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ABSTRACT
Wepresent a studyof equatorial ocean flows exhibitinggeophysical effects,
a complex vertical structure and moving in the azimuthal direction, with
no variation in this direction. By means of a fixed-point approach, we study
the relation between the pressure at the free surface of such flows and the
resulting distortion of that free surface. The method in the present paper
allows us to enlarge the class of nonlinearities from our previous works.
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1. Introduction

This paper is concerned with a study of the ocean dynamics in the equatorial region of the Pacific
ocean, situated within a band of about 2◦ latitude from the Equator. Equatorial waves are believed to
be themain triggers of the ElNiño phenomenon – an event associatedwith the appearance around the
Christmas season of an ocean anomalymanifesting itself as a warm equatorial water flow approaching
thewestern coast of SouthAmerica. This occurrencewas named by early fishermen ‘ElNiño’ (Spanish
for ‘The Christ Child’) and is one of the main factors in global climate change, cf. the discussion
in [1].

For an appropriate analytical treatment that catches observed particularities of equatorial ocean
dynamics, one needs to take into account a series of features like nonlinear effects arising from the
conservation ofmomentum equations, as well as from the intricate boundary conditions, geophysical
effects stemming from the Earth’s rotation or the involved vertical structure of the ocean currents;
e.g. while in a near-surface layer, and within about 150 km on each side of the Equator, there is the
westward current (driven by the prevailing trade winds), confined to depths of no more than about
100–200m, lies the Equatorial Undercurrent (EUC)–an eastward flowing jet whose core resides on
the thermocline, cf. [2,3].

A rigorous mathematical framework for the study of geophysical ocean flows was established by
Constantin [4–7] and Constantin and Johnson [1,2,8] by means of providing exact solutions describ-
ing geophysical water flows. It is to note that exact solutions are extremely rare in fluid mechanics, in
general. While unable to capture all flow peculiarities, exact solutions might confirm the correct-
ness of the governing equations. On the other hand, they supply the foundations of more direct
and relevant analyses by means of asymptotic or perturbative methods. Several recent developments
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pertaining to geophysical fluid dynamics were obtained by means of investigating exact solutions
[9–27].

The latter aspect of exact solutions is also the prospect that we pursue here.More precisely, wework
with the governing equations for an inviscid, incompressible fluid, written in cylindrical coordinates
(with the Equator ‘straightened’ to become a generator of the cylinder) together with the free surface
and the rigid boundary conditions. For this system, an exact solution is presented; it describes a steady
flow which is moving only in the azimuthal direction, without variations in this direction. However,
our study is able to accommodate an EUC, since the azimuthal velocity component has an arbitrary
variation with respect to the depth (i.e. radius).

Using the pressure boundary condition at the free surface, we derive a relation between this pres-
sure and the distortion of the free surface. This relation is shown to be amenable to a fixed-point
approach for partially ordered sets as developed in [28–31]. Using the latter approach, we then prove
existence and uniqueness for the function describing the shape of the free surface, under the (reason-
able) assumption that the pressure acting on the surface is not too big. This method applies for larger
classes of nonlinearities (allowing for more general flows) than those in [23].

2. Themodel for equatorial ocean waves

We give here a presentation of the geometry and of the variables associated with the rotating system.
The coordinate system is chosen so that the Equator is ‘straightened’ and replaced by a line parallel to
the z-axis, while the body of the sphere is represented by a circular disc described in the corresponding
polar coordinates. Therefore, in a right-handed system, our coordinates are (r, θ , z), where r is the
distance to the center of the disc (representing the Earth), θ ∈ (−π/2,π/2) is increasing fromNorth
to South and measures the deflection from the Equator, and the positive z-axis points from West
to East. The equation θ = 0 describes the line of the Equator. The corresponding unit vectors in
the (r, θ , z) system are (er , eθ , ez) and the velocity components are (u, v,w). Throughout the paper
R ≈ 6378 km will denote the Earth’s radius.

Remark 2.1: The range of the polar angle θ is [−ε, ε], with ε = 0.016, choice that accommodates a
strip of the width of about 100 km centered about the Equator.

With regard to the previous considerations, the governing equations in a coordinate system with
its origin at the center of the sphere are Euler’s equations, which in cylindrical coordinates are written,
cf. [2], as

ut + uur + v
r
uθ + wuz − v2

r
= − 1

ρ
pr + Fr

vt + uvr + v
r
vθ + wvz + uv

r
= − 1

ρ

1
r
pθ + Fθ

wt + uwr + v
r
wθ + wwz = − 1

ρ
pz + Fz,

(1)

(where p(r, θ , z) denotes the pressure in the fluid and (Fr , Fθ , Fz) is the body-force vector) and the
equation of mass conservation

1
r

∂

∂r
(ru) + 1

r
vθ + wz = 0. (2)

To include the effects of the Earth’s rotation in our setting, we associate (er , eθ , ez) to a point fixed on
the sphere which is rotating about its polar axis. This means that we need to add in the left of Euler’s
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equations the Coriolis force

2� × u

and the centripetal acceleration

� × (� × r),

with

� = −�((sin θ)er + (cos θ)eθ ),

u = uer + veθ + weϕ ,

r = rer ,

where � ≈ 7.29 × 10−5 rad s−1 is the rotation speed of the Earth. Adding the joint contributions of
the Coriolis and of the centripetal acceleration

2�(−w cos θ ,w sin θ , u cos θ − v cos θ) + r�2(− cos2 θ , sin θ cos θ , 0), (3)

to Equation (1), and taking into account that, cf. [2], the body force is due only to gravity (denoted
with g), we have that the water motion is driven by the system

ut + uur + v
r
uθ + wuz − v2

r
− 2w� cos θ − r�2 cos2 θ = − 1

ρ
pr − g

vt + uvr + v
r
vθ + wvz + uv

r
+ 2w� sin θ + r�2 sin θ cos θ = − 1

ρ

1
r
pθ

wt + uwr + v
r
wθ + wwz + 2�(u cos θ − v sin θ) = − 1

ρ
pz,

(4)

together with the equation of mass conservation (2). The specification of the water wave problem
becomes complete after we impose the kinematic boundary conditions

u = whz + 1
r
vhθ (5)

on the free surface r = R + h(θ , z), and

u = wdz + 1
r
vdθ (6)

on the bed r = d(θ , z), respectively, while, at the free surface, we also require the dynamic boundary
condition

p = P(θ , z). (7)

3. Existence and uniqueness of solutions

The solutions that we seek represent water flows that exhibit a pred direction of propagation. Namely,
we will prove the existence of flows that are purely in the azimuthal direction with no variation in this
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direction. This means that the velocity field (u, v,w) satisfies

u = v = 0 and w = w(r, θ), (8)

while the free surface is described by

r = R + h(θ),

for some unknown function θ → h(θ), and the bed is represented by

r = d(θ),

for some given function θ → d(θ). Amounting to the previous requirements, the system (4) becomes

− 2w� cos θ − r�2 cos2 θ = − 1
ρ
pr − g

2w� sin θ + r�2 sin θ cos θ = − 1
ρ

1
r
pθ

0 = pz.

(9)

Moreover, the equation of mass conservation (2), as well as the kinematic boundary conditions (5)
and (6), are automatically satisfied.

Noticing from (9) that p = p(r, θ), we can eliminate the pressure from the first two equations and
obtain that w satisfies the partial differential equation

rwr sin θ + wθ cos θ = 0. (10)

which can be solved by the method of characteristics. More precisely, we obtain

w(r, θ) = f (r cos θ), (11)

for some arbitrary function f. From the latter, we obtain the formula for the pressure

p(r, θ) = A − ρgr + 2ρ�F(r cos θ) + 1
2ρr

2�2 cos2 θ , (12)

where A is a constant, F is an anti derivative of f with F(0) = 0. Of course, in this circumstance

w(r, θ) = F′(r cos θ).

The lack of the z dependence of the pressure function yields that the dynamic boundary condition (7)
reads now

p = P(θ) on r = R + h(θ).

The latter yields

P(θ) = A − ρg[R + h(θ)] + 1
2ρ[R + h(θ)]2�2 cos2 θ + 2ρ�F

(
[R + h(θ)] cos θ

)
, (13)

equation that represents a link between the imposed pressure at the ocean’s surface to the result-
ing deformation of that surface. The pressure needed to maintain the free surface undisturbed and
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following the Earth’s curvature is obtained by setting h ≡ 0 in (13). We denote it by P0(θ). Thus,

P0(θ) = A − ρgR + 1
2ρR

2�2 cos2 θ + 2ρ�F(R cos θ).

Moreover, assuming that the pressure at the Equator (that is at the location θ = 0) is atmospheric,
then

Patm = A − ρgR + 1
2ρR

2�2 + 2ρ�F(R).

To non-dimensionalize (13), we divide it by Patm and obtain

α − β[1 + h(θ)] + γ [1 + h(θ)]2 cos2 θ + δf
(
[1 + h(θ)] cos θ

) − P(θ) = 0, (14)

with the non-dimensional constants α,β , γ , δ > 0 defined by means of

α = A
Patm

, β = ρgR
Patm

, γ = ρR2�2

2Patm
, δ = 2ρ�F(R)

Patm
, (15)

and with the non-dimensional functions

h(θ) := h(θ)

R
,

P(θ) := P(θ)

Patm
,

f(s) := F(Rs)
F(R)

.

Notice that Equation (14) can be written as the fixed-point equation

OH = H, (16)

provided we denote H := 1 + h and set

OH = α

β
+ γ

β
H2 cos2 θ + δ

β
f(H cos θ) − 1

β
P(θ). (17)

The latter equation allows for the utilization of a fixed-point theorem due to O’Regan and Petruşel
[28] (see also Petruşel and Rus [29]), which improves upon a result of Ran and Reurings [31]. We
quote below the notions related to this result, as well as the result itself and refer the reader to [28,29]
for further details.

Let (X,�) be a partially ordered set, i.e. X is a nonempty set and � is a reflexive, transitive and
anti-symmetric relation on X. In this context, we denote

X� := {(x, y) ∈ X × X | x � y or y � x}.
Let X be a nonempty set. Then, by definition (X, d,�) is an ordered metric space if and only if:

(i) (X, d) is an metric space;
(ii) (X,�) is a partially ordered set;
(iii) (xn)n∈N → x, (yn)n∈N → y and xn � yn, for each n ∈ N ⇒ x � y.

The following result (see [30]) will be applied in our main theorem.

Theorem 3.1: Let (X, d,�) be an ordered metric space and O : X → X be an operator. We suppose
that:
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(i) For each x, y ∈ X with (x, y) /∈ X≤ there exists c(x, y) ∈ X such that (x, c(x, y)) ∈ X≤ and
(y, c(x, y)) ∈ X≤;

(ii) O : (X,�) → (X,�) is increasing;
(iii) there exists x0 ∈ X such that x0 � O(x0);
(iv)a O is continuous

or
(iv)b if (xn) is an increasing sequence convergent in X to x, then xn ≤ x, for all n ∈ N;
(v) there exists a ∈]0, 1[ such that d(O(x),O(y)) ≤ ad(x, y), for each x, y ∈ X with x � y;
(vi) the metric d is complete.

ThenO is a Picard operator, i.e.O has a unique fixed-point x∗ ∈ X and, for each x ∈ X, the sequence
(On(x))n∈N of successive approximations ofO starting from x converges to x∗.

Now, we can prove our existence, uniqueness and approximation result for the considered
problem.

Theorem 3.2: We consider the problem (14) and the equivalent fixed-point problem (16), where the
operatorO is given by (17). We assume that w ≤ (g/6�)m· s−1. Given any sufficiently small deviation
P from P0 such that P0(θ) ≤ α for all θ ∈ [0, ε], there exists a unique H∗ ∈ C[0, ε] with

sup
θ∈[0,ε]

|H∗(θ)| ≤ g
2R�2 ,

satisfyingOH∗ = H∗. Moreover,H∗ can be obtained as the limit of the sequence (On(H))n∈N, for every
H ∈ C([0, ε],R+), with supθ∈[0,ε] |H(θ)| ≤ g/2R�2.

Proof: Let

X :=
{

H ∈ C([0, ε],R+) : sup
θ∈[0,ε]

|H(θ)| ≤ g
2R�2

}

be the set of positive valued continuous functions on [0, ε] that do not exceed g/2R�2.
We define a partial ordering ‘�’ on X by requiring for H,G ∈ X, that

H � G if and only if H(θ) ≤ G(θ), for all θ ∈ [0, ε].

Moreover, the set X can be given the structure of a metric space by defining the functional d : X ×
X → R through

d(H,G) := sup
θ∈[0,ε]

|H(θ) − G(θ)| for H,G ∈ X

Clearly, d defined above is a completemetric onX and (X, d,�) is an orderedmetric space.Moreover,
for any increasing sequence (Hn)n∈N inX converging to a certainH∗ ∈ X we haveHn(t) ≤ H∗(t), for
any t ∈ [0, ε]. Also, for every H,G ∈ X there exists c(H,G) ∈ X which is comparable, with respect
‘�’, with H and G.
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Defining O by the formula (17), we will prove first that O is continuous and monotone. To this
end, note that

OH1 − OH2 = γ

β
cos2 θ(H2

1 − H2
2) + δ

β
(f(H1 cos θ) − f(H1 cos θ)). (18)

Utilizing the mean value theorem, we find that

f(H1 cos θ) − f(H2 cos θ) = R
F(R)

· f (Rcθ )(H1 − H2) cos θ ,

for some cθ lying between H1 cos θ and H2 cos θ . Taking now into account the formulas for γ , δ and
β from (15) we infer that

OH1 − OH2 = R�2

2g
cos2 θ(H2

1 − H2
2) + 2� cos θ

g
f (Rcθ )(H1 − H2), (19)

fromwhichwe see at once thatO is continuous andmonotone, sinceH1,H2 ∈ X and since f is positive
by (11).

To verify condition (v) from Theorem 3.1, we use the assumption that the w-component of the
velocity field is less than g/6� and see from (19) that

|OH1 − OH2| ≤ 1
2 |H1 − H2| + 1

3 |H1 − H2| = 5
6 |H1 − H2| (20)

Letting H0 ≡ 0 we see that condition (iii) from Theorem 3.1 is satisfied. Indeed, the relation H0 �
O(H0) is equivalent withP0(θ) ≤ α, for all θ ∈ [0, ε], which means, according to [2], thatA is of the
order of 6.4 × 105 bar. This gives exactly our assumption. This concludes the proof. �

Remark 3.3: In the proof of the above result the operator O was continuous. However, by
Theorem 3.1, we can see that a fixed-point result, in the above context, can be obtained for
non-continuous mappings, using the assumption (iv)b.

4. Conclusion

We showed the relevance of recent advances in fixed-point theory to the study of nonlinear ocean
flows; we refer to [32] for a survey of fixed-point theorems. We believe that the presented approach
can be further developed to study other problems of current interest in equatorial water flows – e.g. the
inclusion of capillary effects [18] and accounting for the Earth’s curvature [23]. Some aspects of geo-
physical flows in the Southern Ocean appear also to be amenable to the type of approach undertaken
in [8,16,17,19].
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