Independent double Roman domination in graphs

H. R. Maimani , M. Momeni , F. Rahimi Mahid \& S. M. Sheikholeslami

To cite this article: H. R. Maimani , M. Momeni , F. Rahimi Mahid \& S. M. Sheikholeslami (2020):
Independent double Roman domination in graphs, AKCE International Journal of Graphs and Combinatorics, DOI: 10.1016/j.akcej.2020.02.001

To link to this article: https://doi.org/10.1016/j.akcej.2020.02.001

© 2020 The Author(s). Published with
license by Taylor \& Francis Group, LLC

Published online: 09 Jul 2020.

Submit your article to this journal

Article views: 68

View related articles

View Crossmark data \triangle

Independent double Roman domination in graphs

H. R. Maimani ${ }^{\text {a }}$, M. Momeni ${ }^{\text {a }}$, F. Rahimi Mahid ${ }^{\text {a }}$, and S. M. Sheikholeslami ${ }^{\text {b }}$
${ }^{\text {a D Department }}$ of Basic Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran; ${ }^{\text {b }}$ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran

Abstract

For a graph $G=(V, E)$, a double Roman dominating function ($D R D F) f: V \rightarrow\{0,1,2,3\}$ has the property that for every vertex $v \in V$ with $f(v)=0$, either there exists a vertex $u \in N(v)$, with $f(u)=3$, or at least two neighbors $x, y \in N(v)$ having $f(x)=f(y)=2$, and every vertex with value 1 under f has at least a neighbor with value 2 or 3 . The weight of a DRDF is the sum $f(V)=\sum_{v \in V} f(v)$. A DRDF f is called independent if the set of vertices with positive weight under f, is an independent set. The independent double Roman domination number $i_{d R}(G)$ is the minimum weight of an independent double Roman dominating function on G. In this paper, we show that for every graph G of order $n, i_{r 3}(G)-i_{d R}(G) \leq n / 5$ and $i(G)+i_{R}(G)-i_{d R}(G) \leq n / 4$, where $i_{r 3}(G), i_{R}(G)$ and $i(G)$ are the independent 3-rainbow domination, independent Roman domination and independent domination numbers, respectively. Moreover, we prove that for any tree $G, i_{d R}(G) \geq i_{r 3}(G)$.

KEYWORDS

Independent double Roman domination; independent 3-rainbow domination; independent Roman domination

2010 MATHEMATICS

SUBJECT
CLASSIFICATION
05C69

1. Introduction

In this paper, G is a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ and size $|E|$ of G is denoted by $n(G)$ and $m(G)$, respectively. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V(G)$: $u v \in E(G)\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $\operatorname{deg}_{G}(v)=d_{G}(v)=|N(v)|$. The minimum degree and the maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. A vertex of degree one is called a leaf and its neighbor is called a support vertex. A strong support vertex is a support vertex adjacent to at least two leaves. The distance between two vertices u and v in a connected graph G is the length of a shortest $u v$-path in G. The vertex independence number or simply the independence number, of a graph G, denoted by $\alpha(G)$ is the maximum cardinality among the independent sets of vertices of G. We write P_{n} for the path of order n, C_{n} for the cycle of order n and K_{n} for the complete graph of order n. The join of two graphs G and $H, G \vee H$, is the graph with vertex-set $V(G \vee H)=$ $V(G) \cup V(H)$ and edge set $E(G \vee H)=E(G) \cup E(H) \cup\{u v$: $u \in V(G), v \in V(H)\}$.

An independent set $S \subseteq V$ in a graph G is called an independent dominating set if every vertex of G is either in S or adjacent to a vertex of S. The independent domination number $i(G)$ is the minimum cardinality of an independent dominating set on G.

An independent subset $S \subseteq V$ is an independent k dominating set if every vertex of $V-S$ has at least k
neighbors in S. The independent k-domination number $i_{k}(G)$ is the minimum cardinality of an independent k-dominating set in G. This parameter has been studied in [14, 22].

A function $f: V(G) \rightarrow\{0,1,2\}$ is a Roman dominating function (RDF) on G if every vertex $u \in V$ for which $f(u)=$ 0 is adjacent to at least one vertex v for which $f(v)=2$. The weight of a Roman dominating function f is the value $\omega(f)=f(V(G))=\sum_{u \in V(G)} f(u)$. The Roman domination was introduced by Cockayne et al. in [8] and was inspired by the work of ReVelle and Rosing [16] and Stewart [18], and has been extensively studied by researchers (see for example [5, 9, 13]). Here we recall some new variants of Roman domination.

A Roman dominating function $f: V(G) \rightarrow\{0,1,2\}$ is called an independent Roman dominating function (IRDF) if the set $\{u \in V(G) \mid f(u) \geq 1\}$ is an independent set. The independent Roman domination number $i_{R}(G)$ is the minimum weight of an IRDF on G. The concept of independent Roman dominating function was first defined by Cockayne et al. in [8] and has been studied by several authors [7, 19].

A Roman \{2\}-dominating function is a function $f: V \rightarrow$ $\{0,1,2\}$ with the property that for every vertex $v \in V$ with $f(v)=0, f(N(v)) \geq 2$, that is, there is a vertex $u \in N(v)$ with $f(u)=2$, or there are two vertices $x, y \in N(v)$ with $f(x)=f(y)=1$. The minimum weight of a Roman $\{2\}$ dominating function is called the Roman $\{2\}$-domination number and denoted by $\gamma_{\{R 2\}}(G)$. This concept was investigated in $[6,11]$. A Roman $\{2\}$-dominating function $f=$ (V_{0}, V_{1}, V_{2}) is called an independent Roman $\{2\}$-dominating
function (IR2DF) if $V_{1} \cup V_{2}$ is an independent set. The independent Roman $\{2\}$-domination number $i_{\{R 2\}}(G)$ is the minimum weight of an IR2DF on G. This concept was introduced by Rahmouni and Chellali [15].

A double Roman dominating function (DRDF) on a graph G is a function $f: V \rightarrow\{0,1,2,3\}$ having the property that if $f(v)=0$, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with $f(w)=3$, and if $f(v)=1$, then vertex v has at least one neighbor u with $f(u) \geq 2$. The double Roman domination number $\gamma_{d R}(G)$ of a graph G is the minimum weight of a DRDF on G. For a $\operatorname{DRDF} f$, let $V_{i}=\{v \in V \mid f(v)=i\}$ for $i=0,1,2,3$. Since these four sets determine f, we can equivalently write $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ (or $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}, V_{3}^{f}\right.$) to refer f). We note that $\omega(f)=$ $\left|V_{1}\right|+2\left|V_{2}\right|+3\left|V_{3}\right|$. The concept of double Roman domination in graphs was introduced by Beeler, Haynes and Hedetniemi in [4] and has been studied in [1-3, 20, 21, 23]. In [4], it is proved that for any connected graph G of order $n \geq 3, \gamma_{d R}(G) \leq \frac{5 n}{4}$ and all extremal graphs are characterized. Abdollahzadeh Ahangar et al. in [2] proved that every connected graph G having minimum degree at least 3 with order n, satisfies the inequality $\gamma_{d R}(G) \leq n$.

A DRDF $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ is called an independent double Roman dominating function (IDRDF) if $V_{1} \cup V_{2} \cup$ V_{3} is an independent set. The independent double Roman domination number $i_{d R}(G)$ is the minimum weight of an IDRDF on G, and an IDRDF of G with weigth $i_{d R}(G)$ is called an $i_{d R}$-function. By definition we have

$$
\begin{equation*}
\gamma_{d R}(G) \leq i_{d R}(G) \tag{1}
\end{equation*}
$$

Let S be a maximal independent set of graph G. It is clear that, a function $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$, where $V_{0}=V \backslash S$, $V_{1}=V_{2}=\emptyset$ and $V_{3}=S$ is an IDRDF function. Hence $i_{d R}(G) \leq 3 \alpha(G)$, where $\alpha(G)$ is the independence number of G.

The concept of independent double Roman domination introduced by H. R. Maimani and et al. in [12]. They show that the decision problem associated with $i_{d R}(G)$ is NP-complete for bipartite graphs.

In this paper, we first present some sharp bounds on the independent double Roman domination number and in last section Relationship between independent double Roman domination and independent 3 -rainbow domination is investigated.

Proposition 1. [12] Let G be a graph. There exists an $i_{d R^{-}}$ function $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ such that $V_{1}=\emptyset$.

By Proposition 1, we assume no vertex needs to be assigned the value 1 for any $i_{d R}(G)$-function f. Thus according to this proposition, it is sufficient in the definition of an independent double Roman dominating function f that $V_{2} \cup$ V_{3} is independent.
Lemma 2. [15] For every connected graph G of order $n, i_{R}(G)-i_{\{R 2\}}(G) \leq \frac{n}{4}$, and this bound is sharp.
Proposition 3. [2] For $n \geq 1$,
$\gamma_{d R}\left(P_{n}\right)=\left\{\begin{array}{lll}n & \text { if } \quad n \equiv 0(\bmod 3), \\ n+1 & \text { if } \quad n \equiv 1,2(\bmod 3) .\end{array}\right.$

Corollary 4. [12] For $n \geq 1, i_{d R}\left(P_{n}\right)=\gamma_{d R}\left(P_{n}\right)$.
Proposition 5. [2] For $n \geq 3$,
$\gamma_{d R}\left(C_{n}\right)=\left\{\begin{array}{lll}n & \text { if } \quad n \equiv 0,2,3,4(\bmod 6) \\ n+1 & \text { if } \quad n \equiv 1,5(\bmod 6) .\end{array}\right.$
Corollary 6. [12] For $n \geq 3, i_{d R}\left(C_{n}\right)=\gamma_{d R}\left(C_{n}\right)$.
Proposition 7. [2] Let G be a connected graph of order $n \geq 3$. Then

1. $\gamma_{d R}(G)=3$ if and only if $\Delta(G)=n-1$.
2. $\gamma_{d R}(G)=4$ if and only if $G=\overline{K_{2}} \vee H$, where H is a graph with $\Delta(H) \leq|V(H)|-2$.
3. $\gamma_{d R}(G)=5$ if and only if $\Delta(G)=n-2$ and $G \neq \overline{K_{2}} \vee H$ for any graph H of order $n-2$.

Proposition 8. Let G be a connected graph of order $n \geq 3$. Then $\gamma_{d R}(G)=k$ if and only if $i_{d R}(G)=k$ for $k \in\{3,4,5\}$.

Proof.

1. Suppose that $\gamma_{d R}(G)=3$. It is clear that $i_{d R}(G) \geq 3$ and by Proposition 7 (1), $\Delta(G)=n-1$. Suppose that $d(v)=n-1$. Assigning 3 to v and 0 to other vertices of G, introduces an IDRDF of G implying that $i_{d R}(G) \leq$ 3. Conversely, Suppose that $i_{d R}(G)=3$. It is easy to see that $\gamma_{d R}(G)=3$.
2. Suppose that $\gamma_{d R}(G)=4$. By Proposition 7 (2), $G=$ $\overline{K_{2}} \vee H$, where H is a graph with $\Delta(H) \leq|V(H)|-2$. This means there exist vertices x, y that $x y \notin E(G)$ and $d(x)=d(y)=n-2$. Assigning 2 to x, y and 0 to other vertices of G introduces an IDRDF of G yielding $i_{d R}(G) \leq 4$ and it follows from (1) that $i_{d R}(G)=4$. Conversely, Suppose that $i_{d R}(G)=4$. It is easy to see that $3 \leq \gamma_{d R}(G) \leq 4$, an by above item we have $\gamma_{d R}(G)=4$.
3. Suppose that $\gamma_{d R}(G)=5$. It is clear that $i_{d R}(G) \geq 5$ and by Proposition 7 (3), $\Delta(G)=n-2$ and $G \neq \overline{K_{2}} \vee H$ for any graph H of order $n-2$. This means there exist vertices x, y that $x y \notin E(G)$ and $d(x)=n-2, d(y)<n-2$. Assigning 3 to $x, 2$ to y, and 0 to other vertices of G introduces an IDRDF of G and so $i_{d R}(G) \leq 5$. Conversely, Suppose that $i_{d R}(G)=5$. It is easy to see that $3 \leq \gamma_{d R}(G) \leq 5$, if $\gamma_{d R}(G)=3$ or $\gamma_{d R}(G)=4$ then by $1,2, \quad i_{d R}(G)=3$ and $i_{d R}(G)=4$ a contradiction. So $\gamma_{d R}(G)=5$.

Proposition 9. If G is a connected graph with order n and size m, then for some spanning tree T_{G} of $G, i_{d R}\left(T_{G}\right) \leq i_{d R}(G)+$ $m-n+1$.
Proof. If G is a tree, the result is trivial. Assume that G is not a tree. Let C be a cycle in G. Suppose that f is an $i_{d R^{-}}$ function on G such that $V_{1}=\emptyset$. Obviously at least one vertex on C say v has the value 0 . We consider two cases.
Case 1. One of two vertices that are adjacent with v on C say w, has the value 0 . In this case we let $G^{\prime}=G-v w$ and define $g=f$ on G^{\prime}.
Case 2. Each of two vertices that are adjacent with v on C, has the value 2 or 3 . Suppose that w, z are two adjacent
vertices with v on C. Let $G^{\prime}=G-v z$ and define a function g on G^{\prime} as $g(w)=3, g=f$ for other vertices of G^{\prime}.

Thus we obtain a graph G^{\prime}, with at least one cycle less than G and independent double dominating function g of weight at most $w(f)+1$ on G^{\prime}. By repeating this procedure we obtain a spanning tree T_{G} of G and an independent dominating function on T_{G} of weight at most $w(f)+m-$ $(n-1)$. Thus $i_{d R}\left(T_{G}\right) \leq i_{d R}(G)+m-n+1$.

2. Some upper and lower bounds of $\boldsymbol{i}_{\boldsymbol{d} \boldsymbol{R}}(\boldsymbol{G})$

Proposition 10. Let G be a graph and $f=\left(V_{0}, V_{1}, V_{2}\right)$ an i_{R}-function of G. Then $i_{d R}(G) \leq 2\left|V_{1}\right|+3\left|V_{2}\right|$.

Proof. Let G be a graph and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be an i_{R}-function of G. We define a function $g=\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right)$ as follows: $V_{0}^{\prime}=V_{0}, V_{1}^{\prime}=\emptyset, V_{2}^{\prime}=V_{1}$, and $V_{3}^{\prime}=V_{2}$. Note that under g, every vertex assigned a 0 has a neighbor assigned 3 , and no vertex is assigned 1. Hence, g is an independent double Roman dominating function. Thus, $i_{d R} \leq 2\left|V_{2}^{\prime}\right|+$ $3\left|V_{3}^{\prime}\right|=2\left|V_{1}\right|+3\left|V_{2}\right|$, as desired.

Corollary 11. If G is a nontrivial connected graph, and $f=$ $\left(V_{0}, V_{1}, V_{2}\right)$ is an i_{R}-function of G that maximizes the number of vertices in V_{2}, then $i_{d R}(G) \leq 2 i_{R}(G)-\left|V_{2}\right|$.

Proposition 12. For every graph $G, i_{R}(G)<i_{d R}(G)$.
Proof. Let $f=\left(V_{0}, V_{2}, V_{3}\right)$ be any $i_{d R}$-function of G, where $V_{1}=\emptyset$ (by Proposition 1 such a function exists). If $V_{3} \neq \emptyset$, then every vertex in V_{3} can be reassigned the value 2 and the resulting function will be an independent Roman dominating function, that is, $i_{R}(G)<i_{d R}(G)$. Assume that $V_{3}=$ \emptyset. Since $V_{2} \cup V_{3}$ dominates G, it follows that $V_{2} \neq \emptyset$. Thus, all vertices are assigned either the value 0 or the value 2 , and all vertices in V_{0} must have at least two neighbors in V_{2}. In this case one vertex in V_{2} can be reassigned the value 1 and the resulting function will be an independent Roman dominating function, that is, $i_{R}(G)<i_{d R}(G)$.

Corollary 13. If $f=\left(V_{0}, V_{2}, V_{3}\right)$ is any $i_{d R}$-function of a graph G, then $i_{R}(G) \leq 2\left(\left|V_{2}\right|+\left|V_{3}\right|\right)=i_{d R}(G)-\left|V_{3}\right|$.

Corollary 14. For any nontrivial connected graph $G, i_{R}(G)<$ $i_{d R}(G)<2 i_{R}(G)$.

Proposition 15. For any graph $G, 2 i(G) \leq i_{d R}(G) \leq 3 i(G)$.
Proof. Let S be an $i(G)$-set. Note that $(\emptyset, \emptyset, S)$ is an independent double Roman dominating function. This yields the upper bound of $i_{d R}(G) \leq 3 i(G)$. For the lower bound, let $f=$ $\left(V_{0}, V_{2}, V_{3}\right)$ be an $i_{d R}$-function of a graph G. Note that, $V_{2} \cup$ V_{3} is an independent dominating set for G. Thus, $i(G) \leq$ $\left|V_{2}\right|+\left|V_{3}\right|$. Using this observation, we can obtain the lower bound, $i_{d R}(G)=2\left|V_{2}\right|+3\left|V_{3}\right| \geq 2\left(\left|V_{2}\right|+\left|V_{3}\right|\right) \geq 2 i(G)$.

Both the bounds of Proposition 15 are sharp. For the upper bound, as we have seen, the family of non-trivial stars $K_{1, n-1}$ has $i\left(K_{1, n-1}\right)=1$ and $i_{d R}\left(K_{1, n-1}\right)=3$. For the lower bound, we also recall that the family of complete bipartite
graphs $K_{2, k}, k \geq 2$, has $i\left(K_{2, k}\right)=2$ and $i_{d R}\left(K_{2, k}\right)=4$. The independent 2 -domination number $i_{2}(G)$ equals the minimum cardinality of an independent set S such that every vertex in $V-S$ is adjacent to at least two vertices of S.

Proposition 16. For any graph $G, 2 i(G)=i_{d R}(G)$ if and only if $i(G)=i_{2}(G)$.

Proof. Let $f=\left(V_{0}, V_{2}, V_{3}\right)$ be an $i_{d R}$-function on G. Note that $2 i(G) \leq 2\left(\left|V_{2}\right|+\left|V_{3}\right|\right) \leq 2\left|V_{2}\right|+3\left|V_{3}\right|=i_{d R}(G)$. If $2 i(G)=$ $i_{d R}(G)$, then both inequalities must be equalities. The first inequality is an equality if and only if $V_{2} \cup V_{3}$ is a minimum independent dominating set. The second inequality is an equality if and only if $V_{3}=\emptyset$. This happens if and only if V_{2} is a minimum independent dominating set and ($V-$ $\left.V_{2}, V_{2}, \emptyset\right)$ is an $i_{d R}$-function of G. Hence by definition, every vertex in $V-V_{2}$ must have at least two neighbors in V_{2}. Therefore, $i(G)=i_{2}(G)$.

Proposition 17. If G is a connected graph of order n and maximum degree $\Delta(G)=\Delta$, then for any $i_{d R}$-function $f=\left(V_{0}, V_{2}, V_{3}\right), i_{d R}(G) \geq \frac{3\left(n+\left|V_{3}\right|\right)}{\Delta+2}$, and this bound is sharp.

Proof. Assume first that $\Delta \leq 2$. In this case G is a path or a cycle and by Corollaries 4 and 6 , it is not difficult to see that, $i_{d R}(G) \geq \frac{3\left(n+\left|V_{3}\right|\right)}{\Delta+2}$. Assume now that $\Delta \geq 3$, and let $f=$ $\left(V_{0}, V_{2}, V_{3}\right)$ be an $i_{d R}$-function. Let $V_{0}^{\prime}=\left\{x \in V_{0}\right.$: $\left.N(x) \cap V_{3} \neq \emptyset\right\}$ and $V_{0}^{\prime \prime}=V_{0}-V_{0}^{\prime}$. Since every vertex of V_{3} can have at most Δ neighbors in V_{0}^{\prime}, we obtain that $\left|V_{0}^{\prime}\right| \leq$ $\Delta\left|V_{3}\right|$. On the other hand, using the facts that every vertex of $V_{0}^{\prime \prime}$ has at least two neighbors in V_{2} and every vertex of V_{2} has at most Δ neighbors in $V_{0}^{\prime \prime}$, we deduce that $2\left|V_{0}^{\prime \prime}\right| \leq$ $\Delta\left|V_{2}\right|$. Therefore, we obtain

$$
\begin{aligned}
n & =\left|V_{0}^{\prime}\right|+\left|V_{0}^{\prime \prime}\right|+\left|V_{2}\right|+\left|V_{3}\right| \\
& \leq \Delta\left|V_{3}\right|+1 / 2 \Delta\left|V_{2}\right|+\left|V_{2}\right|+\left|V_{3}\right| \\
& =(\Delta+1)\left|V_{3}\right|+1 / 2(\Delta+2)\left|V_{2}\right| \\
& =(\Delta+2)\left|V_{3}\right|+1 / 2(\Delta+2)\left|V_{2}\right|-\left|V_{3}\right| \\
& =(\Delta+2)\left(\left|V_{3}\right|+1 / 2\left|V_{2}\right|\right)-\left|V_{3}\right| \\
& \leq(\Delta+2)\left(\left|V_{3}\right|+2 / 3\left|V_{2}\right|\right)-\left|V_{3}\right| \\
& =(\Delta+2)\left(i_{d R}(G) / 3\right)-\left|V_{3}\right|,
\end{aligned}
$$

and this leads to the desired bound.
That this bound is sharp may be seen by the graph of order 8 obtained from path $P_{4}: v_{1}-v_{2}-v_{3}-v_{4}$ by adding new vertices x, y, z, t and adding edges $x v_{1}, y v_{1}, z v_{4}, t v_{4}$.

Proposition 18. [12] For any graph G of order $n \geq 1$,

$$
i_{R}(G)+1 \leq i_{d R}(G) \leq 2 i_{R}(G)
$$

The equality in upper bound holds if and only if $G=\bar{K}_{n}$.
Next result present bounds on $i_{d R}(G)$ in terms of domination, independent domination and independent Roman \{2\}domination numbers.
Proposition 19. For every connected graph G of order n,

$$
i_{\{R 2\}}(G)+i(G) \leq i_{d R}(G) \leq n+i_{\{R 2\}}(G)-\gamma(G)
$$

Proof. First we prove the lower bound. Clearly the result is valid for $n=1,2$. Let $n \geq 3$ and $f=\left(V_{0}, \emptyset, V_{2}, V_{3}\right)$ be an
$i_{d R}$-function of G. Note that $V_{2} \cup V_{3}$ dominates V_{0} and so $i(G) \leq\left|V_{2}\right|+\left|V_{3}\right|$. Now define the function g on G as follows: $g(x)=f(x)-1$ for all $x \in V_{2} \cup V_{3}$ and $g(x)=f(x)$ for all $x \in V_{0}$. Clearly, g is an independent Roman $\{2\}$-dominating function on G, and so $i_{\{R 2\}}(G) \leq\left|V_{2}\right|+2\left|V_{3}\right|$. Therefore, $i_{d R}(G)=2\left|V_{2}\right|+3\left|V_{3}\right|=\left|V_{2}\right|+\left|V_{3}\right|+\left|V_{2}\right|+2\left|V_{3}\right| \geq$ $i(G)+i_{\{R 2\}}(G)$.

Now we prove the upper bound. Let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be an $i_{\{R 2\}}$-function of G such that V_{2} is as large as possible. It is easy to see that V_{0}^{f} is a dominating set of G. Define h : $V(G) \rightarrow\{0,1,2,3\}$ by $h(u)=f(u)$ if $u \in V_{0}^{f}$, and $h(u)=$ $f(u)+1$ for $u \in V_{1}^{f} \cup V_{2}^{f}$. Clearly, h is an IDRDF on G and this implies that

$$
\begin{aligned}
i_{d R}(G) & \leq 2\left|V_{1}^{f}\right|+3\left|V_{2}^{f}\right| \\
& =i_{\{R 2\}}(G)+\left|V_{1}^{f}\right|+\left|V_{2}^{f}\right| \\
& =i_{\{R 2\}}(G)+n-\left|V_{0}^{f}\right| \\
& \leq i_{\{R 2\}}(G)+n-\gamma(G),
\end{aligned}
$$

as desired.
Next result is an immediate consequence of Proposition 19 and Lemma 2.

Corollary 20. For every connected graph G of order $n, i_{d R}(G) \geq i(G)+i_{R}(G)-\frac{n}{4}$.

3. Relationship between independent double Roman domination and independent 3-rainbow domination

Let f be a function that assigns to each vertex a subset of colors chosen from the set $\{1, \ldots, k\}$; that is $f: V(G) \rightarrow$ $\mathrm{P}(\{1, \ldots, k\})$. If for each vertex $v \in V(G)$ with $f(v)=\emptyset$, we have $\cup_{u \in N(v)} f(u)=\{1, \ldots, k\}$, then f is called a k-rainbow dominating function ($k \mathrm{RDF}$) of G. The weight of a $k \operatorname{RDF} f$ is defined as $f(V)=\sum_{v \in V(G)}|f(v)|$. For a sake of simplicity, a 3RDF f on a graph G will be represented by the ordered partition $\left(V_{\emptyset}^{f}, V_{\{1\}}^{f}, V_{\{2\}}^{f}, V_{\{3\}}^{f}, V_{\{1,2\}}^{f}, V_{\{1,3\}}^{f}, V_{\{2,3\}}^{f}, V_{\{1,2,3\}}^{f}\right)$ of $V(G)$ induced by f, where $V_{A}^{f}=\{u \in V \mid f(u)=A\}$. A function $f: V(G) \rightarrow P(\{1, \ldots, k\})$ is called an independent k rainbow dominating function (IkRDF) of G, if f is a $k \mathrm{RDF}$ and no two vertices in $V(G)-V_{\emptyset}^{f}$ are adjacent. The independent k-rainbow domination number $i_{r k}(G)$ is the minimum weight of an $I \mathrm{k} R D F$ of G. The independent k-rainbow domination number was introduced by Shao et al. [17].

In this section, we present bounds on $i_{d R}(G)$ in terms of $i_{r 3}(G)$. For any $i_{d R}(G)$-function $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}, V_{3}^{f}\right)$ of a graph G, let $V_{0,1}^{f}$ be the set of all vertices of V_{0}^{f} having at least one neighbor in V_{3}^{f} and $V_{0,2}^{f}=V_{0}^{f}-V_{0,1}^{f}$. Clearly, each vertex of $V_{0,2}^{f}$ has at least two neighbors in V_{2}^{f}. Let R be a minimal spanning subgraph of the induced subgraph $G\left[V_{0,2}^{f} \cup V_{2}^{f}\right]$ such that each vertex in $V_{0,2}^{f}$ is adjacent to two vertices in V_{2}^{f}. By the choice of R, we have $\operatorname{deg}_{R}(v)=2$ for each $v \in V_{0,2}^{f}$. Suppose H_{f} is the graph with vertex set
$V\left(H_{f}\right)=V\left(V_{2}^{f}\right) \quad$ and edge set $\quad E\left(H_{f}\right)=\{x y \mid x$ and y have a common neighbor in V_{0}^{f} in $\left.R\right\}$. Clearly, if $V_{0,2}^{f} \neq$ \emptyset, then $\left|E\left(H_{f}\right)\right| \geq 1$. The graph H_{f} will be called an associated graph with respect to f.

For every graph G, let $\pi(G)=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ be a partition of $V(G)$ such that S_{i} is a maximum independent set of the subgraph induced by $S_{i} \cup S_{i+1} \cup \ldots \cup S_{k}$ for every $i \in$ $\{1, \ldots, k\}$. This concept was introduced by Fradkin [10] who defined a greedy independent decomposition of G. According to the definition of $\pi(G)$, we have $\left|S_{i}\right| \geq\left|S_{j}\right|$ and every vertex of S_{j} has at least one neighbor in S_{i} for all i, j with $i<j$. Now let us define the sets A, B and C as follows: A is the set of all vertices of $V_{0,2}^{f}$ having neighbors in both S_{1} and S_{2}, C is the set of all vertices of $V_{0,2}^{f}$ having no neighbor in $S_{1} \cup S_{2}$, and $B=$ $V_{0,2}^{f}-(A \cup C)$. Let $X_{f}=\cup_{i=3}^{t} S_{i}=V\left(H_{f}\right)-\left(S_{1} \cup S_{2}\right)$.

Obviously we have the following proposition.
Proposition 21. Every graph G has an independent 3-rainbow dominating function.
Proposition 22. Let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}, V_{3}^{f}\right)$ be an $i_{d R}(G)$-function and H_{f} an associated graph with respect to f whose vertex partition is $\pi\left(H_{f}\right)=\left\{S_{1}, S_{2}, \ldots, S_{t}\right\}$. Then
(i) if H_{f} is a bipartite graph, then $i_{r 3}(G) \leq i_{d R}(G)$.
(ii) $\quad i_{r 3}(G) \leq i_{d R}(G)+\left|X_{f}\right|$.
(iii) Every vertex of X_{f} (if any) has at least two neighbors in B and $|B| \geq 2\left|X_{f}\right|$.
(iv) $\quad|A| \geq\left|S_{2}\right|$.
(v) $|C|=0$ if $t \leq 3$.
(vi) $\quad|C| \geq\left|X_{f}\right|-\left|S_{2}\right|$ if $t=4$.
(vii) $\quad|C| \geq 2\left|X_{f}\right|-3\left|S_{2}\right|$ if $t \geq 5$.

Proof.
(i) Assume that H_{f} is a bipartite graph (possibly $E\left(H_{f}\right)=\emptyset$ when $V_{0,2}^{f}=\emptyset$) and let U and W be the partite sets of H_{f}. By definition of H_{f}, every vertex of $V_{0,2}^{f}$ (if any) has a neighbor in U and another one in W. Define the function $g: V(G) \rightarrow \mathcal{P}(\{0,1,2,3\})$ by $g(x)=\emptyset$ if $x \in V_{0}^{f}, g(x)=\{1,2,3\}$ if $x \in V_{3}^{f}, g(x)=$ $\{1,2\}$ if $x \in U$ and $g(x)=\{2,3\}$ if $x \in W$. Clearly, g is an I3RDF on G implying that $i_{r 3}(G) \leq \omega(g)=$ $i_{d R}(G)$ as desired.
(ii) If H_{f} is a bipartite graph, then the result follows from (i). Assume that H is not a bipartite graph. Then $t \geq 3$ and the function $g: V(G) \rightarrow \mathcal{P}(\{0,1,2,3\})$ by $g(x)=\emptyset$ if $x \in V_{0}^{f}, g(x)=\{1,2,3\}$ for $x \in V_{3}^{f} \cup X_{f}$, $f(x)=\{1,2\}$ for $x \in S_{1}$ and $f(x)=\{2,3\}$ for $x \in S_{2}$, is an I3RDF on G of weight $i_{d R}(G)+\left|X_{f}\right|$ yielding $i_{r 3}(G) \leq \omega(g)=i_{d R}(G)+\left|X_{f}\right|$ as desired.
(iii) Let u be an arbitrary vertex of X_{f}. By the definition of $\pi\left(H_{f}\right), u$ has a neighbor in S_{1}, say v, and a neighbor in S_{2}, say w. Let a be the common neighbor of u and v in R, and a^{\prime} be the common neighbor of u and w in R. Since a and a^{\prime} do not belong to A (because of $u \in X_{f}$) and $v, w \in S_{1} \cup S_{2}$, we conclude that $a, a^{\prime} \in B$. Since each vertex of B has exactly one neighbor in X_{f} and exactly one neighbor in $S_{1} \cup S_{2}$, we deduce that $|B| \geq 2\left|X_{f}\right|$.
(iv) Let $S_{2}=\left\{x_{1}, \ldots, x_{k}\right\}$. By definition of $\pi\left(H_{f}\right)$, there is an edge $x_{i} y_{i} \in E\left(H_{f}\right)$ where $y_{i} \in S_{1}$ for each i. By the construction of H_{f}, x_{i}, y_{i} must have a common neighbor $z_{i} \in A$ in R for each i. Since $\operatorname{deg}_{R}\left(z_{i}\right)=2$ for each i, we conclude that $z_{i} \neq z_{j}$ if $i \neq j$. It follows that $|A| \geq\left|S_{2}\right|$.
(v) If $t \leq 3$, then X_{f} is either empty or independent, and thus $C=\emptyset$.
(vi) Let $t=4$. Let $S_{4}=\left\{x_{1}, \ldots, x_{k}\right\}$. By definition of $\pi\left(H_{f}\right)$, there is an edge $x_{i} y_{i} \in E\left(H_{f}\right)$ where $y_{i} \in S_{3}$ for each i. By the construction of H_{f}, x_{i}, y_{i} must have a common neighbor $z_{i} \in C$ in R for each i. Since $\operatorname{deg}_{R}\left(z_{i}\right)=2$ for each i, we conclude that $z_{i} \neq z_{j}$ if $i \neq j$. It follows that $|C| \geq\left|S_{4}\right|=\left|X_{f}\right|-\left|S_{3}\right| \geq$ $\left|X_{f}\right|-\left|S_{2}\right|$.
(vii) Let $t \geq 5$. Let $C_{1}=\left\{x \in C \mid N_{R}(x) \cap S_{3} \neq \emptyset\right\} \quad$ and $C_{2}=\left\{x \in C \mid N_{R}(x) \cap S_{3}=\emptyset\right\}$. As in the (v), we can see that $\left|C_{1}\right| \geq\left|X_{f}\right|-\left|S_{3}\right|$ and $\left|C_{2}\right| \geq\left|X_{f}\right|-\left|S_{3}\right|-$ $\left|S_{4}\right|$. Since $|C|=\left|C_{1}\right|+\left|C_{2}\right|$, we obtain

$$
\begin{aligned}
|C| & \geq\left(\left|X_{f}\right|-\left|S_{3}\right|\right)+\left(\left|X_{f}\right|-\left|S_{3}\right|-\left|S_{4}\right|\right) \\
& =2\left|X_{f}\right|-2\left|S_{3}\right|-\left|S_{4}\right| \\
& \geq 2\left|X_{f}\right|-3\left|S_{2}\right|
\end{aligned}
$$

and the proof is complete.
Proposition 23. If G is a $C_{4 k+2}$-free connected graph for an integer $k \geq 1$, then

$$
i_{d R}(G) \geq i_{r 3}(G)
$$

Proof. Let $f=\left(V_{0}^{f}, \emptyset, V_{2}^{f}, V_{3}^{f}\right)$ be an $i_{d R}(G)$-function. If $V_{0,2}^{f}=\emptyset$, then clearly the function $g: V(G) \rightarrow \mathcal{P}(\{0,1,2$, 3\}) defined by $g(x)=\{1,2,3\}$ for $x \in V_{3}, g(x)=\{1,2\}$ for $x \in V_{2}$ and $g(x)=\emptyset$ otherwise, is an I3RDF of G with weight $i_{d R}(G)$, and so $i_{d R}(G) \geq i_{r 3}(G)$. Henceforth, we assume that $V_{0,2}^{f} \neq \emptyset$. Let H_{f} be the associated graph with respect to f. We claim that H_{f} is a bipartite graph. Suppose, to the contrary, that H_{f} is not bipartite. Then H_{f} contains an induced odd cycle $C_{2 t+1}:=\left(u_{1} u_{2} \ldots u_{2 t+1}\right)$ for some positive integer t. By the construction of H_{f}, for every two consecutive vertices u_{i}, u_{i+1} of the cycle, there exists a vertex $w_{i} \in V_{0,2}^{f}$ such that $w_{i} u_{i}$ and $w_{i} u_{i+1} \in E(G)$. Hence the subgraph of G induced by vertices $\left\{u_{1}, u_{2}, \ldots, u_{2 t+1}, w_{1}, w_{2}, \ldots, w_{2 t+1}\right\}$ contains a cycle $C_{4 k+2}$ which is a contradiction. Thus H_{f} is a bipartite graph. Now the result follows from proposition 22 (part (i)).

Corollary 24. If G is a tree, then $i_{d R}(G) \geq i_{r 3}(G)$.
Next we present an upper bound on $i_{r 3}(G)$ in terms of $i_{d R}(G)$ and the order of G.

Proposition 25. For every connected graph of order $n, i_{d R}(G) \geq i_{r 3}(G)-\frac{n}{5}$.

Proof. Let $f=\left(V_{0}^{f}, \emptyset, V_{2}^{f}, V_{3}^{f}\right)$ be an $i_{d R}(G)$-function, H_{f} an associated graph with respect to f and $\pi\left(H_{f}\right)=\left\{S_{1}\right.$, $\left.S_{2}, \ldots, S_{k}\right\}$ be the independent partition of $V\left(H_{f}\right)$. If H_{f} is bipartite, the result is valid by Proposition 22 (part (i)).

Assume that H_{f} is not bipartite. Then $t \geq 3$. By Proposition 22 (part (ii)), $i_{r 3}(G) \leq i_{d R}(G)+\left|X_{f}\right|$. Hence, we need only to show that $\left|X_{f}\right| \leq \frac{n}{5}$. Recall that $\left|V_{2}^{f}\right|=\left|X_{f}\right|+\left|S_{1}\right|+\left|S_{2}\right|$. Consider the following cases.
Case 1. $t=3$.
Then $X_{f}=S_{3}$ and $\left|X_{f}\right|=\left|S_{3}\right| \leq\left|S_{2}\right|$ by the definition of $\pi\left(H_{f}\right)$. It follows from Proposition 22 (parts (ii)-(iv)) that

$$
\begin{aligned}
n & =\left|V_{3}^{f}\right|+\left|V_{2}^{f}\right|+\left|V_{0}^{f}\right| \\
& \geq\left|V_{2}^{f}\right|+\left|V_{0,2}^{f}\right| \\
& =\left(\left|X_{f}\right|+\left|S_{1}\right|+\left|S_{2}\right|\right)+(|A|+|B|+|C|) \\
& \geq 3\left|X_{f}\right|+(|A|+|B|) \\
& \geq 3\left|X_{f}\right|+\left|S_{2}\right|+2\left|X_{f}\right| \geq 6\left|X_{f}\right|,
\end{aligned}
$$

and so $\left|X_{f}\right| \leq \frac{n}{6}<\frac{n}{5}$.
Case 2. $t=4$.
Clearly, $\left|X_{f}\right|=\left|S_{3}\right|+\left|S_{4}\right| \leq\left|S_{1}\right|+\left|S_{2}\right|$. Applying Proposition 22 (parts (ii), (iii) and (v)), we have

$$
\begin{aligned}
n & =\left|V_{3}^{f}\right|+\left|V_{2}^{f}\right|+\left|V_{0}^{f}\right| \\
& \geq\left|V_{2}^{f}\right|+\left|V_{0,2}^{f}\right|=\left(\left|X_{f}\right|+\left|S_{1}\right|+\left|S_{2}\right|\right)+(|A|+|B|+|C|) \\
& \geq 2\left|X_{f}\right|+\left|S_{2}\right|+2\left|X_{f}\right|+\left|X_{f}\right|-\left|S_{2}\right|=5\left|X_{f}\right|
\end{aligned}
$$

and so $\left|X_{f}\right| \leq \frac{n}{5}$.
Case 3. $t \geq 5$.
Using parts (ii), (iii) and (vi) of Proposition 22, we obtain

$$
\begin{aligned}
n & =\left|V_{3}^{f}\right|+\left|V_{2}^{f}\right|+\left|V_{0}^{f}\right| \\
& \geq\left|V_{2}^{f}\right|+\left|V_{0,2}^{f}\right|=\left(\left|X_{f}\right|+\left|S_{1}\right|+\left|S_{2}\right|\right)+(|A|+|B|+|C|) \\
& \geq\left(\left|X_{f}\right|+2\left|S_{2}\right|\right)+\left(\left|S_{2}\right|+2\left|X_{f}\right|+2\left|X_{f}\right|-3\left|S_{2}\right|\right)=5\left|X_{f}\right|
\end{aligned}
$$

and so $\left|X_{f}\right| \leq \frac{n}{5}$. This completes the proof.
For any $i_{d R}(G)$-function $f=\left(V_{0}, \emptyset, V_{2}, V_{3}\right)$, the function $g: V(G) \rightarrow \mathcal{P}(\{1,2,3\})$ defined by $g(x)=\{1,2,3\}$ for $x \in$ $V_{2} \cup V_{3}$ and $g(x)=\emptyset$ for $x \in V_{0}$, is an I3RDF on G and so

$$
\begin{equation*}
i_{r 3}(G) \leq \frac{3}{2} i_{d R}(G) \tag{2}
\end{equation*}
$$

Now we improve the upper bound (2) considerably.
Proposition 26. Let G be a connected graph with maximum degree $\Delta \geq 1$. Then

$$
i_{d R}(G) \geq\left(\frac{2 \Delta+2}{3 \Delta+1}\right) i_{r 3}(G)
$$

Proof. Let $f=\left(V_{0}^{f}, \emptyset, V_{2}^{f}, V_{3}^{f}\right)$ be an $i_{d R}(G)$-function and H_{f} be an associated graph with respect to f with vertex partition $\pi\left(H_{f}\right)=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$. If H_{f} is bipartite, then $i_{r 3}(G) \leq$ $i_{d R}(G)$ by Proposition 22 (part (i)). Assume that H_{f} is not bipartite and so $\left|V_{2}^{f}\right| \geq 1$. By Proposition 22 (part (ii)), $i_{r 3}(G) \leq i_{d R}(G)+\left|X_{f}\right|$. Thus $i_{r 3}(G) / i_{d R}(G) \leq 1+\left|X_{f}\right| / i_{d R}(G)$. Since $i_{d R}(G)=2\left|V_{2}^{f}\right|+3\left|V_{3}^{f}\right|$ and $\left|X_{f}\right|=\left|V_{2}^{f}\right|-\left(\left|S_{1}\right|+\left|S_{2}\right|\right)$, we obtain

$$
\begin{aligned}
i_{r 3}(G) & \leq i_{d R}(G)\left(1+\left|X_{f}\right| / i_{d R}(G)\right) \\
& =i_{d R}(G)\left(1+\frac{\left|V_{2}^{f}\right|-\left(\left|S_{1}\right|+\left|S_{2}\right|\right)}{2\left|V_{2}^{f}\right|+3\left|V_{3}^{f}\right|}\right) \\
& \leq i_{d R}(G)\left(1+\frac{\left|V_{2}^{f}\right|-\left(\left|S_{1}\right|+\left|S_{2}\right|\right)}{2\left|V_{2}^{f}\right|}\right) \\
& =i_{d R}(G)\left(\frac{3}{2}-\frac{\left|S_{1}\right|+\left|S_{2}\right|}{2\left|V_{2}^{f}\right|}\right) .
\end{aligned}
$$

Moreover, since $\left|V_{2}^{f}\right|=\left|S_{1}\right|+\left|S_{2}\right|+\cdots+\left|S_{t}\right|$ and $\left|S_{i}\right| \leq$ $\left|S_{j}\right|$ for all $i \geq j$, we have

$$
\begin{aligned}
2\left|V_{2}^{f}\right| & =\left(\left|S_{1}\right|+\left|S_{t}\right|\right)+\left(\left|S_{2}\right|+\left|S_{t-1}\right|\right)+\cdots+\left(\left|S_{t}\right|+\left|S_{1}\right|\right) \\
& \leq\left(\left|S_{1}\right|+\left|S_{2}\right|\right)+\left(\left|S_{1}\right|+\left|S_{2}\right|\right)+\cdots+\left(\left|S_{1}\right|+\left|S_{2}\right|\right) \\
& =t\left(\left|S_{1}\right|+\left|S_{2}\right|\right) .
\end{aligned}
$$

and so $\left(\left|S_{1}\right|+\left|S_{2}\right|\right) /\left|V_{2}\right| \geq 2 / t$. Now using the fact that $t \leq$ $\Delta(H)+1 \leq \Delta(G)+1$ and combining the previous results, we obtain

$$
\begin{aligned}
i_{r 3}(G) & \leq i_{d R}(G)\left(\frac{3}{2}-\frac{\left|S_{1}\right|+\left|S_{2}\right|}{2\left|V_{2}^{f}\right|}\right) \\
& \leq i_{d R}(G)\left(\frac{3}{2}-\frac{1}{t}\right) \\
& \leq i_{d R}(G)\left(\frac{3}{2}-\frac{1}{(\Delta(G)+1)}\right)
\end{aligned}
$$

Then by a straightforward calculation, we have

$$
i_{d R}(G) \geq\left(\frac{2 \Delta+2}{3 \Delta+1}\right) i_{r 3}(G)
$$

and the proof is complete.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Abdollahzadeh Ahangar, H., Amjadi, J., Chellali, M., NazariMoghaddam, S., Sheikholeslami, S. M. (2019). Trees with double Roman domination number twice the domination number plus two. Iran. J. Sci. Technol. Trans. Sci. 43(3):1081-1088.
[2] Abdollahzadeh Ahangar, H., Chellali, M., Sheikholeslami, S. M. (2017). On the double Roman domination in graphs. Discrete Appl. Math. 232:1-258.
[3] Amjadi, J., Nazari-Moghaddam, S., Sheikholeslami, S. M., Volkmann, L. (2018). An upper bound on the double Roman domination number. J. Comb. Optim. 36(1):81-89.
[4] Beeler, R. A., Haynes, T. W., Hedetniemi, S. T. (2016). Double Roman domination. Discrete Appl. Math. 211:23-29.
[5] Chambers, E. W., Kinnersley, B., Prince, N., West, D. B. (2009). Extremal problems for Roman domination. SIAM J. Discrete Math. 23(3):1575-1586.
[6] Chellali, M., Haynes, T. W., Hedetniemi, S. T., McRae, A. A. (2016). Roman 2-domination. Discrete Appl. Math. 204:22-28.
[7] Chellali, M., Jafari Rad, N. (2012). A note on the independent Roman domination in unicyclic graphs. Opuscula Math. 32(4): 715-718.
[8] Cockayne, E. J., Dreyer, P. A., Hedetniemi, S. M., Hedetniemi, S. T. (2004). Roman domination in graphs. Discrete Math. 278(1-3):11-22.
[9] Favaron, O., Karami, H., Khoeilar, R., Sheikholeslami, S. M. (2009). On the Roman domination number of a graph. Discrete Math. 309(10):3447-3451.
[10] Fradkin, A. O. (2009). On the well-coveredness of Cartesian products of graphs. Discrete Math. 309(1):238-246.
[11] Henning, M. A., Klostermeyer, W. F. (2017). Italian domination in trees. Discrete Appl. Math. 217:557-564.
[12] Maimani, H. R., Momeni, M., Nazari-Moghaddam, S., Rahimi Mahid, F., Sheikholeslami, S. M. (2020). Independent double Roman domination in graphs. Bull. Iran. Math. Soc. 46(2): 543-555.
[13] Mobaraky, B. P., Sheikholeslami, S. M. (2008). Bounds on Roman domination numbers of graphs. Mat. Vesnik 60: 247-253.
[14] Nagy, Z. L. (2017). On the number of k-dominating independent sets. J. Graph Theory 84(4):566-580.
[15] Rahmouni, A., Chellali, M. (2018). Independent Roman \{2\}domination in graphs. Discrete Appl. Math. 236:408-414.
[16] ReVelle, C. S., Rosing, K. E. (2000). Defendens imperium romanum: a classical problem in military strategy. Amer. Math. Monthly 107(7):585-594.
[17] Shao, Z., Li, Z., Peperko, A., Wan, J., Žerovnik, J. (2019). Independent rainbow domination of graphs. Bull. Malays. Math. Sci. Soc. 42(2):417-435.
[18] Stewart, I. (1999). Defend the Roman empire! Sci. Am. 281(6): 136-139.
[19] Targhi, M. A., Jafari Rad, N., Moradi, M. S. (2012). Properties of independent Roman domination in graphs. Australas. J. Combin. 52:11-18.
[20] Volkmann, L. (2018). Double Roman domination and domatic numbers of graphs. Commun. Comb. Optim. 3:71-77.
[21] Volkmann, L. (2018). The double Roman domatic number of a graph. J. Combin. Math. Combin. Comput. 104:205-215.
[22] Włoch, A. (2012). On 2-dominating kernels in graphs. Australas. J. Combin. 53:273-284.
[23] Zhang, X., Li, Z., Jiang, H., Shao, Z. (2018). Double Roman domination in trees. Info. Process. Lett. 134:31-34.

