

Figure 17. Total number of farms in Ravalli County categorically displayed by 

their size.  

 

Furthermore, cash receipts from livestock and crop sales totaled $42,662,000 in 

2017 and figure 18 below breaks that number further to show how many farms fall into 

USDA determined income brackets. Concurrent with figure 16 and the trend towards 

more and more non-qualifying ag. land is the glut of marginally profitable farms. In fact, 

1,196 farms make less than $10,000 per year. This reality of smaller farms overall and a 

sizeable portion of them making less than $10,000 per year begs the question of what else 

drives the valley economy.  
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Figure 18. Total farm income in Ravalli County categorically displayed by 

income ranges.  

 

The transition from commercially viable ag land to non-qualifying ag land is 

important context to consider as it may be indicative of an economic shift from a more 

traditional agrarian community towards one trying to balance agricultural heritage with 

an amenity-based service economy largely dependent upon tourism and outdoor 

recreation pursuits. Somewhat paradoxically, tourism both depends on the pastoral setting 

and associated appeal the valley holds as a place of rural culture and expansive views, but 

it also depends on well-watered streams for the maintenance of recreation-related 

ecosystem services. Figure 19 below shows how tourism expenditures have trended 

upwards in Ravalli County over the past 8 years, with the exponential growth trend in 

hiring an outfitter or guide standing out as the fastest growing sector. This upward trend 

represents a significant portion of Ravalli County’s economic activity acting in tandem 

with agriculture to constitute most of the overall economic activity. 
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Figure 19. Nonresident expenditures in Ravalli County, MT by category from 

2011 to 2018 

 

In addition to altering the social fabric, the economic transition has brought with it 

conflict between more traditional irrigators who are attempting to carve out a living and 

newcomers who utilize irrigation to maintain a certain lifestyle largely constituted by lush 

landscaping, hobby farming, and other non-agrarian water uses (Niemi, 2008). These 

changes and resultant conflicts are necessary to consider when investigating whether a 

particular irrigation district, such as DDID, possesses adequate amounts of adaptive 

capacity to overcome the numerous climatic and social exposures and sensitivities. What 

follows is a roadmap of how a future researcher may investigate climate vulnerability 

regarding less late-season meltwater and a rapidly changing economic reality.  
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Vulnerability is a social-ecological systems’ susceptibility to harm that occurs 

when the system is exposed to stresses associated with environmental or social factors. 

Furthermore, when the systems do not possess the capacity to adapt, these systems may 

enter a new stable state and become fundamentally changed systems. There are several 

ways to conceive of vulnerability. It can be thought of as an outcome by focusing solely 

on the impacts of a hazard. However, this leaves out the question of what socio-

ecological conditions or characteristics led to this outcome. Vulnerability can also be 

thought as the “starting point.” This approach focuses on historic factors or current 

characteristics of people, households, communities, and nations and uses those 

characteristics to determine the susceptibility to harm. For the purposes of this road map, 

I will utilize the latter approach and contextualize vulnerability as a starting point and 

make recommendations for how to examine vulnerability through this lens.  

Exposure 

All biosocial groups (human or other species), ecosystems, and/or social-

ecological systems are exposed to hazards that could have a significant impact on that 

system’s ability to maintain functionality. Bennett et al. (2016) describes exposure as a 

spectrum on which regions, resources, and groups experience hazards, and this 

experience is driven by changes at various scales. Exposure can be thought of as a 

necessary but not exclusive determinant of risk, and therefore it cannot be thought of as 

the sole determinant of system vulnerability. Table 1 below offers guidance for 

identifying and exploring potential exposures.  
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Table 1 

Elements of and Investigatory Options for Exploring Exposure  

Elements Investigatory Options 

Crops Grown  • Determine through methodologically sound 

district appropriator survey 

• Determine through GIS via remote sensing 

whereby different crops provide different NDVI 

signatures and segment based on these signatures 

• Utilize the USDA “Cropscape” tool to investigate 

crops grown over the past two decades 

Irrigation Infrastructure 

Condition  

• Inquire with the district management and 

administration as to their perception of district 

infrastructure condition, mechanisms by which it 

can be repaired or remedied, and appetite amongst 

members for taking the necessary steps to do so 

• Request ride along with ditch rider(s) in line with 

participant observation method to assess and/or 

document infrastructure condition 

• Investigate how any planned or discussed 

upgrades would impact ditch seepage and the 

direct impact on groundwater recharge, which 

could negatively impact shallow private water 

wells 

Appropriator Distance 

from Main Ditch or 

Lateral 

• Conduct methodologically sound survey of 

appropriators and inquire how far their point of 

diversion (POD) is from the district-maintained 

ditch or lateral 

o Potentially verify that information by 

utilizing a simple GIS to trace the route 

from main lateral to the individual 

appropriator’s POD 

Present and Future 

Climatic Conditions 

• Determine how more frequent and possibly 

intense droughts will impact water resources by 

speaking with University of Montana system and 

State of Montana climatologists and hydrologists  

• Utilize a GIS to investigate how higher average 

temperatures could increase evapotranspiration, 

determine how that differs amongst crops, and 
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consider the combined impacts on available water 

resources 

National and global 

supply chain demands 

• Determine how connected and dependent 

agricultural producers are to hierarchical systems 

of production, distribution, and consumption 

o For example, do producers rely on local 

consumers, or do they rely on national and 

international consumers to meet their 

production?  

• How dependable is this demand moving forward? 

 

Exposure in the Bitterroot Valley and regarding DDID takes many forms. For 

instance, lack of water for late-season irrigation driven by flash droughts in concert with 

rapid population growth creates uncertainty for DDID users who rely on late-season 

water to sustain their livelihoods. This problem, however, is not exclusive to district users 

as exposure can be conceived of as occurring on a spectrum. Some users are likely more 

exposed than others, including: irrigators who are at the end of a long lateral that has to 

be properly maintained for them to receive adequate water; instances when the water 

resources are so strained due to drought conditions that the amount of ditch loss due to 

groundwater seepage is too high for an end of lateral user to receive their apportionment; 

or in the event one irrigator does not properly maintain their portion of the lateral, any 

downstream irrigator’s water availability is inhibited. However, the degree to which these 

individual users are vulnerable is heavily dependent on how sensitive their irrigation 

needs are, and just as importantly how much adaptive capacity they possess to offset low-

water years.  

DDID and other district appropriators are also exposed to aging infrastructure. A 

local dairy operator from Corvallis, MT, went so far as to say that climate change was 

certainly a concern but that was more of a problem for his son’s generation. His chief 
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concern was the aging infrastructure that will need to be upgraded to sustain the fairly 

dependent agricultural sector (personal communication, 2019). First, irrigators rely on the 

infrastructure for efficient and consistent delivery of water resources. Second, almost all 

groundwater users inadvertently rely on the infrastructure for groundwater recharge 

associated with ditch and canal leakage/seepage (Whitlock et al. 2017). In combination, 

these two dependencies apply to almost all Bitterroot Valley residents: either they 

directly irrigate or pull surface water via a ditch system or they draw groundwater from a 

depth that is artificially higher due to groundwater seepage from the unlined complex 

water conveyance lattice and flood-irrigated fields. The question becomes less if 

irrigators desire that repairs be made and more how those repairs may fit into a more 

nuanced climate adaptation strategy. 

Sensitivity 

Sensitivity can largely be thought of as how susceptible an individual, group, or 

larger system is to the consequences of an exposure. These susceptibilities can stretch 

across a broad categorical array. Moreover, existing circumstances driven by 

“…[H]istorical, social, political, economic, and environmental preconditions determine a 

system’s sensitivity” (Bennett et al., 2016, p. 908). Like exposure, sensitivity is highly 

variable amongst individual irrigation district members and districts themselves, and 

therefore the variation of sensitivity must be considered when assessing vulnerability. 

Table 2 below offers guidance for identifying and exploring potential sensitivities. 
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Table 2 

Elements of and Investigatory Options for Exploring Sensitivity 

Elements  Investigatory Options 

Water Right Seniority  • Determine within DNRC Water rights query system 

seniority of water rights for appropriate water source 

(i.e. which creek, sub-basin, river, or watershed an 

appropriator draws from) 

o Assign a threshold to determine which rights 

are more senior or “secure” and those that are 

junior or “at-risk” 

Population Growth • Determine likely growth pattern via existing 

projection information through US Census and/or 

Montana Department of Commerce 

o For instance, Regional Economic Models, Inc. 

(REMI) projects the Montana population 

through 2060 

• Determine population growth via population growth 

formula  (P = P0 * ert)  

o P = Total population after time “t”  

o P0 = Starting population 

o r = % rate of growth  

o t = time in years 

o e = Euler number = 2.71828…  

• Speak with county planning department regarding 

plans to accommodate this growth and likely strain(s) 

on water resources and  impact(s) to existing social 

cohesion  

Diversity of Income 

Sources 

• Survey and speak with district appropriators to 

determine their income source variation: 

o Do they have multiple income sources?  

o Is their income considered on-farm?  

▪ If so, is it derived primarily from one 

crop? 

o Is their income considered off-farm?  

▪ If so, is it tied to the tourism sector?  

o What percentage of their total income do these 

various sources represent?  
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o Are all of these sources directly tied to a pre-

determined water right and allocation amount? 

Bitterroot Basin 

closure 

• Determine how close the State of Montana is to 

adjudicating all water rights within the Bitterroot 

River Watershed 

• How will this result alter the appropriation landscape?  

 

Prior appropriation, or “first in time, first in right” is the law of the land in 

western States. In contrast to Riparian Rights systems (which are common to states east 

of the Mississippi River) that grant legal rights to use water adjacent to privately held 

land, prior appropriation says that senior water rights holders (those who diverted water 

for ‘beneficial use’ first) are entitled to their entire appropriation before a junior user 

(those who came later) can fulfill their right. This system of water governance, while 

historically ensuring agriculture and industry were prioritized, today puts a lot of junior 

appropriators in jeopardy of not receiving needed water resources. Accentuated by 

changing climatic conditions where water will be less available for late season irrigation, 

this governance structure represents a potent sensitivity that appropriators variably 

experience based on seniority and/or membership within an irrigation district. Of course, 

this sensitivity is most relevant if the exposed appropriator experiences concurrent 

sensitivities such as their entire livelihood depending on surface water resources or 

residing in a drainage basin considered to be overallocated in terms of available surface 

water. 

In 1972, Montanans voted to approve a new state constitution, of which one 

important outcome was the recognition by policymakers that water rights needed to be 

better monitored and regulated to ensure adequate supply, future use, and overall stream 

health. First, the convention declared that “...[a]ll existing rights to the use of any 
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waters… are hereby recognized and confirmed (Article IX, section 3(1))” (Department of 

Natural Resources and Conservation, 2012, p.2). Furthermore, the convention acted to 

ensure that all water rights would be adjudicated by providing for “... the administration, 

control, and regulation of water rights and a system of centralized records… (Article IX, 

section 3(4))” (Department of Natural Resources and Conservation, 2012, p.2). 

In order to carry out these constitutional provisions, the Montana Legislature 

passed and adopted Title 85, chapter 2 of the Montana Code Annotated (MCA), also 

known as the Montana Water Use Act (MWUA). This legislation provided a framework 

for the adjudication of all water rights existing prior to July 1, 1973, changes of use for 

already existing water rights, a succinct centralized record system, and a way in which to 

regulate and administer water use permits applied for after 1973 (Sigler and Bauer, 

2017). This important legislation provided a path forward to fully understand the various 

water uses occurring throughout the state to better manage water resources today and for 

the future. 

The Bitterroot Valley of western Montana is one area of Montana where this 

legislation is currently having a significant impact. Population growth has been a 

common theme in many parts of the state, including Ravalli County. In fact, if growth 

remains between 1.8% and 2.8% per year, it is estimated the population could swell to 

between 57,000 and 72,000 people by the year 2025 (Swanson, 2006). Relative to the 

1990 population of 25,010, this growth represents a percent change of 128% or 188%, 

respectively. As a result of this growth, a continuous flow of new water right 

applications, and lack of accurate records pertinent to historic water claims, the Bitterroot 

River Basin was closed by legislation effective March 29, 1999. This closure was 
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intended to give the Montana Department of Natural Resources and Conservation 

(DNRC) time to sort out all of the claims, and the closure would apply until two years 

after the state water court had decreed the Bitterroot Watershed. 

However, this closure still holds today. It is noteworthy that this closure means 

DNRC cannot process an application for any new surface water right. This legislation, 

however, contains a few exceptions, two of which are relevant here: the exception for a 

permit to appropriate groundwater and an application to appropriate water for municipal 

water supply. This language suggests that development and population growth can 

continue but only under strictly monitored circumstances. This population growth will 

require water and the sensitivity of DDID as a district and its member appropriators will 

need to be considered in relation to other relevant appropriators.  
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Figure 20. Ravalli County population change by US Census blocks 

 

Adaptive Capacity 

Adaptive capacity is the magnitude by which actors residing within a system can 

influence system resilience, which in turn reduces vulnerability, and they do this through 

“…respond[ing] to challenges through learning, managing risk, and impacts, developing 
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new knowledge and deciding effective approaches” (Bennett et al., 2016, p. 909 taken 

from Marshall et al., 2010). More importantly, adaptive capacity is built-up potential to 

deal with an event and cannot be fully understood until it is called upon by the 

community in times of exposure. This poses numerous problems for measuring its 

effectiveness. If adaptive capacity is only untapped hidden potential, then how can its 

worth be measured? In the case of DDID water shortages due to low snow years or 

quicker than average ablation, past examples will provide an opportunity to explore how 

members of the irrigator community addressed such concerns in the past, which would 

provide a window into how they may deal with similar—albeit potentially more severe—

future challenges. This investigative focus on past adaptations regarding DDID water 

management could also be applied as method to investigate other irrigation districts, 

other non-district appropriators, and/or the Bitterroot Valley at-large. Table 3 below 

offers guidance for identifying and exploring potential instances of adaptive capacity. 

Table 3 

Elements of and Investigatory Options for Exploring Adaptive Capacity  

Elements Investigatory Options 

Past, Present, or 

Planned 

Infrastructure 

Upgrades 

• Inquire with both district management and district 

appropriators as to what kinds of efficiency upgrades 

have been installed, or what future upgrades may be 

planned 

• Assess the appetite amongst district members for water 

conveyance and conservation upgrades, especially how 

they could be funded and if members are willing to help 

with costs.  

Social Cohesion 

within the Irrigation 

District and 

between Districts  

• Investigate how often district by-laws are adhered to, and 

if they are often flouted, determine why this occurs 

• Determine how communicative members are with one 

another and managers regarding various disputes and 

successes 
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• If relevant, determine how communicative 

interdependent districts are with one another, especially 

in regard to the viability of long-term agreements (e.g. 

DDID “swaps” early spring Skalkaho Creek water with 

the Bitterroot Irrigation District in exchange for late 

season Lake Como water) 

Perception of 

Climate Risk(s) 

• Survey appropriators and managers to assess their 

attitudes and beliefs regarding current and future climatic 

risks  

o Adapt the already vetted questionnaire from the 

Yale Program on Climate Change 

Communication courtesy of Leiserowitz et al. 

(2019) to fit circumstances 

o And/or, conduct in-depth semi-structured 

interviews to gain deeper understanding of 

individual’s perception(s) 

Past Instances of 

Adaptation 

• Investigate drought past drought years and/or years 

where streamflows were greatly diminished during the 

late season 

o Survey appropriators and/or managers about 

those years and how they were impacted by less 

available water; how social cohesion worked or 

did not work to alleviate those circumstances; 

and how institutional norms (i.e. existing by-

laws, water right seniority, etc.) mediated those 

circumstances 

 

Adaptations can be thought of as manifestations of adaptive capacity. For 

instance, an irrigation district that takes tremendous steps to address climate change (e.g. 

increased reservoir storage capacity, conversion of open canals to piped and pressurized 

systems, real-time water meters, etc.) can be thought of as an irrigation district that 

possesses some amount of adaptive capacity. As defined above, adaptive capacity is 

latent energy that a social system can employ in times of challenge, so the adaptation 

employed is a direct reflection of the adaptive capacity that irrigation district possessed. 
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This capacity to adapt can be driven by many realities. Maybe the irrigation district is a 

proactive, well-organized group of people who take seriously the challenge of water 

scarcity; or perhaps, the irrigation district resides in a particular geography conducive to 

high-value crop production that receives many federal subsidies meant to maintain that 

productivity. Or, even still, maybe that capacity is tied to something else altogether.   

Future Directions and Other Considerations 

Recent scholarship has called for future vulnerability assessments to consider 

seven distinct factors to more fully understand the system and offer productive insight 

(Bennett et al., 2016). First, analysis must consider linkages between social and 

ecological subsystems and not consider them separately. Second, researchers should 

consider multi-scalar drivers that can have unexpected impacts at different organizational 

levels. Third, research should not presume that exposure necessarily leads to harm. In 

fact, exposure to harm can have positive outcomes. Fourth, researchers should better 

incorporate multiple exposures into a vulnerability assessment instead of pinning one 

variable signifying vulnerability. Fifth, analyses are too often snapshots in time, and as a 

result, these assessments do not accurately account for various interactions and 

feedbacks. Sixth, response to exposure should be thought of as either being a coping 

response or adapting response. Coping responses are typically unplanned or reactionary, 

and adapting responses are usually preventative actions that strengthen adaptive capacity. 

Lastly, it is important to consider how institutional and material constraints combined 

with social structure, governance, and cultural values mediate adaptation options. Of 

course, all the above variables should be given just consideration in a vulnerability 
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assessment of DDID, but researcher expertise and other limitations will likely lend 

credibility to one or more variables over the others. 

Finan et al. (2012) looked at the processes by which adaptation occurred over 

time in a particular southwestern US desert community. Specifically, the researchers 

explored how climate adaptations arose in a community and what social elements acted 

and can act as catalysts. Researchers found that “two basic and interrelated factors create 

the results observed in the valley” (Finan et al., 2012, p.301). The first factor was the 

systematic adoption by valley residents of new technologies that effectively reduced 

climate vulnerability. The second factor that contributed to the reduction in climate 

vulnerability was the reorganization and readjustment of social organizations. The 

authors likened this readjustment and reorganization to investments in political and social 

capital. While the researchers found promising processes resulting in decreased climate 

vulnerability, they were quick to point out that this vulnerability reduction can only be 

thought about as a short-term reduction, or perhaps simply a coping response. Employing 

a similar methodology could prove fruitful in better understanding how DDID governs its 

users and what kind of flexibility exists within the social structure to adapt these rules to 

changing on-the-ground circumstances.  

Brody et al. (2008) investigated the potential relationship between physical 

vulnerability and perceptions of risk associated with global climate change. Interestingly, 

the researchers found that geographic exposure did have a positive correlation with 

climate risk perception when it came to proximity to ocean shoreline. However, 

proximity to a potential hazard is not nearly as significant predictor of risk perception as 

socioeconomic and/or attitudinal variables. For instance, a person’s belief in their ability 
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to influence the discussion, policies, or local community when it comes to climate change 

is more strongly correlated with climate risk perception than proximity to hazards. This 

study suggests that geographic proximity should be considered but that social variables 

should be explored in more depth to search for deeper connections. For DDID, proximity 

to hazard(s) could be difficult to identify compared with sea level rise and distance from 

shoreline in coastal communities. However, hazards could be creatively thought of as 

distance from main laterals and the variable potential for receiving the water those 

laterals contain. In that vein, it would matter greatly to what degree individual 

appropriators felt they could influence district leadership and other appropriators to 

address their concerns regarding the disadvantages of being located at the end of an 

irrigation ditch.  

When using the above two studies as examples to replicate and improve upon for 

investigating DDID, another Bitterroot Valley irrigation district, or the valley at-large, it 

is important to remember the results from one community cannot be completely 

transferable to a different community or geography. However, certain lessons or findings 

stand out as potential building blocks for a more in-depth Bitterroot Valley investigation. 

First, Finan et al. (2012) noted that a reorganization of social structure and the adoption 

of new technological advances decreased climate vulnerability. When considering DDID 

and other irrigation districts, this could look like adopting more tech savvy methods to 

improve water delivery efficiency. For example, I heard anecdotally a different Bitterroot 

Valley irrigation district leveraged member’s professional expertise to reimagine the 

irrigation infrastructure and delivery system to include sensors on each head gate to track 

water usage in real-time in order to curb access if a member pulls more than their 
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apportionment. Of course, these changes required a certain amount of adaptive capacity 

likely in the form leveraged existing social capital, which may not exist in the same form 

nor amount for each district, to build a robust coalition of stakeholders who could achieve 

that change. DDID is ripe for an investigation into the ability of members to alter district 

by-laws to address current challenges, which if found would illuminate how much (or 

little) adaptive capacity the district possesses.  

Pertinent to Brody et al. (2008), it was largely found that socioeconomic and 

attitudinal variables were much better predictors of individuals’ perception of climate risk 

as opposed to proximity to hazard. This indicates a real need to understand those 

variables through in-depth semi-structured interviews, a well thought out survey, or focus 

group interviews to both understand how DDID or another irrigation districts’ members 

perceive the respective climatic risk of less available meltwater and changes in timing, 

especially as they relate to abovementioned sensitivities. These methodologies could also 

be used to understand how willing and/or able members are to changing district by-laws 

to better reflect current attitudes and perceptions. By investigating members’ perception 

of climatic risk, a future researcher will be able to better understand what level of 

adaptive capacity, or latent energy, a district possesses to address changing hydrologic 

realities.  

A future researcher may also look to utilize social science methods to investigate 

past adaptations (i.e. change(s) in district by-laws or updates to the water delivery 

infrastructure), which could offer insight regarding the present ability to adapt to current 

exposures and overcome sensitivities. Investigating how and when maintenance to water 

delivery infrastructure is managed, paid for, and ultimately carried out would be 
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important to understand when investigating the vulnerability of DDID to lower late-

season flows. Furthermore, it would be useful to understand how the district incorporates 

climatic change into the decision-making process regarding ditch, lateral, and pipeline 

maintenance. For instance, is the district focused on instituting technological solutions 

that could help to conserve water, and if they are not, what is the reason? 

The diversity of water users’ income source(s) is an additional consideration for a 

future researcher to flesh out. More specifically, does the willingness to address district 

vulnerability hinge on their dependence on it for income. For example, some members 

may make a sizeable portion of their income through agriculture and thus have more 

incentive to improve the water delivery infrastructure, alter district by-laws to address 

changing climatic conditions, and/or institute technological fixes that would help to 

conserve water already flowing through the irrigation lattice. District members whose 

income is derived primarily from other sources may have much less incentive to expend 

time and energy to address these concerns. A final intriguing question regarding income 

distribution is in regard to those members whose income is tied to tourism and recreation. 

Maybe a district member owns a guiding service and therefore has a direct incentive to 

see the streams and rivers running strong for the preservation of fishing opportunities. 

Other members may indirectly benefit from well-watered streams through operating a 

local business reliant on tourism dollars. These members and water users may have 

different ideas for what vulnerability to lower late-season flows looks like for DDID. The 

distribution of these user groups could be investigated through a survey method and 

would likely prove useful in helping to explain why some districts are adapting to 

changing conditions and why others are not.   



 54 

A future researcher may look to investigate whether informal or semi-formal 

social groups exist that could promote and facilitate the free exchange of ideas regarding 

hydrologic changes. The Bitterroot Water Forum is a local non-profit organization that 

seeks to engage the community to preserve the watershed for future generations. Their 

focus is on engaging residents in on-the-ground restoration projects and through strategic 

education exercises. Importantly, this organization is made up of and run by local 

residents, which likely acts as a positive influence regarding their ability to leverage 

social capital and community resources. As such, a future researcher may look to the 

Bitterroot Water Forum as a gateway to identify stakeholders from diverse backgrounds 

who regularly meet to discuss ways in which they can address exposures, reduce 

sensitivities, and harness adaptive capacities to lower vulnerability to reduced snowpack 

retention and lower late-season streamflows.   

Challenges to Vulnerability Research 

One particular emphasis on vulnerability is noted by Bennett et al. (2016) who 

claims that vulnerability and adaptation research is often too problem-focused (e.g. global 

climate change) and not focused enough on the community (e.g. water users, irrigation 

district members, and the social community in which they reside). In other words, 

researchers have namely been using large macro problem as the launching point and have 

not used the individual community enough in developing a methodology. This is not 

necessarily problematic because it is more a methodological quandary. Certainly there are 

merits to both generating specific research questions by looking at the larger problem and 

applying it in certain regions, but it is also true that looking at a particular area and asking 
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what are the vulnerabilities here is also a worthwhile way to conduct this sort of 

research.  

A recent criticism of social-ecological systems thinking, resilience theory, and, by 

extension, vulnerability studies emerged out of Fabinyi et al. (2014). The researchers 

positioned that SES scholarship shows frequent and almost exclusive attention to 

human/environment interactions. SES literature tends to exhibit three main biases: 1.) 

assumes people’s knowledge, values, and livelihoods are primarily concerned with their 

physical environment; 2.) homogenizes social groups by assuming that people’s interests, 

experiences, and expectations are more similar than they are different; 3.) and 

characterizes resilience as a value-laden property. In exhibiting these biases, SES 

scholarship misses key societal realities of social diversity, power dynamics, and 

interestingly ignores the valueless nature of resilience by assigning positive values to 

systems that exhibit resilience and negative values to those that do not. The authors 

further argue that to better incorporate these crucial dimensions in SES scholarship a firm 

understanding of social anthropology, specifically critiques of ecological anthropology as 

reductionist, and incorporation of political ecology and power dynamics would be 

helpful. Finally, the authors suggest SES researchers frame research questions to 

“...explicit[ly] focus on different points of view, conflict, contestation, micropower 

dynamics (intracommunity and intrahousehold), and macrosystem dynamics (dominant 

political and economic systems)” (Fabinyi et al. 2014, p. 5). By incorporating these 

considerations, SES scholarship would be better positioned to offer solutions to key 

societal challenges (e.g. climate change, food security, natural resource distribution, 

etc).   
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Finan et al. (2002) certainly painted a neat image of social ecological 

vulnerability in the desert southwest, but they could have done better by exploring some 

of the SES shortcomings brought forward by Fibyani et al. (2014). For instance, how did 

existing power dynamics shape whom the researchers spoke with to gather data, and who 

was left out due to existing power dynamics? Additionally, were the concerns of local 

irrigators truly environmental concerns, or were they better characterized as political 

concerns over natural resource access and distribution? 

Our Rapidly Changing and Tenuous Socioeconomic Reality 

The current pandemic gripping our communities, counties, states, nation, and 

world as a whole represents a contextual reality looming over all considerations regarding 

climate vulnerability in the Bitterroot Valley, especially as it pertains to economic 

uncertainty. Panarchy and its insistence on considering the myriad connections between 

distinct yet interconnected SESs’ offers a potential conceptual window through which to 

view this ever-present challenge. As was mentioned previously, tourism in Montana is a 

multibillion-dollar industry. In 2018, for instance, tourism-related expenditures by non-

Figure 21. Total nonresident expenditures in Montana from 1993 to 2018 
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resident visitors to Montana was just shy of $3,500,000,000, which make it a potent force 

in the Montana economy. These expenditures include everything from hiring a fly-fishing 

or hunting guide and staying at a small-town hotel and dining at local restaurants serving 

Montana microbrews, to simply driving through the state, grabbing a burger, and 

refueling your vehicle at a Montana gas station. All these expenditures add up to the total 

economic impact of non-resident recreation, tourism, and travel in Montana.  

Today, July 30, 2020, The Centers for Disease Control in Atlanta, Georgia, is 

reporting over 4,600,000 cases of COVID-19 across the United States of America. This 

disease is caused by SARS-CoV-2, a novel coronavirus, originating out of Wuhan, Hubei 

Province, China, through zoonotic transfer (Andersen et al., 2020). The current number 

of infections provides the United States with the dubious distinction of being number one 

in confirmed COVID-19 cases. Furthermore, the United States’ GDP shrunk by a little 

over 32% during the second quarter of 2020, which represents the largest single 

contraction in post-WWII America. Additionally, the unemployment rate in June was at a 

staggering 11%.  

Questions surrounding how this pandemic will alter the global supply chain, 

affect small businesses across the United States, and impact the record number of 

unemployed dominate the conversation today, but ultimately the one thing we know for 

certain is that humanity will come out on the other side of this pandemic. What we do not 

know, however, is what the world will look like when we do. What will we value? What 

we will spend our money on? What industries will grow, and which will crumble under 

the weight of this global recession? Will we continue to consume fast food at the same 

rate or more often prefer to eat home-grown and home-cooked meals? Daily one-hour 
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commutes into the city or more frequent “telecommuting?” The diminishment and 

admonition of expertise, or revelers of scientific explanation and inquiry? Frequent jet-

setters eager to explore exotic new lands, or risk conscious travelers preferring to 

vacation and explore the culture near our homes? These questions and many others like 

them are worthy of consideration regarding long-term societal shifts, economic 

valuations, and lasting impacts to Ravalli County and its current economic dependencies.  

 Montana’s tourism economy which was mentioned above as a multibillion-dollar 

a year industry is a model built largely but not exclusively on the ability to transport 

tightly packed human mass in relatively small aluminum tubes effortlessly through the 

sky. Before the pandemic, these travelers never much considered communicable diseases. 

Yes, they were ever present, but nothing significant had posed a real risk to humanity 

over the last century. The airline traveler has also, in recent years, had their share of 

affordable tickets due to competition, sheer numbers of flights, and numerous taxpayer 

funded subsidies. The emerging global health crisis resulting in national calls for social-

distancing, shelter-in-place orders, mask mandates, and the effective halt to normal day-

to-day life is likely to change our values, attitudes, perceptions, and subsequent actions. 

This contextualized reality is highly important to consider when applying the concepts of 

vulnerability, social-ecological systems, and panarchy to DDID, another Bitterroot Valley 

irrigation district, or the valley as a whole and distinct HUC 10 watershed. 

CONCLUSION 

 Overall, this paper seeks to provide useful information to a future student, 

governmental, or nongovernmental researcher interested in investigating Skalkaho Creek 

and its potential vulnerability to lower late season flows because of our changing climate. 
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Chapter 1 provides useful information for Bitterroot Valley stakeholders and future 

researchers alike. While Daymet is only one dataset that can offer insight into SWE 

trends through time, the findings here corroborate numerous other researchers who have 

identified seasonal snowpack reductions and earlier spring snowmelt timing across the 

Intermountain West and in western Montana (Mote et al., 2005; Stewart et al., 2005; 

Whitlock et al., 2017). This reality of less available meltwater will undoubtedly impact 

DDID and the Bitterroot Valley at-large throughout the coming years. Important 

considerations regarding confidence in the data should be further investigated through 

corroborating these findings with nearby Snow Course sites and refining a more reliable 

methodology for comparing Daymet to SNOTEL. 

 Social-ecological systems thinking and vulnerability to changing stable states 

offers future researchers a valuable framework for investigating the potential for DDID to 

remain in its current form or perhaps shift into a new stable state. The roadmap and 

potential research directions laid out in chapter 2 offer a future investigator numerous 

points to consider when looking at climate vulnerability within DDID, another valley 

irrigation district, or the Bitterroot Valley at-large. Of course, the considerations laid out 

cannot be thought of as exhaustive but should offer a researcher curious about climate 

change as it will impact the Bitterroot Valley a starting point for idea and research 

question generation.  

The Bitterroot Valley is steeped in history and culture. The Bitterroot Salish 

originally called this valley home until Euro-American settlers first entered Montana in 

1841 and established the St. Mary’s Mission near present-day Stevensville, MT. Tension 

between the new settlers and historic inhabitants continued to mount over the next 50 
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years until the Bitterroot Salish were forcibly removed to the Flathead Reservation by the 

United States Army in 1891. The next century saw many changes that all play a crucial 

part in framing the present-day challenges regarding vulnerability to diminished 

snowpack retention, resultant lower late season streamflows, and the impact to those 

industries and people dependent on meltwater. For this itinerant human, the Bitterroot 

Valley, its mountains, canyons, wildlife, and cultural pulse will forever be etched upon 

my soul. My hope is that this paper proves helpful to a future curious mind who looks at 

the world, its people, plants, and animals as one interconnected and interdependent 

system moving ever forward. We need not know what the future holds but to always 

remember change is the only constant.  
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