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Boyce, Andrew, Ph.D., May 2018     Wildlife Biology 
 
Biotic and abiotic influences on the evolution of elevational range limits and life-history 
strategies of tropical birds  
 
Chairperson:  Thomas E. Martin 
 
 
Environmental gradients provide natural forums for understanding how and why species 
differ. The study of interspecific variation across gradients has provided foundations for 
our understanding of community ecology, species distributions, life-history evolution and 
physiological ecology (Janzen 1967; Macarthur 1972; Martin 2015). In this dissertation, I 
explore questions in these disciplines, using a comparative approach on elevational and 
latitudinal gradients. My primary focus is understanding the biotic and abiotic processes 
that limit species distributions and how those same forces scale up to influence the 
composition of communities on an elevational gradient. I also test a physiological 
hypothesis for the gradient of life history strategies, the pace-of-life hypothesis, by 
examining the relationship between metabolic rate and adult mortality probability across 
a global latitudinal gradient.    
  I examine these issues in songbird communities on Mt. Kinabalu in Malaysian Borneo 
(6°N). Kinabalu Park is a large protected area encompassing the largest intact elevational 
gradient in southeast Asia (400m – 4100m). It is a reserve with tremendous conservation 
importance; it is a stronghold for more than 90% of Borneo’s endemic bird species 
including several whose mountaintop ranges put them at risk of extinction assuming 
upward range shifts due to climate change (Colwell et al. 2008). Understanding the 
mechanisms that underpin elevational distributions in such megadiverse threatened areas 
is a central goal of ecology and vitally important to conservation locally and globally. 
  In chapters 1-3 I used experimental and descriptive approaches to assess the importance 
of interspecific competition and physiology in setting elevational range limits and 
structuring communities across elevations. We found evidence that interspecific 
competition may set range limits in some species, but that aggressive interactions with 
close relatives could not explain range boundaries in other cases. We also found that 
birds occupying different elevations had similar thermal physiology, suggesting range 
limits are not directly set by climatic variables like temperature. Using phylogenetic and 
trait-based approaches, we found evidence that interspecific competition plays a strong 
role in structuring bird communities at low elevations, while environmental filtering 
appears to be important at high elevations. Based on clustering of morphological traits, 
particularly bill shape, we speculate that the influence of climate on prey size and 
diversity may restrict many species from high elevation communities. 
  Finally, we  tested the ability of metabolic rate to explain variation in average lifespan 
within and across latitudes. The pace-of-life hypothesis posits that damaging byproducts 
from cellular metabolism are the primary physiological driver of lifespan, such that long-
lived tropical species are expected to have low metabolic rates (Pearl 1928; Hulbert et al. 
2007; Wiersma et al. 2007; Williams et al. 2010). We tested this hypothesis by measuring 
metabolic rates and estimating adult survival probability in songbirds at Kinabalu Park 
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(6°N) and in Arizona, USA (34°N). We found that metabolic rate explained variation in 
annual adult survival probability within sites, but that it could not explain the longer lives 
of tropical birds compared with temperate zone relatives. 
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Chapter 1: Phylogenetic structure and functional diversity of avian communities along a tropical 

elevational gradient 

 

Andy J. Boyce , Subir Shakya, Frederick H. Sheldon, Robert G. Moyle and Thomas E. Martin 

 

ABSTRACT 

Understanding how biotic interactions and abiotic constraints influence community assembly and 

composition is a fundamental issue in community ecology. Addressing this issue is particularly tractable 

in the context of tropical mountains which have large variation in community diversity, high rates of 

species turnover and strong gradients in abiotic conditions. Here, we examined elevational patterns of 

avian community structure in tropical Malaysia to assess changes in the relative strength of biotic 

interactions and abiotic constraints. We used metrics based on phylogenetic relatedness and functional 

traits associated with resource acquisition and tolerance of abiotic challenges to identify patterns and 

causes of elevational differences in community structure. High elevation communities were composed of 

more phylogenetically and functionally similar species than would be expected by chance (clustered), 

while middle and low elevation communities showed little structure, with few communities composed of 

more dissimilar species (overdispersed) than expected by chance. Traits associated with resource 

acquisition were clustered at high elevations, suggesting low resource and habitat diversity were the 

primary drivers of clustering in those communities. Traits typically associated with tolerance of cold 

temperatures and low atmospheric pressure showed no elevational patterns. All traits were neutral or 

overdispersed at low elevations suggesting an absence of strong abiotic filters or an increased influence of 

interspecific competition. However, relative bill size, which is important for thermoregulation, was larger 

in low elevation communities, suggesting abiotic factors were also influential there. Regardless of metric, 

clustered and neutral communities were far more frequent than overdispersed communities, implying that 

interspecific competition among close relatives may not be a pervasive driver of elevational distributions 
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and avian community structure. Overall, our analyses reveal that a diverse set of biotic and abiotic factors 

underlie elevational variation in community structure and that both biotic and abiotic forces are likely 

important in structuring communities across elevations.  
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INTRODUCTION 

Understanding the ecological processes that influence community assembly and composition across 

geographic gradients is a fundamental problem in ecology (Macarthur & Levins 1967; Diamond 1975; 

Hubbell 1979). Competition among species is the most commonly invoked process underlying 

community structure (Schoener 1983) and is thought to explain adjacent but generally non-overlapping 

elevational ranges of congeners (Terborgh & Weske 1975; Remsen Jr. & Graves 1995a; Jankowski, 

Robinson & Levey 2010; Freeman 2015). Specifically, species that are similar in resource use are thought 

to compete most intensely and are less likely to coexist (Connell 1961; Macarthur & Levins 1967; 

Diamond 1975; Gilpin & Diamond 1982). Abiotic conditions are also thought to affect the composition 

and structure of species assemblages by limiting the species or lineages present in a community to those 

with the necessary traits to colonize and persist in a given set of abiotic conditions (Grinnell 1917; 

Connell 1961; Webb 2000; Graham et al. 2009). Physiology can limit elevational ranges of congeneric 

species when they differ in tolerance to abiotic factors such as temperature, moisture, and atmospheric 

conditions that vary with elevation (Gifford & Kozak 2011; Graham et al. 2012). Yet, the relative 

importance across elevations remains poorly understood.  

Theory predicts the relative importance of competition and abiotic factors will vary across 

environmental gradients. For example, competition is thought to be most important in abiotically benign 

environments with abiotic factors becoming increasingly important in temperate regions or high 

elevations in the tropics with harsher or more variable climates (Dobzhansky 1950; Macarthur 1972; 

Schemske et al. 2009; Sexton et al. 2009). This shift from biotic to abiotic drivers of community structure 

along latitudinal gradients has support (Schemske et al. 2009), but tests across elevational gradients have 

produced inconsistent results (Bryant et al. 2008; Graham et al. 2009; Gifford & Kozak 2011).  

Temperatures decrease and temporal variation in conditions increases moving from the equator towards 

the poles or from low to high elevations in temperate regions. However, variation in climate remains 

extremely low across elevational gradients in the tropics (Janzen 1967; Ghalambor et al. 2006). Stable 

conditions across elevations on tropical mountains may reduce the influence of abiotic factors at high 
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elevation relative to latitude if organisms can adapt to a narrow range of conditions. Thus, factors 

influencing community composition and structure may differ in elevational versus latitudinal contexts, 

which underscores the need for additional studies of elevational patterns in phylogenetic and functional 

community structure.  

On the other hand, environmental stability may be less important than absolute levels of climatic 

conditions. Cold temperatures, low atmospheric pressure, and low primary productivity make high 

elevation environments physiologically challenging to endotherms. Such harsh abiotic conditions are 

thought to restrict availability of these habitats to species or clades with traits necessary to cope with these 

challenges. Conversely, interspecific competition and other biotic interactions are thought to be a 

dominant force at low elevations due to the general lack of strong abiotic filters (Janzen 1967; Macarthur 

1972). Thus, theory predicts that low elevation communities should be structured largely by competition 

and high elevation communities should be structured largely by abiotic filtering. Studies of hummingbirds 

and ants both found support for this idea (Graham et al. 2009, 2012; Machac et al. 2011). However, the 

opposite pattern has been observed in plants (Bryant et al. 2008), and microbial communities appear to be 

influenced primarily by abiotic conditions at all elevations (Bryant et al. 2008), with some evidence for an 

increasing influence at high elevations (Wang et al. 2012). This lack of consensus suggests that different 

groups of organisms may be responding to different ecological mechanisms or that methods for 

determining the factors underlying structure may be inappropriate. 

The synthesis of community ecology and phylogenetics has provided a quantitative framework to 

infer the relative importance of biotic and abiotic forces in determining community composition (Webb 

2000; Webb et al. 2002). The phylogenetic structure of communities is thought to reflect the relative 

importance of biotic (competition, facilitation) versus abiotic filtering in determining community 

composition. Such interpretation is based on the assumption that traits important for resource exploitation 

and tolerance of abiotic conditions are phylogenetically conserved (Webb 2000, Webb et al. 2002, Wiens 

and Graham 2005, Lovette and Hochachka 2006, Hardy and Senterre 2007, Kraft et al. 2007, but see 

Gerhold et al. 2015). Specifically, closely related species should compete more strongly due to similar 
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traits related to resource use (Macarthur & Levins 1967; Wiens & Graham 2005). Accordingly, 

communities where interspecific competition is important in determining community composition should 

be composed of species that are more distantly related than would be expected by chance (phylogenetic 

overdispersion). In contrast, communities where harsh abiotic conditions select for a narrow range of 

adaptive traits should consist of species that are more closely related than expected by chance 

(phylogenetic clustering) (Losos 1996; Webb 2000; Webb et al. 2002; Graham et al. 2009).  

An alternative way of detecting the influence of abiotic filtering and/or biotic interactions on 

community structure is via the distribution of functional traits among co-occurring species. Phylogenetic 

methods use relatedness as a proxy for niche similarity, but we can also directly measure traits that are 

likely to be important to resource or habitat use and compare the distribution of these traits within and 

across communities (Ricklefs & Travis 1980; Weiher, Clarke & Keddy 1998). In communities where 

interspecific competition is a dominant assembly mechanism, functional traits should be distributed such 

that maximal trait-distance exists between species (overdispersion)(Macarthur & Levins 1967; 

Hespenheide 1973), reflecting minimal overlap in ecological niches and alleviating competition between 

similar species. In contrast, if environmental filtering is dominant, traits that confer an advantage in such a 

community should be similar among species, or clustered relative to a null model of community 

assembly.  

Applying both phylogenetic and trait-based methods simultaneously to the same dataset has 

multiple advantages. First, if traits that are important to either competition or habitat filtering are not 

phylogenetically conserved, patterns in phylogenetic structure alone will be uninformative on community 

assembly processes. In such a case, an absence of phylogenetic community structure is expected even if 

abiotic filtering or competition are strong drivers of community structure, but trait-based methods will 

detect either overdispersion or clustering of traits depending on the dominant assembly process 

(Cavender-Bares et al. 2004). Second, the veracity of results of trait-based methods depends on the 

assumption that measured traits are important for community assembly processes. However, many traits 

are difficult to measure and integrating numerous complex traits into a framework suitable for analysis is 
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not always straightforward (but see Villéger et al. 2008), so this assumption may be frequently violated. 

In such cases, as long as the relevant (unmeasured) traits display phylogenetic signal, phylogeny-based 

methods can reveal patterns in community structure when trait-based methods do not. Despite these 

potential benefits, relatively few studies have combined phylogenetic and trait-based methods to 

investigate community assembly mechanisms (Cavender-Bares et al. 2004, Kraft and Ackerly 2010). We 

not only conducted tests using our own field data, but also a second dataset from the literature for cross-

tests.  

 Here, we examine patterns of phylogenetic community structure and functional trait diversity 

across two elevational gradients on adjacent tropical mountains at two different taxonomic scales in bird 

communities to assess how competition and abiotic filtering may influence community assembly across 

elevations. We also test whether functional morphological traits are phylogenetically conserved as 

typically assumed.  

 

METHODS  

Study System 

We sampled bird communities on two mountains within Kinabalu Park in Sabah, Malaysia (6°N). 

Kinabalu Park is a large (754 km2), continuous tract of intact tropical forest spanning lowland (450 m) 

dipterocarp forests in its northern and eastern sectors to stunted montane forest and bare rock at the 

summit of Mount Kinabalu (4100 m) near its southern border (Fig 2). In between are a large variety of 

elevationally defined forest types and associated climatic zones spanning a large climatic gradient 

(Kitayama 1992). Our sampling area covered an elevational gradient of 1480 m – 3680 m on Mt. 

Kinabalu, and 600 m – 2579 m on Mt. Tambuyukon (Fig 2). Both sampling areas were bounded by the 

current extent of primary forest on the lower boundary. The upper boundary of our Tambuyukon transect 

was the summit, while our sampling area was truncated below the summit on Kinabalu to match the upper 

limit of vegetation. 

Community composition (field data) 
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We sampled bird communities using 10 minute fixed radius point counts with a maximum detection 

distance of 100m (Hutto, Pletschet & Hendricks 1986). Fixed-radius counts were chosen over unlimited-

radius counts to eliminate the possibility of attributing a distant individual to the wrong elevational 

community in a topographically complex environment. Point count stations were laid out along narrow 

and infrequently used forest trails such that stations were at least 250m apart based on straight-line 

distance and each 200m vertical band of forest contained exactly five stations. Distance between stations 

and elevation were determined with a regularly-calibrated handheld GPS unit (Garmin, Olathe, KS). Birds 

were detected both visually and aurally and distances were estimated for all detections. All point counts 

took place between February and June, 2012 – 2015 and were exclusively conducted by AJB. All points 

on Kinabalu were sampled 2-3 times per season, while Tambuyukon points were surveyed once per 

season. Point counts below 1400m on Tambuyukon, where species diversity is highest, were recorded so 

that any unknown vocalizations could be identified later.  All bird species detected within a given 200m 

elevational band were deemed to be present in that community. Additionally, birds were considered 

present in all elevational bands between their highest and lowest detection points on each gradient 

(McCain 2004). Despite the documented advantages of using abundance estimates in community structure 

analyses (Freilich & Connolly 2015), we did not attempt to do so here because of unequal sampling across 

sites and because estimating detection probability would have been problematic for a large number of 

rarely encountered species.  

Community composition (literature data)  

We used elevational distribution data from Harris et al. (2012) for all species of birds known from 

Kinabalu Park. This dataset is based on multiple data sources including direct sampling by the authors, 

citizen science projects, the literature, and unpublished data from experienced observers. To improve the 

quality of this dataset, elevational ranges were broadened where direct observations from our field data 

fell outside of the published elevational range. Additionally, where elevational ranges included single 

observations that were more than 200m either above or below all other known observations, we assumed 
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these were misidentifications or represented temporary movements. These records were discarded and the 

elevational range re-described based on the remaining data.  

Phylogenetics 

We constructed a phylogenetic tree of 197 species representing most of the resident passerine birds of 

Borneo (Supplementary Data 1). Of the 197 species, 14 were collected in the Philippines, Sumatra or 

Vietnam because we did not have Bornean specimens. Two species were aviary birds. The outgroup 

consisted of three non-passerine species: Psilogopon eximius (LSU B51190), Harpactes oreskios (LSU 

B78728) and Sasia abnormis (LSU B36374). 

DNA sequences of the following genes were collected for comparisons: two mitochondrial loci, 

NADH dehydrogenase subunit 2 (ND2) and cytochrome B (CYTB); and two nuclear loci, transforming-

growth factor, beta 2 (TGFB2) intron 5 and muscle, skeletal, receptor tyrosine kinase (MUSK) intron 13. 

When they were available, we downloaded sequences from GenBank. To fill gaps in the data, we 

generated 510 new sequences.   

Total genomic DNA was extracted from frozen or alcohol preserved tissue or blood samples 

using DNEasy® Blood and Tissue Kit (Qiagen) and manufacturer protocols. PCR amplifications were 

performed in 25 µl reactions using Taq DNA Polymerase (New England BioLabs Inc). Various primers 

were used to amplify the corresponding regions of DNA (Supplementary Table 2). Amplification 

consisted of 34 cycles of denaturing at 95°C, annealing at temperatures varying according to the primer 

pair used, and extension at 72°C. An annealing temperature of 50°C was used for MUSK (primer pair 13F 

and 13R), 54°C for ND2 (primer pair L5215 and HTrpC), 55°C for CYTB (primer pair L14851 and 

H4A), and 58°C for TGFB2 (primer pair 5F and 6R). A new primer was developed for CYTB to amplify 

sequences of individuals in which the basic primer pair did not work. PCR products were visualized in 1% 

agarose gels stained with SYBR® Safe DNA Gel Stain (Invitrogen). They were sequenced by Beckman 

Coulter Genomics (Danvers, MA).  

Sequence contigs were assembled in Geneious 8.0.5 (Biomatters). Sequences were manually 

checked and trimmed to eliminate errors and to identify ambiguous sites. Sequences were aligned using 
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MUSCLE (Edgar 2004), implemented in Geneious. The four loci were concatenated into sequences of 

3736 bp and placed in a single alignment containing all species. This dataset was divided into eight 

partitions: mitochondrial genes with three partitions each based on codon position, and nuclear genes with 

one partition each. Bayesian Information Criterion (BIC), implemented in the program Partition Finder 

v1.1.1, was used to find the best substitution model for each partition.  

Bayesian methods were used to construct trees from the concatenated sequences. A time-

calibrated tree was generated using BEAST v2.3 (Drummond et al. 2002, 2006) using a relaxed clock, log 

normal distribution and a birth-death speciation model. The dataset was partitioned based on the best 

substitution model determined in Partition Finder. Default priors were used for all parameters. Two 

independent MCMC chains were run for 100 million generations. Tracer v.1.6 (Rambaut et al. 2014) was 

used to check for convergence among runs, and TreeAnnotator was used to generate a maximum clade 

credibility tree after 25% of trees were discarded as burn-in.  

To provide a tree of all birds we used Jetz et al. (2012), built on the Hackett et al. (2008) 

backbone. We used birdtree.org to prune trees to match our datasets and sampled 1000 trees from the 

available distribution. Majority-rules consensus trees were then constructed in Mesquite (Maddison & 

Maddison 2011). These consensus trees were imported into R using the ‘ape’ package and were used for 

all phylogenetic analyses except estimation of phylogenetic signal (see below). Constructing a de novo 

tree for our datasets that included all Bornean bird species would have been ideal. Because this was not 

possible, however, we included tests using the Jetz et al. (2012) tree. The Jetz et al. tree has the weakness 

that not all of the included relationships are based on genetic comparisons.  Nevertheless, while this 

shortcoming weakens inferences based on the Jetz et al. tree, it allows for construction of trees that 

includeall species for which community data were gathered.  

Functional traits 

We used morphological measurements to describe species resource and substrate use (Miles & Ricklefs 

1994). While many authors have applied categorical variables as functional traits to assign species to 

feeding or foraging guilds, such categorizations would be simplifications of actual resource use, 
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especially for many of the rare or little known species in our dataset. We compiled measurements of 5 

morphological characters for species present in our communities: body mass, wing chord, tarsus, bill 

width and exposed culmen length. These characters were chosen because they are easily measured on 

both live birds and archived specimens and all are thought to be important in mediating biotic interactions 

via diet, foraging strategy and foraging substrate (Hespenheide 1973; Miles & Ricklefs 1984, 1994; Pigot, 

Trisos & Tobias 2016) or facilitating use of abiotically challenging environments. For example, greater 

body mass and large wings relative to body mass should be advantageous in cold, high elevation 

environments that favor lower surface to volume ratios to reduce rates of heat loss and increase flight 

power in thinner air, respectively (Altshuler & Dudley 2006; Graham et al. 2012; McNab 2016), while 

large bills, controlled for body mass, act as thermoregulatory organs and are important for dissipating heat 

in hot environments (Symonds & Tattersall 2010; Greenberg et al. 2012; Tattersall, Arnaout & Symonds 

2016; Danner et al. 2017). 

Data were primarily gathered directly by measuring netted birds at our long-term site at Kinabalu 

Park (see Martin et al. 2015). When field data were absent, we measured specimens archived at Sabah 

Parks Museum and LSU Museum of Natural Science. For dimorphic species we used the midpoint values 

of male and female trait means, whereas in non-dimorphic species all measurements were pooled and 

population means were used. Only data from adult individuals were included in our analyses. Body mass 

data were obtained from the literature (Dunning 2007) in cases when it was unrecorded for dry specimens.  

Statistical Analyses 

Phylogenetic Community Structure – We calculated net-relatedness index (NRI) and nearest-taxon index 

(NTI) as metrics of phylogenetic community structure for each elevational community (200m elevational 

bands for directly sampled point count data and 100m bands for literature data). NRI describes the 

average pairwise phylogenetic distance among all species pairs in a sampled community while NTI 

describes the average phylogenetic distance between each species and its closest relative within a 

community. These values are then compared to those from communities generated by a null-model 

algorithm from a regional pool of species (Webb 2000) to determine if real communities are more 
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overdispersed or clustered than is expected by chance alone. We employed both metrics because NRI is 

more sensitive to environmental filtering (clustering) while NTI is more sensitive to structuring due to 

competition among similar species (overdispersion) (Freilich & Connolly 2015). We used the 

‘independent swap’ algorithm (Gotelli 2000; Gotelli & Entsminger 2003) to generate 1000 random 

communities while holding species richness and occupancy constant. This null model essentially treats 

elevational range breadth as “rarity”, which may not be biologically accurate. However, using this method 

instead of a ‘richness’ model, which allows occupancy to vary in null communities, should result in more 

conservative estimates of standardized effect sizes (NRI & NTI) by minimizing the likelihood of type 1 

error (Gotelli 2000). We used all species present across elevations to populate the regional species pool as 

no geographic barriers exist along this gradient and all species sampled have distributions that extend 

beyond the study area (Sheldon, Moyle & Kennard 2001), indicating that dispersal ability alone is not 

constraining elevational distributions. We used independent regional species pools for field and literature 

community datasets to eliminate the possibility of including species in the regional pool that were simply 

undetectable by the observer during field sampling. Analyses were done in R (R Core Team 2015) using 

the ‘picante’ package (Kembel et al. 2010).  

Functional Trait Diversity – We used the same metrics (NRI, NTI) to describe the distribution of 

functional traits in elevational communities. Hereafter we denote the trait-based metrics as NRIt NTIt. We 

used raw measurements to describe bill shape (bill width and culmen length), and residual values from 

regressions of log-transformed wing chord and tarsus on log-transformed body mass to describe relative 

wing size and relative tarsus length. Relative bill size values were residual values of a regression of bill 

surface area [(bill width * culmen length)/2] on log-transformed body mass. Log-transformed body mass 

was our final functional trait. We then calculated Gower’s distance, a metric that integrates multiple traits 

into an index of dissimilarity for each pairwise combination of species (Gower 1971). These distances 

were used to populate a distance matrix, analogous to a distance matrix of phylogenetic relatedness. 

Because abiotic filtering and competition may be acting simultaneously and on different traits (Swenson 

& Enquist 2009; Graham et al. 2012), we also calculated NRIt for each morphological trait individually 
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using our literature dataset. NRI only detects the presence or absence of clustering, but not whether trait 

values in clustered communities are higher, lower or intermediate compared to neutral or overdispersed 

communities. We also calculated mean ± SE trait values for each elevational community to test 

predictions on how abiotic filters may influence trait distributions at high elevations.  

Phylogenetic Signal – We estimated Blomberg’s K statistic as a measure of phylogenetic signal in our 

three PCA axes used to determine overall trait diversity patterns, as well as in 4 individual morphological 

functional traits thought to be important for either mediating competition or utilization of high elevation 

environments. Blomberg’s K is a measure of the trait variation among species compared to that expected 

based on a Brownian motion model of evolution, given shared evolutionary history determined from the 

phylogeny (Blomberg, Garland & Ives 2003). When K = 1, phylogenetic signal is thought to be strong, 

with trait variation equal to that predicted by a Brownian motion null model. When K approaches 0, there 

is an absence of phylogenetic signal. K values were calculated in Picante using the function 

multiPhylosignal (Kembel et al. 2010). This function requires a fully-resolved tree, but our consensus tree 

contained several polytomies, which, when forcibly resolved using the multi2di function in Picante, can 

artificially inflate K values by creating 0 length branches in unresolved clades (Davies et al. 2012). To 

resolve this problem, we calculated K for each of the 1000 fully-resolved trees in the distribution sampled 

from birdtree.org, and present a mean ± SD K values.  

Elevational Patterns – To evaluate patterns of phylogenetic and functional trait community structure 

across elevations, we used two methods. For field data we used linear mixed-effect models with our 

community structure metrics as response variables, elevation as a fixed effect and site as a random effect. 

For literature data we used a simple linear model with community structure metrics as response variables 

and elevation as a fixed effect.  

  

RESULTS 

Phylogeny 
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The phylogenetic tree generated for this study is shown in Figure 1. The tree comprises 36 families of 

birds, and the relationships among these families and their constituent species are consistent with those 

observed in recent phylogenetic studies (Johansson, Fjeldså & Bowie 2008; Moyle et al. 2016).  

Community composition 

Point count sampling resulted in detection of 163 species of birds, including 113 passerines and 50 non-

passerines along our elevational transects. Our literature search, combined with directly sampled data 

yielded elevational distribution data for 222 species, including 161 passerines and 61 non-passerines. 

Phylogenetic and/or trait data were not available for all species, so datasets for community structure 

analyses were restricted to 139 directly sampled species (100 passerines, 39 non-passerines) for our point-

count data, and 189 species for our literature-based dataset. Species richness declined with increasing 

elevation in passerines (P < 0.01) and across all birds (P < 0.01) based on field-sampling (Fig 3). Species 

richness was higher for a given elevation on Mt. Kinabalu than Mt. Tambuyukon (P < 0.01) with 

maximum diversity between 500 and 700 m on Mt. Tambuyukon (68 total, 45 Passerines) and minimum 

diversity between 3650 and 3850 m on Mt. Kinabalu (2 total, 2 Passerines). Species richness patterns 

were similar in our literature dataset for Mt. Kinabalu, with maximum diversity between 600 and 700 m 

(113 species) and minimum diversity between 3800 and 3900 m (1 species), with α diversity decreasing 

monotonically with elevation (P < 0.01; Fig 3).  

Phylogenetic signal in functional traits 

All measured morphological traits showed significant phylogenetic signal in each of our three datasets 

(Table 1) indicating that closely related species are more likely to possess similar morphology and thus 

similar ecological niches. Mass and bill width both showed K values greater than 1 across all three 

datasets, indicating particularly strong phylogenetic signal in these traits. Culmen length also showed 

strong phylogenetic signal in datasets including all birds, but weaker signal when considering passerines 

only (Table 1). Tarsus length showed the opposite pattern, showing stronger signal within passerines than 

among all birds (Table 1).   

Phylogenetic Community Structure 
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Overall, bird communities exhibited a pattern of neutral community structure over much of the elevational 

range, but some phylogenetic overdispersion at low and phylogenetic clustering at high elevations (Fig 

4A). Clustering increased with elevation in our field-sampled dataset that included all birds based on NRI 

(P < 0.01), but no significant pattern in community structure was detected using NTI (P = 0.15). When 

limiting our dataset to passerines only, phylogenetic clustering increased with increasing elevation based 

on NRI (P = 0.05). Clustering in passerines also increased with elevation based on NTI (P = 0.01), but 

anomalously, the pattern was driven solely by overdispersed communities at low elevations on Mt. 

Tambuyukon (Fig 4A). More communities were found to be significantly clustered in our directly-

sampled datasets based on NRI, while NTI detected similar (all birds) or more (passerines) overdispersion 

(Fig 4A). In our literature dataset, clustering increased with elevation when using both NRI (P < 0.01) and 

NTI (P < 0.01). More communities were significantly clustered than overdispersed according to both 

metrics, and NRI detected significant overdispersion and clustering more frequently than NTI (Fig 4A).  

Functional Trait Diversity 

Elevational patterns of community structure based on functional traits were largely consistent with those 

based on phylogenetic relatedness (Fig 5). This was not surprising given the strong phylogenetic signal in 

our trait data (Table 1). Overall, functional traits were clustered at high elevations, neutral at middle 

elevations and overdispersed at low elevations (Fig 4B). Based on NRIt, the pattern of increased 

clustering with elevation was consistent across directly sampled gradients including all birds (P < 0.01), 

passerines only (P = 0.01), and our literature dataset (P < 0.01). Based on NTIt, clustering increased with 

elevation for our passerine (P = 0.05) and literature datasets (P < 0.01), but this pattern was weaker when 

including all birds (P = 0.08). Trait-based metrics detected significantly overdispersed or clustered 

communities with similar or higher frequency than phylogenetic metrics regardless of metric or dataset 

(Fig 4). 

Analysis of community structure patterns of individual traits revealed variation in patterns among 

traits. Relative wing size exhibited no elevational pattern in community structure (P = 0.90), and body 

mass showed greater clustering at high elevations (P = 0.04), but the pattern was weak compared to other 
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traits(Fig 5). Relative tarsus length (P < 0.01), and both measures of bill shape (bill width; P < 0.01, 

culmen length; P < 0.01) and relative bill size (P < 0.01) showed strong patterns of overdispersion at low 

elevations and clustering at high elevations (Fig 5). All morphological measures that were clustered at 

high elevations also showed significant changes in mean trait values across elevations (Fig 6). High 

elevation communities contained species with lower body mass (P < 0.01), longer relative tarsus length (P 

< 0.01), as well as narrower (P < 0.01) and shorter (P < 0.01) bills, and smaller relative bill size (P < 

0.01) compared to low elevation bird communities (Fig 6). Initially, we were concerned that the absence 

of hornbills (Bucerotidae, 4 species) at high elevations, combined with their massive size compared with 

other bird species, was driving the results presented above. However, removing hornbills had no 

qualitative effect on any of our results and the data presented here are those with hornbills excluded and 

are thus conservative.  

 

DISCUSSION 

Several studies have found overdispersed communities at low elevations (Machac et al. 2011; Graham et 

al. 2014) and clustered communities at high elevations (Bryant et al. 2008; Graham et al. 2009; Machac et 

al. 2011; Wang et al. 2012; Smith, Hallwachs & Janzen 2014).  We found a similar pattern but also that 

clustering was a stronger pattern at high elevation than overdispersion was at low elevations. This pattern 

suggests that environmental filtering plays a principal role in driving avian community structure at high 

elevations, while resource competition among species at low elevations is less evident. Indeed, we found 

far more clustered than overdispersed communities across the entire gradient (Fig 4), matching results in 

hummingbirds (Graham et al. 2009).  The rarity of overdispersed communities suggests that interspecific 

competition may not be the dominant force in avian community assembly as long thought (Terborgh 

1971; Terborgh & Weske 1975; Jankowski et al. 2010; Freeman 2015).    

Although elevational patterns in community structure found here were broadly similar to other 

studies in birds, we found contrasting results when we examined how individual functional traits varied 

across elevations. Large relative wing size and large mass are significantly clustered at high, cool 
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locations in hummingbirds (Graham et al. 2012), suggesting a strong influence of environmental filtering 

on high elevation hummingbird communities. However, relative wing size showed no pattern of increased 

clustering at high elevations in our system (Fig 5). Moreover, body mass distributions were clustered at 

high elevations as found in hummingbirds, but mean body mass was smaller not larger in high elevation 

bird communities. Thus, traits subject to filtering in challenging environments may be clade-specific. 

Specifically, large body size and large wings may be especially important for hummingbirds which are 

extremely small and thus subject to rapid heat loss, and use flight maneuvers that are particularly 

aerodynamically demanding at low atmospheric pressures (Segre et al. 2016). Alternatively, differences 

between these two studies could be attributed to topographical differences between sites. Mt. Kinabalu is 

an isolated massif with a summit elevation of 4095 m, whereas the Ecuadorean Andes where Graham and 

colleagues (2009, 2012) sampled hummingbird communities reach 6000 m. The more extreme abiotic 

conditions in the high Andes may exert a stronger abiotic filter than the highest elevations at our study 

site.   

Despite increased clustering at high elevations, estimates of community structure at the highest 

elevations often approached neutral values (Fig 4). This result could reflect issues related to extremely 

low species richness in our highest communities. While habitat filtering may be less intense at extremely 

high elevations, simulations show that the power to detect environmental filtering decreases sharply when 

species richness is very small relative to the regional species pool (Freilich & Connolly 2015). The 

decrease in clustering at extremely high elevations was most evident in directly-sampled datasets (Fig 4), 

where communities had especially low species richness (Fig 3). Additionally, summit communities 

experience the coldest temperatures and lowest atmospheric air pressures, conditions thought to be 

physiologically challenging for birds (Altshuler & Dudley 2006; Graham et al. 2009; Cheviron & 

Brumfield 2012), emphasizing the likelihood that these neutral values are a statistical artifact and not 

ecologically meaningful. 

 Elevational patterns of community structure appear to differ across clades when we look beyond 

birds. Ant communities appear to show patterns similar to birds, with clustered high elevation 
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communities and either neutral or overdispersed low elevation assemblages (Machac et al. 2011; Smith et 

al. 2014), while microbial communities appear to be phylogenetically clustered regardless of elevation 

(Bryant et al. 2008; Wang et al. 2012). Plants are a distinct outlier, with neutral structure at low elevations 

and overdispersion at high elevations (Bryant et al. 2008). However, in some plant taxa, facilitation 

among closely related species increases with elevation (Callaway et al. 2002), which should result in the 

opposite pattern. The variation in patterns of community structure across elevations suggests that the 

forces that govern community assembly, and the way in which they change across elevations, may differ 

among taxonomic groups.  

 Clustered high-elevation communities have often been attributed to constraints imposed directly 

by harsh environmental conditions on morphological or physiological traits (Graham et al. 2009, 2012). 

Based on an analysis of morphological traits we find no evidence that abiotic factors such as cold 

temperatures or low atmospheric pressure are directly driving clustering in high elevation bird 

communities. Instead, clustered traits are those related to food acquisition. Specifically, species at high 

elevations are smaller and have short and narrow bills (Fig 5-6). Avian body size and bill shape are 

correlated with prey size (Schoener 1971; Sam et al. 2017) and insect body size declines with increasing 

elevation (Janzen 1973; Sam et al. 2017). Thus, a possible cause for the smaller bills of high elevation 

species is an absence of large prey. In this case, abiotic factors may not be directly influencing avian 

community structure, but are doing so indirectly by influencing community structure of organisms on a 

different trophic level. The argument that insect size distributions may drive patterns avian diversity has 

been made in the context of latitudinal gradients (Schoener 1971), but our results suggest this may apply 

to elevational gradients as well. 

 Studies of community structure suggest that the forces governing community assembly are 

complex and vary across geographic gradients and among clades (Cavender-Bares, Keen & Miles 2006; 

Bryant et al. 2008; Graham et al. 2012). We show that tropical bird communities across a large 

elevational gradient are clustered due to a lack of resource and habitat complexity at high elevations, and 

appear to be simultaneously structured by interspecific competition and warm temperatures at low 



 18

elevations. The rarity of overdispersed communities in this study and others (Graham et al. 2009, 2012) 

provides evidence that interspecific competition may not be the primary driver of avian community 

structure as previously thought.  
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Table 1. Measures of phylogenetic niche conservatism as estimated by Blomberg’s K for 5 morphological functional traits. P-values indicate the 

estimate is significantly different than zero, with larger numbers indicating stronger phylogenetic conservatism of a given trait. K values calculated 

for literature and all birds datasets have standard errors associated with them because estimates of K presented here are mean values from 

distributions of 1000 trees to avoid artificial inflation of K due to the presence of polytomies in a consensus tree. This process was not necessary 

for our Passerine dataset because the associated tree did not contain polytomies.  

 

Literature Data All Birds Passerines 

Trait K P  K P  K P 

Mass 1.26 ± 0.26 < 0.001 1.13 ± 0.21 < 0.001 1.13 < 0.001 

Wing size 0.60 ± 0.14 < 0.001 0.47 ± 0.11 < 0.001 0.89 < 0.001 

Tarsus length 0.76 ± 0.13 < 0.001 0.63 ± 0.11 < 0.001 1.06 < 0.001 

Bill width 1.19 ± 0.23 < 0.001 1.22 ± 0.24 < 0.001 1.82 < 0.001 

Culmen length 1.20 ± 0.25 < 0.001 1.49 ± 0.23 < 0.001 0.66 < 0.001 
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Figure Legends 

Figure 1. Phylogenetic tree of Bornean passerines. Posterior probabilities of each node represented by 

pie-charts at nodes with uncertainties represented by the proportion of black on the pie-chart (white circle 

= posterior probability of 1.0). 

 

Figure 2. Topographic map of the study area within Kinabalu Park, including Mt. Kinabalu and Mt. 

Tambuyukon. Elevational transects along which point counts were conducted are shown as dashed lines. 

Contour lines are in increments of 200 m.  

 

Figure 3. Changes in community species richness with elevation for our literature dataset spanning all of 

Kinabalu Park and directly-sampled datasets on Kinabalu and Tambuyukon.   

 

Figure 4. Plots of phylogenetic (A), and trait-based (B) community structure versus elevation for directly-

sampled and literature datasets. Positive values of NRI and NTI indicate clustering, while negative values 

indicate overdispersion. Point color denotes whether NRI values are statistically different from zero at 

thresholds of P < 0.10 (black) or P < 0.05 (dark gray).  

 

Figure 5. Community structure patterns for morphological functional traits across elevations based on our 

literature dataset. Positive values indicate that traits are more clustered than expected under a null-model 

distribution. Point color denotes whether NRI values are statistically different from zero at thresholds of P 

< 0.10 (black) or P < 0.05 (dark gray). 

 

Figure 6. Changes in mean ± SD trait values for bill width, culmen length and residual tarsus length for 

avian communities across an elevational gradient based on our literature dataset. Bill width and culmen 

length are presented as raw values, residual tarsus length is calculated as the residual value from a 

regression of tarsus length on log-transformed body mass, and body mass is log-transformed.  
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Chapter 2: Thermal physiology does not drive elevational range limits in Bornean songbirds. 

 

Andy J. Boyce, Blair O. Wolf and Thomas E. Martin  

 

ABSTRACT 

The climatic variability hypothesis posits that stable abiotic conditions in the tropics cause narrow 

physiological tolerances and inhibit dispersal along abiotic gradients. This phenomenon is thought to 

explain the narrow elevational ranges of organisms on tropical mountains including ‘parapatric’ pairs of 

closely-related species with abutting but non-overlapping ranges. To test whether divergent physiological 

tolerances limit elevational ranges of tropical birds, we measured resting metabolic rate (RMR), lower 

critical temperature (LCT) and metabolic sensitivity to temperature (ST) in 28 species of songbirds from 

mid (1450m) and high elevation (3200m) communities including two species pairs with parapatric 

distributions. RMR was similar for mid and high elevation species, but was correlated with lower 

elevational range boundary. LCT and ST were similar between species sampled at mid and high elevation 

sites and were not correlated with any aspect of elevational range. Additionally, there were no consistent 

differences in thermal physiology in elevationally parapatric species pairs. Our results suggest that abiotic 

conditions do not set elevational range limits in tropical birds.    



 37

INTRODUCTION 

Understanding the ecological and physiological mechanisms that limit species distributions is a 

fundamental goal of ecology and biogeography (Darwin 1859; Macarthur 1972; Lomolino, Riddle & 

Brown 2006). Furthermore, determining the role of abiotic conditions in limiting distributions is critical to 

predicting range dynamics in response to rapid climate change (Parmesan 2006; Deutsch et al. 2008). 

Biotic and abiotic factors can both limit distributions in specific contexts, but the relative importance of 

these two factors across environmental gradients is not well understood (Sexton et al. 2009; Jankowski et 

al. 2012). Species inhabiting tropical mountains often have narrow elevational ranges with closely-related 

taxa occupying adjacent elevational zones (Terborgh 1971; Stotz et al. 1996; McCain 2009). This pattern 

leads to rapid species turnover along mountainsides (Huey 1978) and drives exceptional biodiversity and 

endemism on tropical mountains (Cadena et al. 2011; Merckx et al. 2015). Yet, the factors limiting 

elevational ranges of tropical species are not well understood (Jankowski et al. 2012).  

 Abiotic factors are thought to be particularly important in setting elevational range limits in the 

tropics. The climatic variability hypothesis posits that stable abiotic conditions at low latitudes allow 

species to develop narrow physiological tolerances (Dobzhansky 1950).  On tropical mountains, temporal 

stability in climate combined with dramatic changes in conditions across elevations may inhibit 

elevational dispersal (Janzen 1967) and explain the small elevational ranges of tropical species and 

parapatric (abutting, non-overlapping) distributions of closely-related species (Ghalambor et al. 2006). 

Upward range shifts in conjunction with rising temperatures suggest that physiological tolerances can be 

important in setting elevational range limits (Parmesan 2006; Moritz et al. 2008; Chen et al. 2009; 

Tingley et al. 2009; Harris et al. 2012; Freeman & Class 2014). Moreover, tropical species tend to have 

narrower elevational ranges and narrower thermal tolerances than temperate counterparts (Stevens 1992; 

Ghalambor et al. 2006; Deutsch et al. 2008; Sunday, Bates & Dulvy 2011; Gill et al. 2016), as predicted 

by the climatic variability hypothesis. However, while evidence for narrower thermal niches in the tropics 

than the temperate zone exists for ectotherms, this pattern is debated for endotherms (Khaliq et al. 2014; 

but see Wolf et al. 2017). Thermoregulatory abilities buffer endotherms from the direct impacts of climate 
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and may weaken the influence of abiotic conditions on the evolution of thermal tolerances and range 

limits (Ghalambor et al. 2006). Moreover, elevational range-shifts in endotherms are sometimes linked to 

the absence of a putative competitor (Terborgh & Weske 1975; Remsen Jr. & Graves 1995a; b; Martin & 

Martin 2001; Gifford & Kozak 2011, but see Cadena & Loiselle 2007), or to changes in habitat or land 

use (Rowe, Finarelli & Rickart 2010; Jankowski et al. 2013). Such patterns suggest that elevational range 

limits may be more strongly influenced by habitat associations or interspecific competition than climate. 

 Songbirds (Passeriformes) are a tractable system in which to examine possible abiotic or 

physiological drivers of elevational range limits in endotherms. In the tropics, many avian clades have 

parapatric distributions with congeners “stacked” on top of each other in narrow elevational bands 

(Terborgh 1971; Diamond 1973; Remsen Jr. & Graves 1995a; b; Stotz et al. 1996). The ability of 

physiological traits to explain elevation patterns in songbirds is still unclear. Increased metabolic rate 

(BMR/RMR) is thought to be beneficial in cold environments, including high elevations, to facilitate 

greater thermogenic capacity (McKechnie & Swanson 2010). Birds inhabiting high-elevation habitats had 

higher BMR in New Guinea (McNab 2005, 2013), but BMR was similar across elevations in the Andes 

(Londoño et al. 2017). High elevation species may also incur lower metabolic costs of thermoregulation 

in cold environments via increased mass or biochemical adaptations to increase cold-tolerance (Pörtner 

2002; Fangue, Richards & Schulte 2009; Jankowski et al. 2012). On the other hand, tropical songbirds do 

not appear to increase in mass at high elevation (Freeman 2017) and mass-independent differences in 

cold-tolerance may be subtle (Londoño et al. 2017) or absent (McNab 2013; Freeman 2016a) across 

elevations. Yet, previous studies included critical assumptions that raise questions about their conclusions. 

In particular, measures of thermal physiology were mathematically dependent on measures of body 

temperature  and assumed physical properties alone influence thermoregulatory costs at low temperatures 

(McNab 1980, 2013; Londoño et al. 2017). Such assumptions ignore physiological adaptations that may 

decrease energetic costs of thermoregulation are ignored (McNab 1980). Furthermore, measurements of 

internal body temperature are highly variable within species and among measurement methodologies 

(Bouwknecht, Olivier & Paylor 2007; Nord et al. 2016). Consequently, the role of evolved differences in 



 39

thermal physiology in limiting elevational ranges in tropical birds remains unclear. To improve our 

understanding of elevational variation in thermal physiology and the potential ability of this variation to 

limit elevational ranges, direct measurements of metabolism as a function of temperature are required. 

 To test whether physiological tolerance to temperature limits elevational ranges in tropical 

endotherms, we measured resting metabolic rate (RMR), lower critical temperature (LCT; the temperature 

below which RMR increases for thermoregulation) and metabolic sensitivity to temperature (ST; the rate 

of increase in metabolism below LCT) in free-living songbirds inhabiting mid and high elevation habitats 

on a tropical mountain. We used phylogenetically-informed methods to test for differences in 

physiological traits between mid and high elevation communities and compare traits in two pairs of 

closely-related species with parapatric elevational distributions. We also tested for relationships between 

physiological traits and upper and lower elevational range limits to assess if thermal physiology is more 

important at lower (warmer) or upper (colder) elevational range boundaries. 

 

METHODS 

Study system 

All data were collected at Kinabalu Park, Sabah, MY (6°N, 116°E), a large tract of tropical forest 

spanning 400 – 4100m on the island of Borneo. Metabolic measurements were performed in mid-

elevation submontane cloud-forest at Park HQ (1560m) and high-elevation “Ceja” forest at Laban Rata 

(3270m) (Rafiqpoor & Nieder 2006). The two sites are connected by continuous, undisturbed forest 

bounded below by the park boundary at ~1450m, and above by a zone of bare granite from ~3800m to 

Low’s Peak at 4095m. All fieldwork was conducted from February – June, 2012-2016.    

Climate measurements 

We characterized climatic conditions across elevations on Mt. Kinabalu (1500 – 3500m) using 

Thermochron® Ibutton temperature loggers (Maxim Integrated Products, Sunnyvale, CA, USA). 

Dataloggers were fixed to 25cm metal stakes and placed in undisturbed vegetation every 100 vertical 
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meters along narrow, rarely-used trails. Loggers were placed such that they were at least 15cm above 

ground and to avoid direct sunlight. All data loggers were set to record temperature values every 10 min.  

Elevational ranges  

 To describe elevational distributions at our study site and to identify species pairs with parapatric 

distributions we conducted repeated point count surveys along a continuous transect from 1450m – 

3800m on Mt. Kinabalu (Boyce et al. 2018a). Points were placed at least 200m straight-line distance 

apart, at a density of 5 points per 200 vertical meters. Counts were 10 minutes in duration, during which 

we recorded all individuals detected visually or aurally. Counts were conducted between civil twilight and 

08:00 with a maximum of 5 counts per morning. All counts were conducted by AJB. The entire transect 

was sampled either two (2014-2015) or three (2012-2013) times per season. The order in which each 

cluster of points was sampled was reversed after each transect to avoid sampling bias related to time of 

day. The park boundary limited the low-elevation extent of our point counts at ~1450m, obscuring 

variation in lower range boundary for many species. To address this, we characterized the full extent of 

species elevational ranges in the park using elevational distribution data from Harris et al. (2012). This 

dataset is based on multiple data sources including direct sampling by the authors, citizen science 

projects, the literature, and unpublished data from experienced observers. To improve data quality, 

elevational ranges were broadened where direct observations from our field data fell outside of the 

published elevational range. Furthermore, where elevational ranges included single observations that were 

more than 200m either above or below all other known observations, we assumed these were 

misidentifications or represented temporary movements. These records were discarded and the elevational 

ranges described based on the remaining data.  

Metabolic Measurements 

 Birds were captured for metabolic measurements by both passive and targeted mist-netting. 

Breeding females (based on presence of a brood patch) were excluded to minimize disruption of nesting 

and because the extreme vascularization of the avian brood patch is likely to alter RMR. Birds were 

transported to the lab and held for 1-2 hrs, depending on mass, to insure they were post-absorptive during 
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measurements. Birds were watered before and after measurements and returned to the location of capture 

upon completion of metabolic measurements.      

 We used an open-flow respirometry system (described in Gerson et al. 2015) to characterize 

resting metabolic rate (RMR) as a function of temperature. We used 2L and 5L transparent plastic 

containers (Rubbermaid, Atlanta, GA, USA) as metabolic chambers, depending on the size of the study 

species. These containers were modified to include incurrent and excurrent air ports, with wire mesh 

platforms and plastic perches to allow subjects to rest comfortably. The bottom of the chamber contained 

a 2cm layer of mineral oil to trap moisture and gas associated with feces. Containers were placed inside a 

large cooler modified to hold an integral peltier device (model AC-162, TE Technology, Traverse City, 

MI), mated to a custom temperature control system (Gerson et al. 2015). Incurrent air was supplied by a 

high capacity vacuum pump (model DAA-V515-ED, Gast Manufacturing, Benton Harbor, MI, USA), and 

was routed through a coil of copper tubing prior to entering the inner chamber to facilitate rapid 

temperature equilibration. Air flow rates were regulated by mass-flow controllers (Alicat Scientific, 

Tucson, AZ). Flow rates were set between 2-15 L/min depending on mass of study species. Incurrent and 

excurrent air were subsampled at rates between 250 and 500 ml/min. CO2 and H2O were measured once 

per second using a portable gas-analyzer (LI-COR model LI-840a, Lincoln, NE, USA) and recorded using 

Expedata (Sable Systems, Las Vegas, NV, USA). We corrected mass flow rates of humid air, and 

calculated CO2 and H20 production using equations in Lighton (2008). Metabolic rate (W) was calculated 

as in Walsberg and Wolf (1995). CO2 production was converted to metabolic energy used a respiratory 

quotient (RQ) value of 0.71, as suggested for post-absorptive, non-granivorous birds (Gessaman & Nagy 

1988). 

 Humidity of incurrent air was regulated using a dew-point generator constructed of three Nalgene 

bottles connected in series. Air was bubbled through water in the first two bottles, and the third was empty 

and served as a water trap. The entire device was then submerged in a water bath kept at approximately 

10°C by the addition of small ice-packs. This device buffered rapid fluctuations in humidity and 

prevented condensation occurring in the system. By adjusting water bath temperature and incurrent air 
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pressure, we maintained relative humidity between 50 and 70%, which is within the range of normal 

conditions at both sites during the breeding season.  

 Metabolic measurements began within or near the thermoneutral zone (24- 33°C) (McKechnie & 

Wolf 2004; McNab 2009) to minimize stress and facilitate acclimation to the chamber. Subject activity 

was monitored in real-time via an infrared security camera connected with an external LCD screen. For 

each temperature, we subsetted data for analysis by selecting the longest continuous period of resting 

behavior after chamber temperature had reached equilibrium for at least 30 minutes. If no period of 

complete rest greater than two minutes was observed, no data were analyzed for that temperature. After 

each measurement, ambient temperature was decreased in 3°C increments and the process repeated. Time 

constraints or other logistical issues occasionally forced measurements at temperatures slightly above or 

below those at target intervals. Total measurement time was limited to 3 hours, which determined the 

number of temperatures sampled for each individual.  

Statistical Analyses 

 Within species, metabolic rates vary strongly with mass (Kleiber 1932) and show large variation 

among individuals after accounting for mass (Auer et al. 2017b). To account for both issues when 

estimating LCT and ST, we log-transformed RMR and body mass and calculated standardized residuals 

from a regression of metabolic rate on body mass. We then modeled these residuals (residual metabolic 

rate) as a function of temperature using segmented mixed-effects models, with individual as a random 

effect, to obtain initial maximum-likelihood estimates of LCT (Muggeo et al. 2014; Muggeo 2016). We 

selected all metabolic measurements at temperatures below LCT and fit linear-mixed effects models to 

determine St. We estimated RMR for each species by selecting the lowest measurement for each 

individual at temperatures above the estimated LCT and below 33°C. Final values of LCT were defined as 

the temperature at which metabolic rate as a function of temperature (ST) intersected RMR (Fig 1). 

 We tested for variation in body mass, RMR, LCT and ST between species at high and mid-

elevation sites, and with respect to high and low elevational range boundaries for each species. We used 

phylogenetic generalized least-squares regression (PGLS), implemented in the package ‘ape’ (Paradis et 
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al. 2004; Popescu et al. 2012), to control for the non-independence of species-level data points associated 

with phylogenetic relatedness (Felsenstein 1985). We fit three models for each analysis, assuming no 

phylogenetic signal (λ = 0), Brownian motion (λ =1) and an Ornstein–Uhlenbeck model of trait evolution 

assuming stabilizing selection (Martins, Hansen & Url 1997). Final models were selected for each trait 

based on AICC values. Phylogenetic trees were acquired from birdtree.org (Jetz et al. 2012) using the 

Hackett backbone (Hackett et al. 2008). We sampled a distribution of 1000 trees for each analysis and 

produced majority-rules consensus trees in Mesquite (Maddison & Maddison 2011). Implementing PGLS 

for relatively small numbers of species can be problematic (Garamszegi 2014), so we also present raw 

results for all phylogenetic analyses. RMR, ST and LCT are correlated with mass at broad scales (Kleiber 

1932; Gillooly et al. 2001; Fristoe et al. 2015), but relationships are less clear for ST and LCT within 

passerine birds (Londoño et al. 2017). Thus, body mass was included as a covariate in all models. All 

analyses were performed in R (R Core Team 2015).   

 

RESULTS  

Temperature declined monotonically with increasing elevation (Fig 2) at a rate of 4.1°C/1000m. Our low 

elevation sampling site (Park HQ) experienced temperatures with an average daily minimum and 

maximum of 15.83 ± 0.75°C to 19.73 ± 1.18°C. The high elevation sampling site (Laban Rata) 

experienced temperatures with an average daily minimum and maximum of 8.20 ± 0.37°C to 10.32  ± 

0.54°C. 

 We measured resting metabolic rate in 208 individuals of 27 species, 21 at mid-elevation and 6 at 

high elevation (Table 1). RMR did not show a phylogenetic signal and mass explained the vast majority 

of variation in RMR among species with a scaling exponent of 0.65 (P < 0.01, λ = 0, Fig 3). The 

allometric scaling exponent was 0.65, which is consistent with known values for birds (Bennett & Harvey 

1987; McKechnie & Wolf 2004). RMR did not differ between mid and high elevation species after 

accounting for mass and phylogenetic relationships (P = 0.16). RMR was not correlated with upper 
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elevational range boundary (P = 0.42), but was positively correlated with lower range boundary (P = 

0.03).  

 Body mass showed a strong phylogenetic signal (λ = 0.75) and did not differ between high and 

mid-elevation sites (P = 0.98). Body mass was not correlated with either upper (P = 0.81) or lower (P = 

0.92) elevational range boundaries. 

 We were able to estimate LCT and ST for 18 species, 12 at mid-elevation and 6 at high elevation 

(Fig 4, Table 1). We sampled an average of 10 individuals per species (range: 4-20, Table 1). ST scaled 

allometrically and had a strong phylogenetic signal (P = 0.03, λ = 1.00). ST was similar at high and mid 

elevation sites and was not correlated with lower (P = 0.21) or upper elevational boundary (P = 0.51).  

  LCT was unrelated to mass (P = 0.23) and showed a strong phylogenetic signal (λ = 1.00).  

Species sampled at mid-elevation had colder LCTs compared to high elevation relatives, but the 

relationship was only marginally significant (P = 0.07). LCT was not correlated with lower elevational 

range boundary (P = 0.14) but were warmer with increasing upper range boundary (P = 0.03).  

 We did not find consistent differences in the two paired congeners. Among bulbuls 

(Pycnonotidae), the high elevation species (P. leucops) had lower residual RMR, lower ST, and a warmer 

LCT than its mid-elevation relative (A. ochraceus) (Fig 5A). Among white-eyes (Zosteropidae), the high-

elevation species (C. emeliae) had lower residual RMR, lower ST, and a colder LCT compared with its 

mid-elevation relative (Z. atricapilla) (Fig 5B). 

 

DISCUSSION 

Here we show that songbirds occupying mid and high elevations, including species pairs with parapatric 

distributions, have similar thermal physiology. The inability of physiological traits to explain elevational 

range limits in birds appears to be consistent across tropical regions (Freeman 2016a; Londoño et al. 

2017).  This result contradicts predictions of the climate variability hypothesis and suggests that factors 

other than thermal physiology may set range limits and drive rapid turnover of tropical endotherms across 

elevational gradients. Furthermore, if abiotic conditions are not direct drivers of range limits in tropical 
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endotherms, the use of climate-envelope models in predicting future distributions in the context of climate 

change may be inappropriate.  

 Thermal tolerances estimated for resting organisms may be grossly different than in those in 

active, free-living individuals. Activity leads to increased endogenous heat production such that field 

metabolic rate is typically more than double RMR in birds (Drent & Daan 1980; Nagy 1987). The large 

quantities of heat produced as a consequence of activity contribute to thermoregulation such that the LCT 

is substantially colder in active birds (Zerba & Walsberg 1992; Zerba, Dana & Lucia 1999; Humphries & 

Careau 2011). The consequences of thermoregulatory substitution for thermal tolerances may be 

particularly significant in birds due to their energetically-intense nature of flight. Indeed, temperatures 

that correspond to the thermoneutral zone at rest can result in hyperthermia in flying passerines (Torre-

Bueno 1976; Hudson & Bernstein 1981) and observations of starlings in flight suggest that optimal 

temperatures for flight are 10-14°C, whereas RMR is substantially elevated at these temperatures (Torre-

Bueno 1976; Torre-Bueno & Larochelle 1978). Clearly, temperatures that represent challenges or optima 

in resting birds are unlikely to resemble challenging or optimal conditions in active individuals. At the 

same time, birds are not constantly active, and typically experience the coldest temperatures at night, 

when they are at rest. Many species use facultative hypothermia or torpor to reduce energetic costs of 

thermoregulation when exposed to cold temperatures and there is substantial variation in these strategies 

across species (McKechnie & Lovegrove 2002; Schleucher 2004). Therefore, comparative studies seeking 

to determine the role of abiotic conditions in setting range limits of endotherms should take a holistic 

approach integrating measures of thermal physiology during both resting and active phases. 

 We found that RMR was correlated with lower elevational range boundary, suggesting that 

minimizing heat loading in warm, humid environments  may be more important than maximizing 

thermogenic capacity in cold high-elevation environments (Weathers 1997).  However, this hypothesis is 

difficult to justify because body temperature in songbirds is generally upwards of 40°C (Prinzinger, 

Preßmar & Schleucher 1991), whereas ambient temperature in lowland rainforest in Borneo rarely 

exceeds 30°C (Kitayama 1992). This differential provides a large thermal gradient to facilitate passive 
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heat loss, so thermal challenges from hot temperatures seem unlikely. Furthermore, the hottest 

temperatures experienced by forest birds are well within the thermoneutral zone of all passerines 

measured here, suggesting reduced RMR in species occupying low elevations may be unrelated to 

thermal ecology.  

 Our finding that birds occupying divergent elevational ranges do not have consistently divergent 

thermal physiology provides evidence that elevational range shifts in birds are unlikely to be directly 

driven by changing abiotic conditions. This idea is supported by observations that elevational range shifts 

in birds have often been absent, heterogeneous, or smaller than projected by abiotic models (Devictor et 

al. 2008; Forero-Medina et al. 2011; Harris et al. 2012). Plants and ectotherms are expected to be more 

sensitive to changing climate than endotherms (Huey et al. 2012). Indeed, on Mt. Kinabalu, insects show 

large and consistent upward elevational range shifts in response to rising temperatures (Chen et al. 2009), 

but range shifts are inconsistent in birds (Harris et al. 2012).  Because plants and small ectotherms are key 

components of habitat for songbirds, narrow elevational ranges and range shifts may be driven primarily 

by associations with habitat and prey rather than with an abiotic niche. If true, mountain passes may 

indeed be “higher” in the tropics for endotherms, but elevational dispersal may be constrained by biotic 

not abiotic zonation (Janzen 1967).  
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Table 1. Mean values (± SE) for physiological traits and elevational ranges for species sampled in this study. Sample size (n) refers to number of 

individuals sampled for physiological traits. Site indicates whether a species was sampled at mid (Park HQ, 1560m) or high (Laban Rata, 3270) 

elevation sites.  Elevational ranges include data from all of Kinabalu Park. 

ST (W/°C) 

Elevational Range 
Boundary (m) 

Species Mass (g) RMR (W) 
LCT 

(°C) n Site Low High 

Turdus poliocephalus 75.49 ± 1.16 0.017 1.114 ± 0.044 24.71 6 High 2,700 3600 
Zoothera citrina 68.00 - 0.95 - 1 Mid 1400 2000 
Myophonus borneensis 123.13 ± 3.87 - 1.393 ± 0.063 - 8 Mid 800 2700 
Brachypteryx montana 19.80 ± 0.28 0.014 0.438 ± 0.023 21.32 4 Mid 1400 2900 
Enicurus borneensis 39.00 ± 1.14 - 0.634 ± 0.026 - 7 Mid 800 1800 
Ficedula hyperythra 8.33 ± 0.13 0.009 0.218 ± 0.014 24.35 9 Mid 1200 2900 
Rhinomyias gularis 25.46 ± 0.32 0.009 0.460 ± 0.025 21.73 11 Mid 1400 1900 
Eumyias indigo 16.96 ± 0.43 - 0.300 ± 0.004 - 2 Mid 1400 2400 
Dicrurus leucophaeus 44.69 - 0.53 - 1 Mid 1000 2200 
Pachycephala hypoxantha 22.80 ± 0.30 0.020 0.406 ± 0.007 21.67 12 Mid 1200 2500 
Rhipidura albicollis 12.12 ± 0.18 0.013 0.307 ± 0.016 28.05 10 Mid 900 3200 
Cissa thalassina 113.00 ± 3.00 - 1.237 ± 0.057 - 2 Mid 900 3200 
Aethopyga temminckii 6.01 ± 0.77 - 0.176 ± 0.019 - 2 Mid 800 2000 
Alophoixus ochraceous 49.01 ± 0.82 0.027 0.769 ± 0.021 19.50 20 Mid 900 1700 
Rhinocichla treacheri 65.49 - 0.74 - 1 Mid 1000 3400 
Phylloscopus trivirgatus 9.28 ± 0.10 0.011 0.210 ± 0.012 22.94 12 High 1300 3200 
Stachyris nigriceps 15.60 ± 0.28 0.016 0.340 ± 0.011 28.85 17 Mid 1400 2400 
Yuhina everetti 13.81 ± 0.23 - 0.359 ± 0.008 - 2 Mid 500 2100 
Chlorocharis emeliae 15.34 ± 0.45 0.023 0.391 ± 0.031 26.11 9 High 1500 3800 
Zosterops atricapilla 8.64 ± 0.16 0.019 0.250 ± 0.016 24.39 10 Mid 1300 2100 
Napothera crassa 28.40 ± 0.72 0.023 0.471 ± 0.028 25.94 9 Mid 1400 2700 
Pellorneum pyrrogenys 19.05 ± 0.24 0.016 0.372 ± 0.008 26.99 12 Mid 900 1800 
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Phyllergates cuculatus 6.99 ± 0.12 0.009 0.217 ± 0.009 25.89 8 Mid 1300 2000 
Cettia vulcania 9.59 ± 0.35 0.011 0.249 ± 0.017 27.50 9 High 1400 3600 
Urosphena whiteheadi 10.26 ± 0.10 0.012 0. 262 ± 0.015 23.84 12 Mid 1400 2400 
Pycnonotus flavescens 29.84 ± 1.05 0.022 0.515 ± 0.014 25.45 7 High 1700 3300 
Bradypterus accentor 18.16 ± 0.39 0.013 0.467 ± 0.013 26.03 5 High 1900 3600 
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Figure Legends 

Figure 1. Conceptual figure of metabolic rate as a function of temperature, and associated physiological 

parameters for endotherms, following Scholander et al. (1950). Lower critical temperature (LCT) is the 

temperature at which metabolic rate is elevated above basal to maintain body temperature. Resting 

metabolic rate (RMR) is the rate of energy production for a post-absorptive organism at rest, within the 

thermoneutral zone. Metabolic sensitivity to temperature (ST) is defined here as the rate of increase in 

metabolic rate with decreasing temperature below LCT. 

 

Figure 2. Mean (grey), average daily maximum (±SD) and average daily minimum (±SD) temperature 

variation across elevations on Mt. Kinabalu from February – September, 2012-2014.   

 

Figure 3. Resting metabolic rate (W) as a function of temperature for 18 species of songbirds 

(Passeriformes). Each point represents the mean RMR value for a given temperature, error bars are ± SE. 

Individual points represent temperatures at which only one measurement was taken. Dotted lines 

characterize resting metabolic rate, LCT and ST based on segmented mixed-effects models. Associated 

data including sample sizes are presented in Table 1. 

 

Figure 4. The allometric relationship between resting metabolic rate (RMR) and body mass for species 

measured at mid and high elevation sites. 

 

Figure 5. Thermal physiology and elevational ranges of two parapatrically distributed species pairs; A) 

bulbuls (Pycnonotidae) and B) white-eyes (Zosteropidae) at Kinabalu Park. Axes for high and low 

elevation species are scaled similarly for visual comparison of LCT and ST. Dotted lines represent 

allometric predictions for RMR based on our data (Table 1).   
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Chapter 3: Interspecific aggression among parapatric and sympatric songbirds on a tropical 

elevational gradient 

 

Andy J. Boyce and Thomas E. Martin 

 

ABSTRACT 

Interspecific competition is hypothesized to be a strong force that set species range limits and is thought 

to drive parapatric distributions of closely related species on tropical mountains. Yet, experimental 

evidence that competition drives spatial segregation of closely related species on elevational gradients is 

lacking. To test whether competition limits elevational ranges of tropical songbirds, we conducted 

reciprocal playback experiments on two pairs of species with adjacent but non-overlapping distributions 

and one pair of sympatric species. We found asymmetric interspecific aggression in one parapatric pair 

(Pycnonotidae) and a complete absence of interspecific aggression in the other (Zosteropidae). We also 

found asymmetric interspecies aggression in two pairs of sympatric flycatchers (Muscicapidae). Our 

results suggest that interspecific aggression may set range limits in some cases, but it is not a prerequisite 

for parapatry. Furthermore, the presence of interspecific aggression between co-occurring relatives 

suggests that while competition may play a role in limiting species distributions, interspecific aggression 

alone is not sufficient evidence to assert that competition is the primary driver of parapatric distributions. 
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INTRODUCTION 

Species inhabiting tropical mountains often have narrow elevational ranges with closely-related species 

occupying adjacent elevational zones (Terborgh 1971; Stotz et al. 1996; McCain 2009). This pattern leads 

to rapid species turnover along mountainsides (Huey 1978) and is associated with exceptional biodiversity 

and endemism on tropical mountains (Cadena et al. 2011; Merckx et al. 2015). Yet, the factors limiting 

elevational ranges of tropical species remain unclear (Jankowski et al. 2012).  

 Interspecific competition is hypothesized to be a strong force that can limit species ranges 

(Connell 1961; Diamond 1973) and is thought to explain adjacent but non-overlapping elevational 

distributions of closely related species (Heller 1971; Diamond 1973; Terborgh & Weske 1975; Stevens 

1992; Jankowski, Robinson & Levey 2010; Freeman 2015). Competitive interactions are generally 

thought to be most important at the “warm” edge of a species range, while abiotic drivers are 

hypothesized to be more important at “cold” boundaries (MacArthur 1972). If this paradigm is accurate, 

low-elevational species should be competitively dominant over high elevation species and show stronger 

interspecific aggression towards their high-elevation relative than vice versa (Jankowski et al. 2010). This 

pattern of asymmetric interspecific aggression means that warming climates may drive range contractions 

in high elevation species as dominant low elevation competitors expand their range upward. This process 

is thought to drive “mountaintop extinctions”, making montane species particularly vulnerable to climate 

change (Colwell et al. 2008; Sekercioglu et al. 2008). Understanding the role of interspecific competition 

in determining range boundaries is therefore critical to predicting outcomes and prioritizing conservation 

effort in light of climate change.   

 Evidence for competition shaping parapatric distributions comes primarily from observations that 

some species expand their range in areas where a closely-related species is absent, suggesting competitive 

release in the absence of a competitor (Terborgh & Weske 1975; Remsen Jr. & Graves 1995a; b; Martin 

& Martin 2001a; Gifford & Kozak 2011). However, what appears to be range expansion due to the 

absence of a presumed competitor can reflect geographic variation in the distribution of suitable habitat 

and not competitive release (Cadena & Loiselle 2007). Observations of interspecific aggression between 
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closely-related species with abutting ranges are also presented as evidence that competition sets and/or 

maintains range limits for some species pairs (Heller 1971; Robinson & Terborgh 1995; Jankowski et al. 

2010). However, if interference competition sets and/or maintains range boundaries between two 

competitors, we would expect ranges to be perfectly adjacent and non-overlapping (Terborgh 1971). Yet, 

in many cases of elevational ‘parapatry’ significant zones of overlap or gaps where neither species is 

present occur (Terborgh 1971). Overall, the importance of interference competition in limiting 

distributions of close relatives is unclear.  

 We examine these questions in with songbirds (passerines) across an elevational gradient in the 

tropics. Songbirds are a tractable system in which to examine the drivers of elevational range limits. In the 

tropics, many clades have parapatric distributions with congeners “stacked” on top of each other in 

narrow elevational bands (Terborgh 1971; Diamond 1973; Remsen Jr. & Graves 1995a; b; Stotz et al. 

1996). Birds are easily observed both visually and aurally, and territorial singing behavior allows for 

straightforward identification to species and facilitates territory location. Evidence for interspecific 

aggression as a proximate force limiting elevational ranges of songbirds is mixed. Broadly speaking, 

interspecific aggression in birds is often asymmetric (reviewed in Martin, Freshwater & Ghalambor 

2017a), where one species either consistently “wins” aggressive interactions, or responds more strongly to 

the presence of a heterospecific than the other. Along elevational gradients, asymmetric aggression has 

been reported, with low elevation species dominating high-elevation relatives (Jankowski et al. 2010; 

Freeman 2016a; Freeman & Montgomery 2016). This pattern has been interpreted as evidence that low-

elevation species outcompete high-elevation subordinates who are forced into suboptimal habitat (Martin 

& Martin 2001b; Jankowski et al. 2010). However, interspecific aggression was absent in some other 

pairs, calling into question the general importance of competition in setting elevational range limits in 

birds (Freeman 2016a). Furthermore, strong interspecific aggression has been documented in co-occurring 

(sympatric) species pairs (Robinson & Terborgh 1995; Freeman 2016b), suggesting that observations of 

interspecific aggression alone are not sufficient evidence to infer interference competition as a driver of 
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elevational parapatry. Thus, studies assessing strength and directionality of interspecific aggression in 

both sympatric and parapatric species pairs are needed. 

 Here, we perform reciprocal playback experiments to assess the presence and directionality of 

interspecific aggression in two closely-related species pairs that replace each other along an elevational 

gradient. We also performed reciprocal playback experiments on two sympatric species to assess whether 

patterns of interspecific aggression is equally strong between co-occuring and parapatric species pairs.  

 

METHODS 

Study system 

All data were collected at Kinabalu Park, Sabah, Malaysia (6°N, 116°E), a large tract of tropical forest 

spanning 400 – 4100m on the island of Borneo. Playback experiments were performed in mid-elevation 

submontane cloud-forest at Park HQ (1560 – 1850m) and high-elevation elfin forest at Laban Rata (3000 

– 3450m) (Rafiqpoor & Nieder 2006). The two sites are connected by continuous, undisturbed forest 

bounded below by the park boundary at ~1450m, and above by a zone of bare granite from ~3800m to 

Low’s Peak at 4095m. All fieldwork was conducted from February – June, 2012-2016.  

 Elevational ranges  

 To describe elevational distributions of bird species at our study site and to identify species pairs 

with parapatric distributions we conducted repeated point count surveys along a continuous transect from 

1450m – 3800m on Mt. Kinabalu. Points were placed at least 200m straight-line distance apart, at a 

density of 5 points per 200 vertical meters. Counts were 10 minutes in duration, during which we 

recorded all individuals detected visually or aurally. Counts were conducted between civil twilight and 

08:00 with a maximum of 5 counts per morning. All counts were conducted by AJB. The entire transect 

was sampled either two (2014-2015) or three (2012-2013) times per season. The order in which each 

cluster of points was sampled was reversed after each transect to avoid sampling bias related to time of 

day. The park boundary limited the low-elevation extent of our point counts at ~1450m, obscuring 

variation in lower range boundary for many species. To address this, we characterized the full extent of 
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species elevational ranges in the park using elevational distribution data from Harris et al. (2012). This 

dataset is based on multiple data sources including direct sampling by the authors, citizen science 

projects, the literature, and unpublished data from experienced observers. To improve data quality, 

elevational ranges were broadened where direct observations from our field data fell outside of the 

published elevational range. Furthermore, where elevational ranges included single observations that were 

more than 200m either above or below all other known observations, we assumed these were 

misidentifications or represented temporary movements. These records were discarded and the elevational 

ranges re-described based on the remaining data.  

Playback experiments 

We selected two pairs of elevationally parapatric relatives and one pair of sympatric relatives for playback 

experiments. All species are common year-round residents. Parapatric species pairs included bulbuls 

(Pycnonotidae); Ochraceus Bulbul (Alophoixus ochraceus) and Pale-faced Bulbul (Pycnonotus leucops), 

and white-eyes (Zosteropidae); Black-capped White-eye (Zosterops atricapilla) and Mountain Black-eye 

(Chlorcharis emeliae). For bulbuls, A. ochraceus occupies submontane and montane forest, and P. 

leucops is restricted to montane and elfin forest surrounding high mountain summits (Harris et al. 2012; 

Sheldon 2015). The low elevation A. ochraceus (49.0g) is larger than the high elevation P. leucops 

(29.8g) (Boyce, Wolf & Martin 2018b). Both bulbul species are primarily frugivorous, forage in the 

subcanopy and understory and build nests in small saplings and shrubs (Smythies 1999, pers obs). For 

white-eyes, Z. atricapilla inhabits submontane and montane forest and scrub, while C. emeliae is 

restricted to montane forest and high-elevation elfin forest (Harris et al. 2012; Sheldon, Lim & Moyle 

2015). Although not congeners by current taxonomy, both pairs are each other’s closest relative at the 

site. Furthermore, recent phylogenetic studies show Chlorocharis nested within the Zosterops clade 

(Moyle et al. 2009), suggesting these two species are best treated as congeners. The high elevation C. 

emeliae (15.3g) is larger than the lower elevation Z. atricapilla (8.6g) (Boyce et al. 2018b). White-eyes 

feed primarily on fruit and nectar throughout forest strata and along habitat edges and build nests in a 

variety of substrate in the subcanopy (Smythies 1999, pers obs). We chose two understory flycatchers 
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(Muscicapidae) as our sympatric species pair; Snowy-browed Flycatcher (Ficedula hyperythra) and 

Eyebrowed Jungle-Flycatcher (Vauriella gularis). Both species are common residents in submontane and 

montane forest and, feed primarily on insects and small invertebrates taken on the ground, and construct 

nests of live moss in trees/shrubs from 1-3m above ground (Smythies 1999, pers obs). V. gularis (25.3g) 

is larger than F. hyperythra (8.3g) (Boyce, Wolf & Martin 2018c). All three species pairs have easily 

recognizable songs that differ qualitatively within species pairs in both sound and pattern of delivery 

(Supplementary material S1-S6). Playback experiments for mid-elevation species and sympatric 

flycatchers were conducted in the vicinity of Park Headquarters (1450m – 1850m). Experiments for high 

elevation species were conducted in the vicinity of Laban Rata substation (3000 – 3450m).  

 Territories of focal species for both recordings and playback trials were located opportunistically 

throughout the study area during point counts and other concurrent fieldwork. Locations of singing birds 

were recorded using a Garmin GPSMap 60CSx portable GPS unit (Garmin International, Olathe, KS, 

USA). Song recordings were made using a Sennheiser ME67 shotgun microphone (Sennheiser, Old 

Lyme, CT, USA) and a Marantz PMD661 digital recorder (Marantz, Chatsworth, CA, USA). All 

recordings were post-processed in Raven Pro (Bioacoustics Research Program 2014) to filter out low-

frequency background noise (< 750hz), to amplify recordings to normalize amplitude across all 

recordings, and to clip recordings to identical length. Each recording was only used once, and was chosen 

at random to avoid pseudo-replication (Kroodsma et al. 2001). 

 Each playback trial was structured to include three auditory stimuli; conspecific song, putative 

competitor song, and control species song. We chose Golden-naped Barbet (Psilopogon pulcherrimus) as 

a control because it occupies a divergent niche from all focal species as a canopy frugivore and cavity-

nester and is common and vocal at both mid and high elevation sites. Observations of the focal bird were 

made during 1 minute of playback and 1 subsequent minute of silence. We then waited a further 2 

minutes before continuing the trial with the next stimulus. Conspecific playback was always played last to 

avoid elevating the focal bird to a heightened state of territoriality before control or heterospecific 

playback. Heterospecific and control stimuli were shuffled randomly.  
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 To broadcast playback stimuli, we used a waterproof speaker (Grace Digital Inc., San Diego, CA, 

USA) and an Apple iPod Nano (Apple Inc., Cupertino, CA, USA). During playback trials we noted 

distance from the focal individual to the speaker following all movements of more than 1m and noted all 

vocalizations of the focal individual. Distances were estimated visually and aurally during trials and 

calibrated afterwards using a digital rangefinder. In some cases, the focal individual left the immediate 

area during or in between stimuli or became silent and obscured such that observation was impossible. In 

other cases, conspecific (non-target) individuals responded to stimuli making it difficult to keep track of 

the target individual and potentially altering the behavior of the target individual. If data had been 

successfully collected for at least 1 stimulus, the trial was resumed within 48hrs. If not, the trial was 

abandoned and re-attempted at a later date.  

Statistical Analyses 

 Behavioral observations were transformed into 3 indices of aggression; closest approach to 

speaker, latency to approach speaker, and number of vocalizations. If the focal individual did not 

approach the speaker, we recorded the maximum value of 120s. Closest approach to speaker was square-

root transformed due to a right-skewed distribution. We performed principle components analysis to 

reduce these three behavioral variables into a single index of aggressiveness (Freeman 2016b). Because 

species may respond aggressively in different ways (i.e. vocalizations vs. physical approach) we 

performed separate PCAs for each species. All three behavioral variables were scaled prior to PCA. We 

generated PCA scores for each stimulus for each individual based on the first principle component as our 

index of overall aggression. We then fit linear mixed-effects models for each species with aggression 

(PC1) as the dependent variable, stimuli type as a fixed effect and focal individual as a random effect. We 

performed post-hoc Tukey multicomparison tests in package ‘multcomp’ to compare the intensity of 

aggression between control, conspecific and heterospecific stimuli. Identical analyses were performed on 

each behavioral variable independently to characterize species-specific aggressive responses. All 

statistical analyses were performed in R (R Core Team 2015).  
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RESULTS  

Elevational ranges 

Bulbul species on Mt. Kinabalu were almost perfectly parapatric. Ochraceus Bulbul (A. ochraceus) 

occupied forest from the park boundary at 1450m to 1810m. Pale-faced Bulbul (P. leucops) occupied 

forest from 1890m to 3332m. This species pair showed no zone of overlap, so were never detected on the 

same point count. White-eyes showed a broadly parapatric distribution, but overlapped slightly at their 

mutual boundary. Black-capped White-eye (Z. atricapilla) occupied forest from the nearest park boundary 

at 1450m to 2131m. Mountain Blackeye (C. emeliae) was present from 1845m to 3681m. The two species 

both occupied an approximately 300m zone of overlap and were sometimes detected on the same point 

counts within this zone. Of 27 point counts during which a Zosteropidae species was detected in the zone 

of overlap, both species were present 18.5% (5 of 27) of the time. However, this low percentage was 

mainly driven by the lower overall abundance of Z. atricapilla. On counts where Z. atricapilla was 

detected, both species were present on 50% (5 of 10) of the time. The two focal flycatcher species were 

sympatric throughout our mid elevation study site. Eyebrowed Jungle-Flycatcher (V. gularis) was present 

from the park boundary at 1450m to 1850m. Snowy-browed Flycatcher (F. hyperythra) occurred from the 

park boundary at 1450m to 2924m. Both species were regularly encountered on the same point count, 

with both present on 16% (4 of 25) of counts with at least one species of flycatcher. This estimate likely 

understates their degree of overlap due to difficulty in detecting V. gularis. On counts where V. gularis 

was detected, both species were present on 80% (4 of 5) of counts. Based on mark recapture studies, both 

species are widespread and abundant between 1450 and 1850m (Martin et al. 2015, 2017b).  

Playback experiments 

 We conducted a total of 47 playback experiments on 6 species (x̅ = 7.83, range: 6 – 11 

individuals). All species showed an aggressive response to conspecific playback compared to a control, 

but responses to parapatric or sympatric relatives varied (Fig 1-2). The first principal component from our 

PCA had parallel loadings for all three behavioral variables across all species. That is, positive scores 

indicate closer approach to the speaker, shorter latency to approach and increased vocalization rate. 
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Among parapatric bulbuls, interspecific aggression was strongly asymmetric (Fig 1A , 2A). The first 

principle component explained 67% of the total variance in behavioral variables for A. ochraceus and 

75% of total variance for P. leucops. A. ochraceus, the low-elevation species, responded aggressively to 

both conspecific playback and heterospecific playback compared with the control (P < 0.01 , P = 0.02) 

and with equal intensity to both (P = 0.12). P. leucops, the high-elevation species, frequently showed 

sentineling behavior and short approach flights in response to heterospecific playback, such that the 

response differed significantly from a control (Fig 1A, P = 0.04). However, the response to conspecific 

playback was stronger (P < 0.01) and was characterized by frequent vocalizations and a rapid, close 

approach.  

 Among parapatric white-eyes, interspecific aggression was completely absent (Fig 1B, 2B). The 

first principal component explained 72% and 68% of total variance in behavioral variables for Z. 

atricapilla and C. emeliae, respectively. Z. atricapilla, the low-elevation species, responded aggressively 

to conspecific playback (P < 0.01), but did not show any difference in behavior in response to 

heterospecific playback and the control (P = 0.92). Similarly, C. emeliae, showed a strong aggressive 

response to conspecific playback (P < 0.01), but was unresponsive to heterospecific playback (P = 0.68).  

 Among sympatric flycatchers, interspecific aggression was strongly asymmetric (Fig 1C, 2C). 

The first principal component explained 79% and 61% of total variance in behavioral variables for F. 

hyperythra and V. gularus, respectively. F. hyperythra, responded aggressively to conspecific playback (P 

< 0.01), but did not show a difference in aggression in response to heterospecific playback compared with 

the control (P = 0.31). V. gularis, showed a strong aggressive response to both conspecific (P = 0.02) and 

heterospecific playback (P < 0.01) compared to the control.  

 

DISCUSSION 

Interspecific competition mediated by interspecific aggression is thought to drive parapatric distributions 

of closely-related species on environmental gradients (Terborgh & Weske 1975; Robinson & Terborgh 

1995; Jankowski et al. 2010). However, climatic stability in the tropics is thought to result in a narrowing 
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of species’ physiological niche and is also thought to play a role in setting range limits, particularly across 

elevational gradients (Janzen 1967; Ghalambor et al. 2006). Here, we found interspecific aggression 

between one pair of elevationally parapatric species but a complete absence of aggression in another. Our 

results suggest interspecific aggression may set elevational range limits in some species pairs, but it is not 

a prerequisite for elevational parapatry.  

 An absence of aggression has been observed in parapatric species pairs with significant 

elevational gaps, leading to the suggestion that frequent interactions may be a necessary prerequisite for 

interspecific aggression (Freeman 2016a).While that possibility remains, our results in white-eyes suggest 

that spatial separation is not required to facilitate benign interactions between closely-related species (Fig 

1B). More importantly, if interspecific aggression consistently evolves in the presence of interference 

competition, we can rule out interference competition as a driver of elevational parapatry in white-eyes.  

 Causes for the variation in heterospecific response between bulbuls and white-eyes are not readily 

apparent. Theory predicts that interspecific competition should be strongest between species with the 

greatest niche overlap (MacArthur & Levins 1967). We did not attempt to quantify niche overlap between 

species pairs, but due to niche conservatism, niche overlap is generally expected to be highest between 

close relatives (Peterson, Soberon & Sanchez-Cordero 1999) and phylogenetic relatedness appears to be a 

good proxy of functional traits in Bornean passerines (Boyce et al. 2018a). Of the three pairs studied here, 

white-eyes share the most recent common ancestor at no more than 2.3 mya (Moyle et al. 2009). In 

contrast, our focal pairs of bulbuls and flycatchers are far more phylogenetically distant (Boyce et al. 

2018a; Fig 1). Therefore, it seems unlikely that niche divergence explains variation in heterospecific 

responses in these groups.  

 Phylogenetic relatedness may not provide the best proxy for expected intensity of heterospecific 

interactions. The abundance and distribution of resources can also influence the degree of aggression 

between species such that highly dispersed or clustered resources may not be easily defendable and lead 

to selection against territorial aggression (Brown 1964; Peiman & Robinson 2010). For example, both 

white-eyes are primarily nectarivorous and rely on flowers that are typically patchy and ephemeral food 
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sources. Aggression may not be favored in this situation if these characteristics mean that resources are 

not easily defendable and thus interspecific aggression may play a weaker role in influencing elevational 

range limits in this group. 

 In parapatric species pairs, asymmetric aggression has been interpreted as a force causing spatial 

segregation (Jankowski et al. 2010). However, interspecific aggression in co-occurring relatives appears 

to be common, with the vast majority of interactions being asymmetric (Martin & Martin 2001b; Freeman 

2016b; Martin et al. 2017a, Fig 2C). Because there is no categorical difference between asymmetric 

aggression in broadly sympatric species pairs and between parapatric pairs near their mutual boundary, 

interspecific aggression alone is not sufficient evidence to suggest competition is the primary driver of 

parapatric distributions. While interference competition may play a role in driving parapatry, the presence 

of asymmetric aggression between species that occasionally interact is a reasonable null hypothesis rather 

than confirmation of particularly intense competition driving complete parapatry. Interspecific aggression 

may still be important in both contexts. Interspecific aggression can drive niche displacement in co-

occurring species with consequences for fitness and demography (Martin & Martin 2001b; Grether et al. 

2009). Thus, costs of coexistence mediated by interspecific aggression may act to influence range 

boundaries in combination with other factors in both sympatric and parapatric species pairs.  

 The intensity of interspecific aggression often increases with  proximity to a zone of interaction, 

suggesting a learned component as opposed to an evolved response (Jankowski et al. 2010; Freeman 

2016a; b). We did not conduct a sufficient number of trials to explore whether proximity to range 

boundary was related to response intensity in our focal species, but our results still speak to this question. 

P. leucops showed a significant heterospecific response (Fig 1A) during playback trials at between 3000 

and 3450m, at least 1200m above the closest territory of A. ochraceus. We find it unlikely that dispersal 

over such a distance is common in a small, territorial songbird, suggesting that interspecific aggression in 

songbirds may have both evolved and learned components in bulbuls. Observations of interspecific 

aggression in completely allopatric populations of sunbirds (Nectarinidae) indicate that evolved 

aggressive responses may be widespread in songbirds (McEntee 2014).  
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 Increasingly, interspecific interactions are being incorporated into species distribution models and 

models aiming to predict future range shifts (i.e. Engler et al. 2017). Our results provide evidence that 

interspecific aggression is present between some pairs of parapatric species. However, we also show that 

interspecific aggression is not a prerequisite for parapatry. Thus, workers seeking to identify biotic 

interactions that may influence range dynamics must be cautious when inferring biotic processes from 

distributional patterns. Drivers of elevational range boundaries may differ substantially among clades. 

Understanding the causes and correlates of this variation is critical to accurately predicting range 

dynamics in light of changing biotic and abiotic conditions.  
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Figure Legends 

Figure 1. Behavioral responses (distance of closest approach, latency to approach, and number of calls) to 

control, conspecific and heterospecific playback stimuli in two elevationally parapatric species pairs (A-

B) and one sympatric species pair (C). Letters above boxplots indicate significant differences (P < 0.05) 

between stimuli based on post-hoc Tukey multicomparison tests. An asterisk (*) indicates a difference 

with marginal significance (0.05 < P < 0.10). For parapatric pairs, high elevation species are shown in the 

upper panels. Photo credits: A. ochraceus; Chien Lee, C. emeliae; Cede Prudente.  

 

Figure 2. Aggressive responses to control, conspecific and heterospecific playback stimuli in two 

elevationally parapatric species pairs (A-B) and one sympatric species pair (C). Higher aggression scores 

indicate a stronger response. Letters above boxplots indicate significant differences between stimuli based 

on post-hoc Tukey multicomparison tests. High elevation species are shown in the upper panels and vice 

versa. Elevational distributions within our study site based on point count surveys are depicted in the 

vertical panel. 
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Figure 1A 

Figure 1B 
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Figure 1C 
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Fig 2A 

Fig 2B 
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Fig. 2C 
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Figure S1. Sonogram of a representative song phrase of Pale-faced Bulbul (Pycnonotus leucops).  
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Figure S2. Sonogram of a representative song phrase for Ochraceus Bulbul (Alopohixus ochraceus).  
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Figure S3. Sonogram of a representative song phrase for Snowy-browed Flycatcher (Ficedula hyperythra).  
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Figure S4. Sonogram of a representative song phrase for Eyebrowed Jungle-Flycatcher (Vauriella gularis). 
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Figure S5. Sonogram of a representative song phrase for Black-capped White-eye (Zosterops atricapilla). 
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Figure S6. Sonogram of a representative song phrase for Mountain Blackeye (Chlorocharis emeliae). 
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Chapter 4: Metabolic rate explains variation in adult mortality probability within but not across 

latitudes in songbirds. 

 

Andy J. Boyce, Blair O. Wolf and Thomas E. Martin 

 

ABSTRACT 

The rate of living hypothesis posits that physiological damage from cellular metabolism causes species 

with faster metabolic rates to be shorter-lived. Here, we sought to test whether metabolic rate explained 

variation in mortality rates among songbirds within and across latitudes. We measured resting metabolic 

rate (RMR) and estimated adult mortality probability for 28 species of passerine birds at tropical and 

temperate sites and compiled analogous data for 104 passerine species from the literature. In both field-

based and literature datasets, we found that metabolic rates were similar between temperate and tropical 

regions. As a result, metabolic rate failed to explain lower rates of adult mortality in tropical species 

although it explained some variation in adult mortality probability within latitudes. The inability of 

metabolic rate to explain adult mortality between may reflect a larger role of extrinsic sources of mortality 

across latitudes or the evolution of physiological mechanisms that mitigate damage from metabolism.  

 

  



 97

INTRODUCTION 

Adult mortality rate varies extensively among species and is a major influence on fitness, demography 

and life-history evolution (Ashmole 1963; Stearns 1977; Promislow & Harvey 1990; Martin 2015). The 

rate of living hypothesis has been proposed as a physiological mechanism driving variation in mortality 

rate. Pearl (1928) posited a causal link between metabolic rate and longevity. Production of damaging 

reactive oxygen species (ROS) from metabolism has been posited as the primary physiological 

mechanism of aging, such that higher metabolic rates cause greater oxidative damage and shorter life 

(Pearl 1928; Harman 1956; Balaban, Nemoto & Finkel 2005; Brys, Vanfleteren & Braeckman 2007; 

Monaghan, Metcalfe & Torres 2009). Yet, metabolism may be decoupled from senescence because 

mechanisms to prevent or repair damage (e.g. endogenous antioxidants, mitochondrial membrane 

composition and telomere dynamics) may coevolve with metabolic rate (Brand 2000; Monaghan & 

Haussmann 2006; Hulbert et al. 2007; Costantini 2008; Salin et al. 2015; Skrip & Mcwilliams 2016). 

Consequently, the relationship between metabolic rate and adult mortality remains unclear (Costantini 

2008).   

 Mortality rates may be unrelated to the accumulation of physiological damage entirely. The 

evolutionary theory of aging posits that adaptations to slow senescence should be favored in populations 

with low extrinsic adult mortality, meaning extrinsic and intrinsic mortality rates should be correlated 

(reviewed in Charlesworth 1994, 2000). Indeed, actuarial studies in birds and mammals suggest intrinsic 

mortality rate increases with extrinsic mortality rate (e.g. weather, predation) (Promislow 1991; Ricklefs 

1998, 2000). However, the proportion of deaths from intrinsic sources are greater when overall mortality 

rates are low, suggesting that adaptations to slow the rate of aging are limited, such that extrinsic and 

intrinsic rates become increasingly decoupled as extrinsic mortality declines (Ricklefs & Scheuerlein 

2001). Furthermore, the onset of senescence is commonly delayed until well after the age of maturity 

(Promislow 1991), suggesting that intrinsic and extrinsic mortality rates may also be unrelated when 

extrinsic mortality is very high.  

  Comparative studies show that metabolic rate is negatively correlated with maximum observed 
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lifespan (MLS) in birds and mammals at broad taxonomic scales (Trevelyan, Harvey & Pagel 1990; 

Hulbert et al. 2007). However, the overriding influence of mass on both lifespan and metabolism obscures 

the independent effect of metabolic rate on lifespan in such studies (Speakman 2005). Moreover, other 

comparisons raise questions about this relationship. Bats and birds have higher metabolic rates but are 

longer-lived than terrestrial mammals of similar size, weakening the relationship between metabolism and 

lifespan (Holmes & Austad 1995; Holmes, Fluckiger & Austad 2001; Munshi-South & Wilkinson 2010). 

Furthermore, measurements of MLS represent exceptional rather than an average of individuals and are 

sensitive to variation in sample size, recapture probability and quality of record keeping (Krementz, Sauer 

& Nichols 1989; Promislow 1993). MLS is often based on captive individuals that are well-fed and 

isolated from disease, predation and other extrinsic sources of mortality that are ubiquitous in wild 

populations (i.e. de Magalhães & Costa 2009). Model-based estimates of annual mortality rate are not 

susceptible to these issues and are thus a more appropriate index of average lifespan for comparative 

studies (Krementz et al. 1989; Promislow 1993). Ultimately, studies that directly compare metabolic rates 

with robust estimates of adult mortality from wild populations are needed.  

 Passerine birds (songbirds) are a good group in which to examine these issues. Passerines are 

diverse (~ 6,000 species) and show broad ecological and morphological variation (del Hoyo et al. 2017). 

They show large interspecific variation in both metabolic rate (McKechnie & Wolf 2004; Wiersma et al. 

2007; Londoño et al. 2015; McKechnie 2015) and adult mortality probability (Johnston et al. 1997; 

Sandercock et al. 2000; Martin 2015; Martin et al. 2015, 2017b). Evidence of a link between metabolic 

rate and longevity in songbirds is mixed. For example, lower avian metabolic rates have been found in 

tropical birds which are typically longer-lived than temperate relatives (Wikelski et al. 2003; Wiersma et 

al. 2007; Londoño et al. 2015). However, other studies found no difference in metabolic rates across 

latitudes in either adult birds (Vleck & Vleck 1979; Bennett & Harvey 1987) or embryos (Martin, Ton & 

Niklison 2013).  Furthermore, using latitude as a proxy for mortality rate is problematic due to large 

variation within latitudes (Johnston et al. 1997; Martin et al. 2015). Metabolic rate and adult mortality 

were positively correlated across latitudes in songbirds in one study (Williams et al. 2010). However, 
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methods used for estimating mortality rates differed between latitudes in this study, which can yield 

problematic variation (Martin et al. 2017b). Finally, adult mortality is not strongly influenced by body 

mass in passerines (Martin et al. 2015), which alleviates the issue of collinearity in analyses involving 

metabolic rate, mass and mortality rate (i.e. Speakman 2005).  

 Here, we test for a relationship between adult mortality probability and metabolic rate. We 

directly measured RMR and estimated adult mortality probability for 30 species of songbirds at tropical 

and temperate field sites. We also compiled basal metabolic rate (BMR) and adult mortality data for 104 

species from the literature. We used phylogenetically-informed methods to test whether metabolic rate 

explained interspecific variation in adult mortality within and across latitudes.  

 

METHODS 

Study system 

Resting metabolic rate measurements and estimation of adult mortality probability were conducted on 

populations of passerine birds at Kinabalu Park, Sabah, MY (6°N, 116°E), and the Coconino National 

Forest, Arizona, USA (35°N, 111°W). Metabolic measurements were performed during the breeding 

season at both sites (Malaysia; February – June, 2013 – 2016, Arizona; May – July, 2015).  

 Birds were captured for metabolic measurements by both passive and targeted mist-netting. 

Breeding females (based on presence of a brood patch) were excluded to minimize disruption of nesting 

and because the extreme vascularization of the avian brood patch is likely to alter RMR. Birds were 

transported to the lab and held for 1-2 hrs, depending on mass, to insure they were post-absorptive during 

measurements. Birds were watered before and after measurements and returned to point of capture upon 

completion of metabolic measurements.    

 Adult mortality probability was estimated by banding, resighting and recapturing birds, using the 

same long-term protocols at both sites (Martin et al. 2015). Birds were captured by both passive mist-

netting and target-netting for 6 hours each day beginning at sunrise. Twelve nets were deployed at each 

netting plot, which were distributed uniformly across accessible areas of each site. Each plot was visited 3 
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times at equal intervals over the course of the field season. Birds were marked with unique combinations 

of one alpha-numeric aluminum band and three color-bands to facilitate individual identification via 

resighting. In addition to subsequent recaptures, birds were resighted opportunistically each day for the 

duration of each field season. Resulting estimates (see Statistical Analyses) are based on 21 consecutive 

years of banding and resighting effort in Arizona site and 8 consecutive years in Borneo.   

Metabolic measurements 

We measured RMR using an open-flow respirometry system similar to that described in Gerson et al. 

(2015). We used 2L and 5L transparent plastic containers (Rubbermaid, Atlanta, GA, USA) as metabolic 

chambers, depending on the size of the study species. These containers were modified to include incurrent 

and excurrent air ports, with wire mesh platforms and plastic perches to allow the subject to rest 

comfortably. The bottom of the chamber contained a 2cm layer of mineral oil to trap moisture and gas 

associated with feces. Containers were placed inside a large cooler, which was modified to hold an 

integral peltier device (model AC-162, TE Technology, Traverse City, MI), with a custom temperature 

control device (Gerson et al. 2015) to regulate chamber temperature.  Incurrent air was provided by a high 

capacity vacuum pump (model DAA-V515-ED, Gast Manufacturing, Benton Harbor, MI, USA), and was 

routed through a coil of copper tubing prior to entering the inner chamber to facilitate rapid temperature 

equilibration. Air flow rates were regulated by mass-flow controllers (Alicat Scientific, Tucson, AZ). 

Flow rates varied between 2-15 L/min depending on mass of study species. Incurrent and excurrent air 

were both subsampled at rates between 250 and 500 ml/min and CO2 and H2O were measured using a 

portable gas-analyzer (LI-COR model LI-840a, Lincoln, NE, USA). These data were sampled every 

second and recorded using Expedata (Sable Systems, Las Vegas, NV, USA).  

 Humidity of incurrent air was regulated using a dew-point generator constructed of three Nalgene 

bottles connected in series. Air was bubbled through water in the first two bottles, and the third was empty 

and served as a water trap. The entire device was then submerged in a water bath kept at approximately 

10°C by the addition of small ice-packs. This device prevented rapid fluctuations in humidity due to either 

ambient air temperature or ambient humidity and also prevented condensation occurring in the system. By 
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adjusting water bath temperature and incurrent air pressure, we maintained relative humidity between 50 

and 70%, which is within the range of normal conditions at both sites during the breeding season.  

 Each individual was sampled at multiple temperatures as part of a concurrent study of thermal 

tolerance. We subsetted data for analysis by selecting the longest continuous period of resting behavior 

after chamber temperature had reached equilibrium for at least 30 minutes. Subject activity was monitored 

in real-time via an infrared security camera connected with an external LCD screen. If no period of 

complete rest greater than two minutes was observed, no data was analyzed for that temperature. We 

pooled measurements from 27, 30, and 33°C, which are within the thermoneutral zone of most passerines 

(McKechnie & Wolf 2004; McNab 2009) and selected the lowest measurement for each individual as 

RMR.  

 We corrected mass flow rates of humid air, and calculated CO2 and H2O production using 

equations in Lighton (2008). Metabolic rate (W) was calculated as in Walsberg and Wolf (1995). CO2 

production was converted to metabolic energy using a respiratory quotient (RQ) value of 0.71, as 

suggested for post-absorptive, non-granivorous birds (Gessaman & Nagy 1988). 

Literature data 

We compiled basal metabolic rate data (BMR) from the literature, drawing primarily from 3 manuscripts 

that use large BMR datasets to investigate allometric and latitudinal variation in avian BMR (McKechnie 

& Wolf 2004; Wiersma et al. 2007; Londoño et al. 2015). Estimates of annual adult mortality were 

compiled by searching the literature, and were greatly aided by manuscripts containing large literature 

datasets (Martin 1995; Martin & Clobert 1996). We restricted estimates of adult mortality probability to 

model-based estimates based on mark-recapture datasets from wild populations. Where multiple estimates 

of either BMR or adult mortality probability for a single species were present in the literature, we chose 

the estimate based on the most recent study.      

Statistical Analyses 

We employed Cormack-Jolly-Seber models to estimate apparent annual adult survival (ф) and detection 

probability (p) for each species based on live encounters in an open population using program MARK 
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(White & Burnham 1999; Burnham & Anderson 2002). A suite of models were built for each species, 

allowing parameters to vary based on sex and/or age-structure (time since marking;  Pradel et al. 1997). 

Top models were selected based on Akaike's information criterion (AICc) adjusted for small sample size. 

Estimates used here are a subset of those presented in Martin et al. (Martin et al. 2015, 2017b), where 

additional methodological details are provided. Apparent annual survival rate (ф) was converted to annual 

adult mortality probability (μ) by the simple equation: μ = (1- ф).    

 For field data we log-transformed RMR (W) and body mass (g). We regressed metabolic rate on 

body mass to obtain residual metabolic rate values for each individual. We used species mean values of 

both residual metabolic rate and body mass to analyze the relationships between residual metabolic rate, 

adult mortality probability and latitude.  

 We used phylogenetic least-squares regression (PGLS), implemented in the package ‘ape’ 

(Paradis, Claude & Strimmer 2004; Popescu, Huber & Paradis 2012), to control for the non-independence 

of species-level data points associated with phylogenetic relatedness (Felsenstein 1985). We used the 

scaling parameter Pagel’s λ to quantify phylogenetic signal in our data (Pagel 1999). Typical λ values 

range from 0-1, from no phylogenetic signal (random covariance with respect to phylogenetic distance) to 

Brownian motion (covariance directly proportional to phylogenetic distance) (Pagel 1999). Phylogenetic 

trees were acquired from birdtree.org (Jetz et al. 2012) using the Hackett backbone (Hackett et al. 2008). 

We sampled a distribution of 1000 trees for each analysis and produced majority-rules consensus trees 

using Mesquite (Maddison & Maddison 2011). In one case (Troglodytes aedon), we include both a 

tropical (T. a. musculus) and temperate (T. a. aedon) subspecies in our dataset. To facilitate phylogenetic 

analysis in which duplicate estimates for a single species are problematic, we assigned one estimate to a 

closely-related congener (T. cobbi) for tree construction. 

 For our field data, we tested whether residual metabolic rate and/or site explained interspecific 

variation in adult mortality probability by fitting a generalized least-squares regression model with adult 

mortality probability as the dependent variable and residual metabolic rate and site as independent 
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variables. We tested whether body mass was associated with adult mortality probability separately 

because including mass as a covariate in a model including metabolic rate would introduce issues of 

collinearity. We also tested for differences in metabolic rate between sites using a generalized least-

squares model with metabolic rate as the dependent variable, site as an independent variable and body 

mass as a covariate. We followed an identical procedure for analysis of our literature data, substituting 

region for site. Finally, we combined field and literature datasets and tested for differences in allometric 

relationships between RMR and BMR. All analyses were performed in R (R Core Team 2015).  

 

RESULTS 

We obtained field-based estimates of adult mortality probability and resting metabolic rate for 28 species; 

14 in Arizona and 14 in Malaysia. We measured RMR in a total of 207 individuals with an average of 7.4 

individuals per species (Table 1). Body mass explained the majority of variation in metabolic rates (P < 

0.01, Fig 1), and metabolic rates were similar across sites (P = 0.72). The allometric scaling exponent was 

0.65, which is consistent with known values for birds (Bennett & Harvey 1987; McKechnie & Wolf 

2004). There was no phylogenetic signal in RMR for our field dataset (λ = -0.95). Adult mortality 

probability increased with increasing residual (i.e. corrected for mass) metabolic rate (P = 0.04), but was 

lower in Malaysian than Arizona species for the same RMR (P < 0.01, Fig 2). Body mass was not a 

significant predictor of adult mortality probability for our field data (P = 0.26). There was no phylogenetic 

signal in adult mortality probability (λ = -0.61). 

 We compiled literature data for BMR and adult mortality probability for 104 species; 70 

temperate and 34 tropical (Table 2). Sample sizes for metabolic measurements were available for 90 of 

these species, which averaged 8.54 individuals per species. Similar to our field data, body mass explained 

variation in metabolic rates (P < 0.01, Fig 3), and we detected no difference in basal metabolic rate 

between tropical and temperate regions (P = 0.72). The allometric scaling exponent was 0.68, which is 

consistent with known values for birds (Bennett & Harvey 1987; McKechnie & Wolf 2004). Residual 
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BMR showed a moderate phylogenetic signal (λ = 0.39). Adult mortality probability increased with 

increasing residual BMR, but the relationship was marginally significant (P = 0.08, Fig. 4). Adult 

mortality was lower in tropical than temperate species for the same metabolic rate (P < 0.01, Fig 4). 

Larger species had lower adult mortality probability but the relationship was marginally significant (P = 

0.08). Adult mortality probability showed a strong phylogenetic signal in in our dataset (λ = 0.76). 

 RMR was 17.4% higher than BMR (P < 0.01) and the relationship between mass and metabolism 

did not differ between active (RMR) and resting (BMR) phases (P = 0.49).   

   

DISCUSSION 

Our results from both field and literature data suggest that residual metabolic rate is positively correlated 

with adult mortality probability but that large variation in adult mortality probability exists beyond that 

explained by metabolism (Fig 2,4). This finding may provide support for the rate-of-living hypothesis 

within latitudes, but highlights the inability of the rate-of-living hypothesis to explain latitudinal 

differences in mortality rates and life-history strategies in songbirds.  

 We found similar metabolic rates between temperate and tropical regions based on both field and 

literature data. This result contrasts with recent studies that identified lower BMR in tropical species 

(Wiersma et al. 2007; Londoño et al. 2015) but agrees with earlier work in both adult birds (Vleck & 

Vleck 1979; Bennett & Harvey 1987) and embryos (Martin et al. 2013). Metabolic rates may increase 

with elevation (McNab 2009; but see Londoño et al. 2015) such that our field measurements of RMR in 

montane birds may be higher than a ‘typical’ tropical species. This has the potential to minimize 

latitudinal differences in RMR in our field data set but is unlikely to bias our literature dataset which 

spans elevations in the tropics.  Most importantly, any difference in metabolic rate among latitudes is tiny 

in comparison to variation within latitudes (see Wiersma et al. 2007, Fig 1; Londono et al. 2015, Fig 4). 

In contrast, adult mortality probability shows large variation across latitudes (Martin et al. 2017b).  
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 The absence of a strong relationship between metabolic rate and adult mortality across latitudes 

does not discount the possibility that physiological damage from cellular metabolism underpins life-

history tradeoffs. On the contrary, investment in mechanisms to mitigate damage, such as endogenous 

production of antioxidants (Parolini et al. 2017) or mitochondrial membrane composition (Hulbert et al. 

2007), can reduce damage from cellular metabolism. If tropical species invest in these mechanisms with 

allocation costs for growth or reproduction, such a tradeoff could explain the longer life and slower life-

history strategies of tropical species despite similar metabolic rates across latitudes.  

 BMR and RMR are the most easily measurable and comparable metrics of metabolic expenditure 

in wild organisms. However, these measures only encompass minimal energy expenditure to sustain life 

and thus exclude energy allocated to essential activities such as reproduction, thermoregulation, 

locomotion and digestion. Physiological damage from metabolism may be more tightly linked to 

measures of total energy expenditure that describe all energetic expenditures in free-living organisms. 

Measurements of total energy expenditure, such as field metabolic rate (FMR) or daily energy 

expenditure (DEE) are comparatively rare in the literature, especially for tropical species (McKechnie 

2015), but do show a relationship with adult mortality probability in the temperate zone (Martin 2014).  

However, BMR and RMR are strongly correlated with each other, and with measures of total energy 

expenditure across species (Daan, Masman & Groenewold 1990; Auer, Killen & Rezende 2017a), making 

BMR and RMR reasonable proxies for total energy expenditure. Nonetheless, future studies should 

examine the relationship between FMR and adult mortality within and across latitudes. 

 Latitudinal variation in avian mortality rates may be driven primarily by differences in extrinsic 

mortality probability. Extrinsic mortality is thought to account for 80-95% of all mortality for birds with 

total annual mortality rates similar to those in our study (Ricklefs 1998). Thus, variation in extrinsic 

mortality is likely to have a much larger effect on total mortality rates than intrinsic physiological 

differences. However, extrinsic mortality could exert selection on metabolic costs to survival 

(Charlesworth 1994, 2000). High adult mortality rates in temperate birds may reflect high rates of 
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extrinsic mortality imposed by abiotic factors (Macarthur 1972) that better explain latitudinal differences 

in mortality (Martin et al. 2015).  

 Lambda values from PGLS analyses indicate moderate to strong phylogenetic signal for both 

metabolic rate and adult mortality probability in our literature dataset but were negative for analyses 

based on field data. Negative values indicate that closely-related species have significantly more 

divergent trait values than expected by chance, meaning that trait variation in both adult mortality and 

residual metabolic rate is primarily driven by differences in environmental factors between our study sites 

than by phylogenetic inertia (see Martin et al. 2015). 

 Our study provides correlational support for the rate-of-living hypothesis within latitudes while 

also suggesting that it is unable to explain latitudinal differences in adult mortality in birds. This 

contradiction provides obvious opportunity for future studies. Tropical birds have longer developmental 

periods and parents invest more energy per-offspring compared with temperate species (Martin 1996; 

Martin et al. 2011; Gill & Haggerty 2012). These differences may facilitate longer life in tropical species 

if they facilitate greater investment in physiological adaptations to combat oxidative damage in the face of 

similar metabolic rates. Quantifying interspecific and latitudinal variation in physiological mechanisms 

capable of mitigating oxidative damage may reveal how tropical species maintain low adult mortality 

without a major reduction in basal metabolic rate. Mortality rate differences among latitudes may also be 

due to variation in extrinsic mortality. Studies quantifying latitudinal differences in cause-specific 

mortality are necessary to test this hypothesis. 
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Table 1. Mean (± SE) values of mass, resting metabolic rate (RMR) and annual mortality probability for species in our field study. N (sample size) 

values represent the number of unique individuals measured for metabolic rate and the number of unique individuals marked for annual mortality 

probability.  

Metabolism Mortality Probability 

  Species Mass (g) SE RMR (W) SE N Rate (Yr-1) SE N 

Arizona 
Empidonax occidentalis 11.72 0.34 0.277 0.019 5 0.401 0.034 674 
Parus gambeli 11.65 0.16 0.326 0.019 5 0.495 0.033 709 
Certhia americana 7.47 0.26 0.227 0.011 4 0.452 0.072 408 
Sitta canadensis 10.38 0.24 0.291 0.015 6 0.529 0.058 547 
Sitta carolinensis 17.67 0.34 0.410 0.019 4 0.574 0.057 164 
Sialia mexicana 23.68 0.55 0.440 0.017 3 0.517 0.096 73 
Catharus guttatus 29.07 0.39 0.571 0.01 7 0.482 0.023 1,875
Turdus migratorius 73.00 2.75 0.944 0.111 3 0.461 0.035 655 
Pipilo chlorurus 30.25 0.75 0.575 0.025 6 0.445 0.088 158 
Junco hyemalis 21.99 1.14 0.448 0.01 7 0.433 0.014 1,885
Vermivora celata 8.98 0.17 0.267 0.013 7 0.411 0.027 976 
Dendroica coronata 12.67 0.21 0.345 0.028 8 0.494 0.038 1,008
Cardellina rubrifrons 9.99 0.63 0.266 0.015 6 0.429 0.051 694 
Piranga ludoviciana 28.30 0.71 0.512 0.023 5 0.435 0.035 728 

Malaysia 

Pachycephala hypoxantha 22.79 0.30 0.406 0.007 12 0.267 0.030 193 
Rhipidura albicollis 12.11 0.18 0.307 0.016 10 0.358 0.055 127 
Alophoixus ochraceus 48.57 0.82 0.769 0.021 20 0.213 0.043 90 
Orthotomus cuculatus 7.07 0.12 0.218 0.01 8 0.289 0.098 20 
Yuhina everetti 13.73 0.23 0.359 0.008 2 0.319 0.063 94 
Stachyris nigriceps 15.50 0.28 0.340 0.011 17 0.238 0.015 410 
Trichastoma pyrrogenys 18.90 0.24 0.372 0.008 12 0.208 0.049 72 



 115

Napothera crassa 28.11 0.72 0.471 0.028 9 0.028 0.036 37 
Rhinomyias gularis 25.33 0.32 0.460 0.025 11 0.191 0.026 146 
Brachypteryx montana 20.27 0.28 0.438 0.023 4 0.175 0.070 39 
Enicurus leschenaulti 35.69 1.14 0.634 0.026 7 0.104 0.101 22 
Myophonus borneensis 116.71 3.87 1.393 0.063 8 0.275 0.080 18 
Ficedula hyperythra 8.32 0.13 0.218 0.014 9 0.365 0.033 155 
Aethopyga siparaja 5.96 0.77 0.176 0.019 2 0.269 0.103 19 
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Table 2. Mean values and sources for mass, basal metabolic rate (BMR) and annual mortality probability for species in our literature dataset. 

Sample size (N) values are provided for BMR estimates when available from the original sources.  

Metabolism Mortality probability 

  Species 
Mass 
(g) 

BMR 
(W) N Source  

Rate 
(Yr-1) Source

Temperate 
Acanthorhynchus tenuirostris 9.7 0.25 6 Weathers et al. 1996 0.40 Macfarland & Ford 1987
Acrocephalus arundinaceus 21.9 0.26 4 Hails 1983 0.41 Peach et al. 2001
Acrocephalus schoenobaenus 11.5 0.22 3 Kendeigh et al. 1977 0.63 Martin & Clobert 1996
Aegithalos caudatus 8.9 0.20 17 Makarieva et al. 2008 0.53 Martin & Clobert 1996
Agelaius phoeniceus 47.1 0.56 - Wiersma et al. 2007 0.47 Martin 1995
Alauda arvensis 31.7 0.72 14 Tieleman et al. 2002 0.34 Martin & Clobert 1996
Ammodramus savannarum 13.8 0.18 3 Yarbrough 1971 0.40 Martin 1995
Anthus pratensis 18.9 0.30 3 Kendeigh et al. 1977 0.58 Martin & Clobert 1996
Anthus trivialis 19.7 0.34 5 Kendeigh et al. 1977 0.57 Martin & Clobert 1996
Cardinalis cardinalis 40.5 0.50 8 Hinds & Calder 1973 0.44 Martin 1995
Carduelis chloris 28.2 0.47 17 Kendeigh et al. 1977 0.51 Martin & Clobert 1996
Carduelis tristis 13.6 0.33 - Dawson & Carey 1976 0.56 Middleton & Webb 1984
Carpodacus mexicanus 20.4 0.31 13 Weathers 1981 0.45 Martin 1995
Catharus ustulatus 28.2 0.43 38 Londono et al. 2015 0.65 Martin 1995
Dendroica coronata 11.5 0.19 4 Yarbrough 1971 0.49 Martin et al. 2015
Emberiza citrinella 26.8 0.44 27 Makarieva et al. 2008 0.47 Martin & Clobert 1996
Emberiza schoeniclus 17.6 0.30 3 Kendeigh et al. 1977 0.49 Martin & Clobert 1996
Empidonax virescens 12.3 0.18 7 Yarbrough 1971 0.54 Martin 1995
Erithacus rubecula 15.5 0.28 1 Daan et al. 1990 0.52 Martin & Clobert 1996
Ficedula hypoleuca 11.7 0.23 9 Kendeigh et al. 1977 0.50 Martin & Clobert 1996
Fringilla coelebs 21.0 0.37 35 Makarieva et al. 2008 0.44 Martin & Clobert 1996
Geothlypis trichas 10.6 0.17 4 Yarbrough 1971 0.46 Martin 1995
Hippolais icterina 12.5 0.25 6 Kendeigh et al. 1977 0.50 Martin & Clobert 1996
Hirundo rustica 18.0 0.32 4 Makarieva et al. 2008 0.63 Martin & Clobert 1996
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Junco hyemalis 18.0 0.30 12 Weathers & Sullivan 1993 0.44 Martin 1995
Lichmera indistincta 9.0 0.21 12 Collins et al. 1980 0.44 Robertson & Woodall 1987
Melithreptus lunatus 14.3 0.25 - Vitali et al. 1999 0.42 Rowley & Russell 1991
Melospiza melodia 19.1 0.25 7 Yarbrough 1971 0.45 Martin 1995
Mimus polyglottos 44.2 0.68 - Wiersma et al. 2007 0.51 Martin 1995
Mniotilta varia 8.2 0.13 1 Yarbrough 1971 0.46 Dugger et al. 2004
Motacilla alba 18.0 0.30 8 Makarieva et al. 2008 0.51 Martin & Clobert 1996
Motacilla flava 14.7 0.26 2 Kendeigh et al. 1977 0.52 Martin & Clobert 1996
Parus atricapillus 10.3 0.25 - Rising & Hudson 1974 0.60 Martin 1995
Parus major 18.0 0.32 10 Hissa & Palonkangas 1970 0.51 Martin & Clobert 1996
Passer domesticus 24.2 0.28 1 Daan et al. 1990 0.45 Martin & Clobert 1996
Passer montanus 17.5 0.20 10 Hails 1983 0.56 Martin & Clobert 1996
Passerculus sandwichensis 15.9 0.22 6 Williams & Hansell 1981 0.52 Martin 1995
Phoenicurus phoenicurus 13.0 0.23 4 Kendeigh et al. 1977 0.57 Martin & Clobert 1996
Phylloscopus collybita 8.2 0.17 6 Kendeigh et al. 1977 0.62 Martin & Clobert 1996
Phylloscopus trochilus 10.7 0.21 7 Kendeigh et al. 1977 0.64 Martin & Clobert 1996
Pica pica 158.9 1.20 9 Hayworth & Weathers 1984 0.33 Martin & Clobert 1996
Pooectes gramineus 21.5 0.27 8 Yarbrough 1971 0.50 Martin 1995
Protonotaria citrea 12.8 0.20 3 Yarbrough 1971 0.57 Martin 1995
Prunella modularis 16.8 0.32 4 Kendeigh et al. 1977 0.53 Martin & Clobert 1996
Regulus regulus 5.5 0.18 22 Kendeigh et al. 1977 0.86 Martin & Clobert 1996
Riparia riparia 13.6 0.23 3 Kendeigh et al. 1977 0.64 Martin & Clobert 1996
Sayornis phoebe 21.6 0.34 4 Yarbrough 1971 0.69 Martin 1995
Seiurus aurocapilla 19.0 0.24 5 Yarbrough 1971 0.36 Martin 1995
Seiurus noveboracensis 18.7 0.28 3 Yarbrough 1971 0.35 Martin 1995
Sialia mexicana 27.5 0.42 9 Mock 1991 0.52 Martin et al. 2015
Sitta carolinensis 19.4 0.36 4 Liknes & Swanson 1996 0.57 Martin et al. 2015
Spizella passerina 11.9 0.19 5 Yarbrough 1971 0.42 Martin 1995
Spizella pusilla 13.0 0.26 5 Dutenhoffer & Swanson 1996 0.54 Martin 1995
Sturnus vulgaris 75.0 0.88 13 Kendeigh et al. 1977 0.53 Martin & Clobert 1996
Sylvia atricapilla 21.9 0.42 8 Kendeigh et al. 1977 0.51 Martin & Clobert 1996
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Sylvia borin 24.8 0.42 12 Kendeigh et al. 1977 0.46 Martin & Clobert 1996
Sylvia curruca 10.6 0.20 8 Kendeigh et al. 1977 0.56 Martin & Clobert 1996
Tachycineta bicolor 16.4 0.29 - Wiersma et al. 2007 0.60 Martin 1995
Troglodytes a. aedon 10.2 0.21 - Wiersma et al. 2007 0.54 Martin et al. 2015
Troglodytes troglodytes 9.0 0.21 16 Makarieva et al. 2008 0.65 Martin & Clobert 1996
Turdus iliacus 58.0 0.72 9 Kendeigh et al. 1977 0.58 Martin & Clobert 1996
Turdus merula 66.8 0.74 2 Daan et al. 1990 0.47 Martin & Clobert 1996
Turdus migratorius 62.4 0.76 - Wiersma et al. 2007 0.46 Martin et al. 2015
Turdus philomelos 62.8 0.73 12 Makarieva et al. 2008 0.47 Martin & Clobert 1996
Tyrannus tyrannus 35.7 0.44 1 Yarbrough 1971 0.57 Martin 1995
Vireo olivaceus 16.2 0.24 - Wiersma et al. 2007 0.45 Martin 1995
Wilsonia citrina 12.0 0.21 4 Yarbrough 1971 0.45 Martin 1995
Zonotrichia albicollis 20.2 0.28 6 Yarbrough 1971 0.46 Martin 1995
Zonotrichia leucophrys 26.1 0.34 6 Yarbrough 1971 0.50 Martin 1995
Zosterops lateralis 11.0 0.15 9 Maddocks & Geiser 1997 0.17 Willis 1974

Tropical 
Basileuterus tristriatus 12.6 0.25 11 Londono et al. 2015 0.24 Martin et al. 2015
Cercomacra tyrannina 15.4 0.19 - Wiersma et al. 2007 0.18 Morton & Stutchbury 2000
Coereba flaveola 11.0 0.24 3 Londono et al. 2015 0.35 Johnston et al. 1997
Conopophaga peruviana 24.5 0.34 4 Londono et al. 2015 0.43 Blake & Loiselle 2013
Corythopis torquatus 18.7 0.28 5 Londono et al. 2015 0.36 Blake & Loiselle 2013
Cyanocompsa cyanoides 25.0 0.38 3 Londono et al. 2015 0.57 Blake & Loiselle 2013
Dendrocincla fuliginosa 33.1 0.37 9 Londono et al. 2015 0.23 Johnston et al. 1997
Dendrocincla merula 52.8 0.62 11 Londono et al. 2015 0.29 Francis et al. 1999
Formicarius analis 54.9 0.62 3 Londono et al. 2015 0.51 Karr et al. 1990
Glyphorynchus spirurus 15.5 0.25 21 Londono et al. 2015 0.38 Blake & Loiselle 2013
Gymnopithys bicolor 27.7 0.33 - Wiersma et al. 2007 0.29 Willis 1974
Henicorhina leucophrys 15.3 0.31 6 Londono et al. 2015 0.22 Martin et al. 2015
Himatione sanguinea 13.5 0.30 8 Weathers et al. 1983 0.28 Ralph & Fancy 1994
Hylophylax naevioides 16.1 0.24 - Wiersma et al. 2007 0.41 Karr et al. 1990
Lepidothrix coronata 10.6 0.20 20 Londono et al. 2015 0.39 Blake & Loiselle 2013
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Loxioides bailleui 36.0 0.46 12 Weathers & van Riper 1982 0.37 Lindsey et al. 1995
Manacus vitellinus 15.5 0.23 7 Bartholomew et al. 1983 0.53 Karr et al. 1990
Microcerculus marginatus 19.4 0.33 3 Londono et al. 2015 0.49 Blake & Loiselle 2013
Mionectes oleagineus 11.4 0.18 7 Londono et al. 2015 0.49 Brawn et al. 1995
Myadestes ralloides 28.8 0.39 7 Londono et al. 2015 0.29 Martin et al. 2015
Myioborus miniatus 9.8 0.20 6 Londono et al. 2015 0.21 Martin et al. 2015
Myrmoborus myotherinus 21.2 0.28 3 Londono et al. 2015 0.40 Blake & Loiselle 2013
Myrmotherula axillaris 8.9 0.19 4 Londono et al. 2015 0.31 Blake & Loiselle 2013
Pipra fasciicauda 16.4 0.26 38 Londono et al. 2015 0.23 Francis et al. 1999
Rhynchocyclus olivaceus 21.0 0.30 - Wiersma et al. 2007 0.43 Karr et al. 1990
Saltator maximus 44.8 0.55 - Wiersma et al. 2007 0.39 Martin et al. 2015
Thamnomanes ardesiacus 19.3 0.27 9 Londono et al. 2015 0.19 Jullien & Thiollay 1998
Thamnomanes schistogynus 19.7 0.34 3 Londono et al. 2015 0.22 Francis et al. 1999
Thamnophilus atrinucha 20.5 0.28 - Wiersma et al. 2007 0.27 Karr et al. 1990
Thamnophilus punctatus 21.0 0.34 - Wiersma et al. 2007 0.46 Greenberg & Gradwohl 1986
Thraupis palmarum 32.6 0.40 - Wiersma et al. 2007 0.33 Johnston et al. 1997
Troglodytes a. musculus 13.3 0.21 - Wiersma et al. 2007 0.41 Martin et al. 2015
Turdus albicollis 51.3 0.46 15 Londono et al. 2015 0.34 Blake & Loiselle 2013
Xiphorhynchus guttatus 60.1 0.52 7 Londono et al. 2015 0.24 Johnston et al. 1997
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Figure Legends 

Figure 1. The allometric relationship between resting metabolic rate (RMR) and body mass (Mb) for 

species measured at our Malaysia (filled circles) and Arizona (open circles) field sites. Associated data is 

presented in Table 1. The dashed line represents the phylogenetic generalized least-squares regression line 

described by the equation in the figure.   

 

Figure 2. The relationship between residual resting metabolic rate and adult mortality probability based 

on our field data from Malaysia (filled circles) and Arizona (open circles).  

 

Figure 3. The allometric relationship between basal metabolic rate (BMR) and body mass (Mb) based on 

data compiled from the literature and presented in Table 2. Each data point represents one species. Filled 

circles are tropical species and open circles are temperate species. The dashed line represents the 

phylogenetic generalized least-squares regression line described by the equation in the figure.   

 

Figure 4.  The relationship between residual basal metabolic rate and adult mortality probability based on 

data compiled from the literature. 
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