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ABSTRACT
We define three large families of graphs which contain F 3,F 4 and F 7, respectively as subfamily.
Necessary and sufficient conditions for those graphs in these three large families whose squares
are panconnected are determined.

KEYWORDS
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1. Introduction and preliminaries

Recall that the cyclomatic number of a connected graph G is
defined to be jEðGÞj � jVðGÞj þ 1 where VðGÞ and EðGÞ are
the vertex set and the edge set of G, respectively. Graphs
with cyclomatic number no more than 2 have been com-
pletely determined in [3] and [1]. In the previous paper [2],
it was shown that if G has cyclomatic number 3, and G2 is
panconnected, then G belongs to one of the eight families
F 1,F 2, :::,F 8 of graphs (defined in [2]). Moreover, three
large families of graphs that contain F 1,F 2 and F 5 as sub-
family were defined. Necessary and sufficient conditions for
those graphs in each of these families whose squares are
panconnected are determined. In this paper, we do the same
for another three families F 3,F 4 and F 7: We follow most
of the notations and terminologies of [2] except for those
that are defined or reformulated here.

Let Gðm1Þ, :::,GðmrÞ denote r S F graphs. If r � 2, let zi
be a vertex in the cycle of GðmiÞ and let Gðm1, :::,mrÞ
denote a bouquet of r SF graphs which is the graph obtained
by identifying z1, :::, zr into a single vertex z: If r ¼ 1, we
take z1 ¼ z: Let r denote the r-multiset whose elements are
m1, :::,mr and for brevity of notation, we write GðrÞ for the
graph Gðm1, :::,mrÞ: The graph GðrÞ is said to be broken if
for every i ¼ 1, 2, :::, r, there exists a vertex w in GðmiÞ
where Aw ¼ ; and w 6¼ z:

Suppose that s � 3 is an integer. Let hs be a multigraph
with 2 vertices, say x and y, together with s multiple edges.
Suppose that ni � 2 is an integer for each i ¼ 1, 2, :::, s: Let
hðn1, n2, :::, nsÞ denote the graph obtained by replacing the
edges of hs with paths Pn1 ,Pn2 , :::,Pns on n1, n2, :::, ns verti-
ces respectively. Note that if ns ¼ 2, then we require that
n1, n2, :::, ns�1 � 3: Let an s-strip cactus graph
Hðn1, n2, :::, nsÞ where s � 3 denote any graph obtained by
joining each vertex v of hðn1, n2, :::, nsÞ to a new set of

independent vertices Av: That is, Av is the pendant set of v:
Again let s denote the s-multiset whose elements are
n1, :::, ns and we write HðsÞ instead of Hðn1, n2, :::, nsÞ: Also,
we call any vertex v 2 VðHðsÞ � fx, ygÞ an s-vertex if v is a
vertex in some path Pni of HðsÞ:

Let X3ðr, sÞ denote the graph obtained from GðrÞ and
HðsÞ by identifying the vertex z with the vertex x: Clearly,
F 3 is the set of all graphs X3ðr, sÞ with r ¼ 1 and s ¼ 3:

Let X4ðr, sÞ denote any graph obtained from GðrÞ and HðsÞ
by identifying the vertex z with any s-vertex of HðsÞ: Clearly,
F 4 is the set of all graphs X4ðr, sÞ with r ¼ 1 and s ¼ 3:

In the next two sections, we completely classify those
graphs in X3ðr, sÞ and X4ðr, sÞ having panconnected square.
Again, we use Fleischner’s theorem (see [4]) that states that
the square of a connected graph is panconnected if and only
if it is Hamilton-connected.

In the last section, we define a large family of graphs,
namely X7ðr, s,w, zÞ, that contains F 7 as a subfamily. We
obtain necessary and sufficient conditions for some special
cases of graphs in this family whose squares are panconnected.

2. X3ðr, sÞ

Lemma 1. Suppose 2 62 s and assume that HðsÞ has at most
two paths without vertices of degree 2. Let Jx denote the graph

obtained from HðsÞ2 by deleting all vertices in fxg [ Ax.
Then there is an ða, bÞ-Hamilton path Pða, bÞ in Jx where a
and b are some vertices in NðxÞ:
Proof. Suppose Pni ¼ wi, 1wi, 2 � � �wi, ni for each i 2 f1, 2, :::, sg:
Also assume that wi, 1 ¼ x and wi, ni ¼ y:

Suppose Pn1 ,Pn2 , :::,Pns�2 are s� 2 paths of HðsÞ which
each contains a vertex of degree 2,wi, j: Let
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PiðniÞ ¼ wi, 2Pwi, 2wi, 3Pwi, 3 :::Pwi, j�1wi, jPwi, jþ1wi, jþ1:::Pwi, ni�1

wi, ni�1 if i is odd and let
PiðniÞ ¼ wi,ni�1Pwi,ni�1wi,ni�2Pwi,ni�2 :::Pwi, jþ1wi, j Pwi, j�1wi, j�1:::

Pwi, 2wi, 2 if i is even.
Consider two cases of s:
Case (1): s is odd. Let
N1 ¼ ws,ns�1Pws,ns�2ws,ns�3Pws,ns�4 � � �ws, 4Pws, 3ws, 2 Pws, 2ws, 3 � � �

Pws,ns�3ws,ns�2Pws,ns�1 if ns is odd and let
N1 ¼ ws,ns�1Pws,ns�2ws,ns�3 � � �ws, 3Pws, 2ws, 2Pws, 3ws, 4 � � � Pws,ns�3

ws,ns�2Pws,ns�1 if ns is even.
Case (2): s is even.
Let N1 ¼ ws, 2Pws, 2ws, 3Pws, 3 � � � Pws, ns�2ws, ns�1Pws, ns�1 :

In either case, let

N2 ¼ Pws�1, ns�1�1ws�1, ns�1�1Pws�1, ns�1�2ws�1, ns�1�2 � � � Pws�1, 2ws�1, 2:

Then we take a ¼ w1, 2 and b ¼ ws�1, 2 and a required
Hamilton path Pða, bÞ is given by

P1ðn1ÞPyP2ðn2Þ:::Ps�2ðns�2ÞN1yN2:

w

Theorem 1. Let G be the graph X3ðr, sÞ where 2 62 s. Then
G2 is panconnected if and only if GðrÞ is broken and HðsÞ
has at most two paths without vertices of degree 2.

Proof. If GðrÞ is not broken or HðsÞ has three or more paths
without vertices of degree 2, then replace HðsÞ or GðrÞ,
respectively by the complete graph on two vertices. Then
respectively we get a non-broken bouquet of r S F graphs
or an s-stripe cactus graph having three or more paths with-
out vertices of degree 2. Either case implies that G2 is not
panconnected (by Theorem 4 or 7 of [2]).

To prove the sufficiency, we shall show that for any two
vertices u and v in G, there is a Hamilton path Pðu, vÞ in
G2 from u to v:

Case (1): u 2 VðGðrÞÞ, v 2 VðHðsÞÞ and u, v 6¼ z:
Then we take Pðu, vÞ ¼ P1ðu, zÞP2ðz, vÞ to be the

Hamilton path in G2 where P1ðu, zÞ (respectively P2ðz, vÞ) is
a Hamilton path in GðrÞ2 (respectively HðsÞ2) from u to z
by Theorem 4 (respectively from z to v by Theorem 7)
of [2].

Case (2): u, v 2 VðGðrÞÞ:
Then there is a ðu, vÞ-Hamilton path P1ðu, vÞ in the sub-

graph GðrÞ2 (by Theorem 4 of [2]).
By Lemma 1, there is an ða, bÞ-Hamilton path P2ða, bÞ

in HðsÞ2 � ðfzg [ AzÞ where a and b are some vertices
in NðzÞ \ VðHðsÞÞ:

We can obtain the required Hamilton path Pðu, vÞ in the
following way. If P1ðu, vÞ contains a subpath of the form zPz
or zw (where w 2 NðzÞ \ VðGðrÞÞ), then we replace it by
zP2ða, bÞPz or zP2ða, bÞw, respectively. If P1ðu, vÞ contains a
subpath of the form w1Pzw2 (where w1,w2 2 NðzÞ\
VðGðrÞÞ), we replace it by w1P2ða, bÞPzw2:

Case (3): u, v 2 VðHðsÞÞ:
Then there is a ðu, vÞ-Hamilton path P1ðu, vÞ in the sub-

graph HðsÞ2 by Theorem 7 of [2].

By Lemma 1(ii) of [2], there is an ða, bÞ-Hamilton path
P2ða, bÞ in GðrÞ2 � ðfzg [ AzÞ where a and b are some verti-
ces in NðzÞ \ VðGðrÞÞ:

We can obtain the required Hamilton path Pðu, vÞ in the
following way. If P1ðu, vÞ contains a subpath of the form zPz
or zw (where w 2 NðzÞ \ VðHðsÞÞ), then we replace it by
zP2ða, bÞPz or zP2ða, bÞw, respectively. If P1ðu, vÞ contains a
subpath of the form w1Pzw2 (where w1,w2 2 NðxÞ\
VðHðsÞÞ), we replace it by w1P2ða, bÞPzw2:

This completes the proof. w

Theorem 2. Let G be the graph X3ðr, sÞ where 2 2 s:

(i) Suppose s ¼ 3. Then G2 is panconnected if and only
if GðrÞ is broken and HðsÞ has a vertex u 6¼ z
with Au ¼ ;:

(ii) Suppose s � 4. Then G2 is panconnected if and only if
GðrÞ is broken and HðsÞ has at most two paths (not
including xy) without vertices of degree 2.

Proof. The necessity is established using similar argument as
was done in the proof of Theorem 1.

For the sufficiency, we delete the edge xy from G: Then
for (i), the resulting graph is a broken bouquet of r þ 1 SF
graphs Gðr0Þ where r0 ¼ r [ fmrþ1g and hence has a pan-
connected square by Theorem 4 of [2]. As for (ii) the result-
ing graph satisfies the conditions of Theorem 1 and hence
its square is panconnected. Either case implies that G2 is
also panconnected. w

3. X4ðr, sÞ
Recall that X4ðr, sÞ is obtained from GðrÞ and HðsÞ by iden-
tifying the vertex z with some s-vertex, say w of HðsÞ:
Throughout this section, when we say that HðsÞ is a sub-
graph of X4ðr, sÞ, we shall mean that HðsÞ is obtained from
X4ðr, sÞ by replacing GðrÞ with a non-empty set Aw together
with all edges joining w and Az:

Theorem 3. Let G be the graph X4ðr, sÞ where 2 62 s. Then
G2 is panconnected if and only if GðrÞ is broken and HðsÞ
has at most two paths without vertices of degree 2.

Proof. The necessity is established as was done in the proof
of Theorem 1.

For the sufficiency, let u and v be any two vertices in G:
If u 2 VðGðrÞÞ, v 2 VðHðsÞÞ and u, v 6¼ z, then apply the
same technique in Case (1) of the proof of Theorem 1, we
can get a ðu, vÞ-Hamilton path in G2:

If u, v 2 VðHðsÞÞ, then apply the same technique in Case
(3) of the proof of Theorem 1, and again we can get a
ðu, vÞ-Hamilton path in G2:

We are left with the case u, v 2 VðGðrÞÞ: For this, all we
need is to show that there is an ða, bÞ-Hamilton path Pða, bÞ
in HðsÞ2 � ðfzg [ AzÞ (where a and b are some vertices in
NðzÞ \ VðHðsÞÞ) and then apply the same technique in Case
(2) of the proof of Theorem 1 to get a ðu, vÞ-Hamilton path
in G2:
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Suppose z 2 Pn1 ¼ w1w2 � � �wn1 where w1 ¼ x,wn1 ¼ y
and wj ¼ z.

Let J denote the graph Hðs0Þ where s0 ¼ s� fn1g: Then
J is a subgraph of G:

Suppose Pn1 has no vertices of degree 2. Then J2 has an
ðx, yÞ-Hamilton path P1ðx, yÞ (because J has at most two
paths without vertices of degree 2 or J is a broken SF
graph). Then the Hamilton path Pða, bÞ is given by

wj�1Pwj�1wj�2Pwj�2 � � �w2Pw2P1ðx, yÞPwn1�1

wn1�1Pwn1�2wn1�2 � � � Pwjþ1wjþ1

where a ¼ wj�1 and b ¼ wjþ1:

Now suppose Pn1 has a vertex of degree 2. Then we may
assume without loss of generality that wi is a vertex of degree
2 where 2 � i < j: Then J2 � Ax has an ðx, yÞ-Hamilton path
P1ðx, yÞ (because J has at most two paths without vertices of
degree 2 or J is a broken SF graph). Then the Hamilton path
Pða, bÞ is given by

wj�1Pwj�1wj�2Pwj�2 � � � Pwiþ1wiPwi�1 � � � Pw2w2PxP1ðx, yÞ
Pwn1�1wn1�1 � � � Pwjþ1wjþ1:

where again, a ¼ wj�1 and b ¼ wjþ1: w

Analogous to Theorem 2, we have the following result
whose proof is very similar to the proof of Theorem 2 and
hence is omitted.

Theorem 4. Let G be the graph X4ðr, sÞ where 2 2 s:

(i) Suppose s ¼ 3. Then G2 is panconnected if and only
if GðrÞ is broken and HðsÞ has a vertex u 6¼ z
with Au ¼ ;:

(ii) Suppose s � 4. Then G2 is panconnected if and only if
GðrÞ is broken and HðsÞ has at most two paths (not
including xy) without vertices of degree 2.

4. X7ðr, s,w, zÞ
Let X denote the pseudo graph with 4 vertices x1, x2, y1, y2
where (i) x1 is adjacent to x2 and y1 is adjacent to y2 and
(ii) there are r (respectively s) multiple edges joining x1 and
y1 (respectively x2 and y2). Subdivide the edges of X so that
at most one of the r (respectively s) multiple edges is not
subdivided. To each vertex v of the resulting graph, we join
a new set of independent vertices Av (which may be empty).
Denote the resulting graph by X7ðr, s,w, zÞ where r ¼
fm1,m2, :::,mrg, s ¼ fn1, n2, :::, nsg are two multisets, and
w, z � 2 are integers. Here mi (respectively nj) denotes the
number of vertices in the path Pmi (respectively Pnj) from
x1 to y1 (respectively x2 to y2). Also, w (respectively z)
denotes the number of vertices in the path Pw ¼ c1c2 � � � cw
(respectively Pz ¼ d1d2 � � � dz) from x1 ¼ c1 to x2 ¼ cw
(respectively y1 ¼ d1 to y2 ¼ dz).

Clearly, F 7 is the set of all graphs X7ðr, s,w, zÞ where
r¼ 2 and s¼ 2.

Theorem 5. Let G denote the graph X7ðr, s,w, zÞ with r ¼
2 ¼ s and z,w � 2:

(i) Suppose 2 2 r and 2 2 s. Then G2 is panconnected if
and only if G has vertex u with Au ¼ ;:

(ii) Suppose 2 2 r and 2 62 s. Then G2 is panconnected
if and only if G has vertex u with Au ¼ ;
where u 62 fx2, y2g:

Proof. We prove the necessity part for (i) and (ii) first. Let
Pm1 ¼ a1a2 � � � am1 and Pn1 ¼ b1b2 � � � bn1 where x1 ¼
a1, am1 ¼ y1, x2 ¼ b1, bn1 ¼ y2, and m1, n1 � 3: We shall
show that there is no Hamilton path from x1 to a2 in G2.

Let H denote the graph obtained from G2 by deleting x1
and a2.

Let S ¼ fa3, :::, am1�1, b2, :::, bn1�1, c2, :::, cw�1, d2, :::, dz�1,
y1, x2, y2g: Then jSj ¼ m1 þ n1 þ wþ z � 6 and H – S has at
least m1 þ n1 þ wþ z � 4 components (where equality holds
only if 2 2 s). This implies that H has no Hamilton path
and hence G2 has no Hamilton path from x1 to a2.

Next, we prove the sufficiency.

(i) Assume that G has a vertex u such that Au ¼ ;: By
deleting the edges x1y1 and x2y2, we obtain a broken
SF graph. Hence ðG� fx1y1, x2y2gÞ2 is panconnected
by Corollary 2 of [3]. This implies that G2 is
panconnected.

(ii) Assume that G has a vertex u (which is neither x2 nor
y2) such that Au ¼ ;: Then by deleting the edge x1y1,
we obtain a 3-stripe cactus graph with a vertex of
degree 2 whose square is panconnected by Theorem 7
of [2]. Therefore, G2 is also panconnected. w

As for the case 2 62 r [ s with r ¼ 2 ¼ s and w, z � 2, we
observe that G ¼ X7ðr, s,w, zÞ has a panconnected square if
and only if G has a vertex of degree 2. However, the proof
is omitted since it is too lengthy.

Of course one could also consider other cases (depending
on r, r, s, s,w, z) and determine the necessary and sufficient
conditions for which the square of X7ðr, s,w, zÞ is pancon-
nected. We leave this to the interested reader. Nevertheless,
the following comments might be useful.

Recall the following result in [2] (Proposition 3). Suppose
Hðm, n, rÞ has no vertex of degree 2 and m, n, r � 3: Let H
be any graph with jVðHÞj � 3 and let u and v be any two
vertices in H: Let G denote any graph obtained from
Hðm, n, rÞ and H by identifying x with u and y with v
respectively. Then G2 is not panconnected.

Using this result, we can establish easily the following
condition for a large class of graphs X7ðr, s,w, zÞ that do not
have a panconnected square.

Note that the graph X7ðr, s,w, zÞ consists of an r-strip
cactus graph HðrÞ and an s-strip cactus graph HðsÞ together
with paths Pw and Pz joining these two cactus graphs.

Lemma 2. Let G denote the graph X7ðr, s,w, zÞ where 2 62
r [ s and r, s � 3. If the subgraph HðrÞ or HðsÞ has 3 or
more paths having no vertex of degree 2, then G2 is not
panconnected.

Recall that if HðrÞ is such that r � 3 and 2 62 r, then
HðrÞ2 is panconnected if and only if HðrÞ has at most 2
paths without vertices of degree 2 (see [2] Theorem 7).
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We shall end this paper by stating without proof the fol-
lowing result. The proof for the necessity part nevertheless
follows immediately from Lemma 2.

Theorem 6. Let G denote the graph X7ðr, s,w, zÞ where 2 62
r [ s and r, s � 3. Then G2 is panconnected if and only if (i)
each subgraph HðrÞ and HðsÞ has a panconnected square
and (ii) Pw [ Pz contains a vertex of degree 2.
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