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Factorizations of complete graphs into tadpoles
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ABSTRACT

A tadpole (also a canoe paddle or lollipop) is a graph that arises from a cycle and a path by gluing
a terminal vertex of the path to an arbitrary vertex of the cycle. In this article, we show that all
tadpoles factorize the complete graph Ky,.; if n is odd. We use methods similar to those used for
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isomorphic factorizations of complete graphs K;, into spanning trees. In Section 4 of this article,
we show that our methods do not work for isomorphic factorizations of K>,.1 into tadpoles if n

is even.

1. Introduction

Let G be a simple graph with at most n vertices. A graph H
with n vertices has a decomposition into subgraphs
Go, G1, Ga, ..., G if each edge of H belongs to exactly one G
When all subgraphs G;,0 < i <s, are isomorphic to the graph
G, we say that H has a G-decomposition. If G has exactly n ver-
tices and none of them is isolated, then G is called a factor
and the decomposition is called a G-factorization of H.

Graph factorizations have been extensively studied for
many years. Special attention has been paid to G-factoriza-
tions. Among graphs whose G-factorizations have been
sought, the most popular ones are the obvious candidates—
complete graphs and complete bipartite graphs (see, e.g., [2,
11, 12]). In this article, we focus on isomorphic factoriza-
tions of complete graphs into tadpoles. A tadpole is a graph
that arises from a cycle and a path by gluing a terminal ver-
tex of the path to an arbitrary vertex of the cycle.

A simple arithmetic condition shows that only complete
graphs with an odd number of vertices can be factorized
into unicyclic graphs. A unicyclic graph on n vertices has n

edges and a complete graph on n vertices has a(n=1) edges.

Integer n divides @ if and only if # is odd. Thérefore we
deal with complete graphs and tadpoles of order 2n + 1 in
this article. In particular, we focus on complete graphs and
tadpoles with 4k + 3 vertices. We use the idea that when we
remove from a unicyclic graph one suitable vertex v of the
cycle then we obtain some tree T. And if we show that such
a tree T allows a blended p-labeling [12], then we know that
a tadpole of order 4k + 3 factorizes a complete graph Kyiys
if the two edges incident to vertex v satisfy one easy condi-
tion. We use T-factorizations of Ky, in our constructions,
therefore we present here some well-known results of such
factorizations.

It is a part of graph theory folklore that each graph K,
can be factorized into hamiltonian paths P,,. On the other
hand, it is easy to observe that each K;, can be also factor-
ized into double stars; that is, two stars K; ,_; joined by an
edge with the endvertices in the centers of both stars. The
first attempt to fill the gap between these two extremal cases
was Eldergill’s thesis [1], where he dealt with symmetric
trees. Some classes of non-symmetric trees were examined
by Froncek [3, 4], Froncek and Kubesa [7], and by Kubesa
[10]. A spanning tree of any diameter that factorizes Kk,
was found by Froncek [7]. The result was completed for
every 2n by Kovarovd in [9]. Among the most general
results there is the classification of caterpillars of diameter 4
(in series of papers Froncek [3, 4], Kubesa [10], Kovarova
[9]). The classification of caterpillars of diameter 5 was
proved through the years in a series of papers and finally
completed in [5] by Froncek, Kovar, Kovarova and Kubesa.
The paper was followed by an article of Froncek, Kovar,
Kubesa, where authors classify all spanning trees with at
most four vertices [6]. A T-factorization of K, for every
feasible A(T) (the highest degree of a tree) was given by
Kovar and Kubesa [8].

It was shown by Truszczynski in [13] that all tadpoles are
gracefull and therefore every tadpole of order n decomposes
a complete graph Kj,4;. However, nothing has been pub-
lished about isomorphic factorizations of Kj,:; into tad-
poles. This article partially fills the void.

2. Definitions and notation

Definition 1. A tadpole TP(m,n — m) is a graph with n ver-
tices that arises from a cycle C,, and a path of length n - m
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Figure 1. A tadpole TP(5, 4).

by gluing a terminal vertex of the path with an arbitrary
vertex of the cycle C,, (Figure 1).

Definition 2. A comet CO(r,s,t) is a tree that arises from
three paths of lengths 7, s, £ We choose in every path
exactly one terminal vertex and we glue all three paths in
their chosen terminal vertices (Figure 2).

A labeling of G with at most 2n 4 1 vertices is an injec-
tion 1:V(G) — S, where S is often a subset of the set
{0,1,...,2n}. The labels of vertices u, v, denoted A(u)=
i, A(v) =j, respectively, where i,j € S, induce uniquely the
length {(e) of the edge e = uv with endvertices u, v. All
labelings used in this article are generalizations of labelings
introduced by Rosa [11, 12].

Remark 1. In this article, we have S = {0y, Lo, ..., (n — 1),
01,11, ..., (n — 1), }. To simplify our notation, we often unify
vertices with their respective labels. We will say “a vertex a;”
rather than “a vertex x with A(x) = a;”. Similarly, we will
say “an edge (a;, b;)” rather than “an edge xy, where A(x) =
a; and A(y) = b;”.

The following definition was introduced in [3].

Definition 3. Let T be a tree with 2n = 4k + 2 vertices,
V(T):VOUVI,VOOV1:@, and |V0|:|V1|:2k+1
Further, let 1 be a bijection, 4 : V; — {0;,1;,2;, ..., (2k),;},i =
0,1. The pure length of an edge (x; y;) with x;,y;, € V;,i €
{0,1} is defined as follows: If A(x;) =a; and A(y;) =b;,
then £;(x;,y;) = min{|a — b|,2k+1— |a — b|} for i=0, 1.
The mixed length of an edge (xo, 1) with A(xp) = ao and
A(y1) = by, is defined as £y (x9,y1) =b—a mod (2k+1)
for xo € Vi, y1 € Vi. We say that T has a blended p-labeling
or just blended labeling if

{Zii(xi;}/i”(xi,y,‘) S E(T)} = {1,2, ,k}
fori=0, 1,
{201 (x0,11)|(x0, 1) € E(T)} = {0,1,2, ..., 2k}

Notice that the lengths of pure and mixed edges are com-
puted differently. Suppose we have the complete graph Kj,
with the vertex labels 0y, 1o, ..., 69, 01, 11, ...67. Then both the
edges (19,3p) and (1¢,6¢) have the pure length 2. On the
other hand, the edge (1¢,3;) has the mixed length 2 while
the edge (11,3p) has the mixed length 5. Similarly, the edge
(1p,6;) has the mixed length 5 while the edge (6¢,1;) has
the mixed length 2. We also call the pure edges (xo, ¥o) and
(x1, y1) pure 00-edges and pure 11-edges, respectively.

Definition 4. A G-decomposition of a graph H with 2n ver-
tices into subgraphs Gy, Gy, ..., Gs is bicyclic if there exists an

NS

Figure 2. A comet CO(2,3,4).

ordering (Xo, X1, .. Xp—1> Y0>¥1>--»¥u—1) Of vertices of H and
isomorphisms ¢;: G— G;, for i=0,1,...,s, such that
¢i(x;) = x54; and ¢;(y;) = yjpi for every j=0,1,..,n—1,
where sums j+ i are taken modulo .

In [3], it was proved that

Theorem 1. A tree T of order 4k + 2 with a blended labeling
allows a bicyclic T-factorization of Kyji».

Let n =2k + 1. Notice that since our methods do not
work for tadpoles with 4k + 1 vertices we deal only with
tadpoles of order 2n + 1 = 4k + 3.

3. A factorization of Ky, 3 into tadpoles

Theorem 2. Let TP(m,n—m) be a tadpole and let T =
TP(m,n —m) — v be a tree, where deg(v) =2 and vertex v
belongs to the cycle of TP(m,n — m) and x, y are neighbors
of v. If T bicyclicly factorizes complete graph K,, into factors
To, Ty, ..., Ty—1, where ¢y(x) € {x0,%1,.... xu—1} and ¢y(y) €
Vo ¥1> - Y1} (¢ is an isomorphism ¢y : T — Ty), then
tadpole TP(m, m — n) factorizes complete graph Kyt .

Proof. Let V(Kauy1) = {v} U {x0, %1, .0, Xn—1} U {¥0, ¥1, --0»
Yu—1} and Ky, = Ky, —v. Suppose that a tree T =
TP(m,n — m) — v bicyclicly factorizes complete graph K,
where Ty, Ti,...,T,—; are factors of this factorization
and ¢;: T—T; for i=0,1,..,n—1 are corresponding
isomorphisms.

We define ¢y(x) = x; and ¢y(y) = y; for i,j € {0,1,..,,
(n— 1)}

Since {¢;(x) =xj1i:j=0,1,...,n— 1} = {x0, X1, .., Xu1}
and {¢;(y) = yj+i:i=0,1,...,n =1} = {y0, ¥1, .., yu—1} then
the set {¢;(x)v:j=0,1,...,n =1} U{d;(y)v:i=0,1,....,n—
1} is the set of all edges in K, ;1 incident to vertex v.

If we add to each factor T;,i =0,1,...,n — 1 vertex v and
edges vo;(x), v;(y) we get a TP(m, n — m)-factorization of
the complete graph Kpy1. O

Lemma 3. Tadpoles TP(3, 4), TP(4, 3), TP(5, 2) and TP(6,
1) factorize the complete graph K.

Proof. The factorizations of the complete graph K; into tad-
poles TP(m,7 — m) for m = 3,4,5,6 are in Figures 3-6. [

Lemma 4. Every tadpole TP(m, 4k 4+ 3 — m) factorizes the com-
plete graph Kyyys for m =3k + 3,3k +4,...,4k + 2 and k > 2.

Proof. First, we prove that a path P with 4k 4 2 vertices
admits a blended labeling. We divide a path P in three sub-
sequent parts Py, Py; and P;;, where Py, contains k pure
00-edges, Py; contains 2k + 1 mixed edges, and P;; contains
k pure 11-edges.
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Figure 3. A TP(3, 4)-factorization of K,

Figure 4. A TP(4, 3)-factorization of K.

=&

o Let kbeodd, k =29+ 1. Then:

Poo = qo, (9 + 1)9> (q =1)g5 (9 + 2) s -+ (29)> 00, (29 +1),, Il’oo:Ck(’)ntainS pure 00-edges of lengths: 12,3, .2 24+
Por = (29 + 1)g> (49 +2)1, (29 +2)p (49 + 1), -, (39 + 3),5 Py, contains mixed edges of lengths: 2g + 1 = k,2q,2q —
(39 + 1) (39 +2),, (39 + 2), 39 + 1), (39 + 3)gs - 1,..,2,1, 0,4g+2 =2k 4g+1 =2k —1,..,2qg + 4, 2q +
(49 + 1), (29 + 2);, (49 + 2)p, (29 + 1), 3,2+ 2=k+1,

Pi=qu(q+ 1), (q—1)p(q+2)(29),01 (29 +1),. 1131ickontains pure 11-edges of lengths: 1,2,3,...,2q9, 29+

Figure 5. A TP(5, 2)-factorization of Kj.

Figure 6. A TP(6, 1)-factorization of Kj.
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Figure 7. A basic blended labeling of a path P for k=29 +1,g=1 and
for k =2q,q = 2.

Figure 8. First factor of TP(m, 15 — m)-factorization of K;s for m=12, 13, 14.

o Let k be even, k = 2q.

Poo = go, (g = 1) (9 + 1)p> (4 = 2)g> -+ (29 = 1), 005 (29)o
Po1 = (29)¢, (49),» (29 + 1), (49 — 1)1, .., (3¢ — 1)

(3 +1)1,(39),(39)1, (39 + 1)p> (3 — 1) 15, (49 — 1)
(29 + 1), (49)> (29);5
Pu=q1,(q—1),(q+1),(g—2)(29—1),,01,(29),-

Then:
Py contains pure 00-edges of lengths: 1,2,3,...
1, 2q =k,

:Zq_

Py, contains mixed edges of lengths: 2q = k,2q — 1,29 —
2,..,2,1, 0,4q=2k4q—1=2k—1,..,2g+ 3,2q+2,
2q4+1=k+1,

Py, contains pure 1l-edges of lengths: 1,2,3,...,29 —
1,2q = k (Figure 7).

We observe that the path P admits a blended labeling for
every k. We call this blended labeling a basic blended label-
ing of path P. The existence of a bicyclic factorization of
complete graph Ky, into factors Py, Py, ..., Py, where P,
P for r=0,1,..., 2k follows from our discussion above. We
identify terminal vertex x of a path P with a vertex go € Vy
(¢o(x) = go). Then we identify an internal vertex y of a
path P with vertex i3 € Vi (¢yo(y) =i41), where i€
{0,1,...,.q—2,9— 1,9+ 1,9+2,...k—1,k}. If we add to
each factor P, r=0,1,..,2k, the vertex v and edges
(q+1)yv, (i+71),v (the sums are taken modulo (2k+ 1))
then we get a TP(m,4k 4+ 3 — m)-factorization Ky 3 for
m =3k + 3,3k +4,...,4k + 2, because distances of vertices
i, i€{0,1,...9—2,9—1,9+1,9q+2,...,k—1,k}, and g,
are 3k + 1,3k + 2, ..., 4k (Figure 8). O

Lemma 5. Every tadpole TP(m,4k + 3 —m) factorizes the
complete graph Kypis for m = 3,4,..,k+2 and k > 2.

Proof.
e Let k be odd, k =2q + 1.

We remove from a path P on 4k + 2 vertices with a basic

blended labeling pure edges (qo,(q+1),) and (g,

(g+1);) of length 1 and mixed edges ((3q+2),

(3g+1);) and ((3g + 1), (3q + 2),) of lengths 1 and 2k.

Then we add pure edges ((3q+ 1)y (39+2),) and

(3g+1),,(3g+2);) of length 1 and mixed edges

(g0, (q+1);) a ((g+1)pq1) of lengths 1 and 2k

(Figure 9).

o Let k be even, k = 2q.

We remove from a path P on 4k + 2 vertices with a basic

blended labeling pure edges (qo,(q—1),) and (qi,

(@ —1),) of length 1 and mixed edges ((3¢),, (3¢9 +1),)

and ((3g+1),,(39),) of lengths 1 and 2k.

Then we add pure edges ((39),,(39+1),) a ((39),

(3g+1),) of length 1 and mixed edges ((q — 1)y, 1) and

(qo> (g — 1),) of lengths 1 and 2k (Figure 9).

We get another blended labeling of path P for every k > 2.
This implies the existence of bicyclic factorization of the com-
plete graph Ky, into factors Py, Py, ..., Pk, where P, = P for
every r =0, 1,...,2k. First we identify vertex x of path P with
vertex qo € Vo (¢pg(x) = qo). Then we identify an internal ver-
tex y of a path P with vertex iy € Vi (¢o(y) = i1), where i €
{0,1,..,g—2,9— 1,9+ 1,9 +2,.., k—1,k}. If we add ver-
tex v and edges ((q+71)pv), ((i+7),,v) to each factor P,
(the sums are taken modulo (2k+ 1)) then we get a
TP(m, 4k + 3 — m)-factorization of Ky 3 for m =3,4,....k+
2, because distances of vertices i1,i € {0,1,...,9 — 2,9 — 1,9 +
1,g+2,...k—1,k}, and g are 1,2,..., k (Figure 10). O

Lemma 6. Let k be odd. Then every tadpole TP(m,4k + 3 —
m) factorizes the complete graph Kueis for m =k +3,k+
4,.., 2k+2.



Figure 9. The other blended labeling of a path P for k=2g+1,q=1
and k = 2g,q = 2.

Figure 10. First factor of TP(m, 15 — m)-factorization of K;5 for m=3, 4, 5.

Proof. Let k =2q + 1.

We remove from path P with a basic blended labeling
mixed edge ((3q+2),, (3g+2),) of length 0 and then we
add mixed edge (go, q:) of length 0 (Figure 11).

With these steps we get a different blended labeling of
path P. This implies the existence of a bicyclic factorization
of the complete graph Ky, with factors Py, Py, ..., Py,
where P, 2 P for every r =0, 1,...,2k. First we identify ver-
tex x of path P with vertex (3g+2), € Vo (¢o(x) =
(3g+2),). Then we identify an internal vertex y of path P
with vertex i; € Vi (¢po(y) = i1), where i € {0,1,....,k — 1}.
If we add to each factor P, vertex v and edges
(3g+2+4r)yv, (i+r),v (the sums are taken modulo
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Figure 12. First factor of TP(m, 15 — m)-factorization of K;5 for m=6, 7, 8.

(2k + 1)), we obtain a TP(m,4k + 3 — m)-factorization of
Kyys for m=k+3,k+4,...,2k+ 2, because distances of
vertices i1,i € {0,1,..,k—1} and (3q+2), are k+ 1, k+
2, ..., 2k (Figure 12). 0

Lemma 7. Let k be odd. Then every tadpole TP(m,4k 4+ 3 —
m) factorizes the complete graph Kycys for m = 2k + 4,2k +
5 ...3k+2and k > 3.

Proof. Let k =2q + 1.

We remove from path P with a basic blended labeling
pure edges (g0, (q+1),) and (g1, (g+1),) of length 1 and
mixed edges (39 +2),, (3q + 1),), ((3¢ + 1)p, (39 + 2),)
and ((3g + 2),, (3¢ + 2),) of lengths 1,2k and 0.

Then we add pure edges ((3q+1),(3g+2),) and
(3g+1),,(3g+2);) of the length 1 and mixed edges
(q0-(q+1),),((@+1)g-q1) and (qo, q1) of lengths 1,2k and
0 (Figure 13).
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Figure 14. First factor of TP(m, 15 — m)-factorization of K;s for m=10, 11.

We get another labeling of path P. This implies the exist-
ence of a bicyclic factorization of the complete graph Kyi:,
into factors Py, P, ..., P, where P, =P for every r=
0,1, ..., 2k. First we identify vertex x of a path P with vertex
(3g+2), € Vo (¢o(x) = (3q+2),). Then we identify an
internal vertex y of path P with vertex i1 € V; (¢o(y) = i1),
where i€{0,1,...9—2,9— 1,9+ 1,9+2,...k—2,k—1}.
If we add to each factor P, vertex v and edges
(Bg+2+71)yv,(i+71),v (the sums are taken modulo
(2k + 1)) then we get a TP(m, 4k 4+ 3 — m)-factorization of
Ky s for m = 2k + 4,2k + 5, ..., 3k + 2, because distances of
vertices i,i € {0,1,...,q —2,9—Lg+1,q+2,...k — 2,k —
1} and (3g + 2), are 2k + 2,2k + 3, ..., 3k (Figure 14). 0

Lemma 8. Let k be even. Then every tadpole TP(m, 4k + 3 —
m) factorizes the complete graph Ky,s for m =k +3,k+
4,..,2k+1 and k > 2.

Proof. Let k = 2q.

Figure 15. The other labeling of path P for k even, k=4.

We remove from path P with a basic blended labeling
pure edges (g0, (q —1),) and (g1, (g —1),) of length 1 and
mixed edges  ((39)y, (3¢ + 1)), (3¢ +1)p»(39);) and
((39)> (39);) of lengths 1,2k and 0.

Then we add pure edges ((39), (3g+1),) and ((39),,
(3g+1);) of length 1 and mixed edges ((q— 1)y q1)s
(q0> (g — 1),) and (qo, q1) of lengths 1,2k and 0 (Figure 15).

With these steps we get a different blended labeling of
path P. That implies the existence of bicyclic factorization of
the complete graph Ky, with factors Py, Py, ..., Py, where
P, = P for every r = 0,1, ..., 2k. First we identify vertex x of
path P with vertex (3q), € Vo (¢o(x) = (39),). Then we
identify an internal vertex y of path P with vertex i; € V
(¢o(y) = i1), where i€ {0,1,....q—2,9— 1,9+ 1,9+2,...,
k—2,k—1}. If we add to each factor P, vertex v and edges
(3q+1)yv, (i +1);v (the sums are taken modulo (2k + 1))
then we get a TP(m, 4k + 3 — m)-factorization of Ky,; for
m=k+3,k+4,..,2k+ 1, because distances of vertices
ini€{01,...q—2q—1,9+1,9+2...k—2,k—1} and
(3q), are k+ 1,k +2,...,2k — 1 (Figure 16). 0

Lemma 9. Let k be even. Then every tadpole TP(m,4k + 3 —
m) factorizes the complete graph Kucys for m = 2k + 3,2k +
4,..,3k+2and k > 2.

Proof. Let k = 2q.

We remove from path P with a basic blended labeling
mixed edge ((3q9),, (3q);) of length 0 and then we add
mixed edge (qo, q1) of length 0 (Figure 17).

We get another blended labeling of path P. This implies
the existence of a bicyclic factorization of the complete
graph Ky, into factors Py, Py, ..., Py, where P, = P for
every r =0,1,...,2k. First we identify vertex x of path P
with vertex (3q), € Vo (¢(x) = (39),). Then we identify an
internal vertex y of path P with vertex iy € Vi (¢y(y) = i1),
where i € {0,1, ...,k — 1}. If we add to each factor P, vertex
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Figure 16. First factor of TP(m, 19 — m)-factorization of K;g for m=7, 8, 9.

0p 01

Figure 17. The order blended labeling of path P for k even, k=4.

v and edges (3q +7),v, (i + 1), v (the sums are taken modulo
(2k + 1)) then we get a TP(m, 4k + 3 — m)-factorization of
Kyys for m = 2k + 3,2k + 4, ..., 3k + 2, because distances of
vertices ij,i € {0,1,....,k—1} and (3q), are 2k-+1,2k+
2, ..., 3k (Figure 18). O

Note that in previous lemmas we did not prove that a
tadpole TP(2k + 3,2k) for k odd or TP(2k + 2,2k + 1) for k
even, respectively, factorizes the complete graph Ky;3. This
We prove now.

Figure 18. First factor of TP(m,19 — m)-factorization of Ko for m =
11,12, 13,14.

Lemma 10. A tadpole TP(2k + 3,2k) factorizes the complete
graph Ky for every k odd, k > 3.

Proof. Let k be odd. We remove vertex v from the cycle in a
tadpole TP(2k + 3,2k) so that we obtain a comet CO(k, k +
1,2k). Two neighbors of vertex v we denote x, y. We show
that CO(k,k + 1,2k) has a blended labeling such that a ver-
texx € Vpand y € V.

Let k > 3 then comet CO(k, k + 1, 2k) contains:

e pure 00-edges of a path Py =0, (k+1), (2k)
(k+2)p 2k = 1)y, (k+3)gs-0 (5L + 1), (35H), of
lengths k,k — 1,k —2,..,,1,

e a single mixed edge and pure 11-edges of a path P;; =
00,01, k1, 1y, (k= 1)1, 21, .., (32— 1), (551),,  where the
first mixed edge has the length 0 and further pure 11-
edges have lengths k,k — 1,k —2,...,1 and

e mixed edges of a path Py = 0o, (2k);, 1o, (2k — 1)},
20, (k+1),kg of lengths 2k2k—1,2k —2,2k —
3,.., 1.

We see that comet CO(k,k+ 1,2k) admits a blended
labeling (Figure 19), where terminal vertices x of path Py, of
length k and y of path P;; of length k+ 1, respectively, are
identified with vertices (33t!); and (*1),, respectively. Thus
x € Vp and y € V; (Figure 20).

By Theorem 2 tadpole TP(2k + 3,2k) factorizes the com-
plete graph Ky for every k odd, k > 3 (Figure 20). O

Lemma 11. A tadpole TP(2k + 2,2k + 1) factorizes the com-
plete graph Ky5 for every k even, k > 2.
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Figure 19. A blended labeling of comet CO(k, k + 1, 2k) for k odd, k=3.

Figure 20. First factor of TP(2k + 3, 2k)-factorization of Ky 3 for k=3.

Proof. For k=2 there is first factor of TP(6, 5)-factorization
of K;; in Figure 21. Let k be even and k > 4. We remove
vertex v from the cycle Cyy, in a tadpole TP(2k + 2,2k +
1) so that we obtain a comet CO(k — 1,k + 1,2k + 1). Two
neighbors of vertex v we denote by x, y. We show that
CO(k —1,k+ 1,2k + 1) has a blended labeling such that a
vertex x € Vo and y € V.
Comet CO(k — 1,k + 1,2k + 1) contains:

e a single mixed edge and pure 11-edges of a path P;; =
00,01, ki, 1y, (k= 1)1, 24, ., (32— 1), (1), where the
first mixed edge has length 0 and further pure 11-edges
have lengths k,k — 1,k —2,...,1,

e mixed edges and a single pure 00-edge of a path Py =
00, (Zk)l, 1(), (Zk — 1)1, 20, veey (k + 1)1, ko, (Zk)o, where
mixed edges have lengths 2k,2k — 1,2k — 2,2k —3,..,,1
and the last pure 00-edge has length k and

Figure 21. First factor of TP(6, 5)-factorization of Kj;.

e pure 00-edges of a path Py = 0o, (k+ 39 +2), (2k—

3g—1)p, (k+3q+1), (2k—3q—3), (k+3g+3),
(2k —3q—2),, (k+3(q+1)+2), where we substitute
q=0,1,2,.... We see that the first edge (0o,
(k+39+2), for q=0 has the length k+2—-0=
(2k+1) — (k+2) =k—1 and the rest pure 00-edges
have lengths k —6q — 3,k — 69— 2,k — 69 — 4,k — 6q —
6,k—6g—5 and 2k—3g—2—(k+3(g+1)+2)=
k—6g— 7.

If we substitute parameter q in lengths of pure 00-edges

then we obtain

for q=0 lengths of edges k —3,k—2,k—4,k—6,k—
5 k-7,

for g=1 lengths of edges k — 9,k — 8,k — 10,k — 12,k —
11, k— 13,

for q=2 lengths of edges k—15k— 14,k — 16,k —
18,k — 17,k — 19 and so on.

Now we have to specify how to construct the last part of

path Py for a particular k.

e If k=0 mod 6 then the last vertex from the sequence in

Py is (2k—3q—3), for q=%°, where 0 < g <f.

Therefore the last edge from the sequence in Py, is
((k+3kj76+1)0, (zkfak;fts)o) of length 2k —

3t o3 (k+3kfe1) =k—k+6-4=2  and
then there follows a pure 00-edge ((2k —3k6_3),

(2k — 356 —2)) of length 2k —56—2—2k+554
3=1.

If k=2 mod 6 then the last vertex from the sequence in
Py is again (2k —3q — 3), for g ="2, where 0 < ¢ <
k%S. Therefore the last edge from the sequence in Py, is

((k+3%+1)0,(2k73kg8—3)0> of length 2k —3k8_

37(k+3k%8+1):k7k+874:4 and then there



Figure 22. Blended labeling of comet CO(k — 1,k + 1,2k + 1) for k=4 and k=6.

follow three pure 00-edge ((Zk— 368_3), (2k—3k8—

), ((2k—3k‘%8—4)0,(2k—3%—2)0) and  ((2k—

£—2)0, (2k—352—5))) of lengths 2k — 58 —3 —2k+

+4=1,2k—58—-2-2k+584+4=2 and 2k—55—
2-2k+K84 5=3.

e If k=4 mod 6 then the last vertex from the sequence in
Py is (k+3q+1), for g=5*, where 0< g <52
Therefore the last two edges from the sequence in Py,
are ((k+3"%‘4+2)0,(2k—3";64—1)0> and ((2k—3’<jT4—1)0,

(k+3%541),) of lengths 2k—3’%;4—1—(k+3k%4+2):

T W
ooc\|»o

N|

k—k+4-3=1 and 2k-3kf—1— (k+3kt41) =
k—k+4 —2 =2 (Figure 22).

Recall that k is even, therefore k cannot be congruent to
1, 3, 5 (mod6). Thus, we have covered above all values of k.

We see that comet CO(k—1,k+ 1,2k+ 1) admits a
blended labeling (Figure 22), where terminal vertex x of a
path of length k - 1 or terminal vertex y of a path of length
k+ 1, belongs to V,, or V, respectively.

Therefore by Theorem 2 a tadpole TP(2k + 2,2k + 1) fac-
torizes a complete graph Ky3 for every k even (Figure 23). O

In previous lemmas we prove following:

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS e 9

B — —
/ o
[y
O
\]
=

8

0 O 81
9

O O 91
100 \0 104
].10 “‘0 ]_11
]_2(] ©) ]_21

Theorem 12. Every tadpole of order 4k + 3 factorizes the
complete graph Ky s for every k > 1.

Proof. It follows from Lemmas 3-11. 0

4. A factorization of K., into tadpoles

Theorem 13. Tadpoles TP(3, 2) and TP(4, 1) do not factor-
ize the complete graph Ks.

Proof. A complement of tadpole TP(3, 2) is tadpole TP(4, 1)
and vice versa. 0

By providing an example for k=4, we illustrate the rea-
sons why the above methods fail for tadpoles of
order 4k + 1.

Again, from a tadpole of order 4k +1 we remove one
vertex v from a cycle and suppose that we obtain a path P.
Then we look for a suitable labeling that guarantees a bicyc-
lic T-factorization of Ky for some tree T.

For order 4k there exists a similar labeling (or a sufficient
condition) as for order 4k + 2, namely swapping labeling.

Definition 5. A graph G with 4n — 1 edges and with at
most 4n vertices has a swapping labeling if the following is
satisfied. The vertex set V(G) = VoUV,VoNV; =0 and
[Vol,|[V1] < 2n. Let A be an injection A:V; — {0;,1, ...,
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Figure 24. The basic swapping labeling of path P (in black color) of order 4n
for first n factors and second n factors if n=4.

(2n—1),} for i=0, 1 and let the pure length I; and the
mixed length Iy, are defined as in Definition 3. Then

o {li(xi,yi) : (xy1) € E(G)} ={L,2,...,n} fori =0, 1,
o there exists an isomorphism ¢ such that G is isomorphic
to G', where V(G') = V(G) and E(G') = (E(G) \ {(r0,

Figure 25. The other swapping labeling of path P (in black color) of order 4n
for first n factors and second n factors if n =4.

Figure 26. The other swapping labeling of path P of order 4n, where the dis-
tance between vertices 6,0, was changed.

(r+mn)g), (s1 (s +n),) ) U{(ro, (k + 1)), (s1, (s + 1)) }»

r,s € {0,1,...,2n} and the sums are taken modulo 2n,
° {l()l(xo,yl) : (xo,yl) S E(G)} = {0, 1, ...,2}’[} \ {1’[}

From the previous definition it follows that graph G’
arises from graph G by removing pure edges of length n
(the longest pure edges) from G and replacing them by
mixed edges of length n which are missing in G. Thus, in
the first n factors there are both pure edges of length n and
in the remaining n factors there are two mixed edges of
length n.

In [9], Kovarova proved.



Theorem 14. If a graph G with 4k — 1 edges and with at
most 4k vertices allows a swapping labeling, then there exists
a bicyclic G-decomposition of a complete graph K.

If we use swapping labelings for paths in Figures 24 and
25 then we can prove that tadpoles TP(m, 17 — m) factorize
K;; for m=14, 15, 16 and m =3, 4, 5, respectively (Figures
24 and 25). It follows from the fact that if we replace pure
edges (09,49) and (01,4;) by mixed edges (0o,4;) and
(01,4¢) then the distance between vertices 2, and i; for i €
{0,1,3} remains the same. Therefore all factors have cycles
of the same length.

It can be probably generalize that all tadpoles TP(m, 4k +
1 —m) factorize Kyy; for m =3k+2,3k+3,...,4k and
m=3,4,...,k+ 1, respectively.

While if we use a swapping labeling of path P in Figure 26,
then we observe following. If we take (for example) terminal
vertex 7o and internal vertex 0; of a path then they are at dis-
tance 4, but after swapping edges the same two vertices have the
distance 11. Therefore, in the first 4 factors it will be cycles of
length 6 and in remaining factors we have cycles of length 13.
We do not obtain an isomorphic factorization.

5. Conclusion

Let k be an arbitrary positive integer. We proved that no
tadpole of order 4k or 4k 4 2 can factorize complete graph
Kyi or Kyriz, because the number of edges of such tadpoles
does not divide the number of edges in the complete graph.
For tadpoles of order 4k + 3 we show that all factorize a
complete graph Ky 3. For tadpoles of order 4k + 1 we can
show that tadpoles with long (longer than 3k + 1) and short
(shorter than k+2) cycles factorize the complete graph
Kyki1 for k > 2. But for lengths between k+2 and 3k + 1
no proof is known.

In spite of the lack of the above mentioned constructions,
we conjecture that such factorizations exist nevertheless.

Conjecture 1. Every tadpole of order 2n + 1 factorizes the
complete graph Ky, for each n > 3.
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