$L(1,2)$-labeling numbers on square of cycles

Le Liu \& Qiong Wu

To cite this article: Le Liu \& Qiong Wu (2020): $L(1,2)$-labeling numbers on square of cycles, AKCE International Journal of Graphs and Combinatorics, DOI: 10.1016/j.akcej.2020.02.003

To link to this article: https://doi.org/10.1016/j.akcej.2020.02.003

Published online: 09 Jun 2020.

Submit your article to this journal

Article views: 59

View related articles \quad

View Crossmark data

$L(1,2)$-labeling numbers on square of cycles

Le Liu and Qiong Wu
Department of Computational Science, Tianjin University of Technology and Education, Tianjin, China

Abstract

For two positive numbers d and m, an $m-L(1, d)$-labeling of a graph G is a mapping $f: V(G) \rightarrow$ $[0, m]$ such that $|f(u)-f(v)| \geq 1$ if $d(u, v)=1$, and $|f(u)-f(v)| \geq d$ if $d(u, v)=2$. The span of f is the maximum difference among the numbers assigned by f. The $L(1, d)$-labeling number of G, denoted by $\lambda_{1, d}(G)$, is the minimum span over all $L(1, d)$-labelings of G. In this paper, we determine the $L(1,2)$-labeling numbers of square of cycles C_{n} for all values n.

KEYWORDS

$L(1 ; d)$-labeling number; code assignment; direct product

1. Introduction

For two positive numbers d and m, an $m-L(1, d)$-labeling of a graph G is a mapping $f: V(G) \rightarrow[0, m]$ such that $\mid f(u)-$ $f(v) \mid \geq 1$ if $d(u, v)=1$, and $|f(u)-f(v)| \geq d$ if $d(u, v)=2$. The span of f is the maximum difference among the numbers assigned by f. The $L(1, d)$-labeling number of G, denoted by $\lambda_{1, d}(G)$, is the minimum span over all $L(1, d)$ labelings of G.

The wireless computer network is called Packet Radio Network (PRN) if this network communicates by radio frequencies. In PRN, there exist two major types of collisions (or interferences), one is Direct collision, which caused by the transmission of adjacent stations (computers); another is Hidden terminal collision, which caused by distance-two stations that transmit to the same receiving station at the same time.

Suppose direct interference can be ignored since it is weak in a wireless computer network. Bertossi and Bonuccelli [1] introduced an optimal code assignment to avoid the hidden terminal interference. This code assignment problem is equivalent to the $L(0,1)$-labeling problem if codes are corresponded to labels.

In general, the direct interference cannot be ignored. That is, it needs to avoid hidden terminal collision as well as direct collision. In order to avoid direct interference, any two adjacent stations are required to be assigned different codes, then any two distance-two stations need to be assigned at least d apart codes in order to avoid hidden terminal interference and direct interference, here $d \geq 1$. Then, Jin and Yeh [6] abstracted this code assignment problem to $L(1, d)$-labeling problem with $d \geq 1$.
$L(d, 1)$-labeling numbers of graphs for $d \geq 1$ have been studied in many articles. Please referred to the surveys [2, 16].

By now, many researchers have paid attention to the $L(1$, d)-labeling numbers of graphs for $d \geq 1$ and introduced
some results. For example, Niu [8] obtained $L(1, d)$-labeling numbers of paths and cycles. Griggs and Jin [4] studied $L(1$, d)-labeling numbers of lattices (grids). Furthermore, Jayasree and Nicholas [5] introduced $L(1,2)$-labeling numbers of certain generalizes Petersen graphs and n-star. In [3], the authors introduced the $L(j, k)$-labeling numbers of trees and stars with maximum degree. Lam, Lin and Wu [7] worked on $L(j, k)$ labeling numbers of product of completed graphs. Recently, Shiu and Wu determined $L(1, d)$-labeling numbers of square of paths in [10]. Moreover, the authors also introduced some $L(1, d)$-labeling numbers of graphs in [9, 11-15].

The $k t h$ power G^{k} of an undirected graph G is a graph with the same set of vertices and an edge between two vertices when their distance in G is at most $k . G^{2}$ is called the square of G.

Two labels are t-separated if the difference between them is at least t. Similarly, a set of labels is t-separated if the distance of any two labels from this set is not less than t.

For any $a \in \mathbb{R},[a]_{m} \in[0, m)$ denotes the remainder of a upon division of m.
Lemma 1.1. Let d be a positive number with $1 \leq d$. Suppose G is a graph and H is an induced subgraph of G. Then $\lambda_{1, d}(G) \geq \lambda_{1, d}(H)$.

Note that Lemma 1.1 is not true if H is not an induced subgraph. For example, graph $K_{1,3}$ is a subgraph but not an induced subgraph of graph K_{4} and it is easy to verify that $\lambda_{1,2}\left(K_{1,3}\right)=4>3=\lambda_{1,2}\left(K_{4}\right)$.

Lemma 1.2. [10] Let d be a positive number with $1 \leq d<3$. Then $\lambda_{1, d}\left(P_{6}^{2}\right) \geq \min \{5,3+d\}$.

2. $L(1,2)$-labeling numbers of square of cycles

In this section, the cycle C_{n}^{2} is represented by $v_{0} v_{1} \cdots v_{n-1} v_{0}$. The number of vertices in set S is denoted by $|S|$.

[^0]Theorem 2.1. Let n be a positive integer. For $3 \leq n \leq$ 9, $\lambda_{1,2}\left(C_{n}^{2}\right)=n-1$.

Proof. For $3 \leq n \leq 9$, any two vertices of C_{n}^{2} are adjacent or distance two apart, this means that labels of vertices in $V\left(C_{n}^{2}\right)$ should be different from each other. Then $\lambda_{1,2}\left(C_{n}^{2}\right) \geq$ $n-1$ for $3 \leq n \leq 9$.

On the other hand, define an $L(1,2)$-labeling for C_{n}^{2} as follows.

$$
f\left(v_{i}\right)=i \text { for } 0 \leq i \leq n-1
$$

It is easy to verify that f is an $(n-1)-L(1,2)$-labeling of C_{n}^{2} for $3 \leq n \leq 9$. Then $\lambda_{1,2}\left(C_{n}^{2}\right) \leq n-1$ for $3 \leq n \leq 9$.

Theorem 2.2. Let n be a positive integer. For $n \geq 12$ and $n \equiv 0(\bmod 6), \quad \lambda_{1,2}\left(C_{n}^{2}\right)=5$.

Proof. For $n=6$, any two vertices of C_{6}^{2} are adjacent or distance two apart, then $\lambda_{1,2}\left(C_{6}^{2}\right) \geq 5$.
For $n \geq 12, P_{6}^{2}$ is an induced subgraph of C_{n}^{2}, by Lemma 1.1 and 1.2, then $\lambda_{1,2}\left(C_{n}^{2}\right) \geq \lambda_{1,2}\left(P_{6}^{2}\right)=5$.

On the other hand, given an $L(1,2)$-labeling of C_{n}^{2} for $n \equiv 0(\bmod 6)$ as follows.

$$
f\left(v_{i}\right)=[i]_{6} \text { where } 0 \leq i \leq n-1
$$

It is not difficult to verify that f is a $5-L(1,2)$-labeling of C_{n}^{2} for $n \equiv 0(\bmod 6)$ and $n \geq 12$.
Hence, $\lambda_{1,2}\left(C_{n}^{2}\right)=5$ for $n \equiv 0(\bmod 6)$ and $n \geq 12$.
For $n \geq 10$, it is easy to verify that the vertices of C_{n}^{2} have the following property.
Property 1. For $0 \leq i \leq n-1$, vertex v_{i} is adjacent to vertices v_{s} and at distance two from u_{t}, where $s=[i \pm 1]_{n}$, $[i \pm 2]_{n}, t=[i \pm 3]_{n},[i \pm 4]_{n}$, then $\left|f\left(v_{i}\right)-f\left(v_{s}\right)\right| \geq 1$ and $\left|f\left(v_{i}\right)-f\left(v_{t}\right)\right| \geq 2$.

Theorem 2.3. $\lambda_{1,2}\left(C_{10}^{2}\right)=8$.
Proof. Let f be an $L(1,2)$-labeling of C_{10}^{2}.
Claim 1. If v_{i}, v_{j} are two different vertices of graph C_{10}^{2} and $f\left(v_{i}\right)=f\left(v_{j}\right)$, then $j=[i+5]_{10}$ and $\left|f\left(v_{k}\right)-f\left(v_{i}\right)\right| \geq 2$ for $i \neq j \neq k$ and $i, j, k \in \mathbb{Z}_{10}$.

Proof of Claim 1. Suppose the claim does not hold. That is, if v_{i}, v_{j} are two different vertices of graph C_{10}^{2} and $f\left(v_{i}\right)=$ $f\left(v_{j}\right)$, then we have the following two cases.

1. If $j \neq[i+5]_{10}$, then $j=[i+p]_{10}$, where $p \in\{-1,1$, -$2,2,-3,3,-4,4\}$. By Property $1, v_{i}, v_{j}$ are adjacent or distance two apart, this means that $\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq 1$, it contradicts to $f\left(v_{i}\right)=f\left(v_{j}\right)$.
2. If $j=[i+5]_{10}$ and $\left|f\left(v_{k}\right)-f\left(v_{i}\right)\right|<2$ for some $k \neq i, j$, this means that v_{k} should be adjacent to v_{i} or at least distance three apart from v_{i}. In graph C_{10}^{2}, only vertex $v_{[i+5]_{10}}$ is at distance three from v_{i}. Since $j=[i+5]_{10}$ and $k \neq j$, then v_{k} should be adjacent to v_{i}. By the property of C_{10}^{2}, v_{k} should be at distance two from
vertex v_{j}, then $\left|f\left(v_{k}\right)-f\left(v_{j}\right)\right| \geq 2$. It is a contradiction since $f\left(v_{i}\right)=f\left(v_{j}\right)$.

Hence, the claim is proved.
Suppose m pairs of vertices have the same labels. This implies that $(10-2 m)$ vertices have different labels.

- If $0 \leq m \leq 4$, by Claim $1, \lambda_{1,2}\left(C_{10}^{2}\right) \geq 2(m-1)+(10-$ $2 m)+1=9$.
- If $m=5$, by Claim $1, \lambda_{1,2}\left(C_{10}^{2}\right) \geq 2(5-1)=8$.

Then, $\lambda_{1,2}\left(C_{10}^{2}\right) \geq 8$.
On the other hand, define an 8-L(1, 2)-labeling f for C_{10}^{2} as following shows.

$$
\begin{aligned}
f\left(v_{0}\right) & =f\left(v_{5}\right)=0, f\left(v_{1}\right)=f\left(v_{6}\right)=2, f\left(v_{2}\right)=f\left(v_{7}\right) \\
& =4, f\left(v_{3}\right)=f\left(v_{8}\right)=6, f\left(v_{4}\right)=f\left(v_{9}\right)=8
\end{aligned}
$$

It is easy to verify that f satisfies the constraints of $L(1$, 2)-labeling. Hence $\lambda_{1,2}\left(C_{10}^{2}\right)=8$.

Theorem 2.4. $\lambda_{1,2}\left(C_{11}^{2}\right)=6$.
Proof. Let f be an $L(1,2)$-labeling of C_{11}^{2}. By Property 1, $f\left(v_{0}\right)$ is different from $f\left(v_{i}\right)$ for $i=1,2,3,4,7,8,9,10$. Then we have the following cases.

- If all vertices have the different labels, then $\lambda_{1,2}\left(C_{11}^{2}\right) \geq 10$.
- If there exist two vertices which have the same label, by the symmetry of cycle and Property 1, without loss of generality, let $f\left(v_{0}\right)=f\left(v_{5}\right)=a$. Since vertices v_{1}, v_{4}, v_{8} are at distance two from each other, v_{0} is at distance two from v_{4}, v_{8}, and v_{5} is at distance two from v_{1}, v_{8}, then set $\left\{a, f\left(v_{1}\right), f\left(v_{4}\right), f\left(v_{8}\right)\right\}$ are 2 -separated. Then $\lambda_{1,2}\left(C_{11}^{2}\right) \geq 6$.

On the other hand, given an $L(1,2)$-labeling f for C_{11}^{2} as follows.

$$
\begin{aligned}
& f\left(v_{0}\right)=f\left(v_{6}\right)=0, f\left(v_{1}\right)=1, f\left(v_{2}\right)=f\left(v_{7}\right)=2 \\
& f\left(v_{3}\right)=f\left(v_{9}\right)=4, f\left(v_{4}\right)=5, f\left(v_{5}\right)=f\left(v_{10}\right)=6, f\left(v_{8}\right)=3
\end{aligned}
$$

It is easy to verify that f is a $6-L(1,2)$-labeling of C_{11}^{2}. Hence $\lambda_{1,2}\left(C_{11}^{2}\right)=6$.

Let f be an $L(1,2)$-labeling of G and $v_{i} \in V(G)$ for $0 \leq$ $i \leq n-1$. Then $\left(f\left(v_{0}\right), f\left(v_{1}\right), \cdots, f\left(v_{n-1}\right)\right)$ is called label sequence, denoted by $S_{f}(G)$. The set of labels $\left\{f\left(v_{i}\right) \mid v_{i} \in\right.$ $\left.V(G), i \in \mathbb{Z}_{n}\right\}$ is denoted by $f(G)$.

Lemma 2.5. Let n be a positive integer. For $n \geq 13$ and $n \neq 0(\bmod 6), \lambda_{1,2}\left(C_{n}^{2}\right) \geq 6$.

Proof. Suppose $\lambda_{1,2}\left(C_{n}^{2}\right)<6$. Since P_{6}^{2} is an induced subgraph of C_{n}^{2} for $n \geq 13$, then $\lambda_{1,2}\left(C_{n}^{2}\right) \geq \lambda_{1,2}\left(P_{6}^{2}\right)=5$ by Lemma 1.1 and 1.2. Suppose $\lambda_{1,2}\left(C_{n}^{2}\right)=\lambda$ if $n \geq 13$ and $n \neq$ $0(\bmod 6)$. Let f be a $\lambda-L(1,2)$-labeling of C_{n}^{2}.

If a vertex is labeled by 0 , the vertex is called 0 -vertex. After removing 0 -vertices from cycle C_{n}, the resulting graph is a disjoint union of paths. More precisely, suppose the
number of 0 -vertices is m. For convenience, let the cycle $C_{n}=u_{1} P_{1} u_{2} \cdots u_{m} P_{m} u_{1}$ and $f\left(u_{1}\right)=f\left(u_{2}\right)=\cdots=f\left(u_{m}\right)=$ 0 , where P_{i} includes at least one vertex.

Note that each vertex in P_{i} cannot be labeled by 0 .
Claim 2. For $1 \leq i \leq m, P_{i}$ must include five vertices.
Proof of Claim 2. We consider the vertices $u_{i} P_{i} u_{i+1}$ for an arbitrary $i \in\{1,2,3, \cdots, m\}$. Without loss of generality, let $u_{i} P_{i} u_{i+1}=v_{0} v_{1} v_{2} \cdots v_{p} v_{p+1}$, where $f\left(v_{0}\right)=f\left(u_{i}\right)=f\left(u_{i+1}\right)$ $=f\left(v_{p+1}\right)=0$. By Property $1, p \geq 4$.

1. If $p=4$, then $f\left(v_{0}\right)=f\left(v_{5}\right)=0$, by Property $1, f\left(v_{j}\right) \in$ $[2,6)$, where $j=1,2,3,4$. According to the symmetry of cycle, without loss of generality, let $f\left(v_{2}\right) \in[2,3) \cup[3,4)$.

- If $f\left(v_{2}\right) \in[2,3)$, then $f\left(v_{1}\right), f\left(v_{4}\right) \in[3,6)$ since v_{1} and v_{4} are at distance two from one vertex which is labeled by 0 and adjacent to v_{2}. Moreover, v_{1} and v_{4} are distance two apart mutually, then $f\left(v_{1}\right), f\left(v_{4}\right) \in$ $[3,4) \cup[5,6)$. Since v_{3} is adjacent to v_{1} and v_{4}, $f\left(v_{3}\right) \in[4,5)$. Since v_{6} is at distance two from v_{2}, v_{3} and adjacent to v_{5}, basing on the above conclusion, $f\left(v_{6}\right) \geq 6$, where index 6 should be taken in modulo n. It contradicts the hypothesis.
- If $f\left(v_{2}\right) \in[3,4)$, then $f\left(v_{1}\right), f\left(v_{4}\right) \in[2,3) \cup[4,6)$ since v_{1} and v_{4} are at distance two from one vertex which is labeled by 0 and adjacent to v_{2}. Moreover, v_{1} and v_{4} are distance two apart mutually, then one of $f\left(v_{1}\right)$ and $f\left(v_{4}\right)$ lies in $[2,3)$ and $f\left(v_{3}\right) \in[4,6)$. If $f\left(v_{1}\right) \in[2,3)$, by Property 1 , we have $f\left(v_{n-1}\right) \in$ $[1,2)$ since the length of $[2,3)$ is less than 1 . Similarly, by Property $1, f\left(v_{n-2}\right) \in[5,6)$. This forces $f\left(v_{n-3}\right) \in[4,5)$ and hence $f\left(v_{n-4}\right) \in[3,4)$. Since v_{n-5} is distance two apart from v_{n-1} and v_{n-2}, according to the above conclusion and Property 1, $f\left(v_{n-5}\right) \in[3,4)$. It contradicts $f\left(v_{n-4}\right) \in[3,4)$ since the length of $[3,4)$ is less than 1 and vertex v_{n-5} is adjacent to vertex v_{n-4}.
Thus, $f\left(v_{4}\right) \in[2,3)$. Since v_{6} is at distance two from $v_{2}, \quad v_{3}$ and $f\left(v_{5}\right)=0, f\left(v_{6}\right) \in[1,2)$. Recall that $f\left(v_{4}\right) \in[2,3)$ and $f\left(v_{3}\right) \in[4,6)$. Since v_{7} is at distance two from v_{3}, v_{4}, by Property $1, f\left(v_{7}\right) \in[0,1)$. It contradicts $f\left(v_{5}\right)=0$ since the length of $[3,4)$ is less than 1 and $d\left(v_{5}, v_{7}\right)=1$.

2. If $p \geq 6$, then $f\left(v_{i}\right) \in[1,6)$ for $i \in\{1,2,3,4,5,6\}$. Since vertices $v_{1}, v_{2}, \cdots, v_{6}$ induce a subgraph P_{6}^{2} of C_{n}^{2}. By Lemma 1.2, $\lambda_{1,2}\left(P_{6}^{2}\right) \geq 5$, it is a contradiction since the length of $[1,6)$ is less than 5 .

Hence, $p=5$.That is, the claim is proved.
Since $n \neq 0(\bmod 6)$, there exists at least one part P_{s}, which cannot include 5 vertices, for some $s \in\{1,2, \cdots, m\}$. It contradicts to Claim 2. Hence, $\lambda_{1,2}\left(C_{n}^{2}\right) \geq 6$ for $n \neq 0(\bmod 6)$.

Theorem 2.6. $\lambda_{1,2}\left(C_{n}^{2}\right)=7$ for $n=15,16$.
Proof. Suppose $\lambda_{1,2}\left(C_{n}^{2}\right)=\lambda<7$. By Lemma 2.5, $\lambda_{1,2}\left(C_{n}^{2}\right) \geq$ 6 for $n=15,16$. Let f be a $\lambda-L(1,2)$-labeling for graph C_{n}^{2},
where $n=15,16$. It means that $f\left(C_{n}^{2}\right) \subseteq[0,7)$ for $n=15,16$. For convenience, let $[0,7)=\cup_{i=0}^{6} I_{i}$ and the subinterval $I_{i}=$ $[i, i+1)$. It implies that n vertices are divided into seven parts $p_{0}, p_{1}, \cdots, p_{6}$, the labels of vertices in p_{i} lie in I_{i}, where $i \in \mathbb{Z}_{7}$ and $n=15,16$. This forces that

$$
\begin{equation*}
\text { at least one part contains atleast } 3 \text { vertices. } \tag{2.1}
\end{equation*}
$$

By Property 1 , any two vertices in set $\left\{v_{i}, v_{i+1}, v_{i+2}\right.$, $\left.v_{i+3}, v_{i+4}\right\}$ are labeled by 1 -separated labels, where $i \in \mathbb{Z}_{n}$ and the indices should be taken in modulo n. For convenience, let a-vertex represent the vertex whose label lies in I_{a}.

1. If $n=15$, then
p_{i} contains at most three vertices of graph C_{15}^{2}, where $i \in \mathbb{Z}_{7}$.

According to conclusion (2.1) and (2.2), at least one part of $p_{0}, p_{1}, \cdots, p_{6}$ contains 3 and only 3 vertices.Let $p_{i}=\left\{u_{1}, u_{2}, u_{3}\right\}$ for some $i \in \mathbb{Z}_{7}$. Then the i-vertices divide graph C_{15}^{2} into three parts. For convenience, let $C_{15}^{2}=u_{1} P_{1} u_{2} P_{2} u_{3} P_{3} u_{1}$. By Property 1, $\left|P_{s}\right| \geq 4$, where $s=1,2$, 3. Since $\left|P_{1}\right|+\left|P_{2}\right|+\left|P_{3}\right|=12$, then $\left|P_{1}\right|=$ $\left|P_{2}\right|=\left|P_{3}\right|=4$. According to Property $1, f\left(P_{s}\right) \subseteq$ $[0, i-1) \cup[i+2,7)$ for $s=1,2,3$ if the intervals exist. Then the labels of 12 vertices lie in four or five subintervals. That is, we can obtain the following conclusion.

If p_{i} contains 3 vertices, then no vertex lies in $p_{i \pm 1}$ if the parts exist, where $i \in \mathbb{Z}_{7}$.

- If $i \neq 0,6$, then 12 vertices lie in four parts, say $p_{a}, p_{b}, p_{c}, p_{d}$. By (2.2), each of $p_{a}, p_{b}, p_{c}, p_{d}$ contains 3 vertices. According to (2.3), the differences among i, a, b, c, d are at least 2 , it is impossible since $i, a, b, c, d \in \mathbb{Z}_{7}$.
- If $i=0$ or 6 , then 12 vertices lie in five parts, say p_{a}, $p_{b}, p_{c}, p_{d}, p_{e}$. By (2.2), at least two of $p_{a}, p_{b}, p_{c}, p_{d}, p_{e}$ contain 3 vertices. Without loss of generality, let p_{a}, p_{b} contain 3 vertices. by (2.3), at least 3 parts contain no vertices. This implies that four parts contains 15 vertices. It forces that at least one part contains at least 4 vertices, it contradicts the conclusion (2.2).

2. If $n=16$, by Property $1, p_{i}$ contains at most four vertices of graph C_{16}^{2}, where $i \in \mathbb{Z}_{7}$. Suppose p_{i} contains four vertices of graph C_{16}^{2} for some $i \in \mathbb{Z}_{7}$. Let $p_{i}=$ $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Then the i-vertices divide graph C_{16}^{2} into four parts. For convenience, let $C_{16}^{2}=u_{1} P_{1} u_{2} P_{2} u_{3}$ $P_{3} u_{4} P_{4} u_{1}$. By Property $1,\left|P_{s}\right| \geq 4$ for $s=1,2,3,4$. It is a contradiction since $\left|P_{1}\right|+\left|P_{2}\right|+\left|P_{3}\right|+\left|P_{4}\right|+4 \geq 20$ and C_{16}^{2} contains only 16 vertices. Thus,
p_{i} contains at most three vertices of graph C_{16}^{2}, where $i \in \mathbb{Z}_{7}$

According to conclusion (2.1) and (2.4), at least two parts of $p_{0}, p_{1}, \cdots, p_{6}$ contain 3 and only 3 vertices. Let p_{i}, p_{j} contain 3 vertices for some $i, j \in Z_{7}$ and
$i \neq j$.Without loss of generality, let $p_{i}=\left\{v_{0}, v_{5}, v_{10}\right\}$ for some $i \in \mathbb{Z}_{7}$. For convenience, let $C_{16}^{2}=v_{0} P_{1} v_{5} P_{2} v_{10}$ $P_{3} v_{0}$ and $\left|P_{3}\right|=5$ and $\left|P_{1}\right|=\left|P_{2}\right|=4$.

- If $i \neq 0,6$, then $f\left(P_{1}\right), f\left(P_{2}\right) \subseteq[0, i-1) \cup[i+2,7)$ if the intervals exist. It means that no entry of P_{1}, P_{2} lies in p_{i-1}, p_{i}, p_{i+1}. This forces that $f\left(v_{1}\right), f\left(v_{2}\right)$, $f\left(v_{3}\right)$ and $f\left(v_{4}\right)$ lie in four different intervals respectively. Let $f\left(v_{1}\right) \in I_{a}, f\left(v_{2}\right) \in I_{b}, f\left(v_{3}\right) \in I_{c}$, and $f\left(v_{4}\right) \in I_{d}$, where $\{a, b, c, d\}=\mathbb{Z}_{7} \backslash\{i-1, i, i+$ $1\}$. Since $d\left(v_{1}, v_{4}\right)=2,|a-d| \geq 2$. Similarly, $f\left(v_{6}\right), f\left(v_{7}\right), f\left(v_{8}\right), f\left(v_{9}\right) \in I_{a} \cup I_{b} \cup I_{c} \cup I_{d}$. Since v_{6} is at distance two from v_{2} and v_{3} and adjacent to v_{4}, $f\left(v_{6}\right) \notin I_{b} \cup I_{c} \cup I_{d}$, that is, $f\left(v_{6}\right) \in I_{a}$. This implies that $|a-b| \geq 2$ and $|a-c| \geq 2$. Similar to the above discussion, we can obtain that $f\left(v_{7}\right) \in I_{b}$ and $f\left(v_{8}\right) \in$ I_{c}. Since v_{7} is distance two apart from v_{3}, v_{4} and $d\left(v_{8}, v_{4}\right)=2, \quad|b-c| \geq 2,|b-d| \geq 2$ and $|c-d| \geq$ 2. According to the above conclusion, any two numbers of i, a, b, c, d are 2 -separated, it is impossible since $i, a, b, c, d \in \mathbb{Z}_{7}$.
- If $i=0$ or 6 , according to the above case, $j \in\{0,6\}$. Without loss of generality, let $i=0, j=6$. Then, $\left|p_{0}\right|=\left|p_{6}\right|=3$. It means that $p_{0}=\left\{v_{0}, v_{5}, v_{10}\right\}$ and each part of P_{1}, P_{2} and P_{3} contains one vertex which lies in p_{6}. That is, $f\left(v_{1}\right), f\left(v_{2}\right), f\left(v_{3}\right) \in[2,7)$. According to the symmetry of the graph, without loss of generality, let one of $f\left(v_{11}\right), f\left(v_{12}\right)$ and $f\left(v_{13}\right)$ lie in I_{6}.
(a) If $f\left(v_{11}\right) \in I_{6}$, by the Property $1, f\left(v_{6}\right) \in I_{6}$ and then $f\left(v_{1}\right) \in I_{6}$. This forces that $f\left(v_{3}\right), f\left(v_{4}\right)$, $f\left(v_{7}\right)$ lie in I_{2}, I_{3}, I_{4} separately. It is impossible since v_{7} is at distance two from vertices v_{3} and v_{4} and $f\left(v_{7}\right)$ should be 2 -separated from $f\left(v_{3}\right)$ and $f\left(v_{4}\right)$ but the length of $I_{2} \cup I_{3}=[2,4)$ is less than 2.
(b) If $f\left(v_{12}\right) \in I_{6}$, then $f\left(v_{6}\right) \in I_{6}$ or $f\left(v_{7}\right) \in I_{6}$.
- Suppose $f\left(v_{6}\right) \in I_{6}$. Then $f\left(v_{1}\right) \in I_{6}$. It forces that $f\left(v_{2}\right), f\left(v_{3}\right), f\left(v_{4}\right) \in I_{2} \cup I_{3} \cup I_{4}$. According to the above conclusion, we have that $f\left(v_{7}\right) \in I_{5}$ and then $f\left(v_{15}\right) \in I_{1}$. That is, $f\left(v_{2}\right) \in I_{2}, f\left(v_{3}\right) \in I_{3}, f\left(v_{4}\right) \in I_{4}$. It forces $f\left(v_{11}\right) \in I_{3}$. Since vertex v_{14} is at distance two from vertices v_{1}, v_{2}, v_{11} and $f\left(v_{1}\right), f\left(v_{2}\right), f\left(v_{11}\right) \in I_{3} \cup I_{4} \cup I_{6}, f\left(v_{14}\right) \in I_{0} \cup I_{1}$. It is impossible since v_{14} is adjacent to vertices v_{0}, v_{15} whose labels lie in I_{0} and I_{1}.
- Suppose $f\left(v_{7}\right) \in I_{6}$. According to the Property $1, f\left(v_{2}\right) \in I_{6}$ or $f\left(v_{1}\right) \in I_{6}$. If $f\left(v_{2}\right) \in I_{6}$, then $f\left(v_{3}\right), f\left(v_{4}\right), f\left(v_{6}\right), f\left(v_{8}\right), f\left(v_{9}\right) \in$ $I_{2} \cup I_{3} \cup I_{4}$. Since v_{6} is at distance two from v_{3} and $v_{9}, f\left(v_{3}\right), f\left(v_{6}\right), f\left(v_{9}\right) \in I_{2} \cup I_{4}$. That is, $f\left(v_{4}\right), f\left(v_{8}\right) \in I_{3}$. It is a contradiction since $d\left(v_{4}, v_{8}\right)=2$ and the length of I_{3} is less than 1 . Thus, $f\left(v_{1}\right) \in I_{6}$. Basing on the above conclusion, we have $f\left(v_{3}\right), f\left(v_{4}\right), f\left(v_{8}\right), f\left(v_{9}\right)$, $f\left(v_{13}\right) \in I_{2} \cup I_{3} \cup I_{4}$. Since $d\left(v_{4}, v_{8}\right)=d\left(v_{9}\right.$, $\left.v_{13}\right)=2, f\left(v_{4}\right), f\left(v_{8}\right)$ lie in I_{2} and I_{4} separately, so do $f\left(v_{9}\right), f\left(v_{13}\right)$. It means that $f\left(v_{8}\right)$,
$f\left(v_{9}\right) \in I_{2} \cup I_{4}$.
Recall that $f\left(v_{7}\right) \in I_{6}$ and $f\left(v_{10}\right) \in I_{0}$, this forces $f\left(v_{11}\right) \in I_{1}$. It implies that $f\left(v_{9}\right) \in$ $I_{2}, f\left(v_{8}\right) \in I_{4}$, and then $f\left(v_{13}\right) \in I_{4}, f\left(v_{4}\right) \in$ I_{2}. Since v_{14} is at distance two from v_{11} and $v_{1}, f\left(v_{14}\right) \in I_{3}$. Similarly, we obtain that $f\left(v_{15}\right) \in I_{5}$. Since v_{15} is distance two apart from v_{2} and v_{3} which are adjacent to v_{4}, $f\left(v_{2}\right), f\left(v_{3}\right) \in I_{3}$. It is impossible since the length of I_{3} is less than 1 .
(c) If $f\left(v_{13}\right) \in I_{6}$, then $f\left(v_{8}\right) \in I_{6}$ or $f\left(v_{7}\right) \in I_{6}$.
- Suppose $f\left(v_{7}\right) \in I_{6}$. Then $f\left(v_{2}\right) \in I_{6}$. It forces that $f\left(v_{1}\right), f\left(v_{3}\right), f\left(v_{4}\right), f\left(v_{6}\right) \in I_{2} \cup$ $I_{3} \cup I_{4}$. Since $d\left(v_{1}, v_{4}\right)=2, f\left(v_{1}\right), f\left(v_{4}\right) \in$ $I_{2} \cup I_{4}$. This forces that $f\left(v_{3}\right) \in I_{3}$. Since v_{3} is distance two apart from $v_{6}, f\left(v_{6}\right) \notin I_{2} \cup$ $I_{3} \cup I_{4}$. It is a contradiction since $f\left(v_{6}\right) \in$ $I_{2} \cup I_{3} \cup I_{4}$.
- Suppose $f\left(v_{8}\right) \in I_{6}$. By the symmetry of the graph and the above case, $f\left(v_{3}\right) \notin I_{6}$, that is, $f\left(v_{2}\right) \in I_{6}$. It causes $f\left(v_{1}\right), f\left(v_{4}\right)$, $f\left(v_{6}\right), f\left(v_{9}\right) \in I_{2} \cup I_{3} \cup I_{4}$. Since $d\left(v_{1}, v_{4}\right)=$ 2, then $f\left(v_{1}\right), f\left(v_{4}\right)$ lie in I_{2} and I_{4} separately. Similarly, $f\left(v_{6}\right), f\left(v_{9}\right)$ also lie in I_{2} and I_{4} separately. Since v_{4}, v_{6} are two adjacent vertices, $f\left(v_{4}\right)$ and $f\left(v_{6}\right)$ are 1 -separated. That is, $f\left(v_{4}\right)$ and $f\left(v_{6}\right)$ lie in I_{2} and I_{4} separately and so do $f\left(v_{9}\right)$ and $f\left(v_{1}\right)$. By the symmetry of the graph, without loss of generality, let $f\left(v_{9}\right) \in I_{2}$ and $f\left(v_{1}\right) \in I_{4}$. Since v_{12} is at distance two from v_{8}, v_{9} and adjacent to $v_{10}, f\left(v_{12}\right) \in I_{4}$. Similar to the above discussion, $f\left(v_{14}\right) \in I_{2}$. Moreover, $d\left(v_{11}, v_{14}\right)=d\left(v_{11}, v_{8}\right)=2$ and $d\left(v_{11}, v_{10}\right)=$ $d\left(v_{11}, v_{12}\right)=1, f\left(v_{11}\right) \notin I_{0} \cup I_{1} \cup I_{2} \cup I_{3} \cup I_{4} \cup$ $I_{5} \cup I_{6}$. It is a contradiction.
Thus, $\lambda_{1,2}\left(C_{n}^{2}\right) \geq 7$ for $n=15,16$.
On the other hand, given two $L(1,2)$-labelings f_{1} and f_{2} for C_{15}^{2}, C_{16}^{2}, respectively, as follows.

$$
\begin{aligned}
& S_{f_{1}}\left(C_{15}^{2}\right)=(0,1,2,3,4,5,6,0,1,2,3,4,5,6,7) \\
& S_{f_{2}}\left(C_{16}^{2}\right)=(0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7)
\end{aligned}
$$

It is easy to verify that f_{1}, f_{2} are two $7-L(1,2)$-labelings of C_{15}^{2}, C_{16}^{2}, respectively.
Thus, $\lambda_{1,2}\left(C_{n}^{2}\right) \leq 7$ for $n=15,16$.
Hence, $\lambda_{1,2}\left(C_{n}^{2}\right)=7$ for $n=15,16$.
Theorem 2.7. $\quad \lambda_{1,2}\left(C_{n}^{2}\right)=6 \quad$ for $\quad n \geq 13, n \neq 15,16$ and $n \neq 0(\bmod 6)$.

Proof. By Lemma 2.5, $\lambda_{1,2}\left(C_{n}^{2}\right) \geq 6$ for $n \geq 13$ and $n \neq$ $0(\bmod 6)$.

On the other hand, define several $L(1,2)$-labelings for C_{n}^{2} as follows.

1. For $n \equiv 1(\bmod 6)$, given an $L(1,2)$-labelings f_{1} for C_{n}^{2} as follows.
$f_{1}\left(v_{i}\right)=[i]_{6}$ for $0 \leq i \leq n-2 ;$
$f_{1}\left(v_{n-1}\right)=6$.
2. For $n \equiv 2(\bmod 6)$, given an $L(1,2)$-labelings f_{2} for C_{n}^{2} as follows.
$f_{2}\left(v_{i}\right)=[i]_{6}$ for $0 \leq i \leq n-15 ;$
$f_{2}\left(v_{i}\right)=[i-n+14]_{7}$ for $n-14 \leq i \leq n-1$.
3. For $n \equiv 3(\bmod 6)$, given an $L(1,2)$-labelings f_{3} for C_{n}^{2} as follows.
$f_{3}\left(v_{i}\right)=[i]_{6}$ for $0 \leq i \leq n-22$;
$f_{3}\left(v_{i}\right)=[i-n+21]_{7}$ for $n-21 \leq i \leq n-1$.
4. For $n \equiv 4(\bmod 6)$, given an $L(1,2)$-labelings f_{4} for C_{n}^{2} as follows.
$f_{4}\left(v_{i}\right)=[i]_{6}$ for $0 \leq i \leq n-29$;
$f_{4}\left(v_{i}\right)=[i-n+28]_{7}$ for $n-28 \leq i \leq n-1$.
5. For $n \equiv 5(\bmod 6)$, given an $L(1,2)$-labelings f_{5} for C_{n}^{2} as follows.
$f_{5}\left(v_{i}\right)=[i]_{6}$ for $0 \leq i \leq n-36$;
$f_{5}\left(v_{i}\right)=[i-n+35]_{7}$ for $n-35 \leq i \leq n-1$.
6. For $n=17$, given an $L(1,2)$-labeling f_{6} for C_{17}^{2} as follows.

$$
S_{f_{6}}\left(C_{17}^{2}\right)=(0,1,2,4,5,6,0,2,3,4,5,0,1,2,3,4,6)
$$

7. When $n=22,23,29$, given an $L(1,2)$-labelings f_{7}, f_{8} and f_{9} for C_{22}^{2}, C_{23}^{2} and C_{29}^{2}, respectively, as follows.

$$
\begin{aligned}
S_{f_{7}}\left(C_{22}^{2}\right)= & (0,1,2,4,5,6,0,2,3,4,6,0,1,2,4,5,6,0,2,3,4,6) ; \\
S_{f_{8}}\left(C_{23}^{2}\right)= & (0,1,2,3,4,5,6,0,2,3,4,6,0,1,2,4,5,6,0,2,3,4,6) ; \\
S_{f_{9}}\left(C_{29}^{2}\right)= & (0,1,2,3,4,5,6,0,1,2,4,5,6,0,2,3,4,6,0,1,2,4, \\
& 5,6,0,2,3,4,6) .
\end{aligned}
$$

It is not difficult to verify that f_{i} satisfies the constraints of 6-$L(1,2)$-labeling, where $i=1,2, \cdots, 9$, here we omit the detail. Then $\lambda_{1,2}\left(C_{n}^{2}\right) \leq 6$ for $n \geq 13, n \neq 15,16$ and $n \neq 0(\bmod 6)$.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was completed with the support of National Natural Science Foundation of China10.13039/501100001809 (No.11601391).

References

[1] Bertossi, A. A, Bonuccelli, M. A. (1995). Code assignment for hidden terminal interference avoidance in multihop packet radio networks. IEEE/ACM Trans. Netw. 3(4):441-449.
[2] Calamoneri, T. (2011). The $L(h, k)$-labelling problem: An updated survey and annotated bibliography. Comput. J. 54(8): 1344-1371.
[3] Calamoneri, T., Pelc, A, Petreschi, R. (2006). Labeling trees with a condition at distance two. Discrete Math. 306(14): 1534-1539.
[4] Griggs, J. R, Jin, X. T. (2007). Recent progress in mathematics and engineering on optimal graph labellings with distance conditions. J. Comb. Optim. 14(2-3):249-257.
[5] Jayasree, K. R, Nicholas, T. (2011). The minimal $L(1,2)$-labelings of generalized Petersen graphs. Int. J. Eng. Sci. Technol. 3(1):318-328.
[6] Jin, X. T, Yeh, R. K. (2005). Graph distance-dependent labeling related to code assignment in computer networks. Nav. Res. Logist. 52(2):159-164.
[7] Lam, P. C. B., Lin, W, Wu, J. (2007). $L(j, k)$-labellings and circular $L(j, k)$-labellings of products of complete graphs. J. Comb. Optim. 14(2-3):219-227.
[8] Niu, Q. (2007). L(j, k)-labeling of graph and edge span. M.Phil. Thesis. Southeast University, Nanjing, China.
[9] Shiu, W. C, Wu, Q. (2013). $L(j, k)$-labeling number of direct product of path and cycle. Acta Math. Sin-English. Ser. 29(8): 1437-1448.
[10] Wu, Q, Shiu, W. C. (2017). $L(j, k)$-labeling numbers of square of paths. AKCE Int. J. Graphs Comb. 14(3):307-316.
[11] Wu, Q. (2018). $L(j, k)$-labeling number of generalized Petersen graph. IOP Conf. Ser. Mater. Sci. Eng. 466:012084.
[12] Wu, Q. (2018). $L(j, k)$-labeling number of Cactus graph. IOP Conf. Ser. Mater. Sci. Eng. 466:012082.
[13] Wu, Q, Shiu, W. C. (2017). Circular $L(j, k)$-labeling numbers of square of paths. J. Comb. Number Theory 9(1):41-46.
[14] Wu, Q., Shiu, W. C, Sun, P. K. (2014). Circular $L(j, k)$-labeling number of direct product of path and cycle. J. Comb. Optim. 27(2):355-368.
[15] Wu, Q, Lin, W. (2010). Circular $L(j, k)$-labeling numbers of trees and products of graphs. J. Southeast Univ. 26(1):142-145.
[16] Yeh, R. K. (2006). A survey on labeling graphs with a condition at distance two. Discrete Math. 306(12):1217-1231.

[^0]: CONTACT Qiong Wu wuqiong@tute.edu.cn Department of Computational Science, Tianjin University of Technology and Education, Tianjin 300222, China. © 2020 The Author(s). Published with license by Taylor \& Francis Group, LLC
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

