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ABSTRACT
In statistical practice, researchers commonly focus on patterns in the means of multiple dependent out-
comes while treating variances as nuisance parameters. However, in fact, there are often substantive reasons
to expect certain patterns in the variances of dependent outcomes as well. For example, in a repeated
measures study, one may expect the variance of the outcome to increase over time if the difference
between subjects becomes more pronounced over time because the subjects respond differently to a
given treatment. Such expectations can be formulated as order constrained hypotheses on the variances
of the dependent outcomes. Currently, however, no methods exist for testing such hypotheses in a direct
manner. To fill this gap, we develop a Bayes factor for this challenging testing problem. Our Bayes factor is
based on the multivariate normal distribution with an unstructured covariance matrix, which is often used
to model dependent outcomes. Order constrained hypotheses can then be formulated on the variances
on the diagonal of the covariance matrix. To compute Bayes factors between multiple order constrained
hypotheses, a prior distribution needs to be specified under every hypothesis to be tested. Here, we use the
encompassing prior approach in which priors under order constrained hypotheses are truncations of the
prior under the unconstrained hypothesis. The resulting Bayes factor is fully automatic in the sense that no
subjective priors need to be specified by the user.
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1. Introduction
In analyzing their data, researchers commonly focus on mea-
sures of central tendency such as means and regression coeffi-
cients. Measures such as variances that capture the heterogeneity
of observations are usually regarded as nuisance parameters.
However, to fully understand the patterns that are present in the
data it is of vital importance to carefully model and interpret
the variability of the observations (e.g., Carroll 2003). In fact,
the heterogeneity of the observations can be a core aspect of a
study (e.g., Hultsch, MacDonald, and Dixon 2002; Aunola et al.
2004; Lehre et al. 2009; Kaptein and Eckles 2012; Mulder and
Fox 2013; Böing-Messing and Mulder 2016, 2018; Mulder and
Fox 2019).

There are often reasons to expect certain patterns in the
heterogeneity of multiple dependent outcomes. For example, in
a repeated measures study that investigates the effect of a certain
treatment, one may expect the variability of the outcome to
increase over time if the difference between subjects becomes
more pronounced over time because the subjects respond dif-
ferently to the treatment (e.g., Aunola et al. 2004; Hedeker and
Gibbons 2006; Böing-Messing et al. 2017). Such an expectation
can be formulated as an order constrained hypothesis of the
form H1 : σ 2

1 < · · · < σ 2
p subject to the condition that the

covariance matrix is positive definite, where p is the number
of measurement occasions and σ 2

j is the variance of the jth
measurement, for j = 1, . . . , p. To test H1 we need a hypothesis
it can be compared to. A natural competitor is the complement

CONTACT Florian Böing-Messing florian.boeingmessing@gmail.com Jheronimus Academy of Data Science, Sint Janssingel 92, 5211 DA ’s-Hertogenbosch, The
Netherlands.

of H1 given by H2 : ¬ σ 2
1 < · · · < σ 2

p , which may also
be written as H2 : ¬ H1 in short. The complement entails all
possible hypotheses on the p variances except H1 under the
condition that the covariance matrix is positive definite. In
another example, Aunola et al. (2004) hypothesized that the
variability of math performances either increases or decreases
across grades. An increase might occur because children with
high mathematical potential improve their performances faster
than children with low mathematical potential. A possible rea-
son for a decrease is that systematic instruction at school helps
children with low mathematical potential catch up. These two
competing expectations can be expressed as order constrained
hypotheses H1 : σ 2

1 < · · · < σ 2
p and H2 : σ 2

p < · · · < σ 2
1 , where

p is the number of grades and σ 2
j is the variance in grade j, for j =

1, . . . , p. Another conceivable competitor is the complement of
H1 and H2 given by H3 : ¬

(
σ 2

1 < · · · < σ 2
p ∨ σ 2

p < · · · < σ 2
1

)
.

In this article, we use the multivariate normal distribution
with unstructured p × p covariance matrix � to model the
dependent outcomes. We use an unstructured covariance matrix
to safeguard against misfitting covariance structures that might
distort inferences about the variances. As we will argue later, an
unstructured covariance matrix is more suitable for testing spe-
cific patters of the variances in comparison to the implied, highly
structured covariance matrix of a mixed effects model. We con-
cern ourselves with testing T ≥ 2 order constrained hypotheses
on the variances σ 2 = (

σ 2
1 , . . . , σ 2

p
)′ of the dependent outcomes
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located on the main diagonal of �. In general, the hypotheses we
test are of the form

Ht : � ∈ �t , t = 1, . . . , T, (1)

where �t is an order constrained subspace of the uncon-
strained parameter space �u = {� : � > 0} and � > 0
means that � is positive definite. In this article, we focus
on hypotheses for which the subspace can be written as
�t = {

� : Rtσ 2 > 0 ∧ � > 0
}

, where Rt is a qt × p matrix
containing the coefficients for the qt order constraints on the
variances under Ht and 0 = (0, . . . , 0)′ is a qt-dimensional
vector of zeroes. We test hypotheses for which each row of
Rt is a permutation of {−1, 1, 0, . . . , 0}. That is, we consider
hypotheses with equal coefficients on the variances (e.g.,
H1 : � ∈ �1 = {

� : σ 2
1 < σ 2

2 < σ 2
3 ∧ � > 0

}
, for which

R1 = [ −1 1 0
0 −1 1

]
). Another type of hypothesis we will consider

in the context of repeated measures analysis is a formulation
that states an order of the variances as well as an order
of the ratios of adjacent variances (see, e.g., Mulder et al.
2009, for testing such patterns on repeated measures means).
An example of this is the hypothesis H2 : � ∈ �2 ={
� : σ 2

1 < σ 2
2 < σ 2

3 ∧ σ 2
2 /σ 2

1 < σ 2
3 /σ 2

2 ∧ � > 0
}

, which
states that the variance as well as the effect size σ 2

j /σ 2
j−1 increases

over time. We will present an application of a test for such
types of heteroscedasticity later on in the article when we apply
our Bayes factor to an empirical dataset of repeated reading
recognition scores in children.

Testing of variances has received much attention in the sta-
tistical literature. Numerous null hypothesis significance testing
(NHST) procedures have been developed for different testing
problems. Two prominent methods for testing equality of vari-
ances of independent populations are the classical likelihood
ratio test based on the normal distribution and Bartlett’s (1937)
modification thereof. Robust alternatives to these tests were
developed by Levene (1960), Brown and Forsythe (1974), and
more recently by Shoemaker (2003). Noting that variances of
independent populations often follow an increasing or decreas-
ing order, Gastwirth, Gel, and Miao (2009) developed a NHST
procedure for testing the null hypothesis of equal variances
against an order-constrained alternative hypothesis. The prob-
lem of testing equality of variances of dependent outcomes has
been considered as well. An early development is the Morgan–
Pitman test (Morgan 1939; Pitman 1939) for testing equality
of variances in the bivariate normal distribution. This test was
modified by Wilcox (1990, 2015) to improve on the robustness
of the method. Cohen (1986) and Wilcox (1989) developed
extensions for testing equality of variances of more than two
dependent outcomes and Mentz (2001) proposed a likelihood
ratio test of equality of multiple variances in the intraclass
correlation model. To our knowledge, however, no method is
currently available for testing multiple hypotheses with order
constraints on variances of dependent outcomes as formulated
in Equation (1).

In this article, we take a Bayesian approach to the testing
problem in Equation (1) using the Bayes factor (Jeffreys 1961;
Kass and Raftery 1995), which is a Bayesian hypothesis testing
and model selection criterion. Bayes factors have been devel-
oped for a variety of testing problems frequently encountered in
practice. For example, Gönen et al. (2005) proposed a Bayesian

two-sample t-test that was later extended by Wang and Liu
(2016). Klugkist, Laudy, and Hoijtink (2005) developed a Bayes
factor for testing order constrained hypotheses on the means
in analysis of (co)variance models. Mulder (2014b) proposed
Bayes factors for testing order constrained hypotheses on means
and regression coefficients in the multivariate normal linear
model. Gu et al. (2014) developed an approximate Bayesian pro-
cedure for testing order constrained hypotheses on regression
coefficients in a structural equation modeling framework. Fos-
dick and Raftery (2012) used the Bayes factor to test hypotheses
on the correlation in bivariate normal data. Mulder (2016) pro-
posed Bayes factors for testing order constrained hypotheses on
correlations. Recently, Böing-Messing et al. (2017) and Böing-
Messing and Mulder (2018) applied the Bayes factor to the
problem of testing order constrained hypotheses on the vari-
ances of independent populations. In this article, we extend this
methodology by developing a Bayes factor for testing variances
of dependent outcomes.

The Bayes factor has a number of advantages that are not
all shared by alternative hypothesis testing approaches such as
NHST by means of p-values and model selection by means of
information criteria such as the AIC (Akaike 1973) and the BIC
(Schwarz 1978): First, unlike Bayes factors and the AIC and BIC,
p-values are not able to simultaneously test multiple hypotheses
and cannot quantify evidence in favor of a hypothesis. Instead,
in the NHST framework one can only test every hypothesis of
interest against a common null hypothesis and the p-value is
then interpreted as quantifying the evidence against this null
hypothesis (although this interpretation has been contested,
see, e.g, Berger and Delampady 1987). This, however, does not
give us an answer as to which hypothesis receives strongest
support from the data. Second, contrary to Bayes factors and
the BIC, the AIC is not consistent in the sense that it is not
guaranteed to select the true hypothesis as the sample size goes
to infinity (e.g., O’Hagan 1995). Third, Bayes factors have an
inherent Occam’s razor mechanism that automatically takes the
parsimony introduced by order constraints into account (e.g.,
Kass and Raftery 1995). While p-values do not have an inherent
mechanism for measuring the complexity of a hypothesis, both
the AIC and the BIC measure the complexity of a hypothesis
by the number of unknown parameters. However, this is not
a suitable measure when testing order constrained hypothe-
ses. For example, under both the order constrained hypothesis
H1 : � ∈ �1 =

{
� : σ 2

1 < · · · < σ 2
p ∧ � > 0

}
and the

unconstrained hypothesis Hu : � ∈ �u there are p unknown
variance parameters. However, H1 is more parsimonious than
Hu because the admissible parameter space under H1 is smaller
in the sense that it is a subset of the unconstrained parameter
space under Hu.

The remainder of this article is structured as follows. In the
next section, we describe the multivariate normal model that is
used throughout this article and we propose an unconstrained
prior on the model parameters. We then develop a Bayes factor
for testing order constrained hypotheses on the variances in this
model using the encompassing prior approach. Following this,
we examine four important aspects of the proposed Bayes factor:
scale invariance, Bartlett’s paradox, large sample consistency,
and missing data. Subsequently, we illustrate the use of the Bayes
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factor by applying it to two empirical datasets about scholastic
achievements of children. We conclude the article with a discus-
sion of our approach.

2. Model and Unconstrained Prior

In this article, we concern ourselves with testing order con-
strained hypotheses on the variances in the multivariate normal
model

yi ∼ Np(μi, �), i = 1, . . . , n, (2)

where n is the sample size, yi is a p-dimensional vector of
dependent variables, μi denotes the mean vector for observation
i, and � is an unstructured covariance matrix:

� =

⎡
⎢⎢⎢⎣

σ 2
1 σ12 · · · σ1p

σ21 σ 2
2 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σ 2
p

⎤
⎥⎥⎥⎦ . (3)

We are interested in testing order constrained hypotheses on the
variances on the main diagonal of �, where the hypotheses are
formulated according to Equation (1).

The mean vector, which will be treated as a nuisance param-
eter in this article, is typically modeled as a linear combination
of a given set of covariates. For example,

μi = B′xi under a multivariate normal linear model or (4)
μi = Xiβ under a linear mixed model, (5)

where xi and Xi are k × 1 and p × k matrices with covariates,
respectively, and B and β are k × p and k × 1 matrices with
regression coefficients. By writing the vectorization of the coef-
ficients matrix in Equation (4) as β = vec(B), we can denote
the vector of nuisance parameters under both models by β .
Note that the multivariate normal linear model is a generaliza-
tion of commonly used models such as (multivariate) analysis
of (co)variance and multivariate regression. Furthermore, note
that the standard linear mixed model, where the random effects
are integrated out, has a structured covariance matrix which
depends on the within-subjects variance σ 2 and the random
effects covariance matrix � : yi ∼ Np

(
Xiβ , σ 2Ip + Xi�X′

i
)
,

where Ip is the identity matrix of size p and the covariates for the
random effects equal the covariates for the fixed effects, Xi. As
noted above, we use an unstructured covariance matrix instead
to make sure that the model can flexibly pick up different kinds
of (potentially unforeseen) covariance patterns. In Section 5.2,
we will motivate this choice for the unstructured covariance
matrix in a repeated measures context.

A common choice for the unconstrained prior on the covari-
ance matrix � is a conjugate inverse Wishart prior:

πu(�) = W−1
p (�|�, ν), (6)

where � > 0 is the p × p prior scale matrix and ν > p − 1 are
the prior degrees of freedom. The two hyperparameters � and
ν allow a flexible specification of the prior. We will come back to
the choice of the hyperparameter values in Section 3.2. Since β

contains nuisance parameters that are common under all order

constrained hypotheses, we may use the standard noninforma-
tive Jeffreys prior πN(β) = C, where C is an unspecified nor-
malizing constant that cancels out in the computation of Bayes
factors (e.g., Jeffreys 1961; O’Hagan 1995). The unconstrained
joint prior on � and β is then given by

πu(β , �) = πN(β) πu(�) = C · πu(�). (7)

3. Bayes Factors for Testing Variances

3.1. The Bayes Factor

The Bayes factor for testing hypothesis Ht against a competing
hypothesis Ht′ is defined as the ratio of the marginal likelihoods
under the two hypotheses:

Btt′ = mt(Y)

mt′(Y)
, (8)

where mt(Y) is the marginal likelihood for observed data Y
under hypothesis Ht with order constraints formulated accord-
ing to Equation (1). The marginal likelihood is given by

mt(Y) =
∫

�t

∫
ft(Y|X, β , �)πt(β , �) dβ d�, (9)

where ft(Y|X, β , �) is the likelihood under Ht , πt(β , �) is
the prior on β and � under Ht , and the integration region
of � is restricted to the order constrained parameter space
�t . The marginal likelihood can be interpreted as a weighted
average likelihood in the parameter space that is admissible
under Ht , where the weights are given by the prior. In this way,
the marginal likelihood quantifies how likely it is that the data
were generated under Ht . The Bayes factor, as a ratio of marginal
likelihoods, then tells us whether it is more likely that the data
were generated under Ht or Ht′ . If Btt′ > 1 (Btt′ < 1), then
there is evidence in favor of Ht (Ht′). A Bayes factor of, say, 10
indicates that the evidence in favor of Ht is 10 times as strong as
the evidence in favor of Ht′ (e.g., Jeffreys 1961).

3.2. Encompassing Prior Approach

From Equation (9), it can be seen that a prior πt(β , �) needs to
be specified to compute the marginal likelihood under hypoth-
esis Ht . In this article, we use the encompassing prior approach
(Berger and Mortera 1999; Klugkist, Laudy, and Hoijtink 2005)
to specify priors under competing order constrained hypotheses
on the variances in the multivariate normal model in Equation
(2). The encompassing prior approach is a popular approach to
computing Bayes factors between order constrained hypothe-
ses. The starting point is the specification of an unconstrained
(or encompassing) prior under the unconstrained hypothesis
Hu : � ∈ �u. Order constrained hypotheses are nested in the
unconstrained hypothesis in the sense that �t ⊂ �u. We may
therefore specify priors under order constrained hypotheses as
truncations of the unconstrained prior in the respective con-
strained subspaces. In this way, the problem of specifying a prior
under each order constrained hypothesis simplifies to specifying
one unconstrained prior.

The unconstrained joint prior on β and � was given in
Equation (7). The prior under an order constrained hypothesis
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Ht is formulated as a truncation of the unconstrained prior in
the admissible parameter space �t :

πt(β , �) = 1
P(� ∈ �t|Hu)

πu(β , �) 1�t (�), (10)

where

P(� ∈ �t|Hu) =
∫

�t
πu(�) d� (11)

is the prior probability that the order constraints hold under
Hu, with πu(�) as in Equation (6), and 1�t (�) is an indicator
function that equals 1 if � ∈ �t and 0 otherwise. The prior
probability quantifies the complexity of an order constrained
hypothesis relative to the unconstrained hypothesis, where a
large prior probability indicates high complexity (Mulder, Hoi-
jtink, and Klugkist 2010). In Equation (10), its reciprocal acts as
a normalizing constant.

In this article, we consider the situation where prior infor-
mation about the absolute magnitude of the (co)variances is
absent, while prior information about the relative magnitude
of the variances is available in the form of order constraints.
Consequently, we specify a vague inverse Wishart prior under
the unconstrained hypothesis. As an uninformative choice for
the prior degrees of freedom we propose setting ν = p − 1 +
2ε with a small positive ε. This setting can be considered the
matrix equivalent of the prior degrees of freedom in the most
commonly used vague inverse gamma prior IG(ε, ε) for the
variance in a univariate linear regression model. To determine
an uninformative choice for the prior scale matrix, first note that
the unconstrained conditional posterior πu(�|Y , β) follows an
inverse Wishart distribution of the form

W−1
p

(
� + (Y − XB)′(Y − XB), ν + n

)
(12)

under the multivariate normal linear model, where Y =
(y1, . . . , yn)

′ and X = (x1, . . . , xn)′, and

W−1
p

(
� +

∑n

i=1
(yi − Xiβ)(yi − Xiβ)′, ν + n

)
(13)

under the linear mixed model. Consequently, we propose setting
the prior scale matrix to � = 2εIp. This choice can be consid-
ered objective for two reasons: First, under this setting all possi-
ble orderings of the variances

(
σ 2

1 < · · · < σ 2
p
)
, . . . ,

(
σ 2

p < · · ·
< σ 2

1
)

are (approximately) equally likely a priori (we will come
back to this in Section 4.2). As was argued by Mulder (2014a),
such a specification is desirable when testing order constrained
hypotheses and prior information is weak. Second, this prior
scale matrix has a negligible effect on the posterior scale matrix,
as can be seen from Equations (12) and (13). Thus, the posterior
scale matrix is completely determined by the information in the
data under both models, which implies objectivity.

Using the priors in Equations (7) and (10), it can be shown
that the Bayes factor of an order constrained hypothesis Ht
against the unconstrained hypothesis Hu is given by

Btu = P(� ∈ �t|Y , Hu)

P(� ∈ �t|Hu)
, (14)

where

P(� ∈ �t|Y , Hu) =
∫

�t
πu(�|Y) d� (15)

is the posterior probability that the order constraints hold under
Hu. A proof is given in Appendix A. The posterior probability
quantifies the fit of an order constrained hypothesis relative to
the unconstrained hypothesis, where a large posterior probabil-
ity indicates a good fit. From Equation (14), it can be seen that
the proposed Bayes factor automatically functions as an Occam’s
razor by taking the fit and the complexity of order constrained
hypotheses into account. The Bayes factor between two order
constrained hypotheses Ht and Ht′ is given by

Btt′ = Btu
Bt′u

. (16)

Note that the posterior probability of an order constrained
hypothesis Ht can be computed using the Bayes factors against
the unconstrained hypothesis according to

P(Ht|Y) = BtuP(Ht)∑T
t′=1 Bt′uP(Ht′)

, (17)

where P(Ht) is the prior probability of Ht . If prior information
about the hypotheses is weak, then it is customary to specify
equal prior probabilities P(H1) = · · · = P(HT) = 1/T. From
Equations (11) and (14)–(17), it can be seen that the Bayes fac-
tors and posterior probabilities of the hypotheses only depend
on the unconstrained prior and posterior of �. In Appendix B,
we describe a method for computing the Bayes factors.

4. Properties of the Bayes Factor for Testing Variances

4.1. Scale Invariance

Scale invariance implies that rescaling the data Y by multiplying
all elements by a constant w should not change the evidence in
favor of competing hypotheses as indicated by the Bayes factor
because the relative variability remains unchanged. Our Bayes
factor for testing variances is in fact scale invariant. For the
multivariate normal linear model, this can be shown as follows:
First, note that under this model the unconstrained marginal
posterior of � given the original data Y follows an W−1

p (2εIp +
S, ν + n − k) distribution, where S = (Y − XB̂)′(Y − XB̂)

is the residual sums of squares matrix with B̂ = (X′X)−1X′Y .
For the rescaled data wY , the residual sums of squares matrix is
w2S. The posterior scale matrix is then equal to 2εIp + w2S ≈
w2S. Since the prior scale matrix can be ignored, the posterior
probability that the order constraints on the variances hold can
be written as

P(� ∈ �t|wY , Hu) =
∫

�∈�t
W−1

p
(
�

∣∣w2S, ν + n − k
)

d�

=
∫

w2�∈�t
W−1

p (�|S, ν + n − k) d�

=
∫

�∈�t
W−1

p (�|S, ν + n − k) d�

= P(� ∈ �t|Y , Hu),
(18)

where in the first step we applied the transformation � =
w−2�. Furthermore, order constrained subspaces are consid-
ered such that � ∈ �t if w2� ∈ �t , which explains the second
step. As a result, our Bayes factor is invariant to the scale of
the data. The same argument can be used for the linear mixed
model.



THE AMERICAN STATISTICIAN 5

4.2. Bartlett’s Paradox

Bartlett’s paradox (Bartlett 1957; Lindley 1957; Jeffreys 1961)
is the situation where a Bayes factor for testing a precise null
hypothesis against an unconstrained alternative hypothesis
favors the null regardless of the information in the data if
the variance of the prior under the alternative hypothesis is
specified sufficiently large. Typically, Bartlett’s paradox is not
an issue in the case of testing order constrained hypotheses
(Klugkist and Hoijtink 2007; Mulder 2014a). To see this in our
setup, we need to investigate whether the prior probability that
the order constraints hold under Hu, that is, the denominator
of the Bayes factor expression in Equation (14), can be made
arbitrarily small by specifying ε in the unconstrained prior
W−1

p (2εIp, p − 1 + 2ε) small enough. When considering a
specific ordering of the variances, say, σ 2

1 < · · · < σ 2
p ,

thorough numerical checks (setting ε = 0.1, 0.01, 0.001, etc.)
revealed that the prior probability is virtually independent of
the exact choice of ε and is extremely close to 1/p!. Although
this finding satisfies our intuition (as there are p! possible
orderings of p variances), it cannot be theoretically proven
because the variances are not independent and the marginal
prior for the variances does not have a known distribution.
Also for other order constrained variance patterns the prior
probability is virtually independent of the exact choice of a
small ε. Furthermore, since the posterior scale matrix for �

depends on the sum of the prior scale 2εIp and the sums
of squares in the data, the posterior probability that the
order constraints hold is virtually independent of ε as well.
Thus, we can conclude that the Bayes factor is practically
independent of the exact choice of ε > 0 and Bartlett’s
paradox is not an issue for our order constrained tests on
variances.

4.3. Large Sample Consistency

Bayes factors are large sample consistent under very general
conditions, which means that the posterior probability of the
true hypothesis tends to 1 as the sample size tends to infinity.
For our Bayes factor, this important property can be explained
as follows: Suppose that the true values of the variances lie
in the admissible parameter space �t of hypothesis Ht . Then,
as the sample size increases, the unconstrained posterior of �

concentrates in �t , so that the probability P(� ∈ �t|Y , Hu)
tends to 1. This implies that if Ht′ with admissible parame-
ter space �t′ is a competing hypothesis that does not overlap
with Ht (in the sense that �t ∩ �t′ = ∅), then P(� ∈
�t′ |Y , Hu) tends to 0. From Equation (16), it can be seen that
the Bayes factor of Ht against Ht′ tends to infinity in this case
(note that the prior probabilities P(� ∈ �t|Hu) and P(� ∈
�t′ |Hu) are constants that do not depend on the data). As a
result, the posterior probability of Ht tends to 1, which implies
that the Bayes factor in Equation (16) is consistent. The same
argument applies in the case where there are multiple com-
peting hypotheses that do not overlap with Ht . To ensure that
the Bayes factor behaves consistently it is advisable to spec-
ify the hypotheses such that they do not overlap and cover
the entire unconstrained parameter space (in the sense that
�1 ∪ · · · ∪ �T = �u).

4.4. Hypothesis Testing in the Case of Missing Data

As shown by Hoijtink et al. (2019), missing observations that
are missing at random can be handled via multiple imputation
when computing Bayes factors. This imputation step can be
incorporated in the posterior sampler in a natural manner in
the Bayesian framework. Note that multiple imputation is the
preferred method over listwise deletion, which results in a loss
of information and possibly bias (Rubin 1987, 1996). Below, we
show how the Bayes factors for testing order constraints on vari-
ances of dependent outcomes are obtained in the case of missing
observations.

As was shown in Section 3.2, only the posterior probability
that the order constraints hold under the unconstrained
hypothesis needs to be computed to obtain the Bayes factors
for the order constrained test. Therefore, we do not need
separate missing data models under the different order
constrained hypotheses but only one missing data model
specified under the unconstrained hypothesis. Let us denote
the missing data by Z and the observed data by Y . In the
Bayesian framework, the missing data Z are naturally treated
as unknown parameters just like the model parameters.
Inferences are then based on the joint posterior distribution
πu(β , �, ζ , Z|Y) of the model parameters and the missing
data, where ζ are additional parameters used for the missing
data model. The marginal posterior distribution of � can be
obtained by integrating the joint posterior distribution over the
model parameters β , ζ and the missing data Z. The posterior
probability that the order constraints hold can then be computed
as

P(� ∈ �t|Y , Hu) =
∫

�t
πu(�|Y) d�

=
∫

�t

∫∫∫
πu(β , �, ζ , Z|Y) dβ dζ dZ d�

≈ 1
M

M∑
m=1

1�t

(
�(m)

)
,

(19)

where �(1), . . . , �(M) are posterior draws for the covariance
matrix. Thus, we can approximate the posterior probability
using a Gibbs sampling scheme in which we iteratively draw
samples from the full conditional distributions of β , �, ζ ,
and Z. This approach is also referred to as data augmentation
because the observed data are augmented with simulated
values from the posterior predictive distribution of the missing
data Z to obtain a complete dataset (e.g., Tanner and Wong
1987; Gelman et al. 2013, chap. 18). When computing the
posterior probability in Equation (19) this way, the uncertainty
caused by the missing data is integrated out as is usual in
a Gibbs sampler. Note that this is only allowed because the
missing data are missing at random, which assumes that
missingness is conditionally independent of the missing data
given the observed data. In Section 5.2, we will present
an analysis of an empirical dataset with missing values
where we make use of the missing data approach described
here.
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5. Empirical Applications

5.1. Heteroscedasticity in Cross-Sectional Data: Peabody
Individual Achievement Test

The Peabody Individual Achievement Test (PIAT; Dunn and
Markwardt 1970) is a survey for measuring an individual’s
scholastic attainment in the areas of general information,
reading, writing, and mathematics. As part of the 1979 National
Longitudinal Survey of Youth (Baker et al. 1993), a total of 997
children completed three PIAT subtests at age 10: Mathematics,
Reading Recognition, and Reading Comprehension. All subtests
consisted of 84 multiple choice questions and the final score on
each subtest was the number of correct answers. Our interest
was in whether mathematics scores were less or more variable
than reading scores. Consequently, we tested the following
competing hypotheses on the variances of the subtests:

H1 : � ∈ �1 = {
� : σ 2

M <
(
σ 2

R , σ 2
C
) ∧ � > 0

}
,

H2 : � ∈ �2 = {
� :

(
σ 2

R , σ 2
C
)

< σ 2
M ∧ � > 0

}
,

H3 : ¬ (H1 ∨ H2),
(20)

where σ 2
M , σ 2

R , and σ 2
C denote the variance of the scores on the

Mathematics, Reading Recognition, and Reading Comprehen-
sion subtests, respectively. Note that the comma between σ 2

R and
σ 2

C means that there was no order constraint on the variances
of the two reading subtests. We tested H1 and H2 against their
complement H3 to take into account that the data might support
neither H1 nor H2.

We fitted a multivariate normal model without covariates to
the data from the three PIAT subtests. There were no missing
values in the dataset. We specified the hyperparameters of the
unconstrained prior on the covariance matrix as � = 0.002 ·
I3 and ν = 2.002. Subsequently, we performed a sequential
analysis of the data, where we recomputed the Bayes factors and
posterior probabilities of the hypotheses for every additional
10 observations (i.e., we conducted the hypothesis test on the
first 10, 20, 30, . . . observations in the dataset). We did so to
illustrate how the evidence in favor of the hypotheses changes
as more data become available. In practice, such a sequential
approach allows researchers to update the evidence in favor
of the hypotheses during data collection. Depending on the
amount of evidence at a given point in time, it can be decided
whether more data are needed to draw a more decisive con-
clusion about which hypothesis is most likely to be true. Note
that Bayes factors are well-suited for such a sequential analysis
because they are not affected by Type I error inflation and hence
multiple testing is not a problem (e.g., Berger and Mortera
1999).

The results of our sequential analysis are shown in Fig-
ures 1(a) and (b). To enhance readability, Figure 1(a) shows
the logarithm of the Bayes factor, which is also referred to as
the weight of evidence (WOE): WOEtt′ = log(Btt′). The line
for WOE12 is discontinued because for sample sizes greater
than 600 the posterior probability that the order constraints of
H2 hold was numerically approximated as 0 (see Appendix B),
which resulted in an infinite weight of evidence. Figure 1(b)
shows the posterior probabilities of the hypotheses, which were
computed assuming equal prior probabilities. From the weights
of evidence and the posterior probabilities, it can be seen that H2

received strongest support from the data for sample sizes up to
and including 70. After that, H1 received strongest support, and
there was a trend for the evidence in favor of H1 to increase as
more data arrived. In Figure 1(b), the lines for H1 and H3 behave
inversely for sample sizes greater than 200 because H2 receives
no support here so that an increase for one of H1 and H3 is
necessarily accompanied by a decrease for the other. The results
show that for the final sample size of 997, we can practically rule
out H2 and H3 and conclude that mathematics scores were less
variable than reading scores, as is stated by H1.

5.2. Heteroscedasticity in Repeated Measures Data:
Reading Recognition

An important topic in repeated measures analysis is het-
eroscedasticity, which focuses on the variability of observations
over time. It is often of interest whether a destabilizing effect is
present, that is, whether the variability increases over time. This
will also be the focus here.

A popular model for analyzing repeated measures data that
allows for heteroscedastic variances is the mixed effects model
with a random intercept and a random slope for time (e.g.,
Hedeker and Gibbons 2006, chap. 4). The advantage of such
a mixed model is that it is capable of separately modeling
the variability at the within-subjects level and the between-
subjects level. On the other hand, the random slope model has
some drawbacks for our purpose of testing order constrained
hypotheses on the variances of dependent outcomes: The model
implies a specific pattern of the variances and covariances in the
marginal model, namely, � = σ 2Ip + Xi�X′

i. In the case of the
popular random intercept and random slope model for balanced
data with four repeated measurements at time t = (t1, . . . , t4)

′,
the covariance matrix equals

� = σ 2I4 + [
14 t

]
�

[
14 t

]′
= σ 2I4 + 141′

4ψ
2
1 + (14t′ + t1′

4)ψ12 + tt′ψ2
2 ,

(21)

where 14 = (1, 1, 1, 1)′. Since t1 < · · · < t4, the (co)variances
follow a very specific pattern which highly depends on whether
the time points are centered around 0 (as is typically the case).
Also observe that the variability of the observations over time
highly depends on whether ψ2

2 is (approximately) zero or not.
Testing such boundary values can be quite complex however
(Mulder and Fox 2019). For this reason, we consider the
unstructured covariance matrix as a flexible tool for testing
competing patterns of heteroscedasticity in repeated measures
data, as we show below. Note that this model assumes balanced
data with equal measurement occasions across subjects. Further
note that by testing variance patterns under an unstructured
covariance matrix, the proposed method can also be used
when building linear mixed models to check if specific variance
patterns implied by a linear mixed model are actually supported
by the data. We will address another interesting choice for the
covariance structure in the conclusion of this article in Section 6.

The repeated measures application we present in this sec-
tion is based on an empirical dataset discussed in Vermunt
and Magidson (2005). The outcome of interest in this dataset
was reading recognition in children as measured by the Read-
ing Recognition subtest of the PIAT. The Reading Recognition
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Figure 1. Results of sequential analyses of two empirical datasets. (a, b) The weight of evidence (where WOEtt′ = log(Btt′ )) and the posterior probabilities of the
hypotheses (assuming equal prior probabilities), respectively, for the Peabody Individual Achievement Test data discussed in Section 5.1. The weights of evidence and
posterior probabilities were computed on the first 10, 20, 30, . . . observations in the dataset. (c, d) The corresponding results for the reading recognition data discussed
in Section 5.2. See the text for a description of the hypotheses that were tested in each of the two sequential analyses. In (a) and (c), the lines for WOE12 and WOE21 are
interrupted due to numerical reasons (see text for details).

subtest measures a child’s word recognition and pronunciation
ability. The subtest was administered four times at two-year
intervals to a sample of 405 children. We tested the following
hypotheses on the variances of the repeated reading recognition
measures and the ratios of adjacent variances:

H1 : increasing variances and increasing ratios of
adjacent variances over time,

H2 : increasing variances and decreasing ratios of
adjacent variances over time,
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H3 : increasing variances and neither increasing nor
decreasing ratios over time,

H4 : not H1, H2, or H3. (22)

These hypotheses can be expressed formally using order con-
straints on the variances and ratios of adjacent variances as
follows:

H1 : � ∈ �1 = {
� : σ 2

1 < σ 2
2 < σ 2

3 < σ 2
4 ∧ σ 2

2 /σ 2
1 < σ 2

3 /σ 2
2

< σ 2
4 /σ 2

3 ∧ � > 0
}

,
H2 : � ∈ �2 = {

� : σ 2
1 < σ 2

2 < σ 2
3 < σ 2

4 ∧ σ 2
4 /σ 2

3 < σ 2
3 /σ 2

2

< σ 2
2 /σ 2

1 ∧ � > 0
}

,
H3 : � ∈ �3 = {

� : σ 2
1 < σ 2

2 < σ 2
3 < σ 2

4 ∧(¬ (
σ 2

2 /σ 2
1 < σ 2

3 /σ 2
2 < σ 2

4 /σ 2
3 ∨ σ 2

4 /σ 2
3

< σ 2
3 /σ 2

2 < σ 2
2 /σ 2

1
)) ∧ � > 0

}
,

H4 : ¬ (H1 ∨ H2 ∨ H3),
(23)

where σ 2
j is the variance of the jth measurement. Thus, H1,

H2, and H3 all state that the variability of reading recognition
performances increased over time. Such an increase in vari-
ability is frequently observed in practice (e.g., Aunola et al.
2004; Böing-Messing et al. 2017; Hedeker and Gibbons 2006).
Moreover, H1 (H2) states that the effect size σ 2

j /σ 2
j−1 increased

(decreased) over time, whereas according to H3 the effect size
neither steadily increased nor decreased over time. Similar as
in the previous section, we tested H1, H2, and H3 against their
complement H4 to safeguard against the data supporting neither
of the three hypotheses.

We fitted a multivariate normal model with a quadratic effect
of (centered) time and an unstructured covariance matrix to the
repeated reading recognition data: yi ∼ N4

( [
14 t t2]β , �

)
,

where t = (−1.5, −0.5, 0.5, 1.5)′ and t2 = (2.25, 0.25, 0.25,
2.25)′. The dataset contained missing values on the outcome:
In total, 18.21% of the repeated reading recognition values were
missing. Hence, we used the imputation approach described in
Section 4.4 to compute the Bayes factors. Since the missingness
only occurred on the outcome, there was no need to specify an
extended missing data model. Instead, we used the observation
model above to impute the missing values in the Gibbs sampler.
Again, we specified the unconstrained prior on the covari-
ance matrix to be uninformative by setting the hyperparameters
equal to � = 0.002 · I4 and ν = 3.002. As in the previous
section, we performed a sequential analysis of the data by testing
the hypotheses on the first 10, 20, 30, . . . observations in the
dataset.

Figures 1(c) and (d) present the weights of evidence and
the posterior probabilities of the hypotheses resulting from the
sequential analysis, respectively. As before, the posterior proba-
bilities were computed assuming equal prior probabilities of the
hypotheses. In Figure 1(c), the line for WOE21 is interrupted
because for sample sizes of 60 and 180 the posterior probability
that the order constraints of H1 hold was approximated as 0.
The results show that the evidence fluctuated for sample sizes
up to 60, with H2, H3, and H4 receiving strongest support from
the data at some point. For sample sizes greater than 60, H2
received strongest support except when the sample size was

220, for which H3 was most supported. In fact, it can be seen
that H3 remained a viable competitor throughout the sequential
analysis. The results indicate that the complement H4 can be
practically ruled out, whereas H1 received weak support at
the end of the sequential analysis. Based on these results, we
may conclude that there was strong evidence that the variance
increased over time. Moreover, while there was considerable
evidence that the effect size (as measured by the ratio of adjacent
variances) decreased over time (as stated by H2), it cannot be
ruled out that the effect size developed in a different way over
time (as stated by H3 and H1).

6. Conclusion

In this article, we developed a Bayes factor for testing order
constrained hypotheses on the variances of dependent out-
comes. We applied the encompassing prior approach, in which
priors under order constrained hypotheses are formulated as
truncations of the prior under the unconstrained hypothesis.
This approach to prior specification has two main advantages:
First, the problem of specifying a prior under every order con-
strained hypothesis to be tested simplifies to specifying one
unconstrained prior. This is a useful property in practice, since
in our experience researchers find it difficult to formulate sub-
jective priors on (co)variances, in particular under order con-
strained hypotheses. We used a conjugate inverse Wishart dis-
tribution with noninformative hyperparameters as the uncon-
strained prior on the covariance matrix. With this specification,
the Bayes factor is fully automatic in the sense that there is
no need to specify a subjective prior under any hypothesis.
The second advantage of the encompassing prior approach is
that Bayes factors between order constrained hypotheses can be
computed straightforwardly by sampling from the prior and the
posterior distribution of the covariance matrix and computing
the proportion of draws that satisfy the order constraints. The
Bayes factor is consistent in that it is guaranteed to select the
true hypothesis as the sample size increases.

A natural extension of the testing problem we considered in
this article is to enable equality constraints between the vari-
ances (e.g., H1 : � ∈ �1 = {

� : σ 2
1 = σ 2

2 < σ 2
3 ∧ � > 0

}
).

This testing problem entails two main challenges: First, one
needs to ensure positive definiteness of the covariance matrix
under equality and inequality constrained hypotheses. A useful
method to achieve this could be the separation strategy of
Barnard, McCulloch, and Meng (2000). In this approach, the
covariance matrix is decomposed as � = DCD, where D is
a diagonal matrix of standard deviations and C is a positive
definite correlation matrix. Equality and inequality constrained
hypotheses could then be formulated on the standard deviations
in D. Second, Bartlett’s paradox will become a problem if priors
under composite hypotheses are specified too vaguely. A pos-
sible solution to this problem is to let priors under composite
hypotheses contain the information of a minimal experiment
(e.g., Berger and Pericchi 1996; Mulder, Hoijtink, and de Leeuw
2012; Böing-Messing and Mulder 2018). This can be achieved by
updating an uninformative improper prior with the information
contained in the smallest possible subset of the sample data that
results in a proper posterior distribution. The remaining part



THE AMERICAN STATISTICIAN 9

of the sample data is then used to compute the Bayes factors
between the (in)equality constrained hypotheses under inves-
tigation. Based on our findings in this article, we expect that the
Bayes factor is well-suited for the intricate problem of testing
multiple hypotheses with equality and inequality constraints on
the variances.

Another interesting direction for future research would be to
test constraints on variances under different covariance struc-
tures. To get a better understanding of where the variability in
the data comes from, the implied covariance matrix in the mixed
effects model, � = σ 2Ip + Xi�X′

i, can be made less restrictive
by allowing the within-subjects variances to vary over time, that
is, � = diag

(
σ 2

1 , . . . , σ 2
p
) + Xi�X′

i. This will provide insight
into whether the variability changes as a result of within-subjects
variability, as a result of between-subjects variability, or as a
result of both (see also Mulder and Fox 2019 for a Bayes factor
test on between-subjects variances). It is then important that the
structured part of the covariance matrix, Xi�X′

i, fits the data
well because a misfit would distort the estimates of the diagonal
elements σ 2

1 , . . . , σ 2
p . The proposed Bayes factors can also be

used when building other types of mixed effects models, struc-
tural equation models, or time series models, by testing whether
specific order constrained patterns of the variance components
are supported by the data.

Appendix A: Bayes Factor of Ht Against Hu

First, note that the likelihood under an order constrained hypothesis Ht
is a truncation of the unconstrained likelihood, that is, ft(Y|X, β , �) =
fu(Y|X, β , �) 1�t (�), where 1�t (�) is an indicator function that
equals 1 if � ∈ �t and 0 otherwise. The Bayes factor of Ht against
the unconstrained hypothesis Hu is given by

Btu = mt(Y)

mu(Y)
=

∫
�t

∫
ft(Y|X, β , �)πt(β , �) dβ d�∫

�u

∫
fu(Y|X, β , �)πu(β , �) dβ d�

=
∫
�t

∫
fu(Y|X, β , �)P(� ∈ �t|Hu)−1πu(β , �)1�t (�) dβ d�∫

�u

∫
fu(Y|X, β , �)πu(β , �) dβ d�

= 1
P(� ∈ �t|Hu)

∫
�t

∫ fu(Y|X, β , �)πu(β , �)∫
�u

∫
fu(Y|X, β , �)πu(β , �) dβ d�

× dβ d�

= 1
P(� ∈ �t|Hu)

∫
�t

∫
πu(β , �|Y) dβ d�

= 1
P(� ∈ �t|Hu)

∫
�t

πu(�|Y) d� = P(� ∈ �t|Y , Hu)

P(� ∈ �t|Hu)
,

(A.1)

where in the third line we may omit the indicator function because the
integration region is already restricted to the constrained parameter
space �t .

Appendix B: Computation of the Bayes Factor

To compute the Bayes factors and posterior probabilities of the
hypotheses, we need to evaluate the integrals in Equations (11)
and (15). This cannot be done analytically, but the integrals can
be approximated numerically by drawing a large sample from the
respective unconstrained prior and posterior distribution of � and then
computing the proportion of draws that fall in the admissible parameter
space �t : To compute the prior probability in Equation (11) under

both models, we first sample �(m) ∼ W−1
p (�, ν), for m = 1, . . . , M,

where M is the number of draws and �(m) is the mth draw. We can
then approximate the prior probability that the order constraints hold
by computing the proportion of draws from the prior that satisfy
the constraints, that is, P(� ∈ �t|Y , Hu) ≈ 1

M
∑M

m=1 1�t
(
�(m)

)
.

To compute the posterior probability in Equation (15) under the
multivariate normal linear model, first note that under this model the
unconstrained marginal posterior of � follows an W−1

p (�+S, ν+n−k)
distribution, where S = (Y − XB̂)′(Y − XB̂) is the residual sums
of squares matrix with Y = (y1, . . . , yn)′, X = (x1, . . . , xn)′, and
B̂ = (X′X)−1X′Y . Hence, we can use the above sampling approach to
approximate the posterior probability that the order constraints hold.
To obtain draws from the unconstrained posterior of � under the
linear mixed model, a Gibbs sampler can be used. Here, one iteratively
samples from the conditional posterior of � given β in Equation (13)
and the conditional posterior of β given �, which has a multivariate
normal distribution Nk

(
(X′�−1

n X)−1X′�−1
n y, (X′�−1

n X)−1), where
y = (y′

1, . . . , y′
n)′, X = (

X′
1, . . . , X′

n
)′, �n = In ⊗ �, and ⊗ denotes

the Kronecker product.
A Monte Carlo error of the Bayes factor estimates can be quantified

using the method of Mulder, Hoijtink, and de Leeuw (2012). Let us refer
to the posterior draws that satisfy the order constraints as “successes”
and the draws that do not satisfy the order constraints as “failures”
in a binomial experiment where the unknown posterior probability is
the success probability and M is the number of trials. When setting
a uniform prior on the unknown posterior probability, its posterior
follows a Beta(v + 1, M − v + 1) distribution, where v is the number of
draws satisfying the constraints. Subsequently, posterior draws can be
generated from this distribution to compute realizations of the Bayes
factor. The standard deviation of these realizations is then the Monte
Carlo error of the estimated Bayes factor.
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