On balanced bipartitions of graphs

Guangnuan Li

To cite this article: Guangnuan Li (2020): On balanced bipartitions of graphs, AKCE International Journal of Graphs and Combinatorics, DOI: 10.1016/j.akcej.2020.01.001

To link to this article: https://doi.org/10.1016/j.akcej.2020.01.001

Published online: 27 Apr 2020.

Submit your article to this journal

Article views: 69

View related articles

View Crossmark data ${ }^{〔}$

On balanced bipartitions of graphs

Guangnuan Li
Taian No. 6 Middle School, Taian, P. R. China

Abstract

Bollobás and Scott conjectured that every graph G has a balanced bipartite spanning subgraph H such that for each $v \in V(G), d_{H}(v) \geq\left(d_{G}(v)-1\right) / 2$, for each $v \in V(G)$. In this paper, we consider the contrary side and show that every graphic sequence has a realization G which admits a balanced bipartite spanning subgraph H such that $d_{H}(v) \leq\left\lceil\left(d_{G}(v)+1\right) / 2\right\rceil$ for each $v \in V(G)$, and we show that the bound is sharp.

KEYWORDS

Bisection; balanced
bipartition;
degree sequence
AMS SUBJECT
CLASSIFICATIONS (2000)
05C75

1. Introduction

For a graph G and for any $v \in V(G)$, we use $d_{G}(v)$ to denote the degree of the vertice v in G. Let G be a graph and V_{1}, \cdots, V_{k} be a partition of $V(G)$. When $k=2$, such a partition is said to be bipartition of G. A subgraph H of G is said to be a bisection of G if H is bipartite subgraph of G and the partition sets of H differs at most one. A bisection is also said to be balanced bipartition. Bollobás and Scott [1] conjectured that every graph G has a bisection H such that

$$
d_{H}(v) \geq\left(d_{G}(v)-1\right) / 2 \text { for all } v \in V(G)
$$

In [3], Ji et al. give an infinite family of counterexamples to this Bollobás and Scott conjecture, which indicates that $\left\lfloor\left(d_{G}(v)-1\right) / 2\right\rfloor$ rather $\left(d_{G}(v)-1\right) / 2$ is probably the correct lowered bound.

Similar to Bollobás and Scott conjecture, we propose the following conjecture.
Conjecture 1. Every graph G has a bisection H such that

$$
d_{H}(v) \leq\left\lceil\left(d_{G}(v)+1\right) / 2\right\rceil \text { for all } v \in V(G)
$$

This conjecture is concerned with the Bollobás and Scott conjecture. Let G^{c} denote the complement of a graph G. After a simple calculation, we can prove that if G^{c} admits a balanced bipartite spanning subgraph satisfied Conjecture 1, the same bipartition of $V(G)$ can induce a balanced spanning subgraph H of G satisfied

$$
d_{H}(v) \geq\left\lfloor\left(d_{G}(v)-1\right) / 2\right\rfloor \text { for all } v \in V(G)
$$

The bound is just Ji et al. mentioned. But the reverse may not be true.

Hartke and Seacrest [2] studied a degree sequence version of this Bollobás and Scott conjecture, and they proved that for any graphic sequence π with even length, π has a realization G which admits a bisection H such that $d_{H}(v) \geq$
$\left(d_{G}(v)-1\right) / 2$ for all $v \in V(G)$. Ji et al. [3] extended the result to all degree sequences, they proved that for any graphic sequence π, π has a realization G which admits a bisection H such that $d_{H}(v) \geq\left(d_{G}(v)-1\right) / 2$ for all $v \in V(G)$.

For any positive integer k, let $[k]:=\{1,2, \ldots, k\}$. For a graph G and a labelling of its vertices $V(G)=\left\{v_{1}, \ldots v_{n}\right\}$, we defined the parity bisection of G to be the bisection with partition sets V_{1} and V_{2}, where $V_{i}=\left\{v_{j} \in V(G): j \equiv i \bmod 2\right\}$ for each $i \in[2]$, and $E(H)=\left\{u v \in E(G): u \in V_{1}, v \in V_{2}\right\}$.

In this paper, we obtain the following result.
Theorem 1. Let $\pi=\left(d_{1}, \ldots, d_{n}\right)$ be any graphic sequence with $d_{1} \geq \ldots \geq d_{n}$. Then there exists a realization G of π with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $d_{G}\left(v_{i}\right)=d_{i}$ for $i \in[n]$, such that if H denotes the parity bisection of G then $d_{H}(v) \leq$ $\left\lceil\left(d_{G}(v)+1\right) / 2\right\rceil$, for $v \in V(G)$.

The bound in Theorem 1 is sharp as shown by the following examples. Let $\pi=(2 k, 2 k, \underbrace{2, \ldots, 2}_{2 k-1})$ be a graphic sequence where k is a positive integer, let G be a realization of π, and $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{2 k+1}\right\}, d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=2 k$, $d_{G}\left(v_{3}\right)=\ldots=d_{G}\left(v_{2 k+1}\right)=2$. We can see that v_{1} and v_{2} adjacent to all the other vertices, excluding itself, and G is unique up to isomorphism. Let H be an arbitrary bisection of G with parts A and B, without loss of generality, we may assume that $|A|=k$, and $|B|=k+1$. If v_{1} and v_{2} are in the same part, there exists a vertex v such that $d_{H}(v)=2$, and $\left(d_{G}(v)+\right.$ 1) $/ 2<d_{H}(v)=\left\lceil\left(d_{G}(v)+1\right) / 2\right\rceil$. If v_{1} and v_{2} are in the different parts, assume that $v_{1} \in A$ and $v_{2} \in B$, then $d_{H}\left(v_{1}\right)=$ $k+1$, and $\left(d_{G}\left(v_{1}\right)+1\right) / 2<d_{H}\left(v_{1}\right)=\left\lceil\left(d_{G}\left(v_{1}\right)+1\right) / 2\right\rceil$.

2. Proof of Theorem 1

For the proof of Theorem 1, we need two operations on a sequence of nonnegative integers. Let $\pi=\left(d_{1}, \ldots, d_{n}\right)$ with
$d_{1} \geq \ldots \geq d_{n}$. By removing d_{i} from π and subtracting 1 from the d_{i} remaining elements of π with lowest indices. We obtain a new sequence $\pi^{\prime}=\left(d_{1}^{\prime}, \ldots, d_{i-1}^{\prime}, d_{i+1}^{\prime}, \ldots, d_{n}^{\prime}\right)$, and we say that π^{\prime} is obtained from π by laying off d_{i}, and the laying off operation is introduced by Kleitman and Wang [4].

It is easy to see the sequence π^{\prime} laying off d_{i} from π need not non-increasing. In order to avoid this case, Hartke and Seacrest [2] introduce a variation of laying off operation. Choose a fix $i \in[n]$, assume that s is the smallest value among the d_{i} largest elements in π, not including d_{i} itself. Let $L=\left\{i \in[n]-i: d_{i}>s\right\}$. Obviously, $|L|<d_{i}$. Let M be the set of $d_{i}-|L|$ largest indices j with $j \neq i$ and $d_{j}=s$. We removed d_{i} from π, subtract 1 from d_{j} for all $j \in L \cup M$. This operation is called laying off with order. In the following, we give a good result about laying off with order.
Lemma 1. (Harket-Seacrest [2]). For any $i \in[n]$, the sequence $\pi=\left(d_{1}, \ldots, d_{n}\right)$ with $d_{1} \geq \ldots \geq d_{n}$ is graphic if and only if the sequence π^{\prime} obtained from π by laying off d_{i} with order is graphic.

Having finished all the necessary preparations, we are ready to prove Theorem 1. First, we give a brief outline of our proof. Choose two consecutive elements d_{l} and d_{l+1} of π, by Lemma 1 , we can obtain a new graphic sequence $\pi^{\prime \prime}$ with length $n-2$ by laying off d_{l} and d_{l+1} with order. By induction, $\pi^{\prime \prime}$ has an $(n-2)$ vertex realization F whose parity bisection J has the desired property. We then show that one can form G from F by adding two new vertices and choosing their neighbors so that the parity bisection of G satisfies Theorem 1.

Proof of Theorem 1. We apply induction on the length n of the graphic sequence $\pi=\left(d_{1}, \ldots, d_{n}\right)$ with $d_{1} \geq d_{2} \geq \ldots \geq$ d_{n}. The assertion is holds when $n=1,2$. So we may assume that $n \geq 3$ and the assertion holds for all graphic sequence with length less than n. There exists two consecutive elements of π that are identical; Let $l \in[n-1]$ be fixed such that

$$
d_{l}=d_{l+1}=k
$$

Let $\pi^{\prime}=\left(d_{1}^{\prime}, \ldots, d_{l}^{\prime}, d_{l+2}^{\prime}, \ldots d_{n}^{\prime}\right)$ be the sequence obtained from π by laying off d_{l+1} with order. Let $\pi^{\prime \prime}=$ $\left(d_{1}^{\prime \prime}, \ldots, d_{l-1}^{\prime \prime}, d_{l+2}^{\prime \prime}, \ldots d_{n}^{\prime \prime}\right)$ be the sequence obtained from π^{\prime} by laying off d_{l}^{\prime} with order. By Lemma $1, \pi^{\prime}$ and $\pi^{\prime \prime}$ are all graphic sequence.

Let $\omega=\left(f_{1}, f_{2}, \ldots, f_{n-2}\right)$ be the sequence obtained from π with d_{l} and d_{l+1} removed, and re-indexed so that the indices are consecutive, i.e., $f_{i}=d_{i}$ for $i \in[l-1]$ and $f_{i}=d_{i+2}$ for $i \in[n-2] \backslash[l-1]$. Let $\omega^{\prime}=\left(f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{n-2}^{\prime}\right)$ be the sequence obtained from π^{\prime} with d_{l}^{\prime} removed, and re-indexed so that the indices are consecutive. Also, let $\omega^{\prime \prime}=\left(f_{1}^{\prime \prime}, f_{2}^{\prime \prime}, \ldots, f_{n-2}^{\prime \prime}\right)$ be the sequence obtained from $\pi^{\prime \prime}$ by re-indexing so that the indices are consecutive. Note that $\omega^{\prime \prime}$ is graphic sequence.

To turn a realization of $\omega^{\prime \prime}$ to a realization of π, we need to track the changes between f_{i} and $f_{i}^{\prime \prime}$ for all $i \in[n-2]$. Note that $0 \leq f_{i}-f_{i}^{\prime \prime} \leq 2$. Let

$$
\begin{aligned}
& X_{1}=\left\{i \in[n-2]: f_{i}^{\prime \prime}=f_{i}-1\right\} \\
& X_{2}=\left\{i \in[n-2]: f_{i}^{\prime \prime}=f_{i}-2\right\}
\end{aligned}
$$

and

$$
K=d_{l}^{\prime}= \begin{cases}k-1 & \text { if } d_{l}^{\prime}=d_{l}-1 \\ k & \text { if } d_{l}^{\prime}=d_{l}\end{cases}
$$

So $K=\Sigma_{i \in[n-2}\left|f_{i}-f_{i}^{\prime}\right|=\Sigma_{i \in[n-2}\left|f_{i}^{\prime}-f_{i}^{\prime \prime}\right|$; then

$$
\left|X_{1}\right|+2\left|X_{2}\right|=2 K
$$

For convenience, we introduce some notation. For nonempty sets A and B of integers, we write $A<B$ if the maximum integer in A is less than the minimum integer in B. A set S of integers is consecutive if it consists of consecutive integers. A sequence of pairwise disjoint sets, A_{1}, \ldots, A_{t}, of integers is said to be consecutive if $A_{1} \cup \ldots \cup A_{t}$ is consecutive and, for any $i, j \in[t]$ with $i<j$ and A_{i} and A_{j} nonempty, we have $A_{i}<A_{j}$.

Ji, Ma, Yan and Yu [3] proved the following Claim 1 and Claim 2, they are also essential in our proof of Theorem 1. For better understanding of the proof of Theorem 1, we now present the proof of Claim 1 and the method of this proof comes from [3].

Claim 1. (Ji, Ma, Yan and Yu [3]). There exist consecutive sets $R_{1}, R_{2}, R_{1}^{\prime}, R_{2}^{\prime}, Q$ such that $X_{1}=R_{1}^{\prime} \cup R_{2}^{\prime}$ and $X_{2}=$ $R_{1} \cup R_{2}$ such that
(a) the sequence $R_{1}, R_{1}^{\prime}, Q, R_{2}^{\prime}$ is consecutive,
(b) either $R_{2}=\emptyset$ or $R_{2}=Q$, and
(c) $f_{i}^{\prime \prime}=f_{j}^{\prime \prime}+1$ for all $i \in R_{1}^{\prime}, j \in R_{2}^{\prime}$.

Proof of Claim 1. Let s be the minimum of the largest k numbers in π. In order to track the connection among ω, ω^{\prime} and $\omega^{\prime \prime}$, we divide $[n-2]$ into six pairwise disjoint sets:

$$
\begin{aligned}
& A=\left\{i \in[n-2]: f_{i} \geq s+2\right\} \\
& B=\left\{i \in[n-2]: f_{i}=s+1\right\} \\
& C=\left\{i \in[n-2]: f_{i}=s, f_{i}^{\prime}=f_{i}\right\} \\
& D=\left\{i \in[n-2]: f_{i}=s, f_{i}^{\prime}=f_{i}-1\right\} \\
& E=\left\{i \in[n-2]: f_{i}=s-1\right\} \\
& F=\left\{i \in[n-2]: f_{i} \leq s-2\right\}
\end{aligned}
$$

By the definition of π^{\prime} and ω^{\prime}, we can see that A, B, C, D, E, F are consecutive and

$$
\begin{array}{ll}
\forall i \in A, & f_{i}^{\prime}=f_{i}-1 \geq s+1 \\
\forall i \in B, & f_{i}^{\prime}=f_{i}-1=s \\
\forall i \in C, & f_{i}^{\prime}=f_{i}=s \\
\forall i \in D, & f_{i}^{\prime}=f_{i}-1=s-1 \\
\forall i \in E, & f_{i}^{\prime}=f_{i}=s-1 \\
\forall i \in F, & f_{i}^{\prime}=f_{i} \leq s-1
\end{array}
$$

Thus, we can see that $A \cup B \cup D=\left\{i \in[n-2]: f_{i}^{\prime}=\right.$ $\left.f_{i}-1\right\}$, and then $|A|+|B|+|D|=K$.

Let $Y=\left\{i \in[n-2]: f_{i}^{\prime \prime}=f_{i}^{\prime}-1\right\}$. Then it follows that

$$
A \subseteq Y \text { and }|Y|=K=|A|+|B|+|D|
$$

To complete the proof of Claim 1, we distinguish four cases based on the relations among the size of B, C, D, E.

First, suppose $|C| \geq|B|+|D|$. Let $C^{\prime \prime}$ consists of the $|B|+|D|$ largest integers in C, and $C^{\prime}=C \backslash C^{\prime \prime}$. It is easy to see that $Y=A \cup C^{\prime \prime}$. Let $R_{1}=A, R_{2}=\emptyset, R_{1}^{\prime}=B, R_{2}^{\prime}=$ $C^{\prime \prime} \cup D$ and $Q=C^{\prime}$. We can see that $X_{1}=R_{1}^{\prime} \cup R_{2}^{\prime}$ and $X_{2}=R_{1} \cup R_{2}$, and (a) and (b) hold. Note that $f_{i}^{\prime \prime}=s$ for $i \in$ R_{1}^{\prime}, and $f_{i}^{\prime \prime}=s-1$ for $i \in R_{2}^{\prime}$; Then (c) holds.

Next, suppose that $|D| \leq|C|<|B|+|D|$. Let $B^{\prime \prime}$ consists of the $|B|+|D|-|C|$ largest integers in B, and $B^{\prime}=B \backslash B^{\prime \prime}$. Then $Y=A \cup B^{\prime \prime} \cup C$. Let $R_{1}=A, R_{2}=Q=B^{\prime \prime}, R_{1}^{\prime}=$ $B^{\prime}, R_{2}^{\prime}=C \cup D$. It is easy to see that $X_{1}=R_{1}^{\prime} \cup R_{2}^{\prime}$ and $X_{2}=R_{1} \cup R_{2}$, and (a) and (b) hold. Note that $f_{i}^{\prime \prime}=s$ for $i \in$ R_{1}^{\prime}, and $f_{i}^{\prime \prime}=s-1$ for $i \in R_{2}^{\prime}$; Then (c) holds.

Now, assume that $|C|<|D| \leq|C|+|E|$. Let $E^{\prime \prime}$ consists of the $|D|-|C|$ largest integers in E, and $E^{\prime}=E \backslash E^{\prime \prime}$. Then $Y=A \cup B \cup C \cup E^{\prime \prime}$. Let $R_{1}=A \cup B, R_{2}=\emptyset, R_{1}^{\prime}=C \cup D$, $R_{2}^{\prime}=E^{\prime \prime}$, and $Q=E^{\prime}$. It is easy to see that $X_{1}=R_{1}^{\prime} \cup R_{2}^{\prime}$ and $X_{2}=R_{1} \cup R_{2}$, and (a) and (b) hold. Note that $f_{i}^{\prime \prime}=$ $s-1$ for $i \in R_{1}^{\prime}$, and $f_{i}^{\prime \prime}=s-2$ for $i \in R_{2}^{\prime}$; Then (c) holds.

Finally, we consider the case $|D|>|C|+|E|$. Let $D^{\prime \prime}$ consists of the $|D|-|C|-|E|$ largest integers in D, and $D^{\prime}=$ $D \backslash D^{\prime \prime}$. Then $\quad Y=A \cup B \cup C \cup D^{\prime \prime} \cup E$. Let $\quad R_{1}=A \cup$ $B, R_{2}=Q=D^{\prime \prime}, R_{1}^{\prime}=C \cup D^{\prime}, R_{2}^{\prime}=E$. It is easy to see that $X_{1}=R_{1}^{\prime} \cup R_{2}^{\prime}$ and $X_{2}=R_{1} \cup R_{2}$, and (a) and (b) hold. Note that $f_{i}^{\prime \prime}=s-1$ for $i \in R_{1}^{\prime}$, and $f_{i}^{\prime \prime}=s-2$ for $i \in R_{2}^{\prime}$; Then (c) holds.

Let $\quad I_{1}=\{i \in[n-2]: i \equiv 1 \bmod 2\} \quad$ and $\quad I_{2}=\{i \in$ $[n-2]: i \equiv 0 \bmod 2\}$.

Claim 2. (Ji, Ma, Yan and Yu [3]). $\left|X_{1} \cap I_{1}\right|-\left|X_{1} \cap I_{2}\right| \in$ $\{-2,0,2\}$. Moreover, $\left|X_{1} \cap I_{1}\right|-\left|X_{1} \cap I_{2}\right|=0$ implies $\mid X_{2} \cap$ $I_{1}\left|-\left|X_{2} \cap I_{2}\right| \in\{-1,0,1\}\right.$.

Now, we construct a realization of $\pi=\left(d_{1}, \ldots, d_{n}\right)$. Note that $\omega^{\prime \prime}=\left(f_{1}^{\prime \prime}, \ldots, f_{n-2}^{\prime \prime}\right)$ is a graphic sequence. By induction hypothesis, there exists a realization F of $\omega^{\prime \prime}$ with $V(F)=$ $\left\{w_{1}, . ., w_{n-2}\right\}$, and $d_{F}\left(w_{i}\right)=f_{i}^{\prime \prime}$ for $i \in[n-2]$, such that the parity bisection J of F satisfies

$$
\begin{equation*}
d_{J}\left(w_{i}\right) \leq\left\lceil\left(d_{F}\left(w_{i}\right)+1\right) / 2\right\rceil \text { for all } i \in[n-2] \tag{1}
\end{equation*}
$$

Let $W_{j}=\left\{w_{i}: i \equiv j \bmod 2\right\}$ for $j \in[n-2]$.
In what follows, we will construct a graph G as a realization of π such that its parity bisection H of G satisfies $d_{H}(v) \leq\left\lceil\left(d_{G}(v)+1\right) / 2\right\rceil$ for all $v \in V(G)$, by adding two new vertices a, b (so $V(G)=V(F) \cup\{a, b\}$) and some edges from these two vertices to F. Notice that if $K=k-1$, we will add edge $a b$, for convenience, let

$$
\epsilon= \begin{cases}1 & \text { if } K=k-1 \\ 0 & \text { if } K=k\end{cases}
$$

We write $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ such that $v_{i}=w_{i}$ for $i \in$ $[l-1],\left\{v_{l}, v_{l+1}\right\}=\{a, b\}, v_{i}=w_{i-2}$ for $i \in[n] \backslash[l+1]$.

In the view of Claim 2, we divide the proof of Theorem 1 into three cases. In each of the three cases, we use a to represent the vertex in $\left\{v_{l}, v_{l+1}\right\}$ with odd index, so the parity partition of $V(G)$ is

$$
V_{1}=W_{1} \cup\{a\}, V_{2}=W_{2} \cup\{b\}
$$

Case 1. $\left|X_{1} \cap I_{1}\right|-\left|X_{1} \cap I_{2}\right|=0$

We know that $F \subseteq G$ and $V(G)=V(F) \cup\{a, b\}$, and we need to add edges at a and b to form G, a realization of π. Add $a b$ if $\epsilon=1$, add $a v_{i}$ for all $i \in X_{2} \cup\left(X_{1} \cap I_{1}\right)$, and add $b v_{j}$ for all $j \in X_{2} \cup\left(X_{1} \cap I_{2}\right), G$ is a realization of π. Let H denote the parity bisection of G, so V_{1}, V_{2} are the partition sets of H. Now, we show that $d_{H}(v) \leq\left\lceil\left(d_{G}(v)+1\right) / 2\right\rceil$ for all $v \in V(G)$.

In a particular case, when $X_{1}=\emptyset$, by Claim 1, we can see $R_{2}=\emptyset$ and $X_{2}=R_{1}$. Since R_{1} is start from the integer 1 , we have

$$
\begin{equation*}
0 \leq\left|X_{2} \cap I_{1}\right|-\left|X_{2} \cap I_{2}\right| \leq 1 \tag{2}
\end{equation*}
$$

For each w_{i} with $i \notin X_{1} \cup X_{2}$, its neighborhoods in F and G are the same, by $(1), \quad d_{H}\left(w_{i}\right)=d_{J}\left(w_{i}\right) \leq\left\lceil\left(d_{F}\left(w_{i}\right)+\right.\right.$ 1) $/ 2\rceil=\left\lceil\left(d_{G}\left(w_{i}\right)+1\right) / 2\right\rceil$.

For w_{i} with $i \in X_{2}$, then $d_{G}\left(w_{i}\right)=d_{F}\left(w_{i}\right)+2, d_{H}\left(w_{i}\right)=$ $d_{J}\left(w_{i}\right)+1, \quad$ by $\quad(1), \quad d_{H}\left(w_{i}\right)=d_{J}\left(w_{i}\right)+1 \leq\left\lceil\left(d_{F}\left(w_{i}\right)+\right.\right.$ 1) $/ 2\rceil+1=\left\lceil\left(d_{G}\left(w_{i}\right)+1\right) / 2\right\rceil$.

For w_{i} with $i \in X_{1}$, then $d_{G}\left(w_{i}\right)=d_{F}\left(w_{i}\right)+1, d_{H}\left(w_{i}\right)=$ $d_{J}\left(w_{i}\right), \quad$ by $\quad(1), \quad d_{H}\left(w_{i}\right)=d_{J}\left(w_{i}\right) \leq\left\lceil\left(d_{F}\left(w_{i}\right)+1\right) / 2\right\rceil=$ $\left\lceil d_{G}\left(w_{i}\right) / 2\right\rceil$.

For the vertices $a, \quad d_{G}(a)=\left|X_{2}\right|+\left|X_{1} \cap I_{1}\right|+\epsilon$ and $d_{H}(a)=\left|X_{2} \cap I_{2}\right|+\epsilon$. So

$$
2 d_{H}(a)-d_{G}(a)=\left(\left|X_{2} \cap I_{2}\right|-\left|X_{2} \cap I_{1}\right|\right)-\left|X_{1} \cap I_{1}\right|+\epsilon
$$

By Claim 2, we have $\left|X_{2} \cap I_{2}\right|-\left|X_{2} \cap I_{1}\right| \leq 1$. If $\epsilon=0$, we have $2 d_{H}(a)-d_{G}(a) \leq 1$, and $d_{H}(a) \leq\left(d_{G}(a)+1\right) / 2$; If $\epsilon=1$ and $X_{1} \neq \emptyset, \quad$ by $X_{1} \neq \emptyset$, we have $\left|X_{1} \cap I_{1}\right|=$ $\left|X_{1} \cap I_{2}\right| \geq 1, \quad$ then $\quad 2 d_{H}(a)-d_{G}(a) \leq 1, \quad$ and $\quad d_{H}(a) \leq$ $\left(d_{G}(a)+1\right) / 2$; We can see that if $\epsilon=0$ or $X_{1} \neq \emptyset, d_{H}(a) \leq$ $\left(d_{G}(a)+1\right) / 2$; If $\epsilon=1$ and $X_{1}=\emptyset$, by (2), we have $2 d_{H}(a)-d_{G}(a) \leq 1$, and $d_{H}(a) \leq\left(d_{G}(a)+1\right) / 2$.

For the vertices b, then $d_{G}(b)=\left|X_{2}\right|+\left|X_{1} \cap I_{2}\right|+\epsilon$ and $d_{H}(b)=\left|X_{2} \cap I_{1}\right|+\epsilon$. So

$$
2 d_{H}(b)-d_{G}(b)=\left(\left|X_{2} \cap I_{1}\right|-\left|X_{2} \cap I_{2}\right|\right)-\left|X_{1} \cap I_{2}\right|+\epsilon
$$

By Claim 2, we have $\left|X_{2} \cap I_{1}\right|-\left|X_{2} \cap I_{2}\right| \leq 1$. Using the similar argument above, we can see that if $\epsilon=0$ or $X_{1} \neq$ $\emptyset, 2 d_{H}(b)-d_{G}(b) \leq 1$, so $d_{H}(b) \leq\left(d_{G}(b)+1\right) / 2$; If $\epsilon=1$ and $X_{1}=\emptyset$, by (2), we have $\left|X_{2} \cap I_{1}\right|-\left|X_{2} \cap I_{2}\right| \leq 1$. When $\left|X_{2} \cap I_{1}\right|-\left|X_{2} \cap I_{2}\right| \leq 0$, it is easy to see $2 d_{H}(a)-d_{G}(a) \leq$ 1 , so $d_{H}(a) \leq\left(d_{G}(a)+1\right) / 2$, and when $\left|X_{2} \cap I_{1}\right|-\mid X_{2} \cap$ $I_{2}\left|=1, \quad d_{G}(b)=\left|X_{2}\right|+\epsilon=2\right| X_{2} \cap I_{2} \mid+2 \quad$ and $\quad d_{H}(b)=$ $\left|X_{2} \cap I_{1}\right|+\epsilon=\left|X_{2} \cap I_{2}\right|+2$, then $d_{H}(b)=\left\lceil\left(d_{G}(b)+1\right) / 2\right\rceil$.

Case 2. $\left|X_{1} \cap I_{2}\right|-\left|X_{1} \cap I_{1}\right|=2$
Recall that $X_{1}=R_{1}^{\prime} \cup R_{2}^{\prime}$, where each R_{i}^{\prime} is consecutive. Thus $\left|R_{i}^{\prime} \cap I_{2}\right|=\left|R_{i}^{\prime} \cap I_{1}\right|+1$ for $i \in[2]$. Since the sequence $R_{1}, R_{1}^{\prime}, Q, R_{2}^{\prime}$ is consecutive and start from integer 1 , we see that $R_{1} \cap I_{1} \neq \emptyset, \quad\left|R_{1} \cap I_{2}\right|=\left|R_{1} \cap I_{1}\right|-1, \quad$ and $\quad\left|Q \cap I_{2}\right|=$ $\left|Q \cap I_{1}\right|-1$. Since $R_{2}=\emptyset$ or $R_{2}=Q$ (by (b) of claim 1), we have

$$
\begin{equation*}
-2 \leq\left|X_{2} \cap I_{2}\right|-\left|X_{2} \cap I_{1}\right| \leq-1 \tag{3}
\end{equation*}
$$

In a particular case, when $X_{1} \cap I_{1}=\emptyset,\left|X_{1} \cap I_{2}\right|=2$, and there is only one even integer in R_{1}^{\prime} and R_{2}^{\prime}, respectively.

We claim that there exists some $z \in X_{1} \cap I_{2}$ with $d_{J}\left(w_{z}\right) \leq\left(d_{F}\left(w_{z}\right)+1\right) / 2$. To see this, choose $x \in R_{1}^{\prime} \cap I_{2}$ and $y \in R_{2}^{\prime} \cap I_{2}$. By (1), we have $d_{J}\left(w_{x}\right) \leq\left\lceil\left(d_{F}\left(w_{x}\right)+1\right) / 2\right\rceil$
and $d_{J}\left(w_{y}\right) \leq\left\lceil\left(d_{F}\left(w_{y}\right)+1\right) / 2\right\rceil$. By (c) of Claim 1, $d_{F}\left(w_{x}\right)=$ $d_{F}\left(w_{y}\right)+1$. Observe that $d_{F}\left(w_{x}\right)$ and $d_{F}\left(w_{y}\right)$ are of different parities. So there exists $z \in\{x, y\}$ and $d_{F}\left(w_{z}\right)$ is odd such that $d_{J}\left(w_{z}\right) \leq\left(d_{F}\left(w_{z}\right)+1\right) / 2$.

We now add edges at a and b to form G from F, add ab if $\epsilon=1$, add $a v_{i}$ for all $i \in X_{2} \cup\left(X_{1} \cap I_{1}\right) \cup\{z\}$, and $b v_{j}$ for all $j \in X_{2} \cup\left(X_{1} \cap I_{2}\right) \backslash\{z\}, G$ is a realization of π. Next we show that the parity bisection H of G satisfied that $d_{H}(v) \leq$ $\left\lceil\left(d_{G}(v)+1\right) / 2\right\rceil$ for all $v \in V(G)$.

For each w_{i} with $i \notin X_{1} \cup X_{2}$, its neighborhoods in F and G are the same, by (1), $d_{H}\left(w_{i}\right)=d_{J}\left(w_{i}\right) \leq\left\lceil\left(d_{F}\left(w_{i}\right)+\right.\right.$ $1) / 2\rceil=\left\lceil\left(d_{G}\left(w_{i}\right)+1\right) / 2\right\rceil$.

For w_{i} with $i \in X_{2}$, then then $d_{G}\left(w_{i}\right)=d_{F}\left(w_{i}\right)+$ $2, \quad d_{H}\left(w_{i}\right)=d_{J}\left(w_{i}\right)+1, \quad$ by $\quad(1), \quad d_{H}\left(w_{i}\right)=d_{J}\left(w_{i}\right)+1 \leq$ $\left\lceil\left(d_{F}\left(w_{i}\right)+1\right) / 2\right\rceil+1=\left\lceil\left(d_{G}\left(w_{i}\right)+1\right) / 2\right\rceil$.

For w_{i} with $i \in X_{1} \backslash\{z\}$, then $d_{G}\left(w_{i}\right)=d_{F}\left(w_{i}\right)+$ $1, d_{H}\left(w_{i}\right)=d_{J}\left(w_{i}\right), \quad$ by $(1), \quad d_{H}\left(w_{i}\right)=d_{J}\left(w_{i}\right) \leq\left\lceil\left(d_{F}\left(w_{i}\right)+\right.\right.$ 1) $/ 2\rceil=\left\lceil d_{G}\left(w_{i}\right) / 2\right\rceil$.

For the vertex w_{z} and note that $d_{F}\left(w_{z}\right)$ is odd, then $d_{G}\left(w_{z}\right)=d_{F}\left(w_{z}\right)+1, d_{H}\left(w_{z}\right)=d_{J}\left(w_{z}\right)+1$, by $(1), d_{H}\left(w_{z}\right)=$ $d_{J}\left(w_{i}\right)+1 \leq\left(d_{F}\left(w_{z}\right)+1\right) / 2+1=\left\lceil\left(d_{G}\left(w_{z}\right)+1\right) / 2\right\rceil$.

For the vertex $a, d_{G}(a)=\left|X_{2}\right|+\left|X_{1} \cap I_{1}\right|+1+\epsilon$ and $d_{H}(a)=\left|X_{2} \cap I_{2}\right|+1+\epsilon$. By (3), we have

$$
\begin{aligned}
2 d_{H}(a)-d_{G}(a) & =\left(\left|X_{2} \cap I_{2}\right|-\left|X_{2} \cap I_{1}\right|\right)-\left|X_{1} \cap I_{1}\right|+1+\epsilon \\
& \leq 1
\end{aligned}
$$

Then $d_{H}(a) \leq\left(d_{G}(a)+1\right) / 2$.
And for the vertex $b, d_{G}(b)=\left|X_{2}\right|+\left|X_{1} \cap I_{2}\right|-1+\epsilon$ and $d_{H}(b)=\left|X_{2} \cap I_{1}\right|+\epsilon$. we have

$$
2 d_{H}(b)-d_{G}(b)=\left(\left|X_{2} \cap I_{1}\right|-\left|X_{2} \cap I_{2}\right|\right)-\left|X_{1} \cap I_{2}\right|+1+\epsilon
$$

If $\epsilon=0$, by (3) and notice that $\left|X_{1} \cap I_{2}\right| \geq 2,2 d_{H}(b)-$ $d_{G}(b) \leq 1$. Then $d_{H}(b) \leq\left(d_{G}(b)+1\right) / 2$.

If $\epsilon=1$ and $X_{1} \cap I_{1} \neq \emptyset$, notice that $X_{1} \cap I_{1} \neq \emptyset$, then $\left|X_{1} \cap I_{2}\right| \geq 3, \quad$ and \quad by (3), $2 d_{H}(b)-d_{G}(b) \leq 1$. Then $d_{H}(b) \leq\left(d_{G}(b)+1\right) / 2$.

If $\epsilon=1$ and $X_{1} \cap I_{1}=\emptyset, d_{G}(b)=\left|X_{2}\right|+1+\epsilon=2\left(\left|R_{1} \cap I_{2}\right|+\right.$ $\left.\left|R_{2} \cap I_{2}\right|\right)+4, d_{H}(b)=\left|X_{2} \cap I_{1}\right|+\epsilon=\left(\left|R_{1} \cap I_{2}\right|+\left|R_{2} \cap I_{2}\right|\right)+$ 3. Then $d_{H}(b)=\left\lceil\left(d_{G}(b)+1\right) / 2\right\rceil$.

Case 3. $\left|X_{1} \cap I_{1}\right|-\left|X_{1} \cap I_{2}\right|=2$
In this case, we have $\left|R_{i}^{\prime} \cap I_{1}\right|=\left|R_{i}^{\prime} \cap I_{2}\right|+1$, for $i \in[2]$. Since $R_{1}, R_{1}^{\prime}, Q, R_{2}^{\prime}$ is consecutive, it follows that $\left|R_{1} \cap I_{1}\right|=$ $\left|R_{1} \cap I_{2}\right|$, and $\left|Q \cap I_{1}\right|=\left|Q \cap I_{2}\right|-1$. Since $R_{2}=\emptyset$ or $R_{2}=$ Q, we have

$$
\begin{equation*}
0 \leq\left|X_{2} \cap I_{2}\right|-\left|X_{2} \cap I_{1}\right| \leq 1 \tag{4}
\end{equation*}
$$

In a particular case, when $X_{1} \cap I_{2}=\emptyset,\left|X_{1} \cap I_{1}\right|=2$, and there is only one odd integer in R_{1}^{\prime} and R_{2}^{\prime}, respectively.

Since X_{1} is even and $\left|R_{i}^{\prime} \cap I_{1}\right|=\left|R_{i}^{\prime} \cap I_{2}\right|+1$, for $i \in[2]$, there exist $x \in R_{1}^{\prime} \cap I_{1}$ and $y \in R_{2}^{\prime} \cap I_{1}$. By (1), we have $d_{J}\left(w_{x}\right) \leq\left\lceil\left(d_{F}\left(w_{x}\right)+1\right) / 2\right\rceil$ and $d_{J}\left(w_{y}\right) \leq\left\lceil\left(d_{F}\left(w_{y}\right)+1\right) / 2\right\rceil$. By (c) of Claim 1, $d_{F}\left(w_{x}\right)=d_{F}\left(w_{y}\right)+1$. Observe that
$d_{F}\left(w_{x}\right)$ and $d_{F}\left(w_{y}\right)$ are of different parities. So there exists $z \in\{x, y\}$ and $d_{F}\left(w_{z}\right)$ is odd such that $d_{J}\left(w_{z}\right) \leq$ $\left(d_{F}\left(w_{z}\right)+1\right) / 2$.

We now add edges at a and b to form G from F, add ab if $\epsilon=1$, add $a v_{i}$ for all $i \in X_{2} \cup\left(X_{1} \cap I_{1}\right) \backslash\{z\}$, and $b v_{j}$ for all $j \in X_{2} \cup\left(X_{1} \cap I_{2}\right) \cup\{z\}, G$ is a realization of π. Next we show that the parity bisection H of G satisfied that $d_{H}(v) \leq$ $\left\lceil\left(d_{G}(v)+1\right) / 2\right\rceil$ for all $v \in V(G)$.

For each w_{i} with $i \notin X_{1} \cup X_{2}$, its neighborhoods in F and G are the same, by (1), $d_{H}\left(w_{i}\right)=d_{J}\left(w_{i}\right) \leq\left\lceil\left(d_{F}\left(w_{i}\right)+\right.\right.$ $1) / 2\rceil=\left\lceil\left(d_{G}\left(w_{i}\right)+1\right) / 2\right\rceil$.

For w_{i} with $i \in X_{2}$, then $d_{G}\left(w_{i}\right)=d_{F}\left(w_{i}\right)+2, d_{H}\left(w_{i}\right)=$ $d_{J}\left(w_{i}\right)+1, \quad$ by $\quad(1), \quad d_{H}\left(w_{i}\right)=d_{J}\left(w_{i}\right)+1 \leq\left\lceil\left(d_{F}\left(w_{i}\right)+\right.\right.$ 1) $/ 2\rceil+1=\left\lceil\left(d_{G}\left(w_{i}\right)+1\right) / 2\right\rceil$.

For w_{i} with $i \in X_{1} \backslash\{z\}$, then $d_{G}\left(w_{i}\right)=d_{F}\left(w_{i}\right)+$ $1, d_{H}\left(w_{i}\right)=d_{J}\left(w_{i}\right), \quad$ by $(1), \quad d_{H}\left(w_{i}\right)=d_{J}\left(w_{i}\right) \leq\left\lceil\left(d_{F}\left(w_{i}\right)+\right.\right.$ 1) $/ 2\rceil=\left\lceil d_{G}\left(w_{i}\right) / 2\right\rceil$.

For the vertex w_{z} and note that $d_{F}\left(w_{z}\right)$ is odd, then $d_{G}\left(w_{z}\right)=d_{F}\left(w_{z}\right)+1, d_{H}\left(w_{z}\right)=d_{J}\left(w_{z}\right)+1$, by (1), $d_{H}\left(w_{z}\right)=$ $d_{J}\left(w_{i}\right)+1 \leq\left(d_{F}\left(w_{z}\right)+1\right) / 2+1=\left\lceil\left(d_{G}\left(w_{z}\right)+1\right) / 2\right\rceil$.

For the vertex $a, d_{G}(a)=\left|X_{2}\right|+\left|X_{1} \cap I_{1}\right|-1+\epsilon$ and $d_{H}(a)=\left|X_{2} \cap I_{2}\right|+\epsilon$. By (4) and the fact $\left|X_{1} \cap I_{1}\right| \geq 2$ we have

$$
2 d_{H}(a)-d_{G}(a)=\left(\left|X_{2} \cap I_{2}\right|-\left|X_{2} \cap I_{1}\right|\right)-\left|X_{1} \cap I_{1}\right|+1+\epsilon \leq 1
$$

Then $d_{H}(a) \leq\left(d_{G}(a)+1\right) / 2$. And for the vertex $b, d_{G}(b)=$ $\left|X_{2}\right|+\left|X_{1} \cap I_{2}\right|+1+\epsilon$ and $d_{H}(b)=\left|X_{2} \cap I_{1}\right|+1+\epsilon$. We have

$$
2 d_{H}(b)-d_{G}(b)=\left(\left|X_{2} \cap I_{1}\right|-\left|X_{2} \cap I_{2}\right|\right)-\left|X_{1} \cap I_{2}\right|+1+\epsilon ;
$$

If $\epsilon=0, \quad$ by $(4), \quad 2 d_{H}(b)-d_{G}(b) \leq 1, \quad$ then $\quad d_{H}(b) \leq$ $\left(d_{G}(b)+1\right) / 2$.

If $\epsilon=1$ and $X_{1} \cap I_{2} \neq \emptyset$, notice that $X_{1} \cap I_{2} \neq \emptyset$, then $\left|X_{1} \cap I_{2}\right| \geq 1$, we have $2 d_{H}(b)-d_{G}(b) \leq 1$, then $d_{H}(b) \leq$ $\left(d_{G}(b)+1\right) / 2$.

If $\epsilon=1$ and $X_{1} \cap I_{2}=\emptyset, d_{G}(b)=\left|X_{2}\right|+1+\epsilon=2\left(\left|R_{1} \cap I_{2}\right|+\right.$ $\left.\left|R_{2} \cap I_{2}\right|\right)+1, d_{H}(b)=\left|X_{2} \cap I_{1}\right|+1+\epsilon=\left(\left|R_{1} \cap I_{2}\right|+\left|R_{2} \cap I_{2}\right|\right)+1$. Then $d_{H}(b)=\left(d_{G}(b)+1\right) / 2$.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Bollobás, B., Scott, A. D. (2002). Results on judicious partitions. Random Struct. Alg. 21(3-4):414-430.
[2] Hartke, S. G, Seacrest, T. (2012). Graph sequences have realizations containing bisections of large degree. J. Graph Theory. 71(4):386-401.
[3] Ji, Y., Ma, J., Yan, J, Yu, X. On problems about judicious bipartitions of graphs. arXiv 1701.07162.
[4] Kleitman, D. J, Wang, D. L. (1973). Algorithms for constructing graphs and digraphs with given valences and factors. Discrete Math. 6(1973):79-88.

