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On balanced bipartitions of graphs

Guangnuan Li

Taian No. 6 Middle School, Taian, P. R. China

ABSTRACT
Bollob�as and Scott conjectured that every graph G has a balanced bipartite spanning subgraph H
such that for each v 2 VðGÞ, dHðvÞ � ðdGðvÞ � 1Þ=2, for each v 2 VðGÞ: In this paper, we consider
the contrary side and show that every graphic sequence has a realization G which admits a bal-
anced bipartite spanning subgraph H such that dHðvÞ � dðdGðvÞ þ 1Þ=2e for each v 2 VðGÞ, and
we show that the bound is sharp.
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1. Introduction

For a graph G and for any v 2 VðGÞ, we use dGðvÞ to
denote the degree of the vertice v in G. Let G be a graph
and V1, � � � ,Vk be a partition of V(G). When k¼ 2, such a
partition is said to be bipartition of G. A subgraph H of G
is said to be a bisection of G if H is bipartite subgraph of G
and the partition sets of H differs at most one. A bisection
is also said to be balanced bipartition. Bollob�as and Scott [1]
conjectured that every graph G has a bisection H such that

dHðvÞ � ðdGðvÞ � 1Þ=2 for all v 2 VðGÞ
In [3], Ji et al. give an infinite family of counterexamples to
this Bollob�as and Scott conjecture, which indicates that
bðdGðvÞ � 1Þ=2c rather ðdGðvÞ � 1Þ=2 is probably the correct
lowered bound.

Similar to Bollob�as and Scott conjecture, we propose the
following conjecture.

Conjecture 1. Every graph G has a bisection H such that

dHðvÞ � dðdGðvÞ þ 1Þ=2e for all v 2 VðGÞ
This conjecture is concerned with the Bollob�as and Scott

conjecture. Let Gc denote the complement of a graph G.
After a simple calculation, we can prove that if Gc admits a
balanced bipartite spanning subgraph satisfied Conjecture 1,
the same bipartition of V(G) can induce a balanced span-
ning subgraph H of G satisfied

dHðvÞ � bðdGðvÞ � 1Þ=2c for all v 2 VðGÞ:
The bound is just Ji et al. mentioned. But the reverse may
not be true.

Hartke and Seacrest [2] studied a degree sequence version
of this Bollob�as and Scott conjecture, and they proved that
for any graphic sequence p with even length, p has a realiza-
tion G which admits a bisection H such that dHðvÞ �

ðdGðvÞ � 1Þ=2 for all v 2 VðGÞ: Ji et al. [3] extended the
result to all degree sequences, they proved that for any graphic
sequence p, p has a realization G which admits a bisection H
such that dHðvÞ � ðdGðvÞ � 1Þ=2 for all v 2 VðGÞ:

For any positive integer k, let ½k� :¼ f1, 2, :::, kg: For a
graph G and a labelling of its vertices VðGÞ ¼ fv1, :::vng, we
defined the parity bisection of G to be the bisection with parti-
tion sets V1 and V2, where Vi ¼ fvj 2 VðGÞ : j � i mod 2g
for each i 2 ½2�, and EðHÞ ¼ fuv 2 EðGÞ : u 2 V1, v 2 V2g:

In this paper, we obtain the following result.

Theorem 1. Let p ¼ ðd1, :::, dnÞ be any graphic sequence
with d1 � ::: � dn. Then there exists a realization G of p
with VðGÞ ¼ fv1, :::, vng and dGðviÞ ¼ di for i 2 ½n�, such
that if H denotes the parity bisection of G then dHðvÞ �
dðdGðvÞ þ 1Þ=2e, for v 2 VðGÞ:

The bound in Theorem 1 is sharp as shown by the fol-
lowing examples. Let p ¼ ð2k, 2k, 2, :::, 2|fflffl{zfflffl}

2k�1

Þ be a graphic

sequence where k is a positive integer, let G be a realization
of p, and VðGÞ ¼ fv1, v2, :::, v2kþ1g, dGðv1Þ ¼ dGðv2Þ ¼ 2k,
dGðv3Þ ¼ ::: ¼ dGðv2kþ1Þ ¼ 2: We can see that v1 and v2 adja-
cent to all the other vertices, excluding itself, and G is unique
up to isomorphism. Let H be an arbitrary bisection of G with
parts A and B, without loss of generality, we may assume that
jAj ¼ k, and jBj ¼ kþ 1: If v1 and v2 are in the same part,
there exists a vertex v such that dHðvÞ ¼ 2, and ðdGðvÞ þ
1Þ=2 < dHðvÞ ¼ dðdGðvÞ þ 1Þ=2e: If v1 and v2 are in the dif-
ferent parts, assume that v1 2 A and v2 2 B, then dHðv1Þ ¼
kþ 1, and ðdGðv1Þ þ 1Þ=2 < dHðv1Þ ¼ dðdGðv1Þ þ 1Þ=2e:

2. Proof of Theorem 1

For the proof of Theorem 1, we need two operations on a
sequence of nonnegative integers. Let p ¼ ðd1, :::, dnÞ with
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d1 � ::: � dn: By removing di from p and subtracting 1
from the di remaining elements of p with lowest indices. We
obtain a new sequence p0 ¼ ðd01, :::, d0i�1, d

0
iþ1, :::, d

0
nÞ, and we

say that p0 is obtained from p by laying off di, and the laying
off operation is introduced by Kleitman and Wang [4].

It is easy to see the sequence p0 laying off di from p need
not non-increasing. In order to avoid this case, Hartke and
Seacrest [2] introduce a variation of laying off operation.
Choose a fix i 2 ½n�, assume that s is the smallest value
among the di largest elements in p, not including di itself.
Let L ¼ fi 2 ½n� � i : di > sg: Obviously, jLj < di: Let M be
the set of di � jLj largest indices j with j 6¼ i and dj ¼ s. We
removed di from p, subtract 1 from dj for all j 2 L [M:
This operation is called laying off with order. In the follow-
ing, we give a good result about laying off with order.

Lemma 1. (Harket-Seacrest [2]). For any i 2 ½n�, the
sequence p ¼ ðd1, :::, dnÞ with d1 � ::: � dn is graphic if and
only if the sequence p0 obtained from p by laying off di with
order is graphic.

Having finished all the necessary preparations, we are
ready to prove Theorem 1. First, we give a brief outline of
our proof. Choose two consecutive elements dl and dlþ1 of
p, by Lemma 1, we can obtain a new graphic sequence p00

with length n – 2 by laying off dl and dlþ1 with order. By
induction, p00 has an ðn� 2Þ vertex realization F whose par-
ity bisection J has the desired property. We then show that
one can form G from F by adding two new vertices and
choosing their neighbors so that the parity bisection of G
satisfies Theorem 1.

Proof of Theorem 1. We apply induction on the length n of
the graphic sequence p ¼ ðd1, :::, dnÞ with d1 � d2 � ::: �
dn: The assertion is holds when n¼ 1, 2. So we may assume
that n � 3 and the assertion holds for all graphic sequence
with length less than n. There exists two consecutive elements
of p that are identical; Let l 2 ½n� 1� be fixed such that

dl ¼ dlþ1 ¼ k

Let p0 ¼ ðd01, :::, d0l , d0lþ2, :::d
0
nÞ be the sequence obtained

from p by laying off dlþ1 with order. Let p00 ¼
ðd001 , :::, d00l�1, d

00
lþ2, :::d

00
nÞ be the sequence obtained from p0 by

laying off d0l with order. By Lemma 1, p0 and p00 are all
graphic sequence.

Let x ¼ ðf1, f2, :::, fn�2Þ be the sequence obtained from p
with dl and dlþ1 removed, and re-indexed so that the indices
are consecutive, i.e., fi ¼ di for i 2 ½l � 1� and fi ¼ diþ2 for
i 2 ½n� 2� n ½l � 1�: Let x0 ¼ ðf 01, f 02, :::, f 0n�2Þ be the sequence
obtained from p0 with d0l removed, and re-indexed so that
the indices are consecutive. Also, let x00 ¼ ðf 001 , f 002 , :::, f 00n�2Þ be
the sequence obtained from p00 by re-indexing so that the
indices are consecutive. Note that x00 is graphic sequence.

To turn a realization of x00 to a realization of p, we need
to track the changes between fi and f 00i for all i 2 ½n� 2�:
Note that 0 � fi � f 00i � 2: Let

X1 ¼ fi 2 n� 2½ � : f 00i ¼ fi � 1g,
X2 ¼ fi 2 n� 2½ � : f 00i ¼ fi � 2g

and

K ¼ d0l ¼
k� 1 if d0l ¼ dl � 1

k if d0l ¼ dl

(

So K ¼ Ri2½n�2jfi � f 0i j ¼ Ri2½n�2jf 0i � f 00i j; then
jX1j þ 2jX2j ¼ 2K

For convenience, we introduce some notation. For non-
empty sets A and B of integers, we write A<B if the max-
imum integer in A is less than the minimum integer in B. A
set S of integers is consecutive if it consists of consecutive
integers. A sequence of pairwise disjoint sets, A1, :::,At , of
integers is said to be consecutive if A1 [ ::: [ At is consecu-
tive and, for any i, j 2 ½t� with i< j and Ai and Aj nonempty,
we have Ai < Aj.

Ji, Ma, Yan and Yu [3] proved the following Claim 1 and
Claim 2, they are also essential in our proof of Theorem 1.
For better understanding of the proof of Theorem 1, we
now present the proof of Claim 1 and the method of this
proof comes from [3].

Claim 1. (Ji, Ma, Yan and Yu [3]). There exist consecutive
sets R1,R2,R0

1,R
0
2,Q such that X1 ¼ R0

1 [ R0
2 and X2 ¼

R1 [ R2 such that

(a) the sequence R1,R0
1,Q,R

0
2 is consecutive,

(b) either R2 ¼ ; or R2 ¼ Q, and
(c) f 00i ¼ f 00j þ 1 for all i 2 R0

1, j 2 R0
2:

Proof of Claim 1. Let s be the minimum of the largest k
numbers in p. In order to track the connection among x,
x0 and x00, we divide ½n� 2� into six pairwise disjoint sets:

A ¼ fi 2 n� 2½ � : fi � sþ 2g,
B ¼ fi 2 n� 2½ � : fi ¼ sþ 1g,
C ¼ fi 2 n� 2½ � : fi ¼ s, f 0i ¼ fig,
D ¼ fi 2 n� 2½ � : fi ¼ s, f 0i ¼ fi � 1g,
E ¼ fi 2 n� 2½ � : fi ¼ s� 1g,
F ¼ fi 2 n� 2½ � : fi � s� 2g:

By the definition of p0 and x0, we can see that A, B, C,
D, E, F are consecutive and

8i 2 A, f 0i ¼ fi � 1 � sþ 1,

8i 2 B, f 0i ¼ fi � 1 ¼ s,

8i 2 C, f 0i ¼ fi ¼ s,

8i 2 D, f 0i ¼ fi � 1 ¼ s� 1,

8i 2 E, f 0i ¼ fi ¼ s� 1,

8i 2 F, f 0i ¼ fi � s� 1:

Thus, we can see that A [ B [ D ¼ fi 2 ½n� 2� : f 0i ¼
fi � 1g, and then jAj þ jBj þ jDj ¼ K:

Let Y ¼ fi 2 ½n� 2� : f 00i ¼ f 0i � 1g: Then it follows that

A � Y and jYj ¼ K ¼ jAj þ jBj þ jDj
To complete the proof of Claim 1, we distinguish four cases
based on the relations among the size of B, C, D, E.
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First, suppose jCj � jBj þ jDj: Let C00 consists of the
jBj þ jDj largest integers in C, and C0 ¼ C n C00: It is easy to
see that Y ¼ A [ C00: Let R1 ¼ A, R2 ¼ ;, R0

1 ¼ B, R0
2 ¼

C00 [ D and Q ¼ C0: We can see that X1 ¼ R0
1 [ R0

2 and
X2 ¼ R1 [ R2, and (a) and (b) hold. Note that f 00i ¼ s for i 2
R0
1, and f 00i ¼ s� 1 for i 2 R0

2; Then (c) holds.
Next, suppose that jDj � jCj < jBj þ jDj: Let B00 consists

of the jBj þ jDj � jCj largest integers in B, and B0 ¼ B n B00:
Then Y ¼ A [ B00 [ C: Let R1 ¼ A, R2 ¼ Q ¼ B00, R0

1 ¼
B0, R0

2 ¼ C [ D: It is easy to see that X1 ¼ R0
1 [ R0

2 and
X2 ¼ R1 [ R2, and (a) and (b) hold. Note that f 00i ¼ s for i 2
R0
1, and f 00i ¼ s� 1 for i 2 R0

2; Then (c) holds.
Now, assume that jCj < jDj � jCj þ jEj: Let E00 consists

of the jDj � jCj largest integers in E, and E0 ¼ E n E00: Then
Y ¼ A [ B [ C [ E00: Let R1 ¼ A [ B, R2 ¼ ;, R0

1 ¼ C [ D,
R0
2 ¼ E00, and Q ¼ E0: It is easy to see that X1 ¼ R0

1 [ R0
2

and X2 ¼ R1 [ R2, and (a) and (b) hold. Note that f 00i ¼
s� 1 for i 2 R0

1, and f 00i ¼ s� 2 for i 2 R0
2; Then (c) holds.

Finally, we consider the case jDj > jCj þ jEj: Let D00 con-
sists of the jDj � jCj � jEj largest integers in D, and D0 ¼
D n D00: Then Y ¼ A [ B [ C [ D00 [ E: Let R1 ¼ A [
B, R2 ¼ Q ¼ D00, R0

1 ¼ C [ D0, R0
2 ¼ E: It is easy to see

that X1 ¼ R0
1 [ R0

2 and X2 ¼ R1 [ R2, and (a) and (b) hold.
Note that f 00i ¼ s� 1 for i 2 R0

1, and f 00i ¼ s� 2 for i 2 R0
2;

Then (c) holds. w

Let I1 ¼ fi 2 ½n� 2� : i � 1 mod 2g and I2 ¼ fi 2
½n� 2� : i � 0 mod 2g:
Claim 2. (Ji, Ma, Yan and Yu [3]). jX1 \ I1j� jX1 \ I2j 2
f�2, 0, 2g. Moreover, jX1 \ I1j � jX1 \ I2j ¼ 0 implies jX2 \
I1j � jX2 \ I2j 2 f�1, 0, 1g:

Now, we construct a realization of p ¼ ðd1, :::, dnÞ: Note
that x00 ¼ ðf 001 , :::, f 00n�2Þ is a graphic sequence. By induction
hypothesis, there exists a realization F of x00 with VðFÞ ¼
fw1, ::,wn�2g, and dFðwiÞ ¼ f 00i for i 2 ½n� 2�, such that the
parity bisection J of F satisfies

dJðwiÞ � dðdFðwiÞ þ 1Þ=2e for all i 2 n� 2½ �: (1)

Let Wj ¼ fwi : i � j mod 2g for j 2 ½n� 2�:
In what follows, we will construct a graph G as a realiza-

tion of p such that its parity bisection H of G satisfies
dHðvÞ � dðdGðvÞ þ 1Þ=2e for all v 2 VðGÞ, by adding two
new vertices a, b (so VðGÞ ¼ VðFÞ [ fa, bg) and some edges
from these two vertices to F. Notice that if K ¼ k� 1, we
will add edge ab, for convenience, let

� ¼ 1 if K ¼ k� 1
0 if K ¼ k

�
We write VðGÞ ¼ fv1, :::, vng such that vi ¼ wi for i 2
½l � 1�, fvl, vlþ1g ¼ fa, bg, vi ¼ wi�2 for i 2 ½n� n ½l þ 1�:

In the view of Claim 2, we divide the proof of Theorem 1
into three cases. In each of the three cases, we use a to repre-
sent the vertex in fvl, vlþ1g with odd index, so the parity par-
tition of V(G) is

V1 ¼ W1 [ fag,V2 ¼ W2 [ fbg:

Case 1. jX1 \ I1j � jX1 \ I2j ¼ 0

We know that F � G and VðGÞ ¼ VðFÞ [ fa, bg, and we
need to add edges at a and b to form G, a realization of p.
Add ab if �¼ 1, add avi for all i 2 X2 [ ðX1 \ I1Þ, and add
bvj for all j 2 X2 [ ðX1 \ I2Þ, G is a realization of p. Let H
denote the parity bisection of G, so V1, V2 are the partition
sets of H. Now, we show that dHðvÞ � dðdGðvÞ þ 1Þ=2e for
all v 2 VðGÞ:

In a particular case, when X1 ¼ ;, by Claim 1, we can
see R2 ¼ ; and X2 ¼ R1. Since R1 is start from the integer 1,
we have

0 � jX2 \ I1j � jX2 \ I2j � 1, (2)

For each wi with i 62 X1 [ X2, its neighborhoods in F and
G are the same, by (1), dHðwiÞ ¼ dJðwiÞ � dðdFðwiÞ þ
1Þ=2e ¼ dðdGðwiÞ þ 1Þ=2e:

For wi with i 2 X2, then dGðwiÞ ¼ dFðwiÞ þ 2, dHðwiÞ ¼
dJðwiÞ þ 1, by (1), dHðwiÞ ¼ dJðwiÞ þ 1 � dðdFðwiÞ þ
1Þ=2e þ 1 ¼ dðdGðwiÞ þ 1Þ=2e:

For wi with i 2 X1, then dGðwiÞ ¼ dFðwiÞ þ 1, dHðwiÞ ¼
dJðwiÞ, by (1), dHðwiÞ ¼ dJðwiÞ � dðdFðwiÞ þ 1Þ=2e ¼
ddGðwiÞ=2e:

For the vertices a, dGðaÞ ¼ jX2j þ jX1 \ I1j þ � and
dHðaÞ ¼ jX2 \ I2j þ �: So

2dHðaÞ � dGðaÞ ¼ ðjX2 \ I2j � jX2 \ I1jÞ � jX1 \ I1j þ �

By Claim 2, we have jX2 \ I2j � jX2 \ I1j � 1: If �¼ 0, we
have 2dHðaÞ � dGðaÞ � 1, and dHðaÞ � ðdGðaÞ þ 1Þ=2; If
�¼ 1 and X1 6¼ ;, by X1 6¼ ;, we have jX1 \ I1j ¼
jX1 \ I2j � 1, then 2dHðaÞ � dGðaÞ � 1, and dHðaÞ �
ðdGðaÞ þ 1Þ=2; We can see that if �¼ 0 or X1 6¼ ;, dHðaÞ �
ðdGðaÞ þ 1Þ=2; If �¼ 1 and X1 ¼ ;, by (2), we have
2dHðaÞ � dGðaÞ � 1, and dHðaÞ � ðdGðaÞ þ 1Þ=2:

For the vertices b, then dGðbÞ ¼ jX2j þ jX1 \ I2j þ � and
dHðbÞ ¼ jX2 \ I1j þ �: So

2dHðbÞ � dGðbÞ ¼ ðjX2 \ I1j � jX2 \ I2jÞ � jX1 \ I2j þ �

By Claim 2, we have jX2 \ I1j � jX2 \ I2j � 1: Using the
similar argument above, we can see that if �¼ 0 or X1 6¼
;, 2dHðbÞ � dGðbÞ � 1, so dHðbÞ � ðdGðbÞ þ 1Þ=2; If �¼ 1
and X1 ¼ ;, by (2), we have jX2 \ I1j � jX2 \ I2j � 1: When
jX2 \ I1j � jX2 \ I2j � 0, it is easy to see 2dHðaÞ � dGðaÞ �
1, so dHðaÞ � ðdGðaÞ þ 1Þ=2, and when jX2 \ I1j � jX2 \
I2j ¼ 1, dGðbÞ ¼ jX2j þ � ¼ 2jX2 \ I2j þ 2 and dHðbÞ ¼
jX2 \ I1j þ � ¼ jX2 \ I2j þ 2, then dHðbÞ ¼ dðdGðbÞ þ 1Þ=2e:

Case 2. jX1 \ I2j � jX1 \ I1j ¼ 2
Recall that X1 ¼ R0

1 [ R0
2, where each R0

i is consecutive.
Thus jR0

i \ I2j ¼ jR0
i \ I1j þ 1 for i 2 ½2�: Since the sequence

R1, R0
1, Q, R

0
2 is consecutive and start from integer 1, we see

that R1 \ I1 6¼ ;, jR1 \ I2j ¼ jR1 \ I1j � 1, and jQ \ I2j ¼
jQ \ I1j � 1: Since R2 ¼ ; or R2 ¼ Q (by (b) of claim 1), we
have

�2 � jX2 \ I2j � jX2 \ I1j � �1 (3)

In a particular case, when X1 \ I1 ¼ ;, jX1 \ I2j ¼ 2, and
there is only one even integer in R0

1 and R0
2, respectively.

We claim that there exists some z 2 X1 \ I2 with
dJðwzÞ � ðdFðwzÞ þ 1Þ=2: To see this, choose x 2 R0

1 \ I2
and y 2 R0

2 \ I2: By (1), we have dJðwxÞ � dðdFðwxÞ þ 1Þ=2e

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS 3



and dJðwyÞ � dðdFðwyÞ þ 1Þ=2e: By (c) of Claim 1, dFðwxÞ ¼
dFðwyÞ þ 1: Observe that dFðwxÞ and dFðwyÞ are of different
parities. So there exists z 2 fx, yg and dFðwzÞ is odd such
that dJðwzÞ � ðdFðwzÞ þ 1Þ=2:

We now add edges at a and b to form G from F, add ab
if �¼ 1, add avi for all i 2 X2 [ ðX1 \ I1Þ [ fzg, and bvj for
all j 2 X2 [ ðX1 \ I2Þ n fzg, G is a realization of p. Next we
show that the parity bisection H of G satisfied that dHðvÞ �
dðdGðvÞ þ 1Þ=2e for all v 2 VðGÞ:

For each wi with i 62 X1 [ X2, its neighborhoods in F and
G are the same, by (1), dHðwiÞ ¼ dJðwiÞ � dðdFðwiÞ þ
1Þ=2e ¼ dðdGðwiÞ þ 1Þ=2e:

For wi with i 2 X2, then then dGðwiÞ ¼ dFðwiÞ þ
2, dHðwiÞ ¼ dJðwiÞ þ 1, by (1), dHðwiÞ ¼ dJðwiÞ þ 1 �
dðdFðwiÞ þ 1Þ=2e þ 1 ¼ dðdGðwiÞ þ 1Þ=2e:

For wi with i 2 X1 n fzg, then dGðwiÞ ¼ dFðwiÞ þ
1, dHðwiÞ ¼ dJðwiÞ, by (1), dHðwiÞ ¼ dJðwiÞ � dðdFðwiÞ þ
1Þ=2e ¼ ddGðwiÞ=2e:

For the vertex wz and note that dFðwzÞ is odd, then
dGðwzÞ ¼ dFðwzÞþ 1, dHðwzÞ ¼ dJðwzÞþ 1, by (1), dHðwzÞ ¼
dJðwiÞþ 1� ðdFðwzÞþ 1Þ=2þ 1¼ dðdGðwzÞþ 1Þ=2e:

For the vertex a, dGðaÞ ¼ jX2j þ jX1 \ I1j þ 1þ � and
dHðaÞ ¼ jX2 \ I2j þ 1þ �: By (3), we have

2dHðaÞ � dGðaÞ ¼ ðjX2 \ I2j � jX2 \ I1jÞ � jX1 \ I1j þ 1þ �

� 1:

Then dHðaÞ � ðdGðaÞ þ 1Þ=2:
And for the vertex b, dGðbÞ ¼ jX2j þ jX1 \ I2j � 1þ �

and dHðbÞ ¼ jX2 \ I1j þ �: we have

2dHðbÞ � dGðbÞ ¼ ðjX2 \ I1j � jX2 \ I2jÞ � jX1 \ I2j þ 1þ �

If �¼ 0, by (3) and notice that jX1 \ I2j � 2, 2dHðbÞ �
dGðbÞ � 1: Then dHðbÞ � ðdGðbÞ þ 1Þ=2:

If �¼ 1 and X1 \ I1 6¼ ;, notice that X1 \ I1 6¼ ;, then
jX1 \ I2j � 3, and by (3), 2dHðbÞ � dGðbÞ � 1: Then
dHðbÞ � ðdGðbÞ þ 1Þ=2:

If �¼ 1 and X1\ I1 ¼;, dGðbÞ¼ jX2jþ1þ �¼ 2ðjR1\ I2jþ
jR2\ I2jÞþ4, dHðbÞ¼ jX2\ I1jþ �¼ ðjR1\ I2j þ jR2\ I2jÞþ
3: Then dHðbÞ ¼ dðdGðbÞþ1Þ=2e:

Case 3. jX1 \ I1j � jX1 \ I2j ¼ 2
In this case, we have jR0

i \ I1j ¼ jR0
i \ I2j þ 1, for i 2 ½2�:

Since R1, R0
1, Q, R

0
2 is consecutive, it follows that jR1 \ I1j ¼

jR1 \ I2j, and jQ \ I1j ¼ jQ \ I2j � 1: Since R2 ¼ ; or R2 ¼
Q, we have

0 � jX2 \ I2j � jX2 \ I1j � 1 (4)

In a particular case, when X1 \ I2 ¼ ;, jX1 \ I1j ¼ 2, and
there is only one odd integer in R0

1 and R0
2, respectively.

Since X1 is even and jR0
i \ I1j ¼ jR0

i \ I2j þ 1, for i 2 ½2�,
there exist x 2 R0

1 \ I1 and y 2 R0
2 \ I1: By (1), we have

dJðwxÞ � dðdFðwxÞ þ 1Þ=2e and dJðwyÞ � dðdFðwyÞ þ 1Þ=2e:
By (c) of Claim 1, dFðwxÞ ¼ dFðwyÞ þ 1: Observe that

dFðwxÞ and dFðwyÞ are of different parities. So there exists
z 2 fx, yg and dFðwzÞ is odd such that dJðwzÞ �
ðdFðwzÞ þ 1Þ=2:

We now add edges at a and b to form G from F, add ab
if �¼ 1, add avi for all i 2 X2 [ ðX1 \ I1Þ n fzg, and bvj for
all j 2 X2 [ ðX1 \ I2Þ [ fzg, G is a realization of p. Next we
show that the parity bisection H of G satisfied that dHðvÞ �
dðdGðvÞ þ 1Þ=2e for all v 2 VðGÞ:

For each wi with i 62 X1 [ X2, its neighborhoods in F and
G are the same, by (1), dHðwiÞ ¼ dJðwiÞ � dðdFðwiÞ þ
1Þ=2e ¼ dðdGðwiÞ þ 1Þ=2e:

For wi with i 2 X2, then dGðwiÞ ¼ dFðwiÞ þ 2, dHðwiÞ ¼
dJðwiÞ þ 1, by (1), dHðwiÞ ¼ dJðwiÞ þ 1 � dðdFðwiÞ þ
1Þ=2e þ 1 ¼ dðdGðwiÞ þ 1Þ=2e:

For wi with i 2 X1 n fzg, then dGðwiÞ ¼ dFðwiÞ þ
1, dHðwiÞ ¼ dJðwiÞ, by (1), dHðwiÞ ¼ dJðwiÞ � dðdFðwiÞ þ
1Þ=2e ¼ ddGðwiÞ=2e:

For the vertex wz and note that dFðwzÞ is odd, then
dGðwzÞ ¼ dFðwzÞþ 1, dHðwzÞ ¼ dJðwzÞþ 1, by (1), dHðwzÞ ¼
dJðwiÞþ 1� ðdFðwzÞþ 1Þ=2þ 1¼ dðdGðwzÞþ 1Þ=2e:

For the vertex a, dGðaÞ ¼ jX2j þ jX1 \ I1j � 1þ � and
dHðaÞ ¼ jX2 \ I2j þ �: By (4) and the fact jX1 \ I1j � 2 we
have

2dHðaÞ�dGðaÞ¼ ðjX2\ I2j� jX2\ I1jÞ� jX1\ I1jþ1þ �� 1

Then dHðaÞ � ðdGðaÞ þ 1Þ=2: And for the vertex b, dGðbÞ ¼
jX2j þ jX1 \ I2j þ 1þ � and dHðbÞ ¼ jX2 \ I1j þ 1þ �: We
have

2dHðbÞ � dGðbÞ ¼ ðjX2 \ I1j � jX2 \ I2jÞ � jX1 \ I2j þ 1þ �;

If �¼ 0, by (4), 2dHðbÞ � dGðbÞ � 1, then dHðbÞ �
ðdGðbÞþ 1Þ=2:

If �¼ 1 and X1 \ I2 6¼ ;, notice that X1 \ I2 6¼ ;, then
jX1 \ I2j � 1, we have 2dHðbÞ � dGðbÞ � 1, then dHðbÞ �
ðdGðbÞþ 1Þ=2:

If �¼ 1 and X1\I2¼;, dGðbÞ¼jX2jþ1þ�¼2ðjR1\I2jþ
jR2\I2jÞþ1, dHðbÞ¼jX2\I1jþ1þ�¼ðjR1\I2jþjR2\I2jÞþ1:
Then dHðbÞ¼ðdGðbÞþ1Þ=2: w
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