On graphoidal length of a tree in terms of its diameter

Purnima Gupta, Megha Agarwal \& Rajesh Singh

To cite this article: Purnima Gupta, Megha Agarwal \& Rajesh Singh (2020): On graphoidal length of a tree in terms of its diameter, AKCE International Journal of Graphs and Combinatorics, DOI: 10.1016/j.akcej.2019.12.012

To link to this article: https://doi.org/10.1016/j.akcej.2019.12.012

© 2020 The Author(s). Published with
license by Taylor \& Francis Group, LLC

Published online: 22 Apr 2020.

Submit your article to this journal

Article views: 65

View related articles

View Crossmark data

On graphoidal length of a tree in terms of its diameter

Purnima Gupta ${ }^{\text {a }}$, Megha Agarwal ${ }^{\text {b }}$, and Rajesh Singh ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Sri Venkateswara College, University of Delhi, Delhi, India; ${ }^{\text {b }}$ Department of Mathematics, Ramanujan College, University of Delhi, Delhi, India; ${ }^{\text {CDepartment }}$ of Mathematics, Ramanujan College, University of Delhi, Delhi, India

Abstract

A graphoidal cover of a graph G is a set Ψ of non-trivial paths (which are not necessarily open) in G such that every vertex of G is an internal vertex of at most one path in Ψ and every edge of G is in exactly one path in Ψ. We denote the set of all graphoidal covers of graph G by \mathcal{G}_{G}. The graphoidal length $g /(G)$ of a graph G is defined as $$
g l(G)=\max _{\Psi \in \mathcal{G}_{G}}\left\{\min _{P \in \Psi} I(P)\right\}
$$

In this paper, we obtain bounds for the graphoidal length of a tree in terms of its diameter. We prove that if G is any tree (excepts paths) of diameter d, then graphoidal length $g /(G)$ is less than equal to $\lfloor 2 d / 3\rfloor$. Further, we characterize trees attaining the upper bound. Also, the trees for which $g /(G)=k$ where $\lfloor d / 2\rfloor<k<\lfloor 2 d / 3\rfloor$ are characterized.

KEYWORDS

Graphoidal cover; graphoidally covered graph; graphoidal length; graphoidal covering number

2010 MATHEMATICS

SUBJECT
CLASSIFICATION
05C70; 20D60

1. Introduction

For standard terminology and notation in graph theory, as also for pictorial representations of graphs, we refer the standard text-books such as Harary [10], West [15] or Chartrand [8]. Terms and notations, not specifically defined or described in these text-books, will be separately defined as and when found necessary. Throughout we consider only nontrivial, connected, finite, undirected graphs without loops and multiple edges.

For any graph $G=(V, E), V$ (or $V(G)$) denotes the set of vertices of G, E (or $E(G)$) denotes the set of edges of G and e (or $e(G)$) denotes the number of vertices of degree 1 (pendant vertices) in G. The distance $d(u, v)$ between two vertices u and v is the length of shortest path joining them. Further, the distance $d(u, S)$ of the vertex u from the set $S \subseteq V$ is given by $d(u, S)=\min \{d(u, v): v \in S\}$. The diameter of G is given by $\operatorname{diam}(G)=\max \{d(u, v): u, v \in V\}$.
Definition 1.1. A graphoidal cover of a graph G is a set Ψ of non-trivial paths (which are not necessarily open) in G such that:

GC1: Every vertex of G is an internal vertex of at most one path in Ψ;

GC2: Every edge of G is in exactly one path in Ψ.
The set of all graphoidal covers of a graph G is denoted by \mathcal{G}_{G} and for a given $\Psi \in \mathcal{G}_{G}$, the ordered pair (G, Ψ) is called a graphoidally covered graph. For any graph G, the set E of edges (consisting of paths of length one) is a graphoidal cover of G and is referred to as the trivial graphoidal cover of G.

There are three types of vertices in a graphoidally covered graph (G, Ψ) (see Figure 1):

1. $\boldsymbol{\Psi}$-Exterior Vertex or Black Vertex: A vertex which is not an internal vertex of any Ψ-edge. In the diagrammatic representation of (G, Ψ), it is shown as a small filled circle.
2. Ψ-Interior Vertex or White Vertex: A vertex which is not an end-vertex of any Ψ-edge. In the diagrammatic representation of (G, Ψ), it is shown as a small unfilled circle.
3. Ψ-Composite Vertex: A vertex which is neither an exterior vertex nor an interior vertex of (G, Ψ), which means it is an internal vertex to a Ψ-edge and also an end-vertex to at least one other Ψ-edge. In the diagrammatic representation, this vertex is represented as an unfilled circle with as many small tangents to the circle as the number of Ψ-edges for which this vertex is the end-vertex.

In Figure 2, we give diagrammatic representation of a graphoidally covered graph (G, Ψ) with $\Psi=\{(a, b, e)$, $(a, c, f),(a, d, g),((c, d))\}$. The vertices a, e, f, g are all black vertices (Ψ-exterior vertices), b is a white vertex (Ψ-interior vertices) and c, d are Ψ-composite vertices.

Acharya and Sampathkumar [3] in 1987 introduced the concept of graphoidal covers as a close variant of another emerging discrete structure called semigraphs [13]. Many interesting notions like graphoidal covering number [3], graphoidal labeling [12], graphoidal signed graphs [14], etc

[^0]

Figure 1. Each of the collections $\Psi_{1}=\left\{\left(u, u_{1}, v_{1}, v\right),\left(u, u_{2}, v_{2}, v\right)\right.$, $\left.(u, v),\left(v_{1}, u_{2}\right)\right\}$ and $\Psi_{2}=\left\{\left(u, u_{1}, v_{1}, v, u\right),\left(v_{1}, u_{2}, v_{2}, v\right),\left(u, u_{2}\right)\right\}$ of paths in G is a graphoidal cover for the graph G.
were introduced and are being studied extensively. In particular, notion of graphoidal covering number of a graph has attracted many researchers and numerous work is present in literature on graphoidal covering number [5-7, 11]. Later on in 1999, Acharya and Gupta [9] extended the notion of graphoidal covers to infinite graphs and introduced the notion of domination in the discrete structure, called graphoidally covered graph [2,9]. A detailed treatment of graphoidal covers and graphoidally covered graphs is given in $[9,1]$.
Definition 1.2. [3] The graphoidal covering number of G, denoted by $\eta(G)$, is the minimum cardinality of a graphoidal cover of G.

$$
\eta(G)=\min \left\{|\Psi|: \Psi \in \mathcal{G}_{G}\right\}
$$

A graphoidal cover of G with cardinality $\eta(G)$ is referred to as an η-graphoidal cover.

In [4], a new graph invariant $g l(G)$, called graphoidal length of a graph G, based on graphoidal covers was introduced and some bounds were found for this parameter. Therein, an upper bound for graphoidal length of a tree was obtained in terms of its edges and pendant vertices. In this paper we establish another upper bound for graphoidal length of a tree in terms of its diameter. It will be proved that these two upper bounds for graphoidal length of a tree are independent.
Definition 1.3. (Length of a Graphoidal Cover)
Given a non-trivial graph G, associate a function Θ with as follows:

$$
\begin{gathered}
\Theta: \mathcal{G}_{G} \rightarrow \mathbb{Z}^{+} \\
\Theta(\Psi)=\min \{l(P) \quad: P \in \Psi\}
\end{gathered}
$$

The positive integer $\Theta(\Psi)$ associated with Ψ is called the length of the graphoidal cover Ψ and is denoted by $g l_{\Psi}(G)$.

Definition 1.4. (Graphoidal Length of a Graph)

The maximum of the range of Θ is called the graphoidal length of graph G and is denoted by $g l(G)$. Thus,

$$
\begin{aligned}
g l(G) & =\max \left\{\Theta(\Psi): \quad \Psi \in \mathcal{G}_{G}\right\} \\
& =\max \left\{g l_{\Psi}(G): \Psi \in \mathcal{G}_{G}\right\}
\end{aligned}
$$

Obviously, for any graphoidal cover Ψ of a given graph $G, g l(G) \geq g l_{\Psi}(G)$. Since $g l_{E}(G)=1$ for the trivial graphoidal $\Psi=E$ of G, therefore $g l(G) \geq 1$. A graphoidal cover Ψ

Figure 2. Diagrammatic representation of a graphoidal cover Ψ of graph G.
of graph G with $g l_{\Psi}(G)=g l(G)$ is called a $g l$-graphoidal cover (or $g l(G)$-graphoidal cover) of G.

In Figure 3, we illustrate the notion of graphoidal length by depicting four different types of graphoidal covers of the complete graph K_{4} namely, $E, \Psi_{1}, \Psi_{2}, \Psi_{3}$ where E is the edge set of $G, \Psi_{1}=\{b d, b c a, b a d c\}, \Psi_{2}=\{b d, a c, b a d c b\}$ and $\Psi_{3}=\{b a d c, a c b d\}$.

In $\Psi=E$, each path is an open path of length one and hence $g l_{E}(G)=1$. In Ψ_{1} there are three open paths of length 1, 2 and 3 and hence $g l_{\Psi_{1}}(G)=1$. In Ψ_{2}, there are two open paths of length one and one closed path of length 4, therefore $g l_{\Psi_{2}}(G)=1$. In Ψ_{3} there are two paths each of length 3, therefore $g l_{\Psi_{3}}(G)=3$. Hence $g l\left(K_{4}\right) \geq 3$. Since G has a vertex of degree 3 , every graphoidal cover of G has at least two paths. As $\left|E\left(K_{4}\right)\right|=6$, therefore $g l_{\Psi}\left(K_{4}\right) \leq 3$ for every graphoidal cover Ψ. Consequently, $g l\left(K_{4}\right) \leq 3$. It follows that $g l\left(K_{4}\right)=3$.

Observe that for any graph G of order n and size m, $g l(G) \leq \min \{n, m\}$. Moreover $g l(G)=\min \{n, m\} \quad$ if and only if G is either a path or a cycle. It is interesting to note that graphoidal length of a path or cycle coincides with its usual length. Further, if G is a graph of size m and maximum degree $\Delta \geq 3$, then every graphoidal cover Ψ of G contains at least one path of length at most $\lfloor m / 2\rfloor$.

In [4], the natural connection that graphoidal length of a graph exhibits with graphoidal covering number was exposed in the form of bound for $g l(G)$ in terms of $\eta(G)$.

Theorem 1.5. [4] For any graph G

$$
1 \leq g l(G) \leq\left\lfloor\frac{|E(G)|}{\eta(G)}\right\rfloor
$$

Pakkiam and Arumugum [11] established the following interesting and useful results which give exact value of graphoidal covering number in case of trees.
Theorem 1.6. [11] For any tree T with e pendant vertices, $\eta(G)=e-1$.

From Theorems 1.5 and 1.6, we have the following upper bound for graphoidal length of a tree in terms of its size and pendant vertices.
Theorem 1.7. For any tree T with e pendant vertices,

$$
1 \leq g l(T) \leq\left\lfloor\frac{|E(T)|}{e-1}\right\rfloor
$$

2. Bounds on graphoidal length of trees

Clearly, graphoidal length of a path P_{d+1} of diameter d is d. For a tree $G\left(\not \not P_{d+1}\right)$ of diameter d, the graphoidal length

Figure 3. Different graphoidal covers of complete graph K_{4}.
$g l(G)<d$. This motivates us to find an upper bound for graphoidal length of a tree in terms of its diameter. In fact we show that if G is any tree (excepts paths) of diameter d, then graphoidal length $g l(G)$ is less than equal to $\lfloor 2 d / 3\rfloor$. Further, we characterize trees attaining this bound. We also characterize trees for which graphoidal length $g l(G)=k$ where $\lfloor d / 2\rfloor<k<\lfloor 2 d / 3\rfloor$.
Theorem 2.1. Let $G\left(\not \not P_{d+1}\right)$ be a tree of diameter d. Then

$$
g l(G) \leq\left\lfloor\frac{2 d}{3}\right\rfloor
$$

Proof. Suppose there exists a tree G such that $g l(G)>$ $\lfloor 2 d / 3\rfloor=k($ say $)$. Let Ψ be a graphoidal cover of G with minimum cardinality such that $g l_{\Psi}(G)>k$. Since $G \nsupseteq P_{d+1},|\Psi| \geq 2$. Thus we can choose two Ψ-edges P, Q such that $V(P) \cap V(Q) \neq \emptyset$. Let $V(P) \cap V(Q)=\{v\}$. Then v is end vertex of at least one Ψ-edge P or Q. If v is an end vertex of both P and Q, then $\Phi=\Psi \cup\{P \cup Q\} \backslash\{P, Q\}$ is a graphoidal cover of G such that $|\Phi|=|\Psi|-1$ and $g l_{\Psi}(G)>$ k, a contradiction. Hence v is an end vertex to exactly one Ψ-edge P or Q. Without loss in generality we assume that v is an end vertex of P. Let $P=\left(v_{0} v_{1} \ldots v_{p}\right)$ and $Q=$ $\left(u_{0} u_{1} \ldots u_{q}\right)$ with $v=v_{p}=u_{j}$ for some $j(0<j \leq\lfloor q / 2\rfloor)$.

Consider the path $R=\left(v_{0} v_{1} \ldots v_{p}=u_{j} u_{j+1} \ldots u_{q}\right)$ of length $p+(q-j)$. Clearly,

$$
\begin{aligned}
d \geq l(R)=p+(q-j) & \geq p+\left\lceil\frac{q}{2}\right\rceil \\
& >p+\frac{d}{3}[\text { since } q=l(Q)>k=\lfloor 2 d / 3\rfloor] \\
& \geq\left\lfloor\frac{2 d}{3}\right\rfloor+1+\frac{d}{3}=d, \text { a contradiction. }
\end{aligned}
$$

Hence for any given tree $G, g l(G) \leq\lfloor 2 d / 3\rfloor$.
Thus we have found an upper bound for graphoidal length of a tree in terms of its diameter. Naturally one is tempted to ask "Is the bound sharp?" . The bound is indeed sharp. The star $K_{1,3}$ is an example of extremal graph for the upper bound.

Since the bound is sharp, we characterize extremal graphs for this bound. In this direction, we first prove the following lemma.

Lemma 2.2. Let $G\left(\nsubseteq P_{d+1}\right.$ or $\left.K_{1, n}, n \geq 3\right)$ be a tree with diameter d and $g l(G)=k$ for some k such that $\lfloor d / 2\rfloor<k \leq\lfloor 2 d / 3\rfloor$. If Ψ is a graphoidal cover of G such that $g l_{\Psi}(G)=k$, then $|\Psi|=2$.

Proof. Since $G \not \not P_{d+1},|\Psi| \geq 2$. Now suppose, if possible, $|\Psi|>2$. Then we can choose Ψ-edges P, Q, R such that $V(P) \cap V(Q) \neq \emptyset$ and $V(Q) \cap V(R) \neq \emptyset$. Let $v \in V(P) \cap$ $V(Q)$ and $u \in V(Q) \cap V(R)$. If v is an end vertex for both P and Q, then the path $P \cup Q$ has length $p+q$ and $d \geq$ $p+q \geq 2 k$, a contradiction to the fact that $k>\lfloor d / 2\rfloor$. Thus v is an end vertex of exactly one of P or Q. Similarly, u is an end vertex of exactly one of Q or R. Also, on the similar lines it can be proved that $v \neq u$. Let $P=\left(v_{0} v_{1} \ldots v_{p}\right), Q=$ $\left(u_{0} u_{1} \ldots u_{q}\right)$ and $R=\left(w_{0} w_{1} \ldots w_{r}\right)$. Consider the following possibilities:

Case I. v is an end vertex of P and u is an end vertex of R. Let $v=v_{p}=u_{i}$ for some $i(1 \leq i \leq q)$ and $u=w_{0}=u_{j}$ for some $j(1 \leq j \leq q)$. Without loss of generality we may assume that $i<j$. Then the path $S=\left(v_{0} v_{1} \ldots v_{p}=v=\right.$ $\left.u_{i} u_{i+1} \ldots u_{j-1} u_{j}=u=w_{0} w_{1} \ldots w_{r}\right)$ in G has length $p+(j-$ $i)+r$. By definition of diameter,

$$
d \geq l(S)=p+(j-i)+r \geq k+(j-i)+k>d
$$

a contradiction.
Case II. v is an end vertex of P and u is an end vertex of Q. Let $v=v_{p}=u_{i}$ for some $i(1 \leq i \leq\lfloor q / 2\rfloor)$ and $u=u_{q}=w_{j}$ for some $j(1 \leq j \leq\lfloor r / 2\rfloor)$. Then the path $S=\left(v_{0} v_{1} \ldots v_{p}=\right.$ $\left.v=u_{i} u_{i+1} \ldots u_{q}=u=w_{j} w_{j+1} \ldots w_{r}\right)$ in G has length $p+(q-$ i) $+(r-j)$. By definition of diameter,

$$
\begin{aligned}
d \geq l(S) & =p+(q-i)+(r-j) \\
& =k+(q-\lfloor q / 2\rfloor)+(r-\lfloor r / 2\rfloor) \\
& =k+\lceil q / 2\rceil+\lceil r / 2\rceil \\
& \geq k+k / 2+k / 2 \\
& >d
\end{aligned}
$$

a contradiction.
Case III. v is an end vertex of Q and u is an end vertex of R. Similar to Case II, by interchanging the roles of P and R, we will arrive at a contradiction.

Case IV. v is an end vertex of Q and u is an end vertex of Q. Let $v=v_{i}=u_{0}$ for some $i(1 \leq i \leq\lfloor p / 2\rfloor)$ and $u=u_{q}=w_{j}$ for some $j(1 \leq j \leq\lfloor r / 2\rfloor)$. Then the path $S=\left(v_{p} v_{p-1} \ldots v_{i}=\right.$ $\left.v=u_{0} u_{1} \ldots u_{q}=u=w_{j} w_{j+1} \ldots w_{r}\right)$ in G has length $(p-i)+$ $q+(r-j)$. By definition of diameter,
$d \geq l(S)=(p-i)+q+(r-j)>d$ [similar to Case II], a contradiction.

Thus in all the cases we arrive at a contradiction. Hence our assumption is wrong and $|\Psi|=2$.

Remark 2.3. If $G\left(\not \equiv K_{1, n}\right)$ is a tree with diameter d such that $\lfloor d / 2\rfloor<g l(G) \leq\lfloor 2 d / 3\rfloor$, then every $g l$-graphoidal cover of G is an η-graphoidal cover.

We now characterize extremal graphs for the upper bound obtained in Theorem 2.1. In fact we show that for trees with diameter not equal to 4 , the only possible graphs that can be extremal for the upper bound are stars $K_{1, n}$ ($n \geq 3$) and T-graphs $\Gamma_{m, n, k}$.
Definition 2.4. A T-graph, denoted by $\Gamma_{m, n, k}$, is a graph obtained by identifying a pendant vertex of each path P_{m+1}, P_{n+1} and P_{k+1}.

Theorem 2.5. Let $G \nsubseteq P_{d+1}$ be a tree of diameter $d(\neq 4)$. Then $\operatorname{gl}(G)=\lfloor 2 d / 3\rfloor$ if and only if one of the following holds:
(1) $\quad G \cong K_{1, n}(n \geq 3)$
(2) $G \cong \Gamma_{m, n, k} \quad$ where $\min \{m, n+k\}=\lfloor 2 d / 3\rfloor$.

Proof. Suppose $g l(G)=\lfloor 2 d / 3\rfloor$. If $G \cong K_{1, n}(n \geq 3)$, then we are through. Let $G \nVdash K_{1, n}(n \geq 3)$ and Ψ be a graphoidal cover of G such that $g l_{\Psi}(G)=\lfloor 2 d / 3\rfloor$. Since $d \neq$ $4,\lfloor 2 d / 3\rfloor>\lfloor d / 2\rfloor$. Hence from Lemma 2.2, it follows that $|\Psi|=2$.

Let $\Psi=\{P, Q\}$ and $V(P) \cap V(Q)=\{v\}$ for some vertex v. Clearly, v is an end vertex to exactly one of P and Q. Without loss of generality, assume that v is an end vertex of P. Let $P=\left(v_{0} v_{1} \ldots v_{m}\right)$ and $Q=\left(u_{0} u_{1} \ldots u_{q}\right)$, where $v=v_{m}=$ $u_{n}(\lceil q / 2\rceil \leq n<q)$. Then setting $k=q-n$ we get that $G \cong \Gamma_{m, n, k}$ where $\min \{m, n+k\}=\lfloor 2 d / 3\rfloor$.

Conversely, if $G \cong K_{1, n}(n \geq 3)$, then diameter d of G is 2 . Clearly, in this case, $g l(G)=1=\lfloor 2 d / 3\rfloor$ and we are through. Let $G \cong \Gamma_{m, n, k}$ for some m, n, k such that $\min \{m, n+k\}=$ $\lfloor 2 d / 3\rfloor$. Then $\Psi=\{P, Q\}$, where $P=P_{m+1}$ and $Q=P_{n+1} \cup$ P_{k+1}, is a graphoidal cover of G such that $g l_{\Psi}(G)=\lfloor 2 d / 3\rfloor$. Hence it follows that $g l(G)=\lfloor 2 d / 3\rfloor$.

Thus we have completely characterized extremal trees with diameter $d \neq 4$ for the upper bound. What happens in case the diameter of the tree is 4 ? The next theorem gives a necessary and sufficient condition for a tree of diameter 4 to attain the upper bound.

Theorem 2.6. Let $G\left(\not \approx P_{d+1}\right)$ be a tree of diameter $d=4$. Then $\operatorname{gl}(G)=\lfloor 2 d / 3\rfloor$ if and only if $\left|N^{*}(u)\right| \leq 2$ for each $u \in V$, where $N^{*}(u)=\{v \in N(u): d(v)=1$ or v is a support to two pendant vertices $\}$.

Proof. Necessity: Let G be a tree such that $g l(G)=\lfloor 2 d / 3\rfloor=$ 2. Suppose there exists $w \in V$ such that $\left|N^{*}(w)\right|>2$. Let u_{1}, u_{2}, u_{3} be vertices in $N^{*}(w)$.

Consider any graphoidal cover $\Psi \in \mathcal{G}_{G}$ such that $g l_{\Psi}(G)=2$. Then every Ψ-edge has length at least 2 . Now if for any $i(1 \leq i \leq 3)$, u_{i} is supporting two pendant vertices say $u_{i_{1}}$ and $u_{i_{2}}$. Then $R_{i}=\left(u_{i_{1}} u_{i} u_{i_{2}}\right)$ must be a Ψ-edge. For otherwise either $u_{i} u_{i_{1}}$ or $u_{i} u_{i_{i}}$ is a Ψ-edge, a contradiction to the fact that $g l_{\Psi}(G)=2$. Thus u_{i} must be an end vertex for
the Ψ-edge containing $u_{i w}$. Now let P be the Ψ-edge containing the edge $u_{1} w$ with u_{1} as its end vertex. Then since $g l_{\Psi}(G)=2, w$ must be an internal vertex of P. Clearly $P=$ $\left(u_{1} w u_{2}\right)$, for otherwise $w u_{2}$ will be a Ψ-edge, a contradiction. But then $u_{3} w$ is a Ψ-edge, again a contradiction. Hence lemma holds and we are through.

Sufficiency:

Suppose the hypothesis holds. Let w be the center of G. We shall show that $g l_{\Psi}(G)=2$ for some graphoidal cover Ψ of G. Clearly, due to the hypothesis, $d(u) \leq 3$ for each $u \in$ $N(w)$. Now partition the neighborhood $N(w)$ of w as follows

$$
N(w)=N_{1}(w) \cup N_{2}(w) \cup N_{3}(w)
$$

where $N_{i}(w)=\{u \in N(w): d(u)=i\}$ for $i=1,2$, 3. For each u in $N_{2}(w)$, let z_{u} denote the pendant vertex with support u. If $N_{3}(w) \neq \emptyset$ then for each u in $N_{3}(w)$, let x_{u}, y_{u} denote pendant vertices with support u. Also, let $P=$ $\left\{\left(x_{u} u y_{u}\right): u \in N_{3}(w)\right\}$. Obviously, by definition $N^{*}(w)=$ $N_{1}(w) \cup N_{3}(w)$.

Now since $\left|N^{*}(w)\right| \leq 2$, following three cases arise:
Case 1: $N^{*}(w)=\emptyset$
Then $\Psi=\left\{\left(w u z_{u}\right): u \in N_{2}(w)\right\}$ is a graphoidal cover of G of length 2 .

Case 2: $N^{*}(w)=\left\{v_{1}\right\}$
In this case $N_{2}(w) \neq \emptyset$ and therefore we choose a vertex v in $N_{2}(w)$. Then $\Psi=P \cup\left\{\left(w u z_{u}\right): u \in N_{2}(w)-\{v\}\right\} \cup$ $\left\{\left(z_{v} v w v_{1}\right)\right\}$ is a graphoidal cover of G of length 2 . Note that P may possibly be empty in case $v_{1} \in N_{1}(w)$.
Case 3: $N^{*}(w)=\left\{v_{1}, v_{2}\right\}$
Then $\Psi=P \cup\left\{\left(w u z_{u}\right): u \in N_{2}(w)\right\} \cup\left\{\left(v_{1} w v_{2}\right)\right\}$ is a graphoidal cover of G of length 2 . Again in this case, P may possibly be empty if $v_{1}, v_{2} \in N_{1}(w)$.

Thus in all the cases above we have constructed a graphoidal cover Ψ such that $g l_{\Psi}(G)=2$. Consequently, from Theorem 2.1, $g l(G)=2=\lfloor 2 d / 3\rfloor$.

After characterizing trees G of diameter d for which graphoidal length $g l(G)=\lfloor 2 d / 3\rfloor$, we now make an attempt to look at the structure of trees for which graphoidal length $g l(G)<\lfloor 2 d / 3\rfloor$. In our next theorem we partially answer this question by characterizing trees G of diameter d having graphoidal length $g l(G)=k$, where $\lfloor d / 2\rfloor<k<\lfloor 2 d / 3\rfloor$.
Theorem 2.7. Let G be tree of diameter d and k be an integer such that $\lfloor d / 2\rfloor<k<\lfloor 2 d / 3\rfloor$. Then $g l(G)=k$ if and only if one of the following condition hold:
(1) $G \cong \Gamma_{m, n, d-m}$ for some $m, n(m \geq n)$ such that $k-$ $n=m<d-k$;
(2) $G \cong \Gamma_{k, m, d-k}$ for some m such that $2 k-d \leq$ $m \leq d-k$.

Proof. Let $g l(G)=k$, where $\lfloor d / 2\rfloor<k<\lfloor 2 d / 3\rfloor$. The condition $\lfloor 2 d / 3\rfloor>\lfloor d / 2\rfloor+1$ ensures that $d \geq 11$. Therefore $G \nsubseteq K_{1, n}(n \geq 3)$. Also, since $g l(G)<d$, therefore $G \nsubseteq P_{d+1}$.

Figure 4. Example of trees.
Let Ψ be a graphoidal cover of G such that $g l_{\Psi}(G)=k$. Then from Lemma 2.2, $|\Psi|=2$. Let $\Psi=\{P, Q\}$ and $V(P) \cap$ $V(Q)=\{v\}$ for some vertex v. Again, v cannot be an end vertex to both P and Q. Without loss of generality, assume that v is an end vertex of P. Let $P=\left(v_{0} v_{1} \ldots v_{a}\right)$ and $Q=$ $\left(u_{0} u_{1} \ldots u_{b}\right)$, where $v=v_{a}=u_{c}$ for some c such that $\lceil b / 2\rceil \leq$ $c \leq b$. Then $G \cong \Gamma_{a, c, b-c}$. Now we have two possibilities:
Case I. $a \geq b$.
Then $b=k$ and $d=a+c$. Set $m=c, n=b-c$, then $a=$ $d-m, k-n=m<d-k$. Hence $G \cong \Gamma_{m, n, d-m}$ where $m \geq$ n and $k-n=m<d-k$.

Case II. $b>a$.
Then $a=k$ and $d=\max \{a+c, b\}$. But since $a=k>$ $\lfloor d / 2\rfloor \geq\lfloor b / 2\rfloor \geq b-c$, it follows that $d=a+c$. Set $m=$ $b-c$, then $2 k-d \leq m \leq d-k$. Hence $G \cong \Gamma_{k, m, d-k}$ where m is such that $2 k-d \leq m \leq d-k$.

Conversely, if $G \cong \Gamma_{m, n, d-m}$ for some $m, n(m \geq n)$ such that $k-n=m<d-k$. Then $\Psi=\{P, Q\}$, where $P=$ P_{d-m+1} and $Q=P_{m+1} \cup P_{n+1}$, is a graphoidal cover of G such that $g l_{\Psi}(G)=k$. Now if $G \cong \Gamma_{k, m, d-k}$ for some m such that $2 k-d \leq m \leq d-k$. Then $\Psi=\{P, Q\}$, where $P=$ P_{k+1} and $Q=P_{m+1} \cup P_{d-k+1}$, is a graphoidal cover of G such that $g l_{\Psi}(G)=k$. Thus in either case there exists a graphoidal cover Ψ of G such that $g l_{\Psi}(G)=k$. It follows that $g l(G)=k$. Hence the theorem.

3. Concluding remarks

In this paper, we focused on the problem of finding graphoidal length of a tree in terms of its diameter. We observed that for a tree of diameter $d, g l(G)=d$ if and only if $G \cong$ P_{d+1}. We proved that for trees G (other than paths) with diameter $d, g l(G) \leq\lfloor 2 d / 3\rfloor$ and that the extremal trees for this upper bound are homeomorphic to $K_{1,3}$. Further, we characterized trees G of diameter d having graphoidal length $g l(G)=k$, where $\lfloor d / 2\rfloor<k \leq\lfloor 2 d / 3\rfloor$. Thus it remains to characterize trees G with $g l(G)=k$ where $k \leq\lfloor d / 2\rfloor$.

Problem 1. Characterize trees G of diameter d having graphoidal length $g l(G)=k$ such that $k \leq\lfloor d / 2\rfloor$.

In particular, one can first look to tackle the following problem.
Problem 2. Characterize trees G of diameter d with $g l(G)=\lfloor d / 2\rfloor$.
It is interesting to note that the two upper bounds for graphoidal length of a tree obtained in Theorems 1.7 and 2.1 are unrelated and independent of each other. The trees G_{1}, G_{2} and G_{3} in Figure 4 exhibit this fact.

$$
\begin{aligned}
\left\lfloor\frac{\left|E\left(G_{1}\right)\right|}{e-1}\right\rfloor & <\left\lfloor\frac{2 d\left(G_{1}\right)}{3}\right\rfloor, & \left\lfloor\frac{\left|E\left(G_{2}\right)\right|}{e-1}\right\rfloor \\
& =\left\lfloor\frac{2 d\left(G_{2}\right)}{3}\right\rfloor, & \left\lfloor\frac{\left|E\left(G_{3}\right)\right|}{e-1}\right\rfloor>\left\lfloor\frac{2 d\left(G_{3}\right)}{3}\right\rfloor .
\end{aligned}
$$

Problem 3. Characterize trees G of diameter d such that

1. $\left\lfloor\frac{|E(G)|}{e-1}\right\rfloor<\left\lfloor\frac{2 d}{3}\right\rfloor$
2. $\left\lfloor\frac{|E(G)|}{e-1}\right\rfloor=\left\lfloor\frac{2 d}{3}\right\rfloor$
3. $\left\lfloor\frac{|E(G)|}{e-1}\right\rfloor>\left\lfloor\frac{2 d}{3}\right\rfloor$.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

[1] Arumugam, S., Devadas Acharya, B. and E. Sampathkumar, (1997). Graphoidal covers of a graph: a creative review In Graph Theory and Its Applications (Tirunelveli, 1996), pages 1-28. Tata McGraw-Hill, New Delhi.
[2] Acharya, B. D, Gupta, P. (2007). Further results on domination in graphoidally covered graphs. AKCE Int. J. Graphs Comb. 4(2):127-138.
[3] Acharya, B. D, Sampathkumar, E. (1987). Graphoidal covers and graphoidal covering number of a graph. Indian J. Pure Appl. Math. 18(10):882-890.
[4] Arumugam, S., Gupta, P, Singh, R. (2016). Bounds on graphoidal length of a graph. Electron. Notes Discret. Math. 53:113-122.
[5] Arumugam, S, Pakkiam, C. (1994). Graphoidal bipartite graphs. Graphs Combin. 10(2-4):305-310.
[6] Arumugam, S., Rajasingh, I, Pushpam, P. R. L. (2001). Graphs whose acyclic graphoidal covering number is one less than its maximum degree. Discrete Math. 240(1-3):231-237.
[7] Arumugam, S, Suresh Suseela, J. (1998). Acyclic graphoidal covers and path partitions in a graph. Discrete Math. 190(1-3):67-77.
[8] Chartrand, G, Lesniak, L. (2005). Graphs \& Digraphs, 4th ed. Boca Raton, FL: Chapman \& Hall/CRC
[9] Devadas Acharya, B, Gupta, P. (1999). Domination in graphoidal covers of a graph. Discret. Math. 206(1-3):3-33. Combinatorics and number theory (Tiruchirappalli, 1996).
[10] Harary, F. (1969). Graph Theory.Reading, MA: Addison-Wesley Publishing Co.
[11] Pakkiam, C, Arumugam, S. (1989). On the graphoidal covering number of a graph. Indian J. Pure Appl. Math. 20(4):330-333.
[12] Sahul Hamid, I, Anitha, A. (2011). On label graphoidal covering number-I. Discrete Math. Algorithm. Appl. 3(1):1-33.
[13] Sampathkumar, E. (2000). Semigraphs and their applications. Report on the DST Project.
[14] Siva Kota Reddy, P, Misra, U. K. (2014). Graphoidal signed graphs. Proc. Jangjeon Math. Soc. 17(1):41-50.
[15] West, D. B. (1996). Introduction to Graph Theory.Upper Saddle River, NJ: Prentice Hall, Inc.

[^0]: CONTACT Purnima Gupta purnimachandni1@gmail.com Department of Mathematics, Sri Venkateswara College, University of Delhi, Delhi 110021, India.
 © 2020 The Author(s). Published with license by Taylor \& Francis Group, LLC
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

