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ABSTRACT

Bollobas and Scott conjectured that every graph G has a balanced bipartite spanning subgraph H
such that for each v € V(G),dy(v) > (dg(v) — 1)/2, for each v € V(G). In this paper, we consider
the contrary side and show that every graphic sequence has a realization G which admits a bal-
anced bipartite spanning subgraph H such that dy(v) < [(ds(v) + 1)/2] for each v € V(G), and

we show that the bound is sharp.

1. Introduction

For a graph G and for any v € V(G), we use dg(v) to
denote the degree of the vertice v in G. Let G be a graph
and Vi, ---, Vi be a partition of V(G). When k=2, such a
partition is said to be bipartition of G. A subgraph H of G
is said to be a bisection of G if H is bipartite subgraph of G
and the partition sets of H differs at most one. A bisection
is also said to be balanced bipartition. Bollobds and Scott [1]
conjectured that every graph G has a bisection H such that

du(v) > (dg(v) — 1)/2 for all v € V(G)

In [3], Ji et al. give an infinite family of counterexamples to
this Bollobas and Scott conjecture, which indicates that
|(dg(v) — 1)/2] rather (dg(v) — 1)/2 is probably the correct
lowered bound.

Similar to Bollobds and Scott conjecture, we propose the
following conjecture.

Conjecture 1. Every graph G has a bisection H such that
du(v) < [(dg(v) +1)/2] for all v € V(G)

This conjecture is concerned with the Bollobas and Scott
conjecture. Let G° denote the complement of a graph G.
After a simple calculation, we can prove that if G° admits a
balanced bipartite spanning subgraph satisfied Conjecture 1,
the same bipartition of V(G) can induce a balanced span-
ning subgraph H of G satisfied

du(v) > | (dg(v) — 1)/2] for all v € V(G).

The bound is just Ji et al. mentioned. But the reverse may
not be true.

Hartke and Seacrest [2] studied a degree sequence version
of this Bollobds and Scott conjecture, and they proved that
for any graphic sequence 7 with even length, 7 has a realiza-
tion G which admits a bisection H such that dy(v) >
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(dg(v) —1)/2 for all v € V(G). Ji et al. [3] extended the
result to all degree sequences, they proved that for any graphic
sequence 7, T has a realization G which admits a bisection H
such that dy(v) > (dg(v) — 1)/2 for all v € V(G).

For any positive integer k, let [k] :={1,2,...,k}. For a
graph G and a labelling of its vertices V(G) = {vy,...v,}, we
defined the parity bisection of G to be the bisection with parti-
tion sets V; and V,, where V; = {v; € V(G) :j =i mod 2}
for each i € [2], and E(H) = {uv € E(G) : u € V1,v € V1 }.

In this paper, we obtain the following result.

Theorem 1. Let n = (dy,...,d,) be any graphic sequence
with dy > ... > d,. Then there exists a realization G of ©
with V(G) = {v1,...,v,} and dg(v;) =d; for i€ [n], such
that if H denotes the parity bisection of G then dy(v) <
[(dg(v) +1)/2], for v € V(G).

The bound in Theorem 1 is sharp as shown by the fol-
lowing examples. Let 7 = (2k,2k, 2,2 I.(..,IZ) be a graphic
sequence where k is a positive integer, let G be a realization
of n, and V(G) = {vi,va, .., Va1 }» dg(v1) = dg(v2) = 2k,
dg(vs) = ... = dg(vars+1) = 2. We can see that v; and v, adja-
cent to all the other vertices, excluding itself, and G is unique
up to isomorphism. Let H be an arbitrary bisection of G with
parts A and B, without loss of generality, we may assume that
|A| =k, and |B| =k+ 1. If v; and v, are in the same part,
there exists a vertex v such that dy(v) =2, and (dg(v) +
1)/2 < dy(v) = [(dg(v) +1)/2]. If v; and v, are in the dif-
ferent parts, assume that v; € A and v, € B, then dy(v;) =
k+1, and (d(;(vl) + 1)/2 < dH(Vl) = ’V(dc(vl) + 1)/21.

2. Proof of Theorem 1

For the proof of Theorem 1, we need two operations on a
sequence of nonnegative integers. Let © = (di,...,d,) with
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dy > ... > d,. By removing d; from 7n and subtracting 1
from the d; remaining elements of 7 with lowest indices. We
obtain a new sequence 7' = (d},....d]_,,d},,....d,), and we
say that 7’ is obtained from 7 by laying off d;, and the laying
off operation is introduced by Kleitman and Wang [4].

It is easy to see the sequence 7’ laying off d; from 7 need
not non-increasing. In order to avoid this case, Hartke and
Seacrest [2] introduce a variation of laying off operation.
Choose a fix i € [n], assume that s is the smallest value
among the d; largest elements in m, not including d; itself.
Let L={i € [n] —i:d; >s}. Obviously, |L| < d;. Let M be
the set of d; — |L| largest indices j with j # i and d; = 5. We
removed d; from =, subtract 1 from d; for all j€ LUM.
This operation is called laying off with order. In the follow-
ing, we give a good result about laying off with order.

Lemma 1. (Harket-Seacrest [2]). For any i€ [n], the
sequence © = (di,...,d,) with dy > ... > d,, is graphic if and
only if the sequence @' obtained from m by laying off d; with
order is graphic.

Having finished all the necessary preparations, we are
ready to prove Theorem 1. First, we give a brief outline of
our proof. Choose two consecutive elements d; and dj;; of
7, by Lemma 1, we can obtain a new graphic sequence 7"
with length n - 2 by laying off d; and di;; with order. By
induction, n” has an (n — 2) vertex realization F whose par-
ity bisection J has the desired property. We then show that
one can form G from F by adding two new vertices and
choosing their neighbors so that the parity bisection of G
satisfies Theorem 1.

Proof of Theorem 1. We apply induction on the length n of
the graphic sequence 7 = (dy,....d,) with d; >d, > ... >
d,. The assertion is holds when n=1, 2. So we may assume
that n > 3 and the assertion holds for all graphic sequence
with length less than n. There exists two consecutive elements
of 7 that are identical; Let I € [n — 1] be fixed such that

dy=di =k
Let n' = (d},...d),d],,,...d,) be the sequence obtained
from n by laying off dy; with order. Let 7" =
(d{s....d} |, d},,,...d,;) be the sequence obtained from n’ by

laying off d; with order. By Lemma 1, 7’ and n” are all
graphic sequence.

Let w = (fi,f2,...fu—2) be the sequence obtained from =
with d; and dj;; removed, and re-indexed so that the indices
are consecutive, i.e., f; = d; for i € [ — 1] and f; = d;;, for
ie[n—2]\[I—1]. Let o = (f].f;>....f._,) be the sequence
obtained from 7’ with d] removed, and re-indexed so that
the indices are consecutive. Also, let " = (f/".f;,....f.,) be
the sequence obtained from n” by re-indexing so that the
indices are consecutive. Note that @” is graphic sequence.

To turn a realization of @” to a realization of 7, we need
to track the changes between f; and f/ for all i € [n —2].
Note that 0 < f; — /" < 2. Let

Xy={ienh-2]:f'=f—-1},
Xo={ieh-2]:f =fi—2}

and

k=1  ifd=d—1
K=d = s
k if d=d

So K = Zie[n_zlﬁ‘ —f;/| = Zie[n_z If;-/ —ﬁ/l|; then
1Xi| +2|X,| = 2K

For convenience, we introduce some notation. For non-
empty sets A and B of integers, we write A < B if the max-
imum integer in A is less than the minimum integer in B. A
set S of integers is consecutive if it consists of consecutive
integers. A sequence of pairwise disjoint sets, Aj,...,A;, of
integers is said to be consecutive if A; U...UA, is consecu-
tive and, for any i,j € [t| with i <j and A; and A; nonempty,
we have A; < A;.

Ji, Ma, Yan and Yu [3] proved the following Claim 1 and
Claim 2, they are also essential in our proof of Theorem 1.
For better understanding of the proof of Theorem 1, we
now present the proof of Claim 1 and the method of this
proof comes from [3].

Claim 1. (Ji, Ma, Yan and Yu [3]). There exist consecutive
sets Ry,Rp, R,R,,Q such that X; =R{UR, and X,=
Ry UR, such that

(a)  the sequence Ry, R}, Q, R, is consecutive,
(b) either R, =0 or R, = Q, and
(© f'=f"+1foralli€R|,jER,.

Proof of Claim 1. Let s be the minimum of the largest k
numbers in 7. In order to track the connection among w,
o' and ", we divide [n — 2] into six pairwise disjoint sets:
A={ien-2]:fi>s+2},
B={ien-2]:fi=s+1},
C={ieln-2:fi=sf =f}
D={ien-2]:fi=sf =fi—1},
E={ien-2]:fi=s—-1},
F={ie[n—-2]:fi<s—2}.
By the definition of 7’ and @', we can see that A, B, C,
D, E, F are consecutive and
VieA, fl=fi-1>s+1,
VieB, fl=fi—-1=s,
VieC, fl=fi=s

ViGD, f;,:ﬁ_IZS_l)
VIEE, f;/:ﬁ:s—l,
VieF, fl=f<s—1.

Thus, we can see that AUBUD={ie[n—2]:f =
fi — 1}, and then |A| + |B| + |D| = K.
Let Y ={i € [n—2]:f'=f —1}. Then it follows that
ACY and |Y| =K = |A| + |B| + |D|
To complete the proof of Claim 1, we distinguish four cases
based on the relations among the size of B, C, D, E.



First, suppose |C| > |B|+ |D|. Let C” consists of the
|B| + |D| largest integers in C, and C' = C\ C". It is easy to
see that Y=AUC". Let Ry =A, R, =0, Ry =B, R, =
C"UD and Q=C". We can see that X; =R{ UR) and
X5 = Ry UR,, and (a) and (b) hold. Note that f" = s for i €
R}, and f/" = s — 1 for i € R}; Then (c) holds.

Next, suppose that |D| < |C| < |B| + |D|. Let B” consists
of the |B| + |D| — |C| largest integers in B, and B’ = B\ B".
Then Y=AUB"UC. Let Ri=A, R, =Q=B", R| =
B, R, =CUD. It is easy to see that X; =R UR), and
X, = Ry UR,, and (a) and (b) hold. Note that f’ = s for i €
R}, and f" = s —1 for i € R,; Then (c) holds.

Now, assume that |C| < |D| < |C| + |E|. Let E” consists
of the |D| — |C| largest integers in E, and E' = E\ E”. Then
Y=AUBUCUE". Let Ry =AUB, R, =0, Ry =CUD,
R,=E', and Q=EFE. It is easy to see that X; = Rj UR,
and X, = R; UR,, and (a) and (b) hold. Note that f/ =
s—1fori€R]|, and f/ =s—2 for i € R}; Then (c) holds.

Finally, we consider the case |D| > |C| + |E|. Let D" con-
sists of the |D| — |C| — |E| largest integers in D, and D' =
D\D'". Then Y=AUBUCUD"UE. Let R =AU
B, R, =Q=D", Ry=CUD/, R, =E. It is easy to see
that X; = R UR), and X, = Ry UR,, and (a) and (b) hold.
Note that f’ =s—1 for i € R}, and f/ =s—2 for i € R};
Then (c) holds. O

Let L ={ien—2]:i=1mod2} and L={ic€
[n—2]:i=0 mod 2}.

Claim 2. (Ji, Ma, Yan and Yu [3]). |XiNL|— |XiNDL| €
{=2,0,2}. Moreover, |X; NI;| —|X; NL| =0 implies |X; N
L|—|X.NDL| € {-1,01}.

Now, we construct a realization of © = (dj,...,d,). Note
that " = (f{',....f/",) is a graphic sequence. By induction
hypothesis, there exists a realization F of o” with V(F) =
{w1,.-Wp_2}, and dp(w;) = f/’ for i € [n — 2], such that the
parity bisection ] of F satisfies

dr(w;) < [(dp(w;) +1)/2] for all i € [n—2]. (1)

Let W = {w; : i =j mod 2} for j € [n —2].

In what follows, we will construct a graph G as a realiza-
tion of m such that its parity bisection H of G satisfies
du(v) < [(dg(v) +1)/2] for all v € V(G), by adding two
new vertices a, b (so V(G) = V(F) U {4, b}) and some edges
from these two vertices to F. Notice that if K =k — 1, we
will add edge ab, for convenience, let

[1 ifK=k-1
““ Yo

if K=k
We write V(G) = {v,...,v,} such that v, = w; for i€
I=1], {vpvi1} ={ab}, vi=wi, foriec[n\[l+1].

In the view of Claim 2, we divide the proof of Theorem 1
into three cases. In each of the three cases, we use a to repre-
sent the vertex in {v;, vi1} with odd index, so the parity par-
tition of V(G) is

Vi = Wy U{a}, V, = W, U {b}.

Case 1. |X1 ﬂll| — |X1 m12| =0
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We know that FC G and V(G) = V(F)U{a,b}, and we
need to add edges at a and b to form G, a realization of 7.
Add ab if e=1, add av; for all i € X, U (X; NI;), and add
bv; for all j € X, U(X; N L), G is a realization of . Let H
denote the parity bisection of G, so Vy, V, are the partition
sets of H. Now, we show that dy(v) < [(dg(v) +1)/2] for
all v € V(G).

In a particular case, when X; =), by Claim 1, we can
see R, = () and X, = R;. Since R| is start from the integer 1,
we have

0< X NG| —|X,NL| <1, )

For each w; with i ¢ X; U X;, its neighborhoods in F and
G are the same, by (1), du(w;) =d;(wi) < [(dp(wi) +
1)/2] = [(dg(wi) +1)/2].

For w; with i € X5, then dg(w;) = dp(w;) + 2, du(w;) =
di(wi)+ 1, by (1), du(wi)=d;(w;)+1<[(dp(w;)+
1)/2] + 1= [(dg(wi) +1)/2].

For w; with i € Xj, then dG(Wi) = dF(Wi) +1, dH(Wi)
di(wi), by (1), du(wi)=dj(wi) < [(dr(wi) +1)/2] =
[dg(wi)/2].

For the vertices a, dg(a) =|Xa|+|XiNhL|+€ and
du(a) =X, NL| + e So

2dy(a) — dg(a) = (X NL| — |Xa L) — X1 N L] +e

By Claim 2, we have |X, NL| — |X; NL| < 1. If e=0, we
have 2dy(a) —dg(a) <1, and dy(a) < (dg(a) +1)/2; If
e=1 and X;#0, by X;#0, we have [X;N[L|=
Xy NL| >1, then 2dy(a)—dg(a) <1, and dy(a)<
(dg(a) +1)/2; We can see that if e=0 or X; # 0, dy(a) <
(dg(a) +1)/2; If e=1 and X; =0, by (2), we have
2dy(a) — dg(a) <1, and dy(a) < (dg(a) +1)/2.

For the vertices b, then dg(b) = |X;| + |X; N L| + € and
dH(b) = |X2 ﬂIl| + €. So

2dy(b) —dg(b) = (|IXoNL| — X NL|) — | XiNL|+e€

By Claim 2, we have |X, NI;| — |X; NL| < 1. Using the
similar argument above, we can see that if e=0 or X; #
0, 2du(b) —dg(b) <1, so dy(b) < (dg(b) +1)/2; If e=1
and X; = (), by (2), we have | X, NI;| — | X, N | < 1. When
X NL| — X2 N L] <0, it is easy to see 2dy(a) — dg(a) <
1, so dg(a) < (dg(a)+1)/2, and when |X;NL|—|X2N
12| =1, dc(b) = ‘le +e= 2|X2 ﬁlz‘ +2 and dH(b) =
|X2 ﬂ]]| + €= |X2 ﬂ12| + 2, then dH(b) = [(dc(b) + 1)/2-|

Case 2. |X1 ﬂ12| - |X1 ﬂIl| =2

Recall that X; = R UR), where each R} is consecutive.
Thus |[RiNL|=|R;NL|+1 for i € [2]. Since the sequence
Ry, R}, Q, R, is consecutive and start from integer 1, we see
that R] ﬂIl # @, |R1 ﬂ]z| = |R1 ﬂIl| — 1, and |Qﬂ12| =
|[QN | — 1. Since R, = () or R, = Q (by (b) of claim 1), we
have

2<% NDL| - XN < -1 3)

In a particular case, when X; NI} =0, |X; NL| =2, and
there is only one even integer in R| and R}, respectively.

We claim that there exists some z € X;NIL with
dy(w;) < (dp(w;) +1)/2. To see this, choose x € RiNL
and y € R, N L. By (1), we have dj(wy) < [(dp(wy) +1)/2]
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and dj(wy) < [(dp(wy) +1)/2]. By (c) of Claim 1, dp(wy) =
dp(wy) + 1. Observe that dp(w,) and dp(w,) are of different
parities. So there exists z € {x,y} and dp(w;) is odd such
that dj(w,) < (dp(w.) +1)/2.

We now add edges at a and b to form G from F, add ab
if e=1, add av; for all i € X, U (X, N1;) U {z}, and by; for
allje X U Xy NL)\ {2z}, G is a realization of 7. Next we
show that the parity bisection H of G satisfied that dy(v) <
[(dg(v) +1)/2] for all v € V(G).

For each w; with i ¢ X; U X,, its neighborhoods in F and
G are the same, by (1), du(wi) =d;(w;) < [(dp(wi) +
1)/2] = [(do(wy) + 1)/2].

For w; with i€ X;, then then dg(wi)=dr(w;)+
2, dH(Wi) = d](W,') + 1, by (1), dH(Wi) = d](W,') +1 S
[(de(w;) + 1)/2] + 1 = [(dg(wy) + 1)/2].

For w; with i€ X;\{z}, then dg(w;) =dp(w;)+
L, dy(wi) =dj(wi), by (1), du(wi) =dj(w;) < [(dr(w;) +
1)/2] = [do(w),2].

For the vertex w, and note that dp(w,) is odd, then
dG(Wz) = dF(Wz) +1, dH(Wz) = d](WZ) +1, by (1), dH(Wz) =
dy(w;) + 1< (dp(w.) +1)/2+1= [(dg(w,) +1)/2].

For the vertex a, dg(a) =|X3|+|XiNLj|+1+€¢ and
du(a) = |X; NL| + 1+ e. By (3), we have

ZdH(d) — Clg(ﬂ) = (|X2 012| — |X2 ﬁIl|) — |X1 ﬂ[l| +14¢€
<1

Then dy(a) < (dg(a) +1)/2.
And for the vertex b, dg(b) = |X|+|XiNhL|—1+¢
and dy(b) = |X; N 1| + €. we have

2dH(b) — dc(b) = (|X2 ﬂIl| — |X2 mlz|) — |X1 mlz| + 1 + €

If e=0, by (3) and notice that |X; NL| > 2, 2dy(b) —
dg(b) < 1. Then dy(b) < (dg(b) +1)/2.

If e=1 and X; NI, # (), notice that X; NI; # (J, then
XyNL| >3, and by (3), 2du(b) —dg(b) <1. Then
di(b) < (do(b) +1),2.

If e=1and X;NI =0, dg(b) = |Xz| +1+€e=2(|RiNL|+
[RaNL|)+4, dy(b)=|X;NL|+e=(|RiNL| + |[RaNL|)+
3. Then dy(b) = [(dg(b) +1)/2].

Case 3. (X, NL|—|XiNkL| =2

In this case, we have |[RiNL|=|RNL|+1, for i€ [2].
Since Ry, R}, Q, R} is consecutive, it follows that |[R; N ;| =
IRy NL|, and |QNL|=]QNL|—1. Since R, =0 or R, =
Q, we have

0< XNl — X NhL <1 (4)

In a particular case, when X, NL =0, |X;NIL| =2, and
there is only one odd integer in R| and R}, respectively.

Since X, is even and |[RiNL|=|RiNL|+1, for i€ [2],
there exist x € RiNI and y € R, NI. By (1), we have
dj(we) < [(de(wx) +1)/2] and dj(wy) < [(dr(wy) + 1)/2].
By (c) of Claim 1, dp(wx) =dp(w,)+ 1. Observe that

dp(wy) and dp(w,) are of different parities. So there exists
z€{x,y} and dp(w,) is odd such that d;j(w,) <
(de(wz) +1)/2.

We now add edges at a and b to form G from F, add ab
if e=1, add av; for all i € X, U(X;N1)\ {2z}, and bv; for
all j € X, U (Xy NL)U{z}, G is a realization of 7. Next we
show that the parity bisection H of G satisfied that dy(v) <
[(dg(v) +1)/2] for all v € V(G).

For each w; with i € X; U X;, its neighborhoods in F and
G are the same, by (1), du(w;) =d;(wi) < [(dp(w;) +
1)/2] = [(do(ws) + 1)/2].

For w; with i € X, then dg(w;) = dp(w;) + 2, du(w;) =

di(wi)+1, by (1), du(w)=d(wi)+1<[(dr(wi)+
1)/2] + 1 = [(dg(wi) +1)/2].
For w; with i€ X;\{z}, then dg(w;)=dr(w;)+

1, dy(wi) = dj(wi), by (1), du(wi) =dj(wi) < [(dr(wi) +
1)/2] = [da(w)/2].

For the vertex w, and note that dp(w,) is odd, then
dG(WZ) e dF(WZ) +1, dH(WZ) e d](WZ) +1, by (1), dH(WZ) e
dy(wy) + 1 < (dp(w2) +1)/24+ 1= [(dg(ws) +1)/2].

For the vertex a, dg(a) =|X|+[XiNL|—1+€¢ and
du(a) =|X, NL| + e By (4) and the fact |X; NI;| > 2 we
have

2dH(a) *dc(d) = (‘Xz ﬂ12| - |X2 ﬂ11|) - |X1 011\ +1+€§ 1

Then dy(a) < (dg(a) +1)/2. And for the vertex b, dg(b) =
|X2| + |X1 012| +1+e€ and dH(b) = |X2 ﬂIl| +1+e We
have

ZdH(b) - dc<b) = (|X2 ﬂIl| - |X2 ﬂ[2|) - |X1 ﬂIz| +1+ €]

If e=0, by (4), 2dy(b) —dg(b) <1,
(do(b)+ 1)/2.

If e=1 and X; NI, # 0, notice that X; NI, # @), then
|Xi NL| > 1, we have 2dy(b) — dg(b) <1, then dy(b) <
(do(b)+ 1)/2.

If e=1 and X]ﬂ]zzw, dG(b):|X2|+1+€:2(|R1m12|+
|[ReNL|)+1, dy(b)=|XoNL |+ 14+€e=(|[RiNL|+ R NL|) +1.
Then dy(b)=(dg(b)+1)/2. O

then dy(b) <
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