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On central max-point-tolerance graphs
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ABSTRACT
Max-point-tolerance graphs (MPTG) were studied by Catanzaro et al. in 2017 and the same class
of graphs were introduced in the name of p-BOX(1) graphs by Soto and Caro in 2015. This class
has a wide application in genome studies as well as in telecommunication networks. In our article,
we consider central max-point-tolerance graphs (central MPTG) by taking the points of MPTG as
center points of their corresponding intervals. In the course of study on this class of graphs, we
show that the class of central MPTG is same as the class of unit max-tolerance graphs. We also
prove that the class of unit central MPTG is same as that of proper central MPTG and both of
them are equivalent to the class of proper interval graphs.
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1. Introduction

The class of interval graphs was initially posed by Haj€os in
1957 [8] as a study of intersection graphs of intervals on
real line. In 1959, the molecular biological scientist Benzer
[2] used the model of interval graphs to obtain a physical
map from information on pairwise overlaps of the fragments
of DNA. Interval graphs were well studied by many people
in Computer Science and Discrete Mathematics for their
wide application. Many combinatorial problems have been
solved for interval graphs in linear time.

This class finds application in many theoretical and prac-
tical situations. For this the graph class was generalized to
several variations. In one direction it went in developing
concepts of probe interval graphs [4], circular-arc graphs
[1], and interval digraphs [12]. On the other hand, in 1982,
Golumbic and Monma introduced the concept of min-toler-
ance graphs (commonly known as tolerance graphs) [6]. We
denote the length of an interval I on the real line by jIj: A
simple undirected graph G ¼ ðV, EÞ is a min-tolerance graph
if each vertex u 2 V corresponds to a real interval Iu and a
positive real number tu, called tolerance, such that uv is an
edge of G if and only if jIu \ Ivj � min tu, tvf g: Golumbic
and Trenk [7] introduced max-tolerance graphs where each
vertex u 2 V corresponds to a real interval Iu and a positive
real number tu (known as tolerance) such that uv is an edge
of G if and only if jIu \ IvjPmax tu, tvf g: For max-tolerance
graphs, we may assume tu � jIuj for each u 2 V otherwise u
becomes isolated. A max-tolerance graph is a unit-max-toler-
ance graph if jIuj ¼ jIvj for all u, v 2 V: Some combinatorial
problems like finding maximal cliques were obtained in
polynomial time whereas the recognition problem was
proved to be NP-hard [9] for max-tolerance graphs in 2006.

Also a geometrical connection of max-tolerance graphs to
semi-squares was obtained by Kaufmann et al. [9]. For fur-
ther details of tolerance graphs one can refer the work by
Golumbic and Trenk [7].

In 2015, Soto and Caro [13] introduced a new graph class,
namely p-BOX graphs where each vertex corresponds to a box
and a point within it in the d-dimensional Euclidean space. Any
two vertices are adjacent if and only if the intersection of their
corresponding boxes contains both the corresponding points.
When the dimension is one the graph class is denoted by p-
BOX(1). In 2017, this dimension one graphs were studied inde-
pendently by Catanzaro et al. [3], but with a different name,
max-point tolerance graphs (MPTG) where each vertex u 2 V
corresponds to a pair of an interval and a point (Iu, pu), where
Iu is an interval on the real line and pu 2 Iu, such that uv is an
edge of G if and only if pu, pvf g � Iu \ Iv: The graphs MPTG
have many practical applications in human genome studies and
modeling of telecommunication networks [3]. A graph G ¼
ðV, EÞ is called central-max-point-tolerance graph (central
MPTG) if pu is the center point of Iu for each u 2 V: This graph
class actually matches with the graph defined as c-p-BOX(1)
graph by Soto and Caro [13]. It is known that c-p-BOX(1)
graphs are max-tolerance graphs. We use the terms MPTG and
central MPTG for p-BOX(1) and c-p-BOX(1) graphs through-
out this article.

In our article we prove that central MPTG are same as
unit max-tolerance graphs. Incidentally this settles a ques-
tion raised in the book by Golumbic and Trenk [7] that
whether interval graphs are unit max-tolerance graphs or
not. Moreover we show that a unit central MPTG is same as
a proper central MPTG and also is same as a proper interval
graph. In Conclusion section, we show the relations between
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the subclasses of max-tolerance graphs related to central
MPTG and list major open problems in this area.

2. Preliminaries

A matrix whose entries are only zeros and ones is a binary
matrix. A binary matrix is said to satisfy consecutive 1’s
property for rows if its columns can be permuted in such a
way that 1’s in each row occur consecutively [5]. For a sim-
ple undirected graph G ¼ ðV, EÞ, a matrix is known as the
augmented adjacency matrix of G if we replace all principal
diagonal elements of the adjacency matrix of G by 1 [5].
Among many characterizations of proper interval graphs, we
list the following which will serve our purpose. Let G ¼
ðV, EÞ be a simple undirected graph and u 2 V: Then
NðuÞ ¼ x 2 Vjux 2 Ef g is the set of (open) neighbors of u
and N½u� ¼ NðuÞ [ fug is the set of (closed) neighbors of u.
The reduced graph ~G is obtained from G by merging verti-
ces having same closed neighborhood. G(n, r) is a graph
with n vertices x1, x2, :::, xn such that xi is adjacent to xj if
and only if 0 < ji� jj � r, where r is a positive integer.

Theorem 2.1. [10, 11] Let G ¼ (V,E) be an interval graph,
then the following are equivalent:

1. G is a proper interval graph.
2. G is a unit interval graph.
3. There exist a linear ordering< on V such that for every

choice of vertices u, v, w
u< v < w and uw 2 E implies uv, vw 2 E:

4. ~G is an induced subgraph of G(n, r) for some positive
integers n, r with n> r.

The following characterization of MPTG is known:

Theorem 2.2. [3] Let G ¼ ðV, EÞ be a simple undirected
graph. Then G is an MPTG if and only if there is an ordering
� of vertices of G such that the following condition holds:

For any x � u � v � y, xv, uy 2 E ) uv 2 E: (2.1)

Definition 2.3. Let A ¼ ðaijÞ and B ¼ ðbijÞ be two n � n
binary matrices. We define A�B ¼ ðcijÞ where cij ¼ aij�bij
with the rules: 0�0 ¼ 1�0 ¼ 0�1 ¼ 0 and 1�1 ¼ 1:

The above characterization leads to the following observations.

Observation 2.4. Let G be a simple undirected graph. Then
following are equivalent:

1. G is an MPTG.
2. There is an ordering of vertices of G such that for any

u< v, u, v 2 V ,

uv 62 E ) uw 62 E for all w > v or, wv 62 E for all w < u:

(2.2)

3. There exists an ordering of vertices such that every 0
above the principal diagonal of the augmented adjacency
matrix A(G) has either all entries right to it are 0 or, all
entries above it are 0.

4. There exists a binary matrix M with consecutive 1’s
property for rows such that the augmented adjacency
matrix AðGÞ ¼ M�MT :

Proof. The condition 2 is equivalent to Equation (2.1) in the
other way. Condition 3 is a matrix version of condition 2.
Condition 4 follows from definition of MPTG. w

Let G ¼ ðV,EÞ be a simple undirected graph and ; 6¼
X � V: Then G½X� denotes the subgraph of G induced by X.
In Proposition 6.7 of reference [3] it is proved that if G is
an MPTG with non-adjacent vertices u and v, then
G½NðuÞ \ NðvÞ� is an interval graph. Also in Proposition 7.1
of reference [9] it is shown that Cn , n> 9 is not a max-
tolerance graph. We show that these graphs are not MPTG
as well.

Observation 2.5. The complement of a cycle of length greater
than 9 is not an MPTG.

Proof. Suppose on contrary Cn , n> 9 is an MPTG. Now as
Cn , n> 9 contain the graph G1 with vertices f1, 4, 5, n�
3, n� 2, ng in Figure 1 (left) as induced subgraph where
common neighbors of n – 2 and n – 3 form a chordless 4-
cycle and so is not an interval graph. Thus, G1 is not an
MPTG. Since any subgraph of an MPTG must be an
MPTG, hence the result follows. w

In the following example we show that MPTG and max-
tolerance graphs are not same.

Example 2.6. The graph G2 in Figure 1 (right) with vertex
set V ¼ fvij1 � i � 6g is not an MPTG as aforementioned.
But it is a max-tolerance graph with the following interval
and tolerance representation.

I1 ¼ 10, 46½ �, t1 ¼ 21, I2 ¼ 20, 50½ �, t2 ¼ 18, I3 ¼ 18, 49:5½ �,
t3 ¼ 28:5, I4 ¼ 15, 60½ �, t4 ¼ 31, I5 ¼ 21, 52½ �, t5 ¼ 10,

I6 ¼ 12, 50½ �, t6 ¼ 30:

Theorem 2.7. [13] The graph class central MPTG properly
contains the class of interval graphs.

3. Central max-point-tolerance graphs

We begin with a trivial but important observation which
will be used throughout the rest of the article.

Figure 1. The graphs G1 in Observation 2.5 and G2 in Example 2.6.

2 S. PAUL



Observation 3.1. Let Iuju 2 Vf g be a collection of intervals,
where Iu ¼ ½Iu, ru�, hu ¼ jIuj ¼ ru � Iu and cu ¼ Iuþru

2 : Then
cu,cvf g� Iu\ Iv()jcv�cuj61

2min hu,hvf g() Iv6cu6cv6ru
(for cu� cv).

Proof. We have cu2Iv¼½lv,rv�¼½cv�hv
2 ,cvþhv

2 �()cv�hv
2 �cu�

cvþhv
2 ()�hv

2 �cu�cv�hv
2 ()jcu�cvj�hv

2 : Thus fcu,cvg�
Iu\Iv()jcu�cvj�1

2minfhu,hvg: Also it is clear that
cu2Iv¼½lv,rv�() lv�cu�rv: w

In the aforementioned section, we observed that the graph
classes of max-point-tolerance graphs and max tolerance graphs
are not same. Now it is interesting to see that the classes of cen-
tral MPTG and unit max-tolerance graphs are same.

Theorem 3.2. Let G be a simple undirected graph. Then G is a
central MPTG if and only if G is a unit max-tolerance graph.

Proof. Let G ¼ ðV, EÞ be a central MPTG with a central
MPTG representation ðIu, cuÞ where Iu ¼ ½lu, ru�, cu be the
center point of Iu for each vertex u 2 V: Let hu ¼ ru – lu for
all u 2 V: Choose h0 > max huju 2 Vf g: Define tu ¼
h0�hu

2 , yu ¼ cu þ h0
2 and Tu ¼ ½cu, yu�: Note that tu > 0 and

jTuj ¼ yu � cu ¼ h0
2 which is a constant for all u 2 V:

Suppose uv 2 E and cv � cu: Then cu � cv � 1
2min

fhu, hvg � h0
2 : So cu � cv þ h0

2 ¼ yv: This implies cv � cu �
yv: So Tu \ Tv ¼ ½cu, yv� 6¼ ; and jTu \ Tvj ¼ yv � cu ¼
cv þ h0

2 � cu ¼ h0
2 � ðcu � cvÞ � h0�hu

2 , h0�hv
2 : So yv � cu � tu,

tv, i.e.,

jTu \ Tvj � maxftu, tvg: (3.1)

On the other hand, Equation (3.1) implies Tu \ Tv 6¼ ; and
cv � cu � yv � yu: So jTu \ Tvj ¼ yv � cu: Now yv � cu �
maxftu, tvg implies h0

2 � ðcu � cvÞ � maxfh0�hu
2 , h0�hv

2 g: Thus
cu � cv � 1

2minfhu, hvg, i.e., uv 2 E: Therefore, G is a unit
max-tolerance graph with interval representation fTu ¼
½cu, yu�ju 2 Vg and tolerances ftuju 2 Vg as defined earlier.

Conversely, let G ¼ ðV ,EÞ be a unit max-tolerance graph
with interval representation Tu ¼ ½lu, ru�ju 2 V

� �
and toler-

ances tuju 2 Vf g: Let h ¼ jTuj for all u 2 V: Define Iu ¼
½lu � ðh� tuÞ, lu þ ðh� tuÞ�: Then cu, the center of Iu ¼ lu
and hu ¼ jIuj ¼ 2ðh� tuÞ < 2h: Suppose uv 2 E: Then jTu \
Tvj � maxftu, tvg: Now for lu � lv, jTu \ Tvj ¼ ru � lv: Then
ru � lv � maxftu, tvg, i.e., hþ lu � lv � maxftu, tvg: This
implies lv � lu � minfh� tu, h� tvg, i.e., cv � cu �
1
2minfhu, hvg: Finally, the condition that 0 < cv � cu �
1
2minfhu, hvg ) lv � lu < h and lu � lv < lu þ h ¼ ru: So
Tu \ Tv 6¼ ; and jTu \ Tvj ¼ ru � lv: Then lv � lu ¼
cv � cu � 1

2minfhu, hvg implies jTu \ Tvj � maxftu, tvg, i.e.,
uv 2 E: Thus ðIu, cuÞju 2 V

� �
is a central MPTG representa-

tion of G. w

Remark 3.3. In reference [7, p. 215], Golumbic wrote that
“Every interval graph is a proper max-tolerance graph. It is
not yet known whether this can be strengthened to unit max-
tolerance.” The aforementioned theorem shows central MPTG
and unit max-tolerance graphs denote the same graph class.

Hence from Theorem 2.7 one can easily conclude that every
interval graph is a unit max-tolerance graph. Thus, we settle
the above query posed in the book of Golumbic.

In the sequel, we show that the class of max-tolerance
graphs properly contains the class of central MPTG. We
begin with the following definition which unfolds more
insight in the structure of a central MPTG.

Definition 3.4. (C-order) Let G ¼ ðV, EÞ be a central
MPTG with (distinct) center points cuju 2 Vf g of the inter-
vals Iuju 2 Vf g in its central MPTG representation
ðIu, cuÞju 2 V

� �
: The C-order of the set V is the total

order induced by the center points. For convenience abusing
notation, henceforth we write u< v if and only if cu < cv.

In the following we present a necessary condition for
central MPTG.

Theorem 3.5. Let G ¼ ðV ,EÞ be a central MPTG. Then there
is an ordering � 	 of vertices of G such that the following
condition holds:

For any x�	u� 	v�	y, xv, uy 2 E ) uv 2 E and

ðxu 2 E or vy 2 E or xu, vy 2 EÞ:
(3.2)

Proof. Let G ¼ ðV, EÞ be a central MPTG with a central
MPTG representation ðIu, cuÞ for each u 2 V: We arrange
vertices according to the increasing order of center points
(i.e., in C-order) of representing intervals. Suppose in this
ordering we have x < u < v < y and xv, uy 2 E: Then
cv, cx 2 Iv \ Ix and cu, cy 2 Iu \ Iy: Also we have cx < cu <
cv < cy: Now cx, cv 2 Iv ) cu 2 Iv and cu, cy 2 Iu ) cv 2 Iu:
Therefore uv 2 E: Again cx, cv 2 Ix ) cu 2 Ix and cu, cy 2
Iy ) cv 2 Iy: Thus if xu, vy 62 E, then cx 62 Iu and cy 62 Iv:
But then cu � cx > cy � cu as cx 62 Iu but cy 2 Iu, and cy �
cv > cv � cx as cy 62 Iv but cx 2 Iv: Combining these inequal-

ities we have cv <
cxþcy
2 < cu which is a contradiction.

Therefore xu 2 E or, vy 2 E or, xu, vy 2 E: w

In reference [13], it is shown that every cycle Cn of length
n � 3 is a central MPTG.

Definition 3.6. A cycle Cn is said to be circularly consecutive
C-ordered if starting from a fixed vertex (say u) one can
order all its vertices in a circularly consecutive way in clock-
wise (or anticlockwise) direction until u is reached in a
C-order.

In particular, for n¼ 4, one can obtain a central MPTG
representation of C4 from the work by Soto and Caro [13]
where vertices are circularly consecutive C-ordered. We state
a stronger version in the following corollary.

Corollary 3.7. Any induced C4 in central MPTG must be cir-
cularly consecutive C-ordered.

Proof. All other possible C-orderings of vertices will violate
Equation (3.2). Hence the proof follows. w
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Similarly one can obtain the following:

Corollary 3.8. Any induced P4 in central MPTG must have
vertex consecutive ending edges i.e., vertices corresponding to
ending edges of P4 occur consecutively in a C-order (up to
permutations between them) at least in one end.

Theorem 3.9. C6 is a max-tolerance graph but it is not a
central MPTG.

Proof. Let fvij1 � i � 6g be the vertices occurred in circu-
larly consecutive way in clockwise (or anticlockwise) order
in C6. We assign the following intervals and tolerances for
all the vertices so that they satisfy max-tolerance representa-
tion in C6 : Iv1 ¼ ½0, 20�, tv1 ¼ 10, Iv2 ¼ ½12, 24�, tv2 ¼ 6, Iv3 ¼
½0, 22�, tv3 ¼ 11, Iv4 ¼ ½9:5, 19:5�, tv4 ¼ 5, Iv5 ¼ ½7:5, 30:5�, tv5 ¼
11:5, Iv6 ¼ ½10:5, 21:5�, tv6 ¼ 5:5:

Now suppose C6 ¼ ðV, EÞ is a central MPTG with central
MPTG representation ðIv, cvÞ where Iv ¼ ½av, bv�, cv be the
center point of Iv for each v 2 V: Let fvij1 � i � 6g be the
vertices occurred in circularly consecutive way in clockwise
(or anticlockwise) order in C6. It is easy to check that the
subgraph induced by deleting the vertices fv2, v5g from C6

is a C4. Now from Corollary 3.7 we can conclude that the
vertices in C4 ¼ fv1, v4, v6, v3g are circularly consecutive C-
ordered. Without loss of generality we can take c1 < c4 <
c6 < c3: As v1v5, v3v5 2 E, a5 � c1 and c3 � b5: Thus we get
½c1, c3� � ½a5, b5�: Hence c4 2 ½c1, c3� imply c4 2 I5: Below we
will show c5 2 I4 (see Figure 2) which lead us to contradic-
tion as v4, v5 are nonadjacent in C6 :

As v3v6 2 E, c3 � b6: Again v1v3 2 E imply ½c1, c3� � I3 as
c1 < c3. Moreover c4 2 ½c1, c3� � I3: Hence c3 62 I4 as v3v4 62
E, which imply b4 < c3 as c4 < c3. Combining we get

b4 < c3 � b6 (3.3)

Since v1v5, v3v5 2 E, we get ½c1, c3� � I5 as c1 < c3. Now
as c6 2 ½c1, c3�, c6 2 I5: Hence c5 62 I6 as v5v6 62 E: Hence

c5 < a6 or c5 > b6. Again c5 � b4 (as v4v5 2 EÞ and hence c5
cannot be greater than b6 as b4 < b6 from Equation (3.3).
Thus we get

c5 < a6 (3.4)

Note that v1v3 2 E imply ½c1, c3� � I1 as c1 < c3. Again c6 2
½c1, c3� � I1: But as v1v6 62 E, c1 < a6 as c1 < c6.
Again v1v4 2 E imply a4 � c1: Hence combining we get
a4 � c1 < a6: Again v4v6 2 E imply a6 � c4 and c6 � b4:
Hence a6 � c4 < c6 � b4: Thus combining these inequalities
and using Equation (3.3) one can conclude a4 � c1 < a6 �
c4 < c6 � b4 < c3 � b6: Thus we get

a4 � c1 < a6 < b4 < c3 � b6 (3.5)

As v2v4, v2v6 2 E imply c2 2 I4 \ I6 ¼ ½a6, b4� � ½c1, c3� �
I1, I3 (from Equation (3.5)) which imply c2 2 I1, I3: Now
v1v2 62 E imply a2 > c1 as c1 < c2 as aforementioned. Again
v2v3 62 E imply b2 < c3 as c2 < c3 as aforementioned. Thus
we get c1 < a2 � c2 � b2 < c3, i.e.,

a2, b2½ � � c1, c3½ �: (3.6)

We now show c5 2 I4: As v2v5 2 E, c5 2 ½a2, b2� � ½c1, c3� �
½a4, b6� from Equations (3.5) and (3.6). Now using Equation
(3.4) one can conclude that c5 must belong to I4.

From earlier observations, we can conclude now that no
central MPTG representation of C6 can be found with
respect to the earlier C-ordering. For other possible C-order-
ings following similar type argument one can reach to
contradiction. w

Now we present a sufficient condition for an MPTG to
be a central MPTG.

Theorem 3.10. Let G ¼ ðV, EÞ be an MPTG with n vertices.
Let the ordering v1, v2, :::, vnf g of vertices of G that satisfies
Equation (2.1) and each vi corresponds to a natural number
xi such that x1 < x2 < 
 
 
 < xn and the following conditions
hold for all i ¼ 1, 2, :::, n:

xi2þ1 � xi > xi � xi1 when i2 < n (3.7)

xi � xi1�1 > xi2 � xi when i1 > 1 (3.8)

where i1 and i2 be the least and the highest indices such that
i1 ¼ i or, vivi1 2 E and i2 ¼ i or, vivi2 2 E: Then G is a cen-
tral MPTG.

Proof. Suppose the conditions hold. Define ri ¼ maxfxi �
xi1 , xi2 � xig and Ii ¼ ½xi � ri, xi þ ri� for i ¼ 1, 2, :::, n: We
show that G ¼ ðV, EÞ is a central MPTG with an interval
representation fIvi ji ¼ 1, 2, :::, ng where V ¼ fv1, v2, :::, vng
and this ordering of vertices satisfies Equation (2.1).
Suppose vivj 2 E: Then by definition of i1 and i2, we have
xi1 � xj � xi2 and xj1 � xi � xj2 : Then xi � xi1 � xi � xj and
xi2 � xi � xj � xi which imply jxi � xjj � ri and so xj 2 Ivi :
Similarly xi 2 Ivj : Hence fxi, xjg � Ivi \ Ivj : Now let vivj 62 E:
Without loss of generality we assume i< j. Suppose j1 < i
and j < i2: Then we have j1 < i < j < i2 and vj1vj, vivi2 2 E:
Then by Equation (2.1), vivj 2 E, which is a contradiction.
Thus either i < j1 or j > i2: Then i � j1 � 1 or j � i2 þ 1:
For the first inequality by Equation (3.7), we have xj � xi �

Figure 2. Relative positions of intervals described in the proof of Theorem 3.9.
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xj � xj1�1 > xj2 � xj: Also xj � xi > xj � xj1 , as xi < xj1 :
Thus xj � xi > rj which implies xi 62 Ivj : Similarly j � i2 þ 1
implies xj 62 Ivi : Therefore G is a central MPTG. w

Definition 3.11. A central MPTG G ¼ ðV, EÞ is called
proper if it has an interval representation with the required
condition such that no interval contains another properly.
We call it proper-central-max-point tolerance graph (in brief,
proper central MPTG). Similarly, a central MPTG G ¼
ðV, EÞ is called unit if it has an interval representation with
the required condition such that every interval has unit (or,
same) length. We call it unit-central-max-point tolerance
graph (in brief, unit central MPTG).

Theorem 3.12. Let G be a simple undirected graph. Then the
following are equivalent.

1. G is a proper central MPTG.
2. G is a unit central MPTG.
3. G is a proper interval graph.

Proof. ð1 () 2Þ : Let G be a proper central MPTG with
respect to the representation ðIi, ciÞ where Ii ¼ ½ai, bi�, ci be the
center point of Ii for each vertex i 2 V: First, we arrange the
intervals according to increasing order of left end points. As
no interval properly contains another, the right end points
have the same order as left end points and so as the center
points as well. We process the representation from left to right,
adjusting all intervals to length l where l is the length of first
interval (i.e., jI1j ¼ l). At each step until all intervals have been
adjusted Ix be the leftmost unadjusted interval.

Let Ij be an adjusted interval occurs before Ix, then one
of the following things happen.

1. cj 62 Ix:
2. cj 2 Ix, cx 2 Ij:
3. cj 2 Ix but cx 62 Ij:

Let Ij1 and Ij2 be any two adjusted intervals referred in con-
ditions (2) and (3), respectively. Then Ij2 must occur before
Ij1 otherwise the right end point of Ij2 would occur before cx
and so Ij2 would be properly contained in Ij1 as Ij1 contains
cx. But this is a contradiction.

Now if Ix does not contain center point of any adjusted
intervals then take a ¼ ax: If Ix contains center points of
some adjusted intervals and Ii be the leftmost among them,
then cl 2 Ix for all i � l � x as all of them have same length.
Now if cx 2 Ii, then take a ¼ ci: It follows from the last
paragraph that cx 2 Il for all i � l � x in this case. Now if
cx 62 Ii, cx 62 Il for any l< i. Let Ij be the leftmost interval for
which cx 2 Ij: Then i< j < x. Take a ¼ cj in this case. Now
if no such Ij exists between Ii and Ix i.e., if cx 62 Ij for all i �
j < x then cx 62 Il for any l< x. Take a ¼ bl in this case
where bl is the rightmost endpoint for which cl 2 Ix, cx 62 Il:
Clearly i � l < x: We adjust the portion ½ax,1Þ by shrink-
ing or expanding ½ax, bx� to ½a, aþ l� and scaling and shifting
½bx,1Þ to ½aþ l,1Þ: Iterating this operation produces the
unit central MPTG representation.

Now it is sufficient to show adjusting Ix in above way does
not affect the adjacency of vertex x with previous intervals.
When a ¼ ax, then a ¼ ax > cl for all l< x. Hence cl 62 Ix after
adjustment. When a ¼ ci, then ci ¼ a 2 Ix and cx ¼ aþ l

2 ¼
ci þ l

2 ¼ bi 2 Ii:Moreover, for all i< l< x, cx 2 Il and a ¼ ci <

cl < bi ¼ aþ l
2 (i.e., cl 2 Ix) and cx 62 Il for all l< i after adjust-

ment. When a ¼ cj then the arguments are similar as men-
tioned earlier. Again when a ¼ bl, then cx ¼ aþ
l
2 ¼ bl þ l

2 > bl which imply cx 62 Il:Hence cx 62 Ik for all k< l.
Conversely, if G is a unit central MPTG then all intervals

associated to the vertices of G must be of the same length.
Thus, none of them contains other properly and so G is a
proper central MPTG with the same interval representation.

ð3 ) 1Þ : Let G ¼ ðV,EÞ be a proper interval graph. So
the reduced graph Ĝ ¼ ðV̂ , ÊÞ is an induced subgraph of
Gðn, rÞ ¼ ðVn, E0Þ for some n, r 2 N with n> r, where Vn ¼
fv1, v2, :::, vng and vi $ vj if and only if ji� jj � r by condi-

tion 4 of Theorem 2.1. Let V̂ ¼ fvi1 , vi2 , :::, vimg � Vn: Now
for each u 2 V, define pu ¼ ij if u is a copy of vij and Iu ¼
½pu � r, pu þ r�: First, all intervals Iu are of same length 2r
and so none of them properly contains other.

Next let u, v 2 V: Suppose pu ¼ ij and pv ¼ ik. Then u is
a copy of vij and v is a copy of vik : If uv 2 E, then vijvik 2
Ê � E0: Therefore jij � ikj � r ) jpu � pvj � r ) pv 2 Iu
and pu 2 Iv ) pu, pv 2 Iu \ Iv: Finally, let uv 62 E: Then
vijvik 62 Ê: Since Ĝ is an induced subgraph of G(n, r), we
have vijvik 62 E0: Then jij � ikj > r ) jpu � pvj > r ) pv 62 Iu
and pu 62 Iv: Thus G is a proper central MPTG.

ð1 ) 3Þ : Let G ¼ ðV, EÞ be a proper central MPTG with
a proper central MPTG representation ðIu, cuÞ where Iu ¼
½lu, ru�, cu be the center point of Iu for each u 2 V: We
arrange vertices according to the increasing order of center
points, V ¼ fv1, v2, :::, vng: To prove that G is a proper
interval graph we show that vertices of G satisfy condition 3
of Theorem 2.1 with respect to the above ordering.

Denote Iui ¼ ½lui , rui � by ½li, ri� and ci ¼ liþri
2 for i ¼

1, 2, :::, n: Let i< j < k and uiuk 2 E: Then ci < cj < ck: Now
since G is a central MPTG, ck � ci � minfci � li, ck � lkg:
Now cj � ci < ck � ci � ci � li: Now if lj > ci, then lk � ci <
lj < cj < ck as ck � ci � ck � lk: So ½lj, cj�ˆ½lk, ck�: But this
implies ½lj, rj�ˆ½lk, rk� which contradicts the fact that G is a
proper central MPTG. Thus lj � ci: So we have cj � ci �
cj � lj: Hence cj � ci � minfci � li, cj � ljg: Therefore uiuj 2
E, as required. Similarly, it can be shown that ujuk 2 E:
Thus G is a proper interval graph. w

It is proved by Catanzaro et al. [3] that if G is an MPTG
with non-adjacent vertices u and v, then G½NðuÞ \ NðvÞ� is
an interval graph. We found the following analogous result
for central MPTG.

Proposition 3.13. If G is a central MPTG with non-adjacent
vertices u and v, then G½NðuÞ \ NðvÞ� is a proper interval graph.

Proof. Let G ¼ ðV ,EÞ be a central MPTG with an interval
representation Ii ¼ ½ai, bi�ji 2 V

� �
where vertices are

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS 5



arranged according to C-order. Let ci be the center point of
Ii. Suppose u< v. Then vertices of G½NðuÞ \ NðvÞ� which
occur between u, v form a clique from Equation (2.1). Again
if there exist a vertex of G½NðuÞ \ NðvÞ� occurs before u
then no vertex can occur after v which belongs to G½NðuÞ \
NðvÞ� and conversely follows from Equation (2.1) and the
fact uv 62 E: Moreover vertices of G½NðuÞ \ NðvÞ� that occur
before u form a clique. Let x < y < u < v such that x, y 2
G½NðuÞ \ NðvÞ� then cx < cy < cu < cv � bx as vx 2 E: This
implies cy 2 ½cx, bx� � Ix: Now if ay > cx, then au � cx <
ay < cy < cu (as ux 2 E) which implies cy � ay < cu � au:
Hence jIyj < jIuj: Again as ay, cy 2 ½au, cu� from above we
can conclude that by � bu: But yv 2 E implies av < cy <
cu < cv � by which imply cu 2 ½av, cv� � Iv: Also as u is not
adjacent to v, cv > bu. Hence from above we get bu < cv �
by which is a contradiction. Therefore ay � cx: So cx 2
½ay, cy� � Iy: Hence xy 2 E: Similarly one can show vertices
of G½NðuÞ \ NðvÞ� which occur after v form a clique.

Now let fuijui < ug be the vertices of G½NðuÞ \ NðvÞ�
arranged in C-order and fxjju < xj < vg be the vertices of
G½NðuÞ \ NðvÞ� arranged according to increasing order of
left end points. From the above observations it is clear that
ui xj½ �’s form clique for ui < u u < xj < v½ �: Let uk xm½ � be the

last vertices occurred before u between u and v½ � respectively.
Now we show that G½NðuÞ \ NðvÞ� becomes a proper inter-
val graph with respect to the ordering fu1, :::, uk, x1, :::, xmg:
In this ordering by p � q we mean p occurs before q. In
fact we will show that the vertices satisfy condition 3 of
Theorem 2.1 with respect to the ordering � : Let ul �
xi � xj where 1 � l � k, 1 � i, j � m such that ulxj 2 E:
Then cul < cu < cxi , cxj < cv < bul as vul 2 E: This implies
cxi 2 ½cul , bul � � Iul : Now as ulxj 2 E, axj � cul < cu < cxi
implies axi < axj � cul < cxi (as xi � xj () axi < axj) which
imply cul 2 ½axi , cxi � � Ixi : Hence ulxi 2 E: Let ui � uj � xl
where 1 � i, j � k, 1 � l � m such that uixl 2 E: Then ui �
uj � xl � v clearly. Now from Equation (2.1) one can con-
clude ujxl 2 E: Similarly, one can show if there exists verti-
ces of G½NðuÞ \ NðvÞ� that occurs after v, then with respect
to the ordering fx1, :::, xm, v1, :::, vkg (use p� 0q if and only if
p occurs before q in this ordering) G½NðuÞ \ NðvÞ� forms a
proper interval graph where fxiju < xi < vg are vertices of
G½NðuÞ \ NðvÞ� arranged according to increasing order of
right end points, and fvjjv < vjg are vertices of G½NðuÞ \
NðvÞ� arranged in C-order. w

The aforementioned proposition leads to a construction of
the following forbidden graph for the class of central MPTG.

Example 3.14. By Proposition 3.13 we see that the graph G
(see Figure 3) formed by taking K1, 3 together with two

non-adjacent vertices (say, u, v) which are adjacent to each
vertex of K1, 3 is not a central MPTG.

4. Conclusion

It was proved by Soto and Caro [13] that interval graphs �
central MPTG � max-tolerance graph. Combining with
these we establish the relations between some subclasses of
max-tolerance graphs related to central MPTG in Figure 4.
Note that C4 2 unit max-tolerance n interval graphs: C4 has
a unit-max-tolerance representation having intervals
½1, 5�, ½2, 6�, ½3, 7�, ½4, 8� and corresponding tolerances 1, 3, 3, 1
for its consecutive vertices (clockwise or anticlockwise). But
C4 is not an interval graph. In Theorem 3.9, we have shown
that C6 is a max-tolerance graph which is not a central
MPTG. Also we note that K2, 3 is not a central MPTG (by
Lemma 7 of reference [13]) but it is a MPTG (by Lemma 8
of reference [13]). Finally we end up by listing the major
unsolved problems in this area

1. Recognition algorithm and forbidden subgraph charac-
terization of MPTG.

2. Combinatorial characterization, adjacency matrix char-
acterization, recognition algorithm, and forbidden sub-
graph characterization of central MPTG.
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Figure 3. The graph G in Example 3.14.

Figure 4. Hierarchy of subclasses of the class of max-tolerance graph.
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