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ABSTRACT
Using the Navier–Stokes equations in rotating spherical coordinates, we
discuss a mathematical model for the equatorial current across the Pacific
Ocean. Symmetry properties of the governing equations that hold in equa-
torial regions permit us to gain detailed insight into the structure of the
ocean flow dynamics.
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1. Introduction

The equatorial ocean flows present special challenges with respect to flows at mid-latitudes since in
this context neither geostrophic theory nor Ekman theory apply (see the discussions in [1,2] and [3],
respectively) and, moreover, nonlinear effects are noticeable (see the discussion in [4,5]). Of all equa-
torial regions, that of the Pacific is the most important due to its extent – it is more than 12,000 km
across the ocean, from South America to South Asia. Several recent papers are devoted to equatorial
flows (see the discussions in [33–35–36]), and address the issue of underlying currents, issue that was
mostly ignored in the earlier research literature (see the survey [6]). The papers [7–11] find explicit
wave solutions for the governing equations in Lagrangian coordinates in the β-plane approxima-
tion, in the presence of relatively weak underlying currents. Two-dimensional flows (which ignore
the meridional velocity component and use the f -plane approximation) are investigated in [1,12]
(see also [13]) and inroads towards three-dimensional flows can be found in [14–17] (see [18] for
a detailed description of the intricate ongoing dynamics). One issue of great current interest is the
derivation of realistic models for the underlying current field. The main features of the equatorial
current are that the current is mainly azimuthal and presents a strong depth-variation in the upper
500m of the ocean (of about 4 kmmean depth), while at depths larger than 500m there is practically
no motion. The most significant features of the depth-variation consist of a westward near-surface
current (induced by the trade winds that blow towards the west) and a stronger eastward flow – the
Equatorial Undercurrent (EUC) – that dominates the overall ocean flow, reaching speeds in excess of
1m/s. Note the unusual feature that the EUC flows against the prevailing trade winds, as the directly
wind-driven flow vanishes below 100m. Recently, an approach was proposed to explain how such a
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2 K. MARYNETS

current with flow-reversal might be induced by the action of the wind (see [19]). However, the model
in [19] does not capture the westward Equatorial Intermediate Current (EIC), found directly below
the EUC across the Pacific (see [20]). Our aim in this paper is to show that themethod used in [19], to
investigate the Navier–Stokes equations in rotating spherical coordinates by taking advantage of sym-
metry properties of the leading-order terms in the governing equations for equatorial ocean flows to
gain insight into the structure of the velocity field, can be further refined to provide a model of higher
accuracy. In particular, we are able to include the westward EIC as a component of the background
state of the ocean.

2. Preliminaries

For large-scale ocean flows it is appropriate to consider a spherical Earth, rotating at a constant rate
about its polar axis (see [21,22]).We introduce near the Equator spherical coordinates (ϕ, θ , r′), where
r′ is the radius, θ ∈ (−π/2,π/2) is the angle of latitude and ϕ ∈ [0, 2π) is the angle of longitude. The
corresponding unit vectors are (eϕ , eθ , er), respectively, with eϕ pointing fromWest to East, eθ from
South to North and er upwards. We denote the ocean flow velocity components by (u′, v′,w′). We use
primes for physical (dimensional) variables, and we will remove them in the non-dimensionalisation
process.

In this rotating reference system the Navier–Stokes equation and the equation of mass conserva-
tion are (see [19])

(
∂

∂t′
+ u′

r′ cos θ
∂

∂ϕ
+ v′

r′
∂

∂θ
+ w′ ∂

∂r′

)
(u′, v′,w′)

+ 1
r′

(−u′v′ tan θ + u′w′, u′2 tan θ + v′w′,−u′2 − v′2)
+ 2Ω ′(−v′ sin θ + w′ cos θ , u′ sin θ ,−u′ cos θ)

+ r′Ω ′2(0, sin θ cos θ ,− cos2 θ)

= − 1
ρ′

(
1

r′ cos θ
∂p′

∂ϕ
,
1
r′
∂p′

∂θ
,
∂p′

∂r′

)
+ (0, 0,−g′)

+ ν′
1

(
∂2

∂r′2
+ 2

r′
∂

∂r′

)
(u′, v′,w′)

+ ν′
2

r′2

(
1

cos2 θ
∂2

∂ϕ2
− tan θ

∂

∂θ
+ ∂2

∂θ2

)
(u′, v′,w′), (1)

and

1
r′ cos θ

∂u′

∂ϕ
+ 1

r′ cos θ
∂

∂θ
(v′ cos θ)+ 1

r′2
∂

∂r′
(r′2w′) = 0, (2)

respectively, where p′(ϕ, θ , r′, t′) is the pressure in the fluid, ρ′ the constant density, Ω ′ ≈ 7.29 ×
10−5 rad s−1 is the constant rate of rotation of the Earth, and g′ = constant ≈ 9.81m s−2 is the gravi-
tational acceleration. The coefficients of the viscous terms are taken to be constant, with ν′

1 the vertical
kinematic eddy viscosity and ν′

2 the horizontal kinematic eddy viscosity.
Let us now describe the associated boundary conditions. At the ocean’s surface, r′ = R′ +

h′(ϕ, θ , t′), where R′ ≈ 6378 km is the radius of the spherical Earth, we impose the dynamic and
the kinematic boundary condition:

p′ = P′
s(ϕ, θ , t

′) on r′ = R′ + h′(ϕ, θ , t′), (3)
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and

w′ = ∂h′

∂t′
+ u′

r′ cos θ
∂h′

∂ϕ
+ v′

r′
∂h′

∂θ
on r′ = R′ + h′(ϕ, θ , t′), (4)

respectively, where P′
s is the surface pressure. The wind-stress at the ocean’s surface is considered to

be known, and can be expressed in the form

τ ′
1(ϕ, θ , t

′) = ρ′ν′
1
∂u′

∂r′
,

τ ′
2(ϕ, θ , t

′) = ρ′ν′
1
∂v′

∂r′
,

on r′ = R′ + h′(ϕ, θ , t′), (5)

the surface wind stress (τ ′
1, τ

′
2) being related to the vertical eddy viscosity by ν ′

1 = σ ′|(τ ′
1, τ

′
2)| on

the surface, where σ ′ is a (dimensional) constant and (τ ′
1, τ

′
2) = cDρ′

air U
′
wind|U ′

wind|, ρ′
air being the

density of air (about 1.2 kg/m3) and cD ≈ 0.0013 being a (dimensionless) drag coefficient. At the
impermeable, solid, stationary bottom of the ocean, r′ = R′ + d′(ϕ, θ), we have the corresponding
boundary condition for viscous flow:

u′ = v′ = w′ = 0 on r′ = R′ + d′(ϕ, θ), (6)

Setting r′ = R′ + z′ and

p′ = ρ′
(

−g′r′ + 1
2
r′2�′2 cos2 θ

)
+ P′(ϕ, θ , r′, t′), (7)

one can non-dimensionalise the problem by performing the change of variables

z′ = D′z, (u′, v′,w′) = U ′(u, v, kw), P′ = ρ′U ′2P, (8)

where D′ ≈ 200m is the average depth of the near-surface layer to which the wind effects are con-
fined), U ′ ≈ 0.1m s−1 is the typical speed of mid-latitude ocean currents at the surface, while the
scaling factor k for the vertical velocity is less than 10−4; see the discussion in [19]. In terms of the
the shallow-water parameter

ε = D′/R′,

with a typical value of the order 10−5, the governing equations for steady flow are transformed into
the non-dimensional form

(
u

(1 + εz) cos θ
∂

∂ϕ
+ v

1 + εz
∂

∂θ
+ k
ε
w
∂

∂z

)
(u, v, kw)

+ 1
1 + εz

(−uv tan θ + kuw, u2 tan θ + kvw,−u2 − v2
)

+ 2ω(−v sin θ + kw cos θ , u sin θ ,−u cos θ)

= −
(

1
(1 + εz) cos θ

∂P
∂ϕ

,
1

1 + εz
∂P
∂θ

,
1
ε

∂P
∂z

)

+ 1
Re1

(
1
ε2
∂2

∂z2
+ 2
(1 + εz)

1
ε

∂

∂z

)
(u, v, kw)

+ 1
Re2(1 + εz)2

(
1

cos2 θ
∂2

∂ϕ2
− tan θ

∂

∂θ
+ ∂2

∂θ2

)
(u, v, kw), (9)
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and

1
(1 + εz) cos θ

{
∂u
∂ϕ

+ ∂

∂θ
(v cos θ)

}
+ k/ε
(1 + εz)2

∂

∂z
{
(1 + εz)2w

} = 0, (10)

where ω = �′R′/U ′ = O(1) and Rei = U ′R′/ν′
j (j = 1, 2) are the inverse Rossby number and the

pair of Reynolds numbers, respectively. With (h′, d′) = D′(h, d), the non-dimensional boundary
conditions are

P = Ps(ϕ, θ),

∂u
∂z

= τ1(ϕ, , θ), on z = h(ϕ, θ),

∂v
∂z

= τ2(ϕ, θ), (11)

k
ε
w = u

(1 + εh) cos θ
∂h
∂ϕ

+ v
1 + εh

∂h
∂θ

on z = h(ϕ, θ), (12)

(u, v) decays rapidly below z = h(ϕ, θ). (13)

For ocean flows in the equatorial Pacific it is adequate (see the discussion in [19]) to consider

ω = O(1),
1
Re2

= ε2μ with μ = ν′
2
ν′
1
,

Multiplying the third component of (9) throughout by ε, we obtain the non-dimensional
Navier–Stokes system with Coriolis effects

(
u

(1 + εz) cos θ
∂

∂ϕ
+ v

1 + εz
∂

∂θ
+ k
ε
w
∂

∂z

)
(u, v, εkw)

+ 1
1 + εz

(−uv tan θ + kuw, u2 tan θ + kvw,−εu2 − εv2
)

+ 2ω(−v sin θ + kw cos θ , u sin θ ,−εu cos θ)

= −
(

1
(1 + εz) cos θ

∂P
∂ϕ

,
1

1 + εz
∂P
∂θ

,
∂P
∂z

)

+
(
∂2

∂z2
+ 2ε
(1 + εz)

∂

∂z

)
(u, v, εkw)

+ ε2μ

(1 + εz)2

(
1

cos2 θ
∂2

∂ϕ2
− tan θ

∂

∂θ
+ ∂2

∂θ2

)
(u, v, εkw). (14)

Correspondingly, the equation of mass conservation, (10), becomes

1
(1 + εz) cos θ

{
∂u
∂ϕ

+ ∂

∂θ
(v cos θ)

}
+ k/ε
(1 + εz)2

∂

∂z
{
(1 + εz)2w

} = 0; (15)

In the non-dimensional system of equations (14)–(15), the parameters (ω,μ, k, ε) are held fixed, as
no approximations were performed.

The shallow-water limit corresponds to the limiting process ε → 0 and k/ε → 0 (see the discus-
sion in [19]). This regime ignores the vertical velocity component and, neglecting wave perturbations
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by setting h = 0, the flow dynamics being governed by the horizontal flow components u and v,
subject to the nonlinear system

(
u

cos θ
∂

∂ϕ
+ v

∂

∂θ

)
u − uv tan θ − 2ωv sin θ = − 1

cos θ
∂P
∂ϕ

+ ∂2u
∂z2

, (16)

(
u

cos θ
∂

∂ϕ
+ v

∂

∂θ

)
v + u2 tan θ + 2ωu sin θ = −∂P

∂θ
+ ∂2v
∂z2

, (17)

∂u
∂ϕ

+ ∂

∂θ
(v cos θ) = 0, (18)

which features Coriolis terms, viscous terms and the horizontal pressure gradients, while the bound-
ary conditions (11)–(13) simplify to

P = Ps(ϕ, θ),

∂u
∂z

= τ1(ϕ, , θ), on z = 0,

∂v
∂z

= τ2(ϕ, θ), (19)

(u, v) decays rapidly below z = 0. (20)

since settingw = 0 and h = 0makes (12) irrelevant. The system (16)–(20) captures the physical idea
that the perturbation Ps of the hydrostatic pressure and the shear stresses τ1 and τ2, at the ocean’s
surface z = 0, are needed to produce a consistent solution for the wind-drift horizontal current (u, v).
To gain insight into the structure of this system, let us note that (18) ensures (see the discussion in
[23]) the existence of a stream function in spherical coordinates, ψ(ϕ, θ , z), with

u = −ψθ , v = 1
cos θ

ψϕ ; (21)

see [23] for a proof of the fact that the particle paths for steady flow on the surface of a sphere
are the level sets ψ = constant. Taking advantage of (21), we can eliminate the pressure between
Equations (16) and (17) to derive (see [19]) the vorticity equation

(
ψϕ

∂

∂θ
− ψθ

∂

∂ϕ

) (
1

cos2 θ
ψϕϕ − ψθ tan θ + ψθθ + 2ω sin θ

)

= cos θ
(

1
cos2 θ

ψϕϕ − ψθ tan θ + ψθθ

)
zz
. (22)

These considerations show that (21) specifies, at leading order, the background flow, provided that the
stream function ψ(ϕ, θ , z) solves the vorticity equation (22) subject to the boundary condition (19)
and to the last two constraints in (20); Equations (16)–(17) then determine the associated pressure
field, taking also into account the boundary condition represented by the first constraint in (19).
Let us note that if we ignore the z-dependence (and thus, implicitly, consider an inviscid setting in
which the wind forcing plays no role), then (22) simplifies to the ocean gyre model derived recently
in [24] as a shallow-water asymptotic solution of Euler’s equation in rotating spherical coordinates
(with the stipulation that θ stands in [24] for the polar angle, and not for the angle of latitude) and
further investigated in [25–29] in the context of theAntarcticCircumpolarCurrent – the largest ocean
current on Earth, flowing clockwise from west to east around Antarctica (see [30,32,37]) so that, due
to the lack of any landmass connecting with Antarctica, it keeps the warm ocean waters from lower
latitudes away from Antarctica and thus maintains the huge ice sheets encountered near the South
Pole (see the discussion in [13,31]).
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3. Main results

Finding the general solution of the equation (22) with the boundary conditions

∂u
∂z

= τ1(ϕ, , θ),

∂v
∂z

= τ2(ϕ, θ),
on z = 0, (23)

(u, v) decays rapidly below z = 0. (24)

where the horizontal velocity field (u, v) is specified by means of (21), is not a realistic task. Instead,
we try to take advantage of some special features that are typical for the equatorial region in the
Pacific. We restrict our attention to an equatorial zonal band that is symmetric about the Equator,
with the angle of latitude θ close to 0 and the angle of longitude ϕ near ϕ0, with ϕ0 ∈ (8π/9, 14π/9)
corresponding to the region between 160 ◦E and 80 ◦W. For the twice differentiable functions α(z)
and β(z), we look for longitude-independent meridional velocity components and we seek a linear
dependence of the azimuthal velocity component on the longitude. These features lead (see [19]) to
the stream function

ψ(ϕ, θ , z) = {ϕα(z)+ β(z)} ln
[

cos θ
1 − sin θ

]

− ω

{
sin θ + ln

[
cos θ

1 − sin θ

]}
, (25)

solution of the governing equation (22), valid for |ϕ − ϕ0| < ϕ̂ and |θ | < θ̂ with some fixed (and
small) values ϕ̂ > 0 and θ̂ > 0. Due to (21), this corresponds to the horizontal velocity field

u(ϕ, θ , z) = −ϕα(z)+ β(z)
cos θ

+ ω
sin2 θ
cos θ

,

v(ϕ, θ , z) = α(z)
cos θ

ln
[

cos θ
1 − sin θ

]
, (26)

while the boundary conditions (23) are induced by a wind stress with components

τ1(θ ,ϕ) = −ϕα
′(0)+ β ′(0)
cos θ

,

τ2(θ ,ϕ) = α′(0)
cos θ

ln
[

cos θ
1 − sin θ

]
. (27)

Rather than imposing (24), we pursue the considerations in [4]) and interpret the solution (26) as
being valid in the near-surface ocean region above the thermocline z = −T, where we require the
no-stress boundary condition

uz = vz = 0 on z = −T. (28)

The fundamental characteristic of the trade winds in the equatorial Pacific is that, in each hemi-
sphere, they are oriented towards the Equator, blowing westwards with a more stronger westward
direction as the Equator (θ = 0) is approached. This property holds for the wind stress specified
in (27) if

α′(0) < 0 < ϕα′(0)+ β ′(0) (29)

for all relevant values of the longitude ϕ, that is, for −ϕ̂ < ϕ − ϕ0 < ϕ̂. Note that this orientation
of the wind, in combination with the fact that the vanishing of the meridional component of the
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Coriolis force, ω sin θ , at the Equator prevents it from inducing a deflection from the wind direction
(as is typical in Ekman theory atmid-latitudes), leads to a near-surface current thatmovingwestward.
This is ensured for the solution (26) if

ϕα(0)+ β(0) > 0. (30)

Moreover, if

α(0) > 0, (31)

then the meridional flow described by (26) is poleward near the surface. Note that the main features
of the near-surface flow in the equatorial Pacific are a westward motion at the surface and a poleward
meridional flow (see the discussion in [4]). One can see that a linear or quadratic dependence on
the z-variable of the azimuthal velocity profile u(ϕ, θ , z) of type (26) can not accommodate the con-
straints (29)–(31) and (28). A solution featuring a cubic dependence was provided recently in [19],
namely

α(z) = a
(
z2 + 2Tz − T2

3

)
,

β(z) = aϕ0
( 1
T z

3 − 3Tz
)
,

− T ≤ z ≤ 0, (32)

for some constant a< 0. This provides an azimuthal flow that iswestward near the surface and features
a faster eastward jet along the thermocline, such that at any fixed longitude ϕ ∈ (ϕ0, 1312ϕ0), the zonal
velocity u strictly decreases from a positive value at the thermocline z = −T (corresponding to an
eastward flow) to a negative value at the surface z = 0 (corresponding to a westward flow), and van-
ishes once above z = −(T/3), having just one inflexion point, to be found between the depth levels
z = −(T/3) and z = −(2T/3). The solution (32) captures the main features of the ocean current in
the equatorial Pacific: awestwardwind-drift overlying the stronger eastwardEquatorialUndercurrent
(EUC). We now show that we can refine this result, by accommodating also a weaker eastward flow
beneath the EUC (see Figure 1). For this, it suffices to choose suitable quintic polynomial expressions
for the azimuthal velocity profile.

Theorem 3.1: The quintic polynomial expressions

α(z) = 144
2125

(195T2 − 2264)z5

T5 + 36
245

(195T2 − 2264)z4

T4 − 1
2
z2 − Tz + 1,

β(z) = ϕ0

{
18
2125

(2285T2 − 24982)z4

T4 + 1
4250

141180T2 − 1487411
T3 z3

+
(

3
340

1260T2 − 11531
T2 + 1

)
z2 + 2Tz

}

accommodate an equatorial current profile that features an eastward jet at mid-depth of the near-surface
layer above the thermocline z = −T, a weak eastward jet just above the thermocline and a stronger
westward jet near the surface z = 0.

Proof: The corresponding azimuthal velocity u(ϕ, θ , z), obtained from (26), vanishes at z = −(T/8),
z = −(2T/3) and z = −(5T/6), giving the profile depicted in the figure. Moreover, since

α(0) = 1 > 0, ϕ0α(0)+ β(0) = 1 > 0,

α′(0) = −T < 0, ϕ0α
′(0)+ β ′(0) = φ0T > 0,

α′(−T) = 0, β ′(−T) = 0,

all the constraints (29)–(31) and (28) are verified. The considerations preceding the statement yield
now the desired result. �
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Figure 1. Depiction of the vertical profile of the current in the upper 200–400m of the Pacific Ocean along the Equator: the west-
wardwind-drift current is near the surface z = 0, below it is the eastward EUC that dominates the subsurface flows, with theweaker
westward EIC found directly below the EUC, while at great depths there is practically no motion. These are the main features across
the Pacific, over 12,000 km (see the data provided in [20]).

Remark 3.2: The theorem shows that it is possible to capture within our modeling framework not
only the presence of the eastward EUC and of the westward wind-drift current, but also the presence
of the weaker westward EIC, found directly below the EUC (see the figure).
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