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On irreducible no-hole L(2, 1)-coloring of Cartesian product of trees with paths

Nibedita Mandal† and Pratima Panigrahi

Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, India

ABSTRACT
An L(2, 1)-coloring of a graph G is a mapping f : VðGÞ ! Z

þ [ f0g such that jfðuÞ � fðvÞj � 2 for
all edges uv of G, and jfðuÞ � fðvÞj � 1 if u and v are at distance two in G. The span of an L(2, 1)-
coloring f of G, denoted by span(f), is max ffðvÞ : v 2 VðGÞg: The span of G, denoted by kðGÞ, is
the minimum span of all possible L(2, 1)-colorings of G. If f is an L(2, 1)-coloring of a graph G with
span k then an integer l is a hole in f if l 2 ð0, kÞ and there is no vertex v in G such that f(v) ¼ l. A
no-hole coloring is defined to be an L(2, 1)-coloring with no hole in it. An L(2, 1)-coloring is said to
be irreducible if the color of none of the vertices in the graph can be decreased and yield another
L(2, 1)-coloring of the same graph. An irreducible no-hole coloring of a graph G, in short inh-color-
ing of G, is an L(2, 1)-coloring of G which is both irreducible and no-hole. A graph G is inh-color-
able if there exists an inh-coloring of it. For an inh-colorable graph G the lower inh-span or simply
inh-span of G, denoted by kinhðGÞ, is defined as kinhðGÞ ¼ minfspan ðfÞ : f is an inh-coloring of G}.
In this paper, we prove that the Cartesian product of trees with paths are inh-colorable.
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1. Introduction

The channel assignment problem is to assign frequencies to
a given group of radio transmitters so that interfering trans-
mitters are assigned frequencies with at least a minimum
allowed separation. Griggs and Yeh [3] mentioned that
Roberts proposed the problem of efficiently assigning radio
channels to transmitters at several locations, using nonnega-
tive integers to represent channels, so that close locations
receive different channels, and channels for very close loca-
tions are at least two apart such that these channels would
not interfere with each other. This problem can be modeled
as a graph coloring problem where transmitters are repre-
sented by vertices, frequencies are represented by colors
(non-negative integers), and based on the proximity of the
transmitters and power of transmissions, edges are placed
between vertices to represent possible interference. Motivated
by this problem, Griggs and Yeh [3] proposed L(2, 1)-coloring
problem of graphs. An L(2, 1)-coloring (or labeling) of a graph
G is a mapping f : VðGÞ ! Z

þ [ f0g such that jf ðuÞ �
f ðvÞj � 2 for all edges uv of G, and jf ðuÞ � f ðvÞj � 1 if
dðu, vÞ ¼ 2: The span of an L(2, 1)-coloring f of a graph G,
denoted by span(f), is equal to maxff ðvÞ : v 2 VðGÞg: The
span of a graph G, denoted by kðGÞ, is equal to minf
spanðf Þ : f is an L(2, 1)-coloring of Gg: An L(2, 1)-coloring of
a graph G with span equal to kðGÞ is called a span coloring
of G.

We denote the maximum degree of a graph G by DðGÞ,
unless otherwise stated. Griggs and Yeh [3] found the span

of paths, cycles, and obtained upper and lower bounds for
the span of hypercubes. They proved that for a tree T,
DðTÞ þ 1 � kðTÞ � DðTÞ þ 2: Griggs and Yeh [3] also con-
jectured the following.

Conjecture 1.1 [3]. For any graph G with DðGÞ �
2, kðGÞ � DðGÞ2:

We refer the following proposition and lemma due to
Griggs and Yeh [3] in the sequel.

Proposition 1.2 [3]. For any graph G, kðGÞ � Dþ 1.
Further, if kðGÞ ¼ Dþ 1 then in any span coloring of G, the
maximum degree vertices must be colored with 0 (or Dþ 1Þ
and its neighbors must be colored with 2þ i (or iÞ, i ¼
0, 1, � � � , D� 1:

Lemma 1.3 [3]. If a graph G contains three vertices with
maximum degree DðGÞ � 2, and one of them is adjacent to
the other two vertices then kðGÞ � DðGÞ þ 2:

For any two graphs G and H, a graph on the vertex set
VðGÞ � VðHÞ is called the Cartesian product of G and H,
denoted by GwH, if vertices ðx, yÞ and ðx0, y0Þ are adjacent
whenever x ¼ x0 and yy0 2 EðHÞ or xx0 2 EðGÞ and y ¼ y0:
Georges et al. [2] obtained a relation between the span of a
graph and the path covering number of its complement. In
the same paper, they also found the span of the Cartesian
product of complete graphs. Whittlesey et al. [19] studied
the L(2, 1)-coloring of hypercubes and the Cartesian product
of paths. Kuo and Yan [9] worked on the L(2, 1)-coloring of
the Cartesian product of a cycle and a path. Shao and Yeh
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[18] proved that the Griggs and Yeh conjecture is true for
the Cartesian product of graphs. The L(2, 1)-coloring of the
Cartesian product of cycles were studied by Jha et al. [6],
and Schwarz and Troxell [17]. Then Kim et al. [8] studied
the L(2, 1)-coloring of the Cartesian product of a complete
graph and a cycle.

In general, for a non-negative integer d, an Lðd, 1Þ-color-
ing of a graph G is a vertex coloring f : VðGÞ ! Zþ [ f0g
such that jf ðuÞ � f ðvÞj � d for all edges uv of G, and
jf ðuÞ � f ðvÞj � 1 if dðu, vÞ ¼ 2: The span of an Lðd, 1Þ-color-
ing f of a graph G is equal to maxff ðvÞ : v 2 VðGÞg: The

Lðd, 1Þ-span of a graph G, denoted by kd1ðGÞ, is equal to the
minimum span over all possible Lðd, 1Þ-colorings of G. For
d � 2, a k-circular Lðd, 1Þ-coloring of a graph G is
a function

f : VðGÞ ! f0, 1, � � � , k� 1g such that

jf ðuÞ � f ðvÞjk �
d if dðu, vÞ ¼ 1,

1 if dðu, vÞ ¼ 2,

(

where jxjk ¼ minfjxj, k� jxjg is the circular difference mod-
ulo k. For any positive integer k the k-circular Lðd, 1Þ-color-
ing was introduced by Heuvel et al. [4]. Karst et al. [7]
studied the L(2, 1)-coloring of the Cartesian Product of a
flower and a path. In the sequel we use the following the-
orem by Karst et al. [7].

Theorem 1.4. [Theorem 2.1, [7]] Let Pn ¼ u1u2 � � � un. Let f
be a k-circular L(3, 1)-coloring of a graph G where k � 5. Let
g be a coloring of the graph Gw Pn defined as gðx, uiÞ ¼
f ðxÞ þ 2i� 2 (mod kÞ, for x 2 VðGÞ. Then g is an L(2, 1)-
coloring of Gw Pn with spanðgÞ � k� 1:

For a graph G and an L(2, 1)-coloring f of it with span k,
an integer l is called a hole in f if l 2 ð0, kÞ and there is no
vertex v in G such that f(v) ¼ l. An L(2, 1)-coloring f of a
graph G with no hole in it is called a no-hole coloring of G.
Frequencies are generally used in a block. Fishburn and
Roberts [1] introduced no-hole coloring of graphs. An L(2,
1)-coloring f of a graph G is reducible if there exists another
L(2, 1)-coloring g of G such that gðuÞ � f ðuÞ for all vertices
u 2 VðGÞ and the strict inequality holds for at least one.
Otherwise f is said to be irreducible. An irreducible coloring
with no hole in it is called irreducible no-hole coloring and is
referred as an inh-coloring. A graph is called inh-colorable if
there exists an inh-coloring of it. For an inh-colorable graph
G, the lower inh-span or simply inh-span of G, denoted by
kinhðGÞ, is defined as kinhðGÞ ¼ minfspan ðf Þ : f is an inh-
coloring of G}. Irreducibility assures no wastage of color.

Laskar and Villalpando [11] introduced irreducible no-
hole coloring of graphs and obtained upper and lower
bounds for inh-span of unicyclic graph and triangular latti-
ces. Laskar et al. [10] proved that every tree T different
from a star is inh-colorable with kinhðTÞ ¼ kðTÞ: Jacob et al.
[5] studied irreducible no-hole coloring of bipartite graphs
and proved that for n,m � 3, kinhðPn w PmÞ � 6, and equal-
ity for n,m � 4; for n,m � 3, kinhðKn wKmÞ ¼ mn� 1; and
for n � 4,m � 2, kinhðKn w PmÞ ¼ 2n� 1: Mandal and

Panigrahi [12] solved some open problems related to irredu-
cible no-hole coloring of graphs. The same authors also
studied inh-colorability of hypercubes [13], subdivision of
graphs [14], and Cartesian product of a complete graph and
a cycle [15].

The following result given in [16] will be useful in
the sequel.

Lemma 1.5 [16]. Let G be a graph and G1 be a subgraph of
it. If there is an L(2, 1)-coloring f of G with span k which
induces an inh-coloring of G1 with span greater than or equal
to k�1, then G is inh-colorable and kinhðGÞ � k:

In this paper, we prove that for n � 3, the Cartesian
product of trees with paths Pn are inh-colorable and give
upper bounds to the inh-span of these graphs.

2. Our results

We first investigate inh-colorability of the Cartesian product
of star graphs K1,m with paths Pn.

Theorem 2.1. The Cartesian product of star graphs K1,m

with paths Pn are inh-colorable and kinhðK1, 3 w P2Þ ¼
6, kinhðK1,m w P2Þ ¼ mþ 2 for m � 4. Furthermore for
m, n � 3, kinhðK1,m w PnÞ � mþ 4 and the equality holds
for n � 5:

Proof. Let Pn ¼ u1u2 � � � un: Let for m � 3, VðK1,mÞ ¼
fv,w1,w2, � � � ,wmg where v is the maximum degree vertex
of K1,m:

We prove that kinhðK1, 3 w P2Þ ¼ 6: We give an inh-color-
ing f to K1, 3 w P2 with span 6: f ðv, u1Þ ¼ 0, f ðw1, u1Þ ¼
3, f ðw2, u1Þ ¼ 4, f ðw3, u1Þ ¼ 5 and f ðv, u2Þ ¼ 6, f ðw1, u2Þ ¼
1, f ðw2, u2Þ ¼ 2, f ðw3, u2Þ ¼ 3: We can easily check that f
is an inh-coloring. Thus kinhðK1, 3 w P2Þ � 6: Since
DðK1, 3 w P2Þ ¼ 4, kðK1, 3 w P2Þ � 5: Let kðK1, 3 w P2Þ ¼ 5 and
g be an L(2, 1)-coloring of K1, 3 w P2 with span 5. From
Proposition 1.2 we conclude that ðv, u1Þ and ðv, u2Þ have col-
ors 0 and 5 since they are adjacent maximum degree verti-
ces. We may assume that gðv, u1Þ ¼ 0 and gðv, u2Þ ¼ 5:
Hence the vertices ðw1, u2Þ, ðw2, u2Þ and ðw3, u2Þ have colors
1, 2, and 3. Then only the colors 3 and 4 are available for
the vertices ðw1, u1Þ, ðw2, u1Þ and ðw3, u1Þ, which leads to a
contradiction. Thus kinhðK1, 3 w P2Þ � kðK1, 3 wP2Þ � 6 and
so we get kinhðK1, 3 w P2Þ ¼ 6:

For m � 4 we give an inh-coloring f1 of K1,m w P2 with
span mþ 2 as follows: f1ðv, u1Þ ¼ 0, f1ðwi, u1Þ ¼ iþ 1 for
1 � i � m and f1ðv, u2Þ ¼ mþ 2, f1ðw1, u2Þ ¼ m, f1ðwi, u2Þ ¼
i� 1 for 2 � i � m: We check that f1 is an inh-coloring of
K1,m w P2 for m � 4: Thus we get kinhðK1,m w P2Þ � mþ 2:
Since DðK1,m wP2Þ ¼ mþ 1,kinhðK1,m wP2Þ � kðK1,m wP2Þ �
mþ 2: Hence kinhðK1,m wP2Þ ¼ mþ 2:

Now we consider the case m, n � 3: We give an L(3, 1)-
coloring f2 of K1,m with span mþ 2 as follows: f2ðvÞ ¼
0, f2ðwiÞ ¼ iþ 2 for 1 � i � m: Then f2 is a mþ 5-circular
L(3, 1)-coloring. From f2 we construct an L(2, 1)-coloring f 02
of K1,m w Pn as f 02ðx, uiÞ ¼ f2ðxÞ þ 2i� 2 (mod ðmþ 5ÞÞ, for
x 2 VðK1,mÞ: Then span ðf 02Þ ¼ mþ 4: Consider the sub-
graph G of K1,m w Pn induced on the vertex set
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fðv, u1Þ, ðv, u2Þ, ðv, u3Þ, ðwi, u1Þ, ðwi, u2Þ, ðwm�1, u3Þ, ðwm, u3Þ :
1 � i � mg: We check that f 02 induces an irreducible
coloring of G with span mþ 4. We have f 02ðv, u1Þ ¼
0, f 02ðwm, u3Þ ¼ 1, f 02ðv, u2Þ ¼ 2, f 02ðw1, u1Þ ¼ 3, f 02ðv, u3Þ ¼ 4
and f 02ðwi, u2Þ ¼ i þ 4 for 1 � i � m: Hence f 02 induces a
no-hole coloring of G. Thus f 02 induces an inh-coloring of G
with span mþ 4. Then from Lemma 1.5, for m, n �
3, kinhðK1,m w PnÞ � m þ 4: Now DðK1,m w PnÞ ¼ m þ 2: If
n � 5 then K1,m w Pn contains a vertex of maximum degree
adjacent to two other vertices of maximum degree. Then
from Lemma 1.3, kðK1,m w PnÞ � m þ 4: Thus we get for
m � 3, n � 5, kinhðK1,m w PnÞ � m þ 4: Hence for m �
3, n � 5, kinhðK1,m w PnÞ ¼ m þ 4: w

In the rest of the paper we use greedy Lðd, 1Þ-coloring of
a graph which is given below.

Algorithm 2.2 (Greedy coloring). Let G be a graph whose
few vertices might have been colored before.

1. Order the vertices of the given graph as u1, u2, � � � , un
such that all colored vertices (if any) appear at the
beginning of the list.

2. Let ui be the first uncolored vertex that appears in the list.
3. Color ui with the smallest possible color k such that no

lower indexed neighbor of ui in the list is colored with
k� d þ 1, k� d þ 2, � � � , k – 1, k, kþ 1, � � � , kþ d � 2
or kþ d � 1 and no lower indexed vertex at distance
two from ui is colored with k.

4. If all the vertices of the graph have received color then
stop; otherwise set i ¼ iþ 1 and go to 3.

Theorem 2.3. Algorithm 2.2 gives an Lðd, 1Þ-coloring of G if
and only if the pre-colored vertices of G satisfy constraints of
Lðd, 1Þ-coloring in the graph G.

Now we investigate the inh-colorability of the Cartesian
product of trees, different from star graphs, with paths.

Theorem 2.4. Let T be a tree with maximum degree D � 3.
If T has a maximum degree vertex v such that no vertex
adjacent to v is a leaf then for any path Pn, n � 3,T w Pn is
inh-colorable and kinhðT w PnÞ � Dþ 6:

Proof. Let Pn ¼ u1u2 � � � un: We give a ðDþ 7Þ-circular L(3,
1)-coloring f of T as below. We first order the vertex set of
T as VðTÞ ¼ fv1, v2, � � � , vmg, where v1 ¼ v; and v2, v3, � � � ,
vDþ1 are the neighbors of v1; for Dþ 2 � i � 2Dþ 1, vi is a
neighbor of vi�D and for all i> 1, vi has exactly one neigh-
bor in fv1, � � � , vi�1g: This can be done since T a tree. Now
we describe an L(3, 1)-coloring f of T with span less than or
equal to Dþ 4: We color v1 with 1 and then the other verti-
ces greedily following Algorithm 2.2. Since each vi, 2 � i �
m, is adjacent to only one vj, j< i, and is distance two away
from at most D� 1 vertices vk, k< i, there are at most Dþ
4 colors that can not be used by vi. Hence at least one color
in ½0,Dþ 4� is available for vi. Thus span ðf Þ � Dþ 4 and
we check that f is a ðDþ 7Þ-circular L(3, 1)-coloring. Note
that, f ðv1Þ ¼ 1, f ðviÞ ¼ iþ 2 for 2 � i � Dþ 1, and f ðviÞ ¼
0 for Dþ 2 � i � 2Dþ 1: From f we construct an L(2, 1)-

coloring g of T w Pn as gðx, uiÞ ¼ f ðxÞ þ 2i� 2 (mod ðDþ
7ÞÞ, for x 2 VðTÞ: Then span ðgÞ � Dþ 6:

Consider the subgraph G1 of T w Pn induced on the vertex
set fðvi1 , u1Þ, ðvi2 , u2Þ, ðv1, u3Þ, ðvDþ1, u3Þ : 1 � i1 � 2Dþ 1,
1 � i2 � Dþ 2g: We prove that g induces an inh-coloring of
G1 with span Dþ 5: Figure 1 illustrates the coloring g of G1.
In the following we name vertices and give reasons for which
their colors can not be reduced: ðvDþ1, u3Þ and ðvj, u1Þ,Dþ
2 � j � 2Dþ 1 because g assigns the color 0 to them; ðv1, u1Þ
because gðv1, u1Þ ¼ 1 and it is at distance two from the vertex
ðvDþ2, u1Þ colored with 0; ðvDþ2, u2Þ because gðvDþ2, u2Þ ¼ 2
and it is adjacent to the vertex ðvDþ2, u1Þ colored with 0;
ðv1, u2Þ because gðv1, u2Þ ¼ 3 and it is adjacent to the vertex
ðv1, u1Þ colored with 1; ðvj, u1Þ, 2 � j � Dþ 1, because
gðvj, u1Þ ¼ jþ 2 and ðvj, u1Þ is adjacent to the vertex ðv1, u1Þ
colored with 1 and at distance two from the vertex ðv1, u2Þ
colored with 3 and the vertices ðvk, u1Þ colored with kþ 2 for
2 � k � j� 1; ðv1, u3Þ because gðv1, u3Þ ¼ 5 and it is adjacent
to the vertices ðvDþ1, u3Þ and ðv1, u2Þ colored with 0 and 3,
respectively; ðvj, u2Þ, 2 � j � Dþ 1 because gðvj, u2Þ ¼ jþ 4
and ðvj, u2Þ is adjacent to the vertex ðv1, u2Þ colored with 3,
and at distance two from the vertices ðvjþD, u1Þ, ðv1, u1Þ and
ðv1, u3Þ colored with 0, 1, and 5, respectively and the vertices
ðvk, u2Þ colored with kþ 4 for 2 � k � j� 1: Thus g induces
an irreducible coloring of G1 with span Dþ 5: Since all the
colors from 0 to Dþ 5 are used g induces an inh-coloring of
G1. Hence from Lemma 1.5, T w Pn is inh-colorable and
kinhðT w PnÞ � Dþ 6: w

Theorem 2.5. Let T be a tree with maximum degree D � 3.
If T satisfies the condition that each maximum degree vertex
is adjacent to a leaf then for any path Pn, n � 3,T w Pn is
inh-colorable and kinhðT w PnÞ � Dþ 6:

Proof. Let Pn ¼ u1u2 � � � un: Let v be a maximum degree ver-
tex of T. We consider three cases depending on the values
of D.

Figure 1. The coloring g of G1.
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Case 1: In this case we take D � 5: We give a ðDþ 7Þ-circu-
lar L(3, 1)-coloring f1 of T as below. We first order V(T) so
that VðTÞ ¼ fv1, v2, � � � , vmg, where v1 ¼ v; v2, v3, � � � , vDþ1

are the neighbors of v1 such that v2 is not a leaf; vDþ2 is a
vertex adjacent to v2; vD�2 is a leaf and for all i> 1, vi has
exactly one neighbor in fv1, � � � , vi�1g: This can be done
since T a tree. Now we describe an L(3, 1)-coloring f1 of T
with span less than or equal to Dþ 4: We color v1 as 1,
then the other vertices greedily following Algorithm 2.2. We
check that span ðf1Þ � Dþ 4 and f1 is a ðDþ 7Þ-circular
L(3, 1)-coloring. Note that, f1ðv1Þ ¼ 1, for 2 � i �
Dþ 1, f1ðviÞ ¼ iþ 2, f1ðvDþ2Þ ¼ 0: From f1 we construct an
L(2, 1)-coloring g1 of T w Pn as g1ðx, uiÞ ¼ f1ðxÞ þ 2i� 2
(mod ðDþ 7ÞÞ, for x 2 VðTÞ: Then span ðg1Þ � Dþ 6:
Now g1ðvD�2, u2Þ ¼ Dþ 2: Since vD�2 is a leaf of T, the ver-
tices adjacent to ðvD�2, u2Þ are ðv1, u2Þ, ðvD�2, u1Þ and
ðvD�2, u3Þ: Since g1ðv1, u2Þ ¼ 3, g1ðvD�2, u1Þ ¼ D and
g1ðvD�2, u3Þ ¼ Dþ 4, no vertex adjacent to ðvD�1, u2Þ is col-
ored with 0 or 1. The vertices at distance two from
ðvD�2, u2Þ are ðvD�2, u4Þ, ðv1, u1Þ, ðv1, u3Þ and the vertices of
the form ðvj, u2Þ for 2 � j � Dþ 1 such that j 6¼ D� 2:
Since g1ðvD�2, u4Þ ¼ Dþ 6, g1ðv1, u1Þ ¼ 1, g1ðv1, u3Þ ¼ 5 and
the colors of the vertices of the form ðvj, u2Þ, 2 � j �
Dþ 1, j 6¼ D� 2 range between 6 and Dþ 5, no vertex at
distance two from ðvD�2, u2Þ is colored with 0. So we recolor
ðvD�2, u2Þ with color 0 and get the coloring g01:

Consider the subgraph G2 of T w Pn induced on the ver-
tex set fðvi1 , u1Þ, ðvi2 , u2Þ, ðv1, u3Þ, : 1 � i1 � Dþ 2, 1 � i2 �
Dþ 2g: We prove that g01 induces an inh-coloring of G2

with span Dþ 5: Figure 2 illustrates the coloring g01 of G2.In
the following we name vertices and give reasons for which
their colors can not be reduced: ðvDþ2, u1Þ and ðvD�2, u2Þ
because g01 assigns the color 0 to them; ðv1, u1Þ because
g01ðv1, u1Þ ¼ 1 and it is at distance two from the vertex
ðvDþ2, u1Þ colored with 0; ðvDþ2, u2Þ because g01ðvDþ2, u2Þ ¼ 2
and it is adjacent to the vertex ðvDþ2, u1Þ colored with 0;
ðv1, u2Þ because g01ðv1, u2Þ ¼ 3 and it is adjacent to the vertex

ðv1, u1Þ colored with 1; ðvj, u1Þ, 2 � j � Dþ 1, because
g01ðvj, u1Þ ¼ jþ 2 and ðvj, u1Þ is adjacent to the vertex
ðv1, u1Þ colored with 1 and at distance two from the vertex
ðv1, u2Þ colored with 3 and the vertices ðvk, u1Þ colored with
kþ 2 for 2 � k � j� 1; ðv1, u3Þ because g01ðv1, u3Þ ¼ 5 and it
is adjacent to the vertex ðv1, u2Þ colored with 3 and at dis-
tance two from the vertices ðvD�2, u2Þ and ðv1, u1Þ colored
with 0 and 1, respectively; ðvj, u2Þ, 2 � j � D� 3, because
ðvj, u2Þ is adjacent to the vertex ðv1, u2Þ colored with 3, and
at distance two from the vertices ðvD�2, u2Þ, ðv1, u1Þ and
ðv1, u3Þ colored with 0, 1, and 5, respectively and the vertices
ðvk, u2Þ colored with kþ 4 for 2 � k � j� 1; ðvD�1, u2Þ
because g01ðvD�1, u2Þ ¼ Dþ 3 and ðvD�1, u2Þ is adjacent to
the vertices ðv1, u2Þ and ðvD�1, u1Þ colored with 3 and Dþ
1, respectively and at distance two from the vertices
ðvD�2, u2Þ, ðv1, u1Þ and ðv1, u3Þ colored with 0, 1, and 5,
respectively and the vertices ðvk, u2Þ colored with kþ 4 for
2 � k � D� 3; ðvD, u2Þ because g01ðvD, u2Þ ¼ Dþ 4 and
ðvD, u2Þ is adjacent to the vertices ðv1, u2Þ and ðvD, u1Þ col-
ored with 3 and Dþ 2, respectively, and at distance two
from the vertices ðvD�2, u2Þ, ðv1, u1Þ and ðv1, u3Þ colored with
0,1 and 5, respectively and the vertices ðvk, u2Þ colored with
kþ 4 for 2 � k � D� 3; ðvDþ1, u2Þ because g01ðvDþ1, u2Þ ¼
Dþ 5 and ðvDþ1, u2Þ is adjacent to the vertices ðv1, u2Þ and
ðvDþ1, u1Þ colored with 3 and Dþ 3, respectively, and at dis-
tance two from the vertices ðvD�2, u2Þ, ðv1, u1Þ and ðv1, u3Þ
colored with 0, 1, and 5, respectively and the vertices
ðvk, u2Þ colored with kþ 4 for 2 � k � D� 3: Thus g01 indu-
ces an irreducible coloring of G2 with span Dþ 5: Since all
the colors from 0 to Dþ 5 are used g01 induces an inh-color-
ing of G2. Hence from Lemma 1.5, T w Pn is inh-colorable
and kinhðT w PnÞ � Dþ 6:
Case 2: In this case we take D¼ 4. We give an 11-circular
L(3, 1)-coloring f2 of T as below. We first order V(T) so
that VðTÞ ¼ fv1, v2, � � � , vmg, where v1 ¼ v; v2, v3, v4, v5 are
the neighbors of v1 such that v2 is a leaf, v5 is not a leaf; v6
is a neighbor of v5 and for all i> 1, vi has exactly one neigh-
bor in fv1, � � � , vi�1g: This can be done since T a tree. Now
we describe an L(3, 1)-coloring f2 of T with span less than
or equal to 8. We color v1 as 1 and then the other vertices
greedily following Algorithm 2.2. We check that span ðf2Þ �
8 and f2 is a 11-circular L(3, 1)-coloring. Note that, f2ðv1Þ ¼
1, for 2 � i � 5, f2ðviÞ ¼ iþ 2, f2ðv6Þ ¼ 0: From f2 we con-
struct an L(2, 1)-coloring g2 of T w Pn as g2ðx, uiÞ ¼
f2ðxÞ þ 2i� 2 (mod 11), for x 2 VðTÞ: Then span ðg2Þ � 10:
Now g2ðv2, u2Þ ¼ 6: Since v2 is a leaf of T, the vertices adja-
cent to ðv2, u2Þ are ðv2, u1Þ, ðv2, u3Þ and ðv1, u2Þ: Since
g2ðv2, u1Þ ¼ 4, g2ðv2, u3Þ ¼ 8 and g2ðv1, u2Þ ¼ 3, no vertex
adjacent to ðv2, u2Þ is colored with 0 or 1. The vertices at
distance two from ðv2, u2Þ are ðv1, u1Þ, ðv1, u3Þ,
ðv3, u2Þ, ðv4, u2Þ, ðv5, u2Þ and ðv2, u4Þ: Since g2ðv1, u1Þ ¼
1, g2ðv1, u3Þ ¼ 5, g2ðv3, u2Þ ¼ 7, g2ðv4, u2Þ ¼ 8, g2ðv5, u2Þ ¼ 9
and g2ðv2, u4Þ ¼ 10, no vertex at distance two from ðv2, u2Þ
is colored with 0. So we recolor the vertex ðv2, u2Þ with color
0 and get the coloring g02:

Consider the subgraph G3 of T w Pn induced on the ver-
tex set fðvi1 , u1Þ, ðvi2 , u2Þ, ðv1, u3Þ, ðv5, u3Þ : 1 � i1 � 6, 1 �
i2 � 6g: We prove that g02 induces an inh-coloring of G3

Figure 2. The coloring g01 of G2.

4 N. MANDAL AND P. PANIGRAHI



with span 9. Figure 3 illustrates the coloring g02 of G3. In the
following we name vertices and give reasons for which their
colors can not be reduced: ðv6, u1Þ, ðv2, u2Þ and ðv5, u3Þ
because g02 assigns the color 0 to them; ðv1, u1Þ because
g02ðv1, u1Þ ¼ 1 and it is at distance two from the vertex
ðv6, u1Þ colored with 0; ðv6, u2Þ because g02ðv6, u2Þ ¼ 2 and it
is adjacent to the vertex ðv6, u1Þ colored with 0; ðv1, u2Þ
because g02ðv1, u2Þ ¼ 3 and it is adjacent to the vertex
ðv1, u1Þ colored with 1; ðvj, u1Þ, 2 � j � 5, because
g02ðvj, u1Þ ¼ jþ 2 and ðvj, u1Þ is adjacent to the vertex
ðv1, u1Þ colored with 1 and at distance two from the vertex
ðv1, u2Þ colored with 3 and the vertices ðvk, u1Þ colored with
kþ 2 for 2 � k � j� 1; ðv1, u3Þ because g02ðv1, u3Þ ¼ 5 and it
is adjacent to the vertices ðv5, u3Þ and ðv1, u2Þ colored with 0
and 3, respectively; ðv3, u2Þ because g02ðv3, u2Þ ¼ 7 and it is
adjacent to the vertices ðv1, u2Þ and ðv3, u1Þ colored with 3
and 5, respectively and at distance two from the vertices
ðv2, u2Þ and ðv1, u1Þ colored with 0 and 1, respectively;
ðv4, u2Þ because g02ðv4, u2Þ ¼ 8 and it is adjacent to the verti-
ces ðv1, u2Þ and ðv4, u1Þ colored with 3 and 6, respectively
and at distance two from the vertices ðv2, u2Þ and ðv1, u1Þ
colored with 0 and 1, respectively; ðv5, u2Þ because
g02ðv5, u2Þ ¼ 9 and it is adjacent to the vertices ðv1, u2Þ and
ðv5, u1Þ colored with 3 and 7, respectively and at distance
two from the vertices ðv2, u2Þ, ðv1, u1Þ and ðv1, u3Þ colored
with 0, 1 and 5, respectively. Thus g02 induces an irreducible
coloring of G3 with span 9. Since all the colors from 0 to 9
are used g02 induces an inh-coloring of G3. Hence from
Lemma 1.5, T w Pn is inh-colorable and kinhðT w PnÞ � 10:
Case 3: In this case we take D¼ 3. We consider two sub-
cases depending on the values of n.
Subcase (i): In this subcase we take n � 4: We give a 10-cir-
cular L(3, 1)-coloring f3 of T as below. We first order V(T)
so that VðTÞ ¼ fv1, v2, � � � , vmg, where v1 ¼ v; v2, v3, v4 are
the neighbors of v1 and for all i> 1, vi has exactly one

neighbor in fv1, � � � , vi�1g: This can be done since T a tree.
Now we describe an L(3, 1)-coloring f3 of T with span less
than or equal to 7. We color v1 as 0 and then the other ver-
tices greedily following Algorithm 2.2. We check that span
ðf3Þ � 7 and f3 is a 10-circular L(3, 1)-coloring. Note that,
f3ðv1Þ ¼ 0, for 2 � i � 4, f3ðviÞ ¼ iþ 1: From f3 we con-
struct an L(2, 1)-coloring g3 of T w Pn as g3ðx, uiÞ ¼
f3ðxÞ þ 2i� 2 (mod 10), for x 2 VðTÞ: Then span ðg3Þ � 9:

Consider the subgraph G4 of T w Pn induced on the
vertex set fðvi1 , u1Þ, ðvi2 , u2Þ, ðv1, u3Þ, ðv3, u3Þ, ðv1, u4Þ, ðv3, u4Þ,
ðv4, u4Þ : 1 � i1 � 4, 1 � i2 � 4g: We prove that g3 induces
an inh-coloring of G4 with span 8. Figure 4 illustrates the
coloring g3 of G4. In the following we name vertices and
give reasons for which their colors can not be reduced:
ðv1, u1Þ and ðv3, u4Þ because g3 assigns the color 0 to them;
ðv4, u4Þ because g3ðv4, u4Þ ¼ 1 and it is at distance two from
the vertex ðv3, u4Þ colored with 0; ðv1, u2Þ because
g3ðv1, u2Þ ¼ 2 and it is adjacent to the vertex ðv1, u1Þ colored
with 0; ðvj, u1Þ, 2 � j � 4, because g3ðvj, u1Þ ¼ jþ 1 and
ðvj, u1Þ is adjacent to the vertex ðv1, u1Þ colored with 0
and at distance two from the vertex ðv1, u2Þ colored with 2
and the vertices ðvk, u1Þ colored with kþ 1 for 2 � k �
j� 1; ðv1, u3Þ because g3ðv1, u3Þ ¼ 4 and it is adjacent to the
vertex ðv1, u2Þ colored with 2 and at distance two from the
vertex ðv1, u1Þ colored with 0; ðvj, u2Þ, 2 � j � 4, because
g3ðvj, u2Þ ¼ jþ 3 and ðvj, u2Þ is adjacent to the vertex
ðv1, u2Þ colored with 2 and at distance two from the vertices
ðv1, u1Þ and ðv1, u3Þ colored with 0 and 4, respectively and
the vertices ðvk, u2Þ colored with kþ 3 for 2 � k � j� 1;
ðv1, u4Þ because g3ðv1, u4Þ ¼ 6 and it is adjacent to the

Figure 3. The coloring of g02 of G3.

Figure 4. The coloring g3 of G4.
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vertices ðv1, u3Þ and ðv4, u4Þ colored with 4 and 1, respect-
ively; ðv3, u3Þ because g3ðv3, u3Þ ¼ 8 and it is adjacent to the
vertices ðv3, u4Þ, ðv1, u3Þ and ðv3, u2Þ colored 0, 4, and 6,
respectively and at distance two from the vertex ðv1, u2Þ col-
ored with 2. Thus g3 induces an irreducible coloring of G4

with span 8. Since all the colors from 0 to 8 are used g3
induces an inh-coloring of G4. Hence from Lemma 1.5,
T w Pn is inh-colorable and kinhðT w PnÞ � 9:
Subcase (ii): Here we take n¼ 3. We give a 10-circular L(3,
1)-coloring f4 of T as below. We first order V(T) so that
VðTÞ ¼ fv1, v2, � � � , vmg, where v1 ¼ v; v2, v3, v4 are the
neighbors of v1 such that v2 is a leaf, v4 is not a leaf; v5 is a
neighbor of v4 and for all i> 1, vi has exactly one neighbor
in fv1, � � � , vi�1g: This can be done since T a tree. Now we
describe an L(3, 1)-coloring f4 of T with span less than or
equal to 7. We color v1 as 1, then the other vertices greedily
following Algorithm 2.2. Then span ðf4Þ � 7 and thus f4 is a
10-circular L(3, 1)-coloring. Note that, f4ðv1Þ ¼ 1, for 2 �
i � 4, f4ðviÞ ¼ iþ 2 and f4ðv5Þ ¼ 0: From f4 we construct an
L(2, 1)-coloring g4 of T w P3 as g4ðx, uiÞ ¼ f4ðxÞ þ 2i� 2
(mod 10), for x 2 VðTÞ: Then span ðg4Þ � 9: Now
g4ðv2, u2Þ ¼ 6: Since v2 is a leaf of T, the vertices adjacent to
ðv2, u2Þ are ðv2, u1Þ, ðv2, u3Þ and ðv1, u2Þ, where g4ðv2, u1Þ ¼
4, g4ðv2, u3Þ ¼ 8 and g4ðv1, u2Þ ¼ 3: Hence no vertex adjacent
to ðv2, u2Þ is colored with 0 or 1. The vertices at distance
two from ðv2, u2Þ are ðv1, u1Þ, ðv1, u3Þ, ðv3, u2Þ and ðv4, u2Þ:
Since g4ðv1, u1Þ ¼ 1, g4ðv1, u3Þ ¼ 5, g4ðv3, u2Þ ¼ 7 and
g4ðv4, u2Þ ¼ 8, no vertex at distance two from ðv2, u2Þ is col-
ored 0. We recolor the vertex ðv2, u2Þ with color 0 and get
the coloring g04:

Consider the subgraph G5 of T w P3 induced on the
vertex set fðvi1 , u1Þ, ðvi2 , u2Þ, : 1 � i1 � 5, 1 � i2 � 5g: We
prove that g04 induces an inh-coloring of G5 with span 8.
Figure 5 illustrates the coloring g04 of G5. In the following we
name vertices and give reasons for which their color can not
be reduced: ðv5, u1Þ and ðv2, u2Þ because g04 assigns the color
0 to them; ðv1, u1Þ because g04ðv1, u1Þ ¼ 1 and it is at dis-
tance two from the vertex ðv5, u1Þ colored with 0; ðv5, u2Þ
because g04ðv5, u2Þ ¼ 2 and it is adjacent to the vertex

ðv5, u1Þ colored with 0; ðv1, u2Þ because g04ðv1, u2Þ ¼ 3 and it
is adjacent to the vertex ðv1, u1Þ colored with 1; ðvj, u1Þ, 2 �
j � 4, because g04ðvj, u1Þ ¼ jþ 2 and ðvj, u1Þ is adjacent to
the vertex ðv1, u1Þ colored with 1 and at distance two from
the vertex ðv1, u2Þ colored with 3 and the vertices ðvk, u1Þ
colored with kþ 2 for 2 � k � j� 1; ðv3, u2Þ because
g04ðv3, u2Þ ¼ 7 and it is adjacent to the vertices ðv1, u2Þ and
ðv3, u1Þ colored with 3 and 5, respectively and at distance
two from the vertices ðv2, u2Þ and ðv1, u1Þ colored with 0
and 1, respectively; ðv4, u2Þ because g04ðv4, u2Þ ¼ 8 and it is
adjacent to the vertices ðv1, u2Þ and ðv4, u1Þ colored with 3
and 6, respectively, and at distance two from the vertices
ðv2, u2Þ and ðv1, u1Þ colored with 0 and 1, respectively. Thus
g04 induces an irreducible coloring of G5 with span 8. Since
all the colors from 0 to 8 are used, g04 induces an inh-color-
ing of G5. Hence from Lemma 1.5, T w P3 is inh-colorable
and kinhðT w P3Þ � 9: w

3. Concluding remarks

In this paper we have proved that the Cartesian product of
trees with paths Pn, n � 3, are inh-colorable. We have given
upper bounds to the inh-span of these graphs. In Theorem
2.1 we have found the exact value of kinhðK1,m w PnÞ when
n¼ 2 or n � 5: So the following problems remain open.

1. What is the exact value of inh-span of K1,m w P3 and
K1,m w P4 for m � 3?

2. Are the Cartesian products of trees different from star
graphs with P2 inh-colorable?

3. What is the exact value of the inh-span of T w Pn where
n � 3 and T is any tree different from a star?
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