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Critical graphs with Roman domination number four
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ABSTRACT
A Roman domination function on a graph G is a function r : VðGÞ ! f0, 1, 2g satisfying the condi-
tion that every vertex u for which r(u) ¼ 0 is adjacent to at least one vertex v for which r(v) ¼ 2.
The weight of a Roman domination function is the value rðVðGÞÞ ¼ P

u2VðGÞ rðuÞ: The Roman dom-
ination number cRðGÞ of G is the minimum weight of a Roman domination function on G. “Roman
Criticality” often refers to the study of graphs where the Roman domination number decreases
when adding an edge or removing a vertex of the graph. In this paper we add some condition to
this notion of criticality and give a complete characterization of critical graphs with Roman
Domination number cRðGÞ ¼ 4:
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1. Introduction

Let G ¼ ðVðGÞ, EðGÞÞ be a simple graph of order n, this is, a
graph without loops and multiple edges and with jVðGÞj ¼ n:
Notice that herein we are not assuming that the graph is con-
nected. Let V(G) and E(G) denote, as usual, the sets of vertices
and edges respectively. The degree of a vertex v, degGðvÞ or
simply deg(v), is the number of edges in E(G) incident to it.
We denote by NG½v�, or just N½v� the closed neighborhood of
a vertex v in G. As usual, Gnfvg denotes the graph which is
obtained by removing vertex {v} together with all edges con-
taining it.

A function r : VðGÞ ! f0, 1, 2g is a Roman domination
function if for every u 2 VðGÞ such that r(u) ¼ 0, then there
is a vertex v adjacent to u so that r(v) ¼ 2. The weight of a
Roman domination function is the value rðVðGÞÞ ¼
P

u2V rðuÞ: The Roman domination number (or RDN) of a
graph G, denoted by cRðGÞ is the minimum weight of all
possible Roman domination functions on G.

If a Roman domination function r on G satisfies that
cRðGÞ ¼

P
u2VðGÞ rðuÞ we say that r is a minimal Roman

domination function or a cR-function.
Given a graph G and a Roman domination function r :

VðGÞ ! f0, 1, 2g let P :¼ ðV0;V1;V2Þ be the partition of
V(G) induced by r, where Vi ¼ fu 2 VðGÞ j rðuÞ ¼ ig: Then,
P is called a Roman partition. Clearly there is a one to one
correspondence between Roman domination functions r :
VðGÞ ! f0, 1, 2g and Roman partitions ðV0;V1;V2Þ: Then,
we may denote r ¼ ðV0;V1;V2Þ:

For basic properties on Roman domination functions, see
for instance [4] and [8] and for an excellent motivation on
the topic see [11] and [13].

In the last years, Roman domination has been intensely
studied. Some papers study extremal problems on the RDN
of a graph giving upper and lower bounds for it. See, for
example [1] or [5]. Other authors are interested in how the
RDN is changed or unchanged by removing a vertex or by
adding or removing an edge. These properties are usually
called criticality properties. For example, in [10], the authors
study how the RDN changes by removing a vertex or an
edge from a graph. Similarly, in [7], the authors study
graphs for which removing a vertex or adding a new edge
decreases the RDN. On the contrary, in [2], the authors
study graphs for which adding a new edge does not change
the RDN. A good compilation of all these properties can be
found in [12]. For other works on criticality properties of
the RDN see also [3, 6, 9] and the references therein.

A graph is called vertex critical if removing any vertex
decreases the Roman domination number. A graph is called
edge critical if adding any edge decreases the Roman domin-
ation number. If a graph is vertex critical then the elimin-
ation of any edge does not change the RDN. A vertex
critical graph is called edge-vertex critical if eliminating any
edge the graph is not vertex-critical anymore.

In this paper, we give a complete identification of the
family of graphs which are vertex critical, edge critical and
edge-vertex critical with Roman domination number four.
In fact, we obtain that there is a graph Gn with n vertices
(for n> 5) and cRðGnÞ ¼ 4 satisfying these three properties
if and only if n is even. Furthermore, Gn is unique for each
even n. We also prove that it can be checked if any graph G
with cRðGÞ ¼ 4 satisfies these criticality properties by look-
ing at the induced subgraphs with 8 vertices
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2. Some critical properties on Roman domination

Definition 2.1. A graph G is nonelementary if cRðGÞ <
jVðGÞj:

It is well known the following characterization of nonele-
mentary graphs.

Proposition 2.2. A graph G is nonelementary if and only if
there is a connected component with at least 3 vertices.

Remark 2.1. If G is nonelementary, cRðGÞ � 3 if and only if
there exists a vertex v 2 VðGÞ with degðvÞ � n� 2.

A graph G is called vertex critical or v-critical if for
every v 2 VðGÞ, cRðGnfvgÞ ¼ cRðGÞ � 1:

The following useful result appears as Proposition 11 in
[10] and can be found also in [7].

Lemma 2.3. A graph G ¼ ðVðGÞ,EðGÞÞ is v-critical if and
only if for every vertex v there is a cR-function r ¼
ðV0;V1;V2Þ such that v 2 V1:

A graph G ¼ ðVðGÞ, EðGÞÞ is called edge critical or e-crit-
ical if for any pair of nonadjacent vertices v, w, the graph
G0 ¼ ðVðGÞ, EðGÞ [ ½v,w�Þ satisfies that cRðG0Þ ¼ cRðGÞ � 1:

The following proposition was proved in [7].

Proposition 2.4. A graph G ¼ ðVðGÞ, EðGÞÞ is e-critical if
and only if for every pair of vertices v, w such that ½v,w� 62
EðGÞ there exists a cR-function r ¼ ðV0;V1;V2Þ such that v 2
V1 and w 2 V2 or w 2 V1 and v 2 V2:

Proposition 2.5. If G ¼ ðVðGÞ,EðGÞÞ is a v-critical graph,
then for any e 2 EðGÞ, cRðG n eÞ ¼ cRðGÞ:

Proof. It is readily seen that cRðG n eÞ � cRðGÞ: Consider
any e ¼ ½v,w� 2 EðGÞ: By Lemma 2.3, there is a cR-function
of G, r ¼ ðV0;V1;V2Þ, such that v 2 V1: Hence, r is a
Roman function on G n e and cRðG n eÞ � cRðGÞ: Therefore,
cRðG n eÞ ¼ cRðGÞ: w

Definition 2.6. A v-critical graph G ¼ ðVðGÞ,EðGÞÞ is edge-
vertex critical or e-v-critical if for every edge e 2 EðGÞ the
graph G n e is not v-critical.

Proposition 2.7. A v-critical graph G ¼ ðVðGÞ,EðGÞÞ is e-
v-critical if and only if for every edge e there exists a vertex
ve such that for any cR-function r ¼ ðV0;V1;V2Þ with
ve 2 V1, then e ¼ ½v,w� with v 2 V0 and N½v� \ V2 ¼ fwg:

Proof. By Proposition 2.5, cRðGnfegÞ ¼ n: If G is e-v-critical,
then for every e 2 EðGÞ, Gnfeg is not v-critical. Therefore,
there exists ve such that cRðGnfe, vegÞ ¼ n: Since G is v-crit-
ical, cRðGnfvegÞ ¼ n� 1: Then, for any Roman function on
Gnfveg, r0 ¼ ðV 0

0;V
0
1;V

0
2Þ, with jV 0

1j þ 2jV 0
2j ¼ n� 1 (in

particular, for any Roman function of G, r ¼ ðV0;V1;V2Þ,
with jV1j þ 2jV2j ¼ n and ve 2 V1), ðV 0

0;V
0
1;V

0
2Þ (resp.

ðV0;V1nfveg;V2Þ) is not Roman on Gnfe, veg: Therefore,
e 2 ½V 0

0,V
0
2� (resp. e 2 ½V0,V2�). Moreover, if e ¼ ½v,w� with

v 2 V0, then the only vertex in V2 adjacent to v is w.

Now, consider any e 2 EðGÞ and let ve be such that for
any cR-function r ¼ ðV0;V1;V2Þ with ve 2 V1, then e 2
½V0,V2� and if e ¼ ½v,w� with v 2 V0 then w is the only ver-
tex in V2 which is adjacent to v. Hence, r is not Roman for
Gnfeg: Thus, there is no Roman function r ¼ ðV0;V1;V2Þ
on Gnfeg with ve 2 V1 and jV1j þ 2jV2j ¼ n: Hence, by
Lemma 2.3, Gnfeg is not v-critical. w

3. Roman domination number 4

Notice that e-critical, v-critical and e-v-critical graphs with
Roman domination number less or equal than 3 are trivially
classified. In this section we study the first non-trivial case:
graphs satisfying these criticality properties with Roman
domination number 4. We obtain a complete identification
of this (infinite) family proving that the graph is determined
(up to isomorphism) by the number of vertices. (We do not
distinguish between isomorphic graphs. Thus, given two
graphs G ¼ ðVðGÞ, EðGÞÞ and G0 ¼ ðVðG0Þ,EðG0ÞÞ, if there
is a bijection u : VðGÞ ! VðG0Þ such that ½v,w� 2 EðGÞ if
and only if ½uðvÞ,uðwÞ� 2 EðG0Þ we consider them the same
graph and simply write G ¼ G0:)

It is immediate to check that the only elementary v-crit-
ical graphs G with cRðGÞ ¼ 4 are ðVðG1ÞÞ ¼ fa, b, c, dg,
EðG1Þ ¼ ;Þ, ðVðG2Þ ¼ fa, b, c, dg, EðG2Þ ¼ f½a, b�gÞ and
ðVðG3Þ ¼ fa, b, c, dg, EðG3Þ ¼ f½a, b�, ½c, d�gÞ:
Lemma 3.1. Let G be a nonelementary graph with
cRðGÞ ¼ 4. Then, G is v-critical if and only if for every x 2
VðGÞ there exist two vertices ax, bx so that ax 6¼ x 6¼ bx and
such that N½ax� ¼ Gnfx, bxg:
Proof. The if part is clear. For every x 2 VðGÞ, it suffices to
define rx : VðGÞnfxg ! f0, 1, 2g so that rxðaxÞ ¼ 2, rxðbxÞ ¼
1 and rxðyÞ ¼ 0 for all y 6¼ ax, bx: Then, rx is Roman and
cRðGnfxgÞ � 3: (In fact, since cRðGÞ ¼ 4, cRðGnfxgÞ ¼ 3).

Now let G be a nonelementary v-critical graph with
cRðGÞ ¼ 4: Since it is v-critical, for any vertex x 2 VðGÞ
there is a Roman domination function rx : VðGÞnfxg !
f0, 1, 2g such that

P
u2VðGÞnfxgrxðuÞ ¼ 3: Since it is nonele-

mentary, jVðGÞnfxgj > 3 and hence, there are two vertices
y, z 2 VðGÞnfxg so that rxðyÞ ¼ 2 and rxðzÞ ¼ 1: Since
cRðGnfxgÞ ¼ 3, ½y, z� 62 EðGÞ:

Then, let ax ¼ y and bx ¼ z. If ½ax, x� 2 EðGÞ, then r0x :
VðGÞ ! f0, 1, 2g such that r0xjVðGÞnfxg :¼ rx and r0xðxÞ ¼ 0 is

Roman and cRðGÞ � 3 which is a contradiction. Therefore,
N½ax� ¼ Gnfx, bxg: w

Corollary 3.2. Let G be a nonelementary v-critical graph
with cRðGÞ ¼ 4 and consider x, ax, bx such that N½ax� ¼
Gnfx, bxg. Then, either N½x� ¼ VðGÞnfax, yg or N½bx� ¼
VðGÞnfax, yg for some y 2 VðGÞ:

Proof. It suffices to apply Lemma 3.1 to ax. There are edges
from ax to every vertex different from x, bx: Therefore,
aax 2 fx, bxg: w

Lemma 3.1 implies the following theorem which appears
as Theorem 14 in [10].
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Theorem 3.1. Let G be a nonelementary graph of order n
and Roman domination number cRðGÞ ¼ 4. Then, G is v-crit-
ical if and only if for every x 2 VðGÞ there exists a nonadja-
cent vertex ax with degðaxÞ ¼ n� 3:

The following proposition establishes that in a v-critical
graph with Roman domination number four at least half of
the vertices have degree n – 3.

Proposition 3.3. Let G be a nonelementary v-critical graph
of order n and Roman domination number cRðGÞ ¼ 4. If
W1 :¼ fv 2 VðGÞjdegðvÞ ¼ n� 3g, then jW1j � n

2 :

Proof. By Theorem 3.1 we know that there is at least one
vertex, a1 such that degða1Þ ¼ n� 3: Then, there are exactly
two vertices x1, y1 so that N½a1� ¼ VðGÞnfx1, y1g: Consider
any point x2 62 fx1, y1g: By Lemma 3.1, there is some vertex
a2 such that N½a2� ¼ VðGÞnfx2, y2g for some y2 (not neces-
sarilly different from x1, y1). Since x2 62 fx1, y1g, then a2 6¼
a1 and jfx1, y1, x2, y2gj � 4: Then, we consider some vertex
x3 62 fx1, y1, x2, y2g and repeat the process until fx1, y1, :::,
xk, ykg ¼ VðGÞ: Then k � n

2 and a1, :::, ak are k different ver-
tices with degree n – 3. w

Remark 3.4. Using Theorem 3.1 it is easy to build an
infinite family of different nonelementary v-critical graphs
with cRðGÞ ¼ 4:

Consider a cycle, Cn, of length n � 5 where the vertices
VðCnÞ are ordered in the natural way by x1, :::, xn, and
xi, xiþ1 2 EðCnÞ for every i � 1, :::, nðmod nÞ: As we already
know, if n¼ 5 cRðC5Þ ¼ 4 and the graph is v-critical.
Assume n � 6 and let us define Xn by attaching some extra
edges to Cn so that, for every vertex xi, N½xi� ¼
VðCnÞnfxi�2, xiþ2g (where the vertices are taken (mod n)).
See Figure 1. By Lemma 3.1, the resulting graph Xn is a
nonelementary v-critical graph with cRðXnÞ ¼ 4:

Observe that these are not the only examples of v-critical
graphs with Roman domination number four. Take any of

the Xn above, with n � 6: Then, if we remove any of those
extra edges (consider, for example, an hexagon with two
diagonals, ½x1, x4� and ½x2, x5�) it is still a nonelementary v-
critical graph with cRðGÞ ¼ 4:

Let us recall that a cut vertex in a connected graph G is a
vertex v such that Gnfvg is not connected. The following
lemma is trivial.

Lemma 3.5. If G is a nonelementary v-critical graph with
cRðGÞ ¼ 4 and v is a cut vertex, then one of the connected
components of Gnfvg has only one vertex.

Example 3.6. There exists an infinite family of nonelemen-
tary critical graphs with cut vertices. See, for example, the
graph represented on Figure 2. See also the family Dn

defined below and represented in Figure 3.

Proposition 3.7. A nonelementary graph G ¼ ðVðGÞ, EðGÞÞ
of order n and cRðGÞ ¼ 4 is e-critical if and only if given any
pair of vertices v1, v2 with degðv1Þ, degðv2Þ < n� 3, then
½v1, v2� 2 EðGÞ:

Proof. Suppose v1, v2 with degGðv1Þ, degGðv2Þ < n� 3 and
½v1, v2� 62 EðGÞ: Let G0 ¼ ðVðGÞ,EðGÞ [ ½v1, v2�Þ: Clearly,
every vertex in G0 has degree less or equal than n – 3. Then,
by Remark 2.1, cRðG0Þ > 3 and G is not e-critical.

Assume that for any pair of vertices v1, v2 with
degGðv1Þ, degGðv2Þ < n� 3, then ½v1, v2� 2 EðGÞ: Let G0 ¼
ðVðGÞ,EðGÞ [ ½v,w�Þ for some v,w 2 VðGÞ with ½v,w� 62
EðGÞ: Then one of them, say v, satisfies that degGðvÞ �
n� 3: Thus, degG0 ðvÞ � n� 2 and by Remark 2.1, cRðGÞ � 3
(Figure 4). w

Lemma 3.8. Let G ¼ ðVðGÞ, EðGÞÞ be a nonelementary e-
critical, v-critical graph of order n and cRðGÞ ¼ 4. If W1 :¼
fv 2 VðGÞjdegðvÞ ¼ n� 3g, then jW1j � 3n

4 :

Proof. Let VðGÞ ¼ fv1, v2, :::, vng and assume W1 ¼
fv1, :::, vkg: By Proposition 3.7, and Remark 2.1 we know
that for all vr, vs with r, s > k then ½vr, vs� 2 EðGÞ: Therefore,
since degðvjÞ < n� 3 for every j> k, there are at least three
vertices vj1 , vj2 , vj3 with j1, j2, j3 � k such that ½vj1 , vj�, ½vj2 , vj�,
½vj3 , vj� 62 EðGÞ:

Also, by Lemma 3.1, every vi with i � k is joined at most
to k – 2 vertices in W1. Hence, there is at most one vertex
vj with j> k such that ½vi, vj� 62 EðGÞ: Therefore, given

Figure 1. X6 is v-critical.

Figure 2. A v-critical graph with a cut vertex v5.
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vj, vj1 , vj2 , vj3 as above, vji 6¼ vj0
i0
for any j 6¼ j0 or i 6¼ i0: Thus,

k � 3ðn� kÞ and k � 3n
4 : w

Remark 3.9. Notice that the graphs in the family described
in Remark 3.4 are e-critical since every vertex has degree
n – 3. Then, this is an infinite family of different nonelemen-
tary v-critical, e-critical graphs with cRðGÞ ¼ 4:

Proposition 3.10. A nonelementary v-critical graph G ¼
ðVðGÞ,EðGÞÞ with cRðGÞ ¼ 4 is e-v-critical if and only if for
every edge e 2 EðGÞ there is a vertex ve 2 VðGÞ such that
every vertex with degree n – 3 is either contained in e or
adjacent to ve.

Proof. Suppose G is e-v-critical. Then, for every edge e there
is some ve such that cRðG n fe, vegÞ ¼ 4: Let w be any vertex
with degGðwÞ ¼ n� 3 and suppose ½ve,w� 62 EðGÞ: Then,
NG½w� ¼ G n fve, yg for some vertex y. Let rw : VðGÞnfvg !

f0, 1, 2g such that rwðwÞ ¼ 2, rwðyÞ ¼ 1 and rwðxÞ ¼ 0 for
every x 2 VðGÞnfve,w, yg: Since cRðG n fe, vegÞ ¼ 4, it fol-
lows that rw is not Roman on G n feg, this is, there is a ver-
tex x0 labelled with 0 which is not adjacent to w on G n feg:
Thus, e ¼ ½w, x0�:

Now suppose that for any edge e 2 EðGÞ there is a vertex
ve 2 VðGÞ such that every vertex w with degree n – 3 is
either contained in e or adjacent to ve. Let us see that G n
feg is not v-critical. By Proposition 2.5, we know that
cRðGnfegÞ ¼ 4: Suppose cRðG n fe, vegÞ ¼ 3 and let r be any
Roman domination function on Gnfe, veg such thatP

u2VðGÞnfvegrðuÞ ¼ 3: Then, r also defines a Roman domin-

ation function on Gnfveg: If r�1ð2Þ ¼ fwg, since cRðGÞ ¼
4, degGðwÞ ¼ n� 3 and NGðwÞ ¼ Gnfve, yg for some y 2
VðGÞ: Also, r�1ð1Þ ¼ fyg and r�1ð0Þ ¼ VðGÞnfve, yg: By
hypothesis, since w is nonadjacent to ve, e ¼ ½w,w0� with w0

different from ve, y: Therefore, since rðw0Þ ¼ 0, r is not a
Roman domination function on Gnfe, veg, leading to
contradiction. w

Remark 3.11. Consider the family fXnjn � 5g described in
Remark 3.4. For each n, consider Xn ¼ X0

n,X
1
n, :::,X

kn
n a

sequence of graphs where Xi
n is obtained from Xi�1

n by
removing one edge so that Xi

n is again v-critical until Xkn
n is

e-v-critical (since Xn is nonelementary, by Proposition 2.5,
there is always such a kn). Since for each n, jVðXnÞj ¼ n,
the graphs in fXkn

n jn � 5g define an infinite family of differ-
ent v-critical and e-v-critical graphs.

Proposition 3.12. Let G ¼ ðVðGÞ,EðGÞÞ be a nonelementary
e-critical, v-critical and e-v-critical graph with cRðGÞ ¼ 4. Let
W1 :¼ fv 2 VðGÞjdegðvÞ ¼ n� 3g ¼ fv1, :::, vkg and W2 :¼
fv 2 VðGÞjdegðvÞ < n� 3g ¼ fvkþ1, :::, vng. Then, either
G¼C5 or jW2j ¼ n� k ¼ 1, degðvnÞ ¼ 1 and there is a
cut vertex.

Proof. Claim: jW2j � 1: Otherwise, suppose there exist at
least two vertices vr, vs 2 W2: By Proposition 3.7, for all
vr, vs 2 W2, e ¼ ½vr, vs� 2 EðGÞ: By Proposition 3.10, there is
a vertex ve 2 VðGÞ such that for every v 2 W1, either v ¼
vr, v ¼ vs or v is adjacent to ve. In this case, since vr, vs 2
W2, every v 2 W1nfveg is adjacent to ve. However, by
Theorem 3.1, there exists some vertex ave 6¼ ve in W1 such
that ave is not adjacent to ve leading to contradiction.
Therefore, jW2j � 1:

Claim: If jW2j ¼ 1, then degðvnÞ ¼ 1 and there is a cut
vertex. Suppose n� k ¼ 1 and degðvnÞ � 2: There is no loss
of generality if we assume that ½vn�1, vn�, ½vn�2, vn� 2 EðGÞ:
Applying Proposition 3.10 for e1 ¼ ½vn�1, vn� and e2 ¼
½vn�2, vn� we know that there exist two vertices, ve1 , ve2 2
fv1, :::, vn�3g such that for every v 2 W1, if v 6¼ ve1 , vn�1

then ½v, ve1 � 2 EðGÞ and if v 6¼ ve2 , vn�2 then ½v, ve2 � 2 EðGÞ:
See Figure 5. Let us assume that ve1 ¼ v1 and ve2 ¼ v2:
Hence, N½v1� ¼ VðEÞnfvn�1, vng and N½v2� ¼ VðEÞnfvn�2,
vng: Notice that this implies that v1 6¼ vn�2, vn and v2 6¼
vn�1, vn: In particular, e3 ¼ ½v1, v2� 2 EðGÞ: Let us apply
again Proposition 3.10 for e3. Then, there is some vertex ve3

Figure 3. If n> 5 with n even, then there is a unique v-critical, e-v-critical and
Roman complete graph, Dn, with cRðDnÞ ¼ 4:

Figure 4. A nonelementary v-critical, e-critical graph with 8 vertices and two
adjacent vertices of degree 4.
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such that for every v 6¼ v1, v2, ve3 , vn, then ½v, ve3 � 2 EðGÞ: Let
us distinguish the following three cases:

� If ve3 ¼ vn, then vn is adjacent to every vertex v 6¼ v1, v2
and degðvnÞ ¼ n� 3 which is a contradiction.

� If ½ve3 , vn� 2 EðGÞ: By the election of v1, v2, either
½ve3 , v1� 2 EðGÞ or ½ve3 , v2� 2 EðGÞ: Therefore, degðve3Þ �
1þ 1þ n� 4 ¼ n� 2 which implies that cRðGÞ ¼ 3
leading to contradiction.

� If ve3 6¼ vn and ½ve3 , vn� =2 EðGÞ: Then ve3 6¼ vn�1, vn�2 and,
therefore, ½ve3 , v1� 2 EðGÞ and ½ve3 , v2� 2 EðGÞ: Thus, ve3 is
adjacent to every vertex v 6¼ vn, ve3 and degðve3Þ ¼ n� 2
which implies that cRðGÞ ¼ 3 leading to contradiction.

Thus, there is a unique edge incident to vn, let’s say
½vn�1, vn�, and vn�1 is a cut vertex.

Claim: If jW2j ¼ 0, then G ¼ C5.
Suppose k¼ n, this is, degðvÞ ¼ n� 3 for every v 2 VðGÞ:

Consider all the edges incident to v1: e1, :::, en�3 and let
ei ¼ ½v1,wi�, i ¼ 1, n� 3). Then, by Proposition 3.10, there are
n – 3 different vertices v2, :::, vn�2 such that N½viþ1� ¼
Gnfv1,wig for i ¼ 1, n� 3: In particular, ½v1, viþ1� 62 EðGÞ for
i ¼ 1, n� 3: But since degðv1Þ ¼ n� 3, it follows that n�
3 � 2 and n � 5: Since we assumed that G is nonelementary
then n¼ 5 and degðviÞ ¼ 2 for every 1 � i � n:

Let us assume with no loss of generality that
½v1, v2�, ½v2, v3� 2 EðGÞ: Then, if ½v1, v3� 2 EðGÞ these vertices
have already degree 2. Hence, degðv4Þ, degðv5Þ < 2 leading
to contradiction. So, we may assume, again without loss of
generality, that ½v3, v4� 2 EðGÞ: Again, if ½v1, v4� 2 EðGÞ, then
degðv5Þ < 2: Therefore, G ¼ C5. w

Corollary 3.13. C5 is the unique nonelementary graph, G,
with cRðGÞ ¼ 4 which is e-critical, v-critical and e-v-critical
with no cut vertices.

For any even number n � 6, let us denote by Dn ¼
ðVðDnÞ,EðDnÞÞ the graph such that VðDnÞ ¼ fv1, :::, vng and
EðDnÞ ¼ f½v1, v2�g [ f½vn�1, vn�g [ f½vj, vn�1� : 3 � j � n� 2g[

f½vr, vj� : r ¼ 1, 2 and 3 � j � n � 2g [ f½vi, vj� : 3 � i, j �
n � 2gnf½v2j�1, v2j� : 2 � j � n�2

2 g: See Figure 3.
Notice that for every 1 � i � n� 1, degðviÞ ¼ n� 3 and

degðvnÞ ¼ 1: In fact, if r¼ 1, 2, NðvrÞ ¼ VðEÞnfvn�1, vng, if
3 � j � n� 2 with j odd, then NðvjÞ ¼ VðEÞnfvjþ1, vng, if
3 � j � n� 2 with j even, then NðvjÞ ¼ VðEÞnfvj�1, vng,
Nðvn�1Þ ¼ VðEÞnfv1, v2g and NðvnÞ ¼ fvn�1, vng:
Proposition 3.14. For every even number n � 6, Dn is a
nonelementary e-critical, v-critical and e-v-critical graph
with cRðGÞ ¼ 4:

Proof. Since degðviÞ ¼ n� 3 for every i 6¼ n it follows
immediately that G is v-critical, by Theorem 3.1, and G is
e-critical.

To check that G is e-v-critical, by Proposition 3.10, it suf-
fices to find for every edge e ¼ ½x, y� a vertex ve which is
adjacent to every vertex in fv1, :::, vn�1gnfx, yg:

If e ¼ ½vn�1, vn�, then ve ¼ v1:
If e ¼ ½v1, v2�, then ve ¼ vn�1:
For the rest of the edges, note that if v2j�1 2 e, then v2j 62

e and v2j is adjacent to every vertex in fv1, :::, vn�1gnfv2j�1g
and if v2j 2 e, then v2j�1 62 e and v2j�1 is adjacent to every
vertex in fv1, :::, vn�1gnfv2jg for every 2 � j � n�2

2 : w

Thus, there is an infinite family of e-critical, v-critical
and e-v-critical graphs.

Theorem 3.15. If G ¼ ðVðGÞ, EðGÞÞ is a nonelementary e-
critical, v-critical and e-v-critical graph with cRðGÞ ¼ 4, then:
a) If jVðGÞj ¼ 5, then G¼C5

b) If jVðGÞj ¼ n > 5, then n is even and G¼Dn.

Proof. If jW2j ¼ 0, it follows from the proof of Proposition
3.12 that G ¼ C5.

Now, let us see that if jW2j ¼ 1, then n> 5 is even and,
up to relabeling the vertices, G ¼ Dn.

As we saw, there is a unique edge incident to vn,
½vn, vn�1�: Since degðvn�1Þ ¼ n� 3 then there are two verti-
ces, let’s say v1, v2 such that N½vn�1� ¼ Gnfv1, v2g and for
every 3 � j � n� 2, ½vj, vn�1� 2 EðGÞ: Since degðv1Þ ¼
degðv2Þ ¼ n� 3, and ½vr, vk� 62 EðGÞ for r¼ 1, 2 and k ¼
n, n� 1, it follows that ½v1, v2� [ f½vr, vj� : r ¼ 1, 2 and 3 �
j � n� 2g � EðGÞ: Finally, for every 3 � i � n�
2, degðviÞ ¼ n� 3: Therefore, for each 3 � i � n� 2 there is
exactly one j 6¼ i, 3 � j � n� 2, such that ½vi, vj� 62 EðGÞ:
This forces n to be even. We may assume, relabeling if
necessary, that those missing edges are fv2j�1, v2jg with 2 �
j � n�2

2 : Thus, G is isomorphic to Dn. w

In the following characterization we prove that for an
arbitrary graph G with cRðGÞ ¼ 4, the Roman criticality can
be studied just by looking at small induced subgraphs. In
fact, it suffices to check some properties on the induced sub-
graphs with 8 vertices to determine if the graph is e-critical,
v-critical and e-v-critical.

Theorem 3.16. Let G ¼ ðVðGÞ, EðGÞÞ be a graph with
cRðGÞ ¼ 4 and jVðGÞj ¼ n � 8. Then, n is even and G¼Dn

if and only if the following conditions hold:

W2W1

ve1=v1

ve3
vn-1

vn-2

vn

e1

e2e3

ve2=v2

Figure 5. If jW2j ¼ 1 and degðvnÞ > 1, then there is a contradiction: ve3 6¼ vn
and degðve3 Þ ¼ n� 2:
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(a) There exist fv1, :::, v4g 2 VðGÞ such that ½v1, vi� 62 EðGÞ
for every 2 � i � 4:

(b) For every fv1, :::, v8g 2 VðGÞ, if ½v1, vi� 62 EðGÞ, for
all 2 � i � 4, then jfvk : 1 � k � 7 such that ½vk, v8� 2
EðGÞgj � 5:

(c) For every fv1, :::, v6g 2 VðGÞ, if ½v1, vi� 62 EðGÞ for every
2 � i � 4 then jfvk : 5 � k � 6 such that ½v1, vk� 2
EðGÞgj � 1:

Proof. Property aÞ holds for some subset fv1, :::, v4g 2 VðGÞ
if and only if there is at least one vertex v such
that degðvÞ < n� 3:

Property bÞ holds for every subset fv1, :::, v8g 2 VðGÞ if
and only if there is at most one vertex v such that degðvÞ <
n� 3:

Property cÞ holds for every subset fv1, :::, v6g 2 VðGÞ if
and only if for every vertex v with degðvÞ < n� 3 then
deg(v) ¼ 1.

Finally, as we saw in the proof of Theorem 3.15, if n> 5
and the unique vertex v such that degðvÞ < n� 3 satisfies
that deg(v) ¼ 1, then G ¼ Dn. w

Thus, from Theorems 3.15 and 3.16 we obtain the following:

Corollary 3.17. Let G ¼ ðVðGÞ,EðGÞÞ be a graph with
cRðGÞ ¼ 4 and jVðGÞj ¼ n � 8. Then, G is a e-critical, v-crit-
ical and e-v-critical graph if and only if the following condi-
tions hold:

(a) There exist ðv1, :::, v4Þ 2 VðGÞ such that ½v1, vi� 62 EðGÞ
for every 2 � i � 4:

(b) For every ðv1, :::, v8Þ 2 VðGÞ, if ½v1, vi� 62 EðGÞ, for
every 2 � i � 4, then jfvk : 1 � k � 7 such that ½vk,
v8� 2 EðGÞgj � 5:

(c) For every ðv1, :::, v6Þ 2 VðGÞ, if ½v1, vi� 62 EðGÞ for every
2 � i � 4 then jfvk : 5 � k � 6 such that ½v1, vk� 2
EðGÞgj � 1:
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