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The k-conversion number of regular graphs

Christina M. Mynhardt and Jane L. Wodlinger

Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada

ABSTRACT
Given a graph G ¼ ðV, EÞ and a set S0 � V, an irreversible k -threshold conversion process on G is
an iterative process wherein, for each t ¼ 1, 2, :::, St is obtained from St�1 by adjoining all vertices
that have at least k neighbors in St�1: We call the set S0 the seed set of the process, and refer to
S0 as an irreversible k-threshold conversion set, or a k-conversion set, of G if St ¼ VðGÞ for some
t � 0: The k-conversion number ckðGÞ is the size of a minimum k-conversion set of G. A set X � V
is a decycling set, or feedback vertex set, if and only if G½V � X� is acyclic. It is known that k-con-
version sets in ðk þ 1Þ-regular graphs coincide with decycling sets. We characterize k-regular
graphs having a k-conversion set of size k, discuss properties of ðk þ 1Þ-regular graphs having a k-
conversion set of size k, and obtain a lower bound for ckðGÞ for ðk þ rÞ-regular graphs. We present
classes of cubic graphs that attain the bound for c2ðGÞ, and others that exceed it—for example,
we construct classes of 3-connected cubic graphs Hm of arbitrary girth that exceed the lower
bound for c2ðHmÞ by at least m.
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1. Introduction

Given a graph G ¼ ðV,EÞ and a set S0 � V , an irreversible
k-threshold conversion process on G is an iterative process
wherein, for each t ¼ 1, 2, :::, St is obtained from St�1 by
adjoining all vertices that have at least k neighbors in St�1:

We call the set S0 the seed set of the process, and refer to S0
as an irreversible k-threshold conversion set, or simply a
k-conversion set, of G if St ¼ VðGÞ for some t � 0: The
k-conversion number ckðGÞ is the size of a minimum k-
conversion set of G.

A set X � V is a decycling set, or feedback vertex set, if
and only if G½V � X� is acyclic. Early research on decycling
sets was motivated by applications in logic networks and cir-
cuit theory, first in digraphs [8, 23] and later in undirected
graphs [15]. More modern applications are given in [16].
The decycling number /ðGÞ of a graph G is the size of a
minimum decycling set of G. Clearly, finding a minimum
decycling set of G is equivalent to finding a maximum
induced forest. The order of such a forest is called the forest
number of G, and denoted by a(G). Many authors have
derived bounds on /ðGÞ and a(G), both for general graphs
[3] and for special classes of graphs, including planar graphs
[11, 12, 22], cubic graphs [4, 19, 25, 29, 31, 32, 39] and
other regular graphs [28, 30].

Dreyer and Roberts [10] have shown that decycling sets
in r-regular graphs coincide with ðr � 1Þ-conversion sets
(see Proposition 2.1). Therefore, if G is ðkþ 1Þ-regular, then
ckðGÞ ¼ /ðGÞ: A detailed survey of results on k-conversion

processes, including results on decycling sets in regular
graphs, can be found in [37].

We consider lower bounds on ckðGÞ for regular graphs and
discuss classes of graphs that meet, or do not meet, the given
bound. We begin, in Section 2, by characterizing k-regular
graphs having a k-conversion set of size k. In Section 3 we con-
sider ckðGÞ for ðkþ 1Þ-regular graphs, first investigating
ðkþ 1Þ-regular graphs with ckðGÞ ¼ k and then discussing
lower bounds on ckðGÞ: In Section 4 we obtain a lower bound
for ckðGÞ for ðkþ rÞ-regular graphs. We restrict our attention
to cubic graphs in Section 5 and present classes of cubic graphs
that attain the bound for c2ðGÞ, and others that exceed it. It is
known that fullerenes and snarks meet the lower bound. We
study the 2-conversion number of graphs that have some of
the defining properties of snarks in Section 5.1. Our results in
this section lead us to study 3-connected cubic graphs in
Section 5.2, where we construct classes of 3-connected cubic
graphs Hm of arbitrary girth (and other properties) that exceed
the lower bound for c2ðHmÞ by at leastm.

We generally follow the notation of [5]. For graphs G
and H, GþH denotes the disjoint union of G and H, and
G�H denotes the join of G and H, obtained by adding all
possible edges between G and H. We denote the independ-
ence number of G by aðGÞ:

2. k-regular graphs with k-conversion number k

We begin with the straightforward observation that, in order
for any conversion to occur in a k-conversion process, the
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seed set must contain at least k vertices. Therefore, k is a
trivial lower bound on ckðGÞ for any graph G with at least k
vertices. More specifically, if G is a graph of order n and
maximum degree D, then ckðGÞ ¼ n if D < k and otherwise
ckðGÞ � k: Leaving aside the case where ckðGÞ ¼ n, we focus
on graphs with maximum degree at least k and ask which
graphs meet the bound ckðGÞ ¼ k:

Graphs that meet this bound are easy to find, and exist for
any order kþ r, where r � 1: (Take, for example, the complete
bipartite graph Kk, r:) Imposing structural constraints on G
naturally makes the bound harder to achieve. In Proposition 2.2
we give a complete characterization of the k-regular graphs that
meet this bound. In Section 3 we will expand our investigation
of the bound to include ðkþ 1Þ-regular graphs.

We first state the following proposition by Dreyer and
Roberts for referencing.

Proposition 2.1 [10].

(a) If G is a k-regular graph, then S is a k-conversion set of
G if and only if V – S is independent.

(b) If G is a ðkþ 1Þ-regular graph, then S is a k-conversion
set of G if and only if G½V � S� is a forest.

An immediate consequence of Proposition 2.1(a) is that
if G is a k-regular graph of order n, then ckðGÞ ¼ n� aðGÞ:
Proposition 2.2. A k-regular graph G has a k-conversion set
of size k (that is, ckðGÞ ¼ k) if and only if G ¼ H �Kk�t ,
where H is a t-regular graph of order k, and 0 � t < k:

Proof. Let G ¼ H �Kk�t , where H and t are as above. Each
vertex of Kk�t has k neighbors in H, so V(H) is a k-conver-
sion set of size k. Since vertices of Kk�t have no other neigh-
bors, and each vertex of H has t neighbors in H and k – t
neighbors in Kk�t , G is k-regular. For the converse, let G be
a k-regular graph with a k-conversion set S of order k. By
Proposition 2.1(a), V – S is independent. Since G is k-regu-
lar, G½S� is t-regular for some 0 � t < k and jV � Sj ¼ k� t:
The result follows with H ¼ G½S�: w

3. The k-conversion number of ðk þ 1Þ-regular
graphs

In this section we present lower bounds on the k-conversion
number of a ðkþ 1Þ-regular graph and determine some proper-
ties of the graphs that meet these bounds. We begin with the triv-
ial lower bound ckðGÞ � k, this time applied to ðkþ 1Þ-regular
graphs. Proposition 2.1(b) states that a set S is a k-conversion set
of a ðkþ 1Þ-regular graph G if and only if G½V � S� is acyclic. In
this case S is also known as a decycling set or a feedback vertex
set. We rely heavily on this characterization of k-conversion sets
in ðkþ 1Þ-regular graphs throughout Section 3.

3.1. k-conversion sets of size k in ðk þ 1Þ-regular
graphs

If r � 1 and G is a ðkþ rÞ-regular graph with a k-conver-
sion set S of size k, then every non-seed vertex has at least r

neighbors outside of S. This introduces the possibility that
complete conversion of the graph takes more than one time
step. For t � 0, let St be the set of vertices that convert at
time t, starting from a given seed set S ¼ S0: (It is worth not-
ing that such a graph may still convert in one time step. For
example, consider the 4-regular graph G ¼ K3 � ðK2 þ K2Þ,
with 3-conversion set S ¼ VðK3Þ:)

In Proposition 3.1 we derive a bound on the number of non-
seed vertices in a ðkþ 1Þ-regular graph with a k-conversion set
of size k. We use this result to obtain a sharp upper bound on
the order of such a graph (Proposition 3.2).

Proposition 3.1. Let G be a ðkþ 1Þ-regular graph and
suppose that S0 is a k-conversion set of size k.

Then jVðGÞ � S0j < kðkþ1Þ�1
k�1 :

Proof. We begin by deriving a bound on the number of ver-
tices that convert at time t¼ 2 and later. Let Y ¼ [t�2St:
We count the edges between Y and S0 in two ways. First,
since G is ðkþ 1Þ-regular and each vertex of S0 is adjacent
to each vertex of S1, there are at most kðkþ 1� jS1jÞ edges
from S0 to Y. On the other hand, each vertex in Y has at
least k neighbors that convert before it. Therefore there are
at least jYjk edges with at least one endpoint in Y. Since
G� S0 is a forest with jYj þ jS1j vertices, at most jYj þ
jS1j � 1 have the other endpoint in Y [ S1: Therefore there
are at least jYjk� jYj � jS1j þ 1 edges from Y to S0. This
gives jYjk� jYj � jS1j þ 1 � kðkþ 1� jS1jÞ: Rearranging,
and replacing Y with [t�2 St , gives the bound

[
t�2

St

����
���� � kðkþ 1Þ þ jS1jð1� kÞ � 1

k� 1
: (1)

The left side of (1) equals jVðGÞ � S0j � jS1j, and the result
follows. w

In Proposition 3.2, we use Proposition 3.1 to derive an
upper bound on the order of a ðkþ 1Þ-regular graph having
a k-conversion set of size k and we prove by construction
that the bound is sharp for each k � 2: The result of the
construction for k¼ 3 is illustrated in Figure 1. Let v be a
vertex such that degðvÞ � D: We define the D-deficiency of v
to be defDðvÞ ¼ D� degðvÞ:
Proposition 3.2. If G is a ðkþ 1Þ-regular graph having a k-
conversion set of size k, then the order of G is at most 2kþ 2.

Figure 1. A 4-regular graph with c3ðGÞ ¼ 3 ¼ j[t�2Stj, illustrating sharpness
of the bound in Proposition 3.3. This graph also illustrates the construction in
Proposition 3.2, with k¼ 3.
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Moreover, for every k � 2, there exists a ðkþ 1Þ-regular
graph of order 2kþ 2 which has a k-conversion set of size k.

Proof. We obtain the bound for k¼ 2 by checking all examples
(there are three cubic graphs having a 2-conversion set of size
2: K4 and the two cubic graphs of order 6). For k � 3,
kðkþ1Þ�1

k�1 > kþ 3, so the bound follows from Proposition 3.1.
To prove that the bound is sharp, we construct a

ðkþ 1Þ-regular graph of order 2kþ 2 which has a k-conver-
sion set of size k. We begin with the graph K2, k, where S0 ¼
S is the set of size k (a k-conversion set) and S1 ¼ fu1, v1g
is the set of size 2 (the set of vertices that convert at time
t¼ 1). For each v 2 S0 we now have defkþ1ðvÞ ¼ k� 1 and
for each v 2 S1 we have defkþ1ðvÞ ¼ 1: We will add vertex
sets S2, S3, ::: such that the vertices of Si convert at time t¼ i
from the k-conversion set S0. To achieve this, for each i �
2, we must add at least k edges from Si to [i�1

j¼0Sj: Some care

is required in choosing the edges, in order to ensure that
there will always be at least k distinct vertices available in
[i�1
j¼0Sj: For i � 2, if there are still at least k – 1 vertices in

S0 of deficiency at least 2, let Si ¼ fui, vig: Join ui to ui�1

and to k – 1 vertices of S0, beginning with those of highest
deficiency. Then join vi to vi�1 and to k – 1 vertices of S0,
once again beginning with those of highest deficiency.
Joining ui and vi to ui�1 and vi�1 at each step means that
the vertices of S1, :::, Si�1 have degree kþ 1, so the only defi-
cient vertices are the newly added ones and those in S0.
Joining the new vertices first to the vertices of highest defi-
ciency in S0 guarantees that the deficiencies among the verti-
ces of S0 are always within 1 of each other. Therefore, the
first time there fail to be at least k – 1 vertices in S0 with
deficiency at least 2, there are either no deficient vertices in
S0 (if k is even) or there are k – 1 deficient vertices in S0
and their deficiency is 1 (if k is odd). In the case where k is
even, we add vertices ui and vi k

2 times before we run out of

deficient vertices in S0. That is, the process stops when i ¼
k
2 þ 1, and j [k

2þ1
i¼2 Sij ¼ k: Adding an edge between uk

2þ1 and

vk
2þ1 yields a simple ðkþ 1Þ-regular graph of order 2kþ 2

(including the k vertices of S0 and the 2 vertices of S1). In
the case where k is odd, we add k�1

2 pairs of vertices ui and
vi before the deficiencies in S0 become too small. That is,

the process stops when i ¼ kþ1
2 and j [kþ1

2
i¼2 Sij ¼ k� 1: We

complete the ðkþ 1Þ-regular graph by adding one final vertex,
w, and joining it to ukþ1

2
, vkþ1

2
and to the k – 1 vertices of defi-

ciency 1 in S0. The total number of vertices is now 2kþ 2,
including the k vertices of S0 and the 2 vertices of S1. w

In the proof of Proposition 3.1, we derived the bound (1)
on the size of [t�2 St for ðkþ 1Þ-regular graphs with a k-
conversion set of size k. Proposition 3.3, below, provides
another upper bound on the same quantity. When jS1j �
2k�1
k�1 , the bound provided by (1) is stronger than that of
Proposition 3.3. However, the bound of Proposition 3.3 is
sharp for small values of jS1j, as shown by the graph in
Figure 1.

Proposition 3.3. Let G be a ðkþ 1Þ-regular graph with a k-
conversion set of size k. Then j [t�2 Stj � k:

Proof. Let Y ¼ [t�2St: By Proposition 2.1(b), G� S0 is a
forest F, and its leaves are the vertices in S1. Therefore, for
every v 2 Y , degFðvÞ � jS1j, and degGðvÞ ¼ kþ 1, so v
has at least kþ 1� jS1j neighbors in S0: Hence there are at
least jYjðkþ 1� jS1jÞ edges between Y and S0. On the other
hand, there are at most kðkþ 1� jS1jÞ edges between S0 and
Y, by the argument given in the proof of Proposition 3.1.
Therefore jYjðkþ 1� jS1jÞ � kðkþ 1� jS1jÞ: w

3.2. A lower bound on ckðGÞ for ðk þ 1Þ-regular graphs
In Sections 2 and 3.1 we began with a fixed seed set size
(namely k, the minimum possible size for a nontrivial
k-conversion set), and asked which graphs have a k-
conversion set of this size. We obtained constraints on the
structure and order (respectively) of k- and ðkþ 1Þ-regular
graphs with this property. In this section we instead begin
with a class of graphs, and ask how small a k-conversion set
can be for a graph in this class.

As discussed in Section 2, k is a lower bound on the
k-conversion number of any graph with order at least k.
While it is possible to have arbitrarily large graphs that
attain this bound, for many classes of graphs a k-conversion
set of size k can only convert a limited number of vertices.
Indeed, we showed in Proposition 3.2 that in the class of
ðkþ 1Þ-regular graphs, a k-conversion set of size k can con-
vert at most 2kþ 2 vertices. For these graphs, as the order
grows beyond the 2kþ 2 threshold, we require more than k
seed vertices to convert the graph. In this case, k is no lon-
ger a good lower bound for the k-conversion number.

Beinecke and Vandell [3, Corollary 1.2] showed that if G
is a graph with n vertices, m edges, and maximum degree D,
then the decycling number of G is at least m�nþ1

D�1 : This gen-
eralized the lower bound obtained by Staton [32] on the
decycling number of ðkþ 1Þ-regular graphs, which corre-
sponds to the k-conversion number. We present a proof of
Staton’s result which yields a condition for equality in
the bound.

Proposition 3.4. Let G be a ðkþ 1Þ-regular graph of order

n, k � 2. Then ckðGÞ � dnðk�1Þþ2
2k e. Moreover, a minimum k-

conversion set S of G has size nðk�1Þþ2
2k if and only if S is inde-

pendent and G – S is a tree.

Proof. Let S be a minimum k-conversion set of G, and let
�S ¼ VðGÞ � S: For X 2 fS,�Sg, let nX and mX denote the
number of vertices and edges, respectively, in G½X�:
Counting in two ways the number of edges between S and �S
gives the identity

ðkþ 1ÞnS � 2mS ¼ ðkþ 1Þn�S
� 2m�S

:

By Proposition 2.1(b), G½�S� is a forest; let y be its number of
components. Then
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ðkþ 1ÞnS � 2mS ¼ ðkþ 1Þn�S
� 2ðn�S

� yÞ:
Substituting n�S

¼ n� nS, and rearranging, this gives

nS ¼ nðk� 1Þ þ 2ms þ 2y
2k

:

Therefore, ckðGÞ ¼ nS � nðk�1Þþ2
2k , with equality if and only

if S is independent and G – S is a tree. In particular,

ckðGÞ � dnðk�1Þþ2
2k e: w

In the next section we prove a lower bound similar to
that of Proposition 3.4 for ðkþ rÞ-regular graphs.

4. A lower bound on ckðGÞ for ðk þ rÞ-regular graphs
Dreyer and Roberts [10] give a lower bound of ðk�rÞn

2k on
ckðGÞ for ðkþ rÞ-regular graphs of order n, for 0 � r < k:
In the case r ¼ k� 1, where G is a ð2k� 1Þ-regular graph,

Zaker [38] strengthens this bound to ckðGÞ � nþ2ðk�1Þ
2k : In

this section we improve upon both of these previous bounds
by providing, in Proposition 4.3, a new lower bound of

ckðGÞ � ðk�rÞnþðrþ1Þr
2k , which is sharp for all r, 0 � r � k� 1:

Proposition 4.1 generalizes Proposition 2.1 by characteriz-
ing the k-conversion sets S of ðkþ rÞ-regular graphs in
terms of a condition on V – S. For r � 0, a graph G is r-
degenerate if every induced subgraph of G has a vertex of
degree at most r. We say that G is a maximal r-degenerate
graph if G is r-degenerate but for every pair of non-adjacent
vertices x, y in G, adding the edge xy to E(G) produces a
graph that is not r-degenerate. We note that a graph G is
0-degenerate if and only if it has no edges, and it is
1-degenerate if and only if it is acyclic.

We call a nonempty set U of vertices of a graph G k-
immune if every vertex in U has fewer than k neighbors in
V – U. It is straightforward to see that S � V is a k-conver-
sion set of G if and only if V – S does not contain a
k-immune set. We use this observation in the proof of
Proposition 4.1, and again in Section 5.1.

Proposition 4.1. Let G be a ðkþ rÞ-regular graph, with
r � 0. A set S of vertices of G is a k-conversion set if and
only if G½V � S� is r-degenerate.
Proof. Suppose V – S is r-degenerate, so every subgraph H
of V – S has a vertex of degree at most r. In other words,
some vertex of H has at least k neighbors in G – H. Let
H0 ¼ V � S and let S1 be the set of vertices of degree at
most r in H0. These vertices have at least k neighbors in
G� H0 ¼ S, so they convert at time t¼ 1. Let H1 ¼ H0 � S1
and let S2 be the set of vertices of degree at most r in H1.
These vertices have at least k neighbors in V �H1 ¼ S [ S1,
so they convert at time t¼ 2. Continue this process until
some Hi ¼ ;: At each step, the set V � Hj is converted, so
when Hi ¼ ; the whole graph is converted. Therefore S is a
k-conversion set. On the other hand, if V – S is not r-degen-
erate then there is some subgraph H of V – S in which no
vertex has k neighbors outside H. Therefore V(H) is a k-
immune set, so S is not a conversion set of G. w

Proposition 4.3 generalizes Proposition 3.4, establishing a
lower bound on ckðGÞ for ðkþ rÞ-regular graphs G. The
proof technique is the same as for Proposition 3.4, but
requires the following lemma, due to Lick and White,
bounding the number of edges in an r-degenerate graph.

Lemma 4.2 [24, Proposition 3 and Corollary 1]. Let G be an
r-degenerate graph with n � r vertices and m edges. Then

m � rn� r þ 1
2

� �
, with equality if and only if G is max-

imal r-degenerate.

Proposition 4.3. Let G be a ðkþ rÞ-regular graph of order n,
where 0 � r < k. Then

ckðGÞ � ðk� rÞnþ ðr þ 1Þr
2k

:

Moreover, for r � 1, a minimum k-conversion set S of G has

order ðk�rÞnþðrþ1Þr
2k if and only if S is independent and G½V � S�

is a maximal r-degenerate graph.

Proof. First suppose r¼ 0. Proposition 2.1(a) implies that
ckðGÞ ¼ n� aðGÞ: Since G is regular, aðGÞ � n

2 , and the
result follows. Now let r � 1 and let G be a ðkþ rÞ-regular
graph with n > kþ r vertices. Let S be a k-conversion set of
G and for X 2 fS,�Sg, let nX and mX denote the number of
vertices in X and the number of edges in G½X�, respectively.
Counting in two ways the edges between S and �S gives

ðkþ rÞnS � 2mS ¼ ðkþ rÞn�S
� 2m�S

:

Applying the bound m�S
� rn�S

� r þ 1
2

� �
, as provided by

Lemma 4.2, and simplifying gives

ðkþ rÞnS � 2mS � ðk� rÞn�S
þ ðr þ 1Þr,

with equality if and only if G½�S� is maximal r-degenerate. By
substituting n�S

¼ n� nS and rearranging, we obtain

nS � ðk� rÞnþ ðr þ 1Þr þ 2mS

2k
,

with equality if and only if G½�S� is maximal r-degenerate.
The result follows since mS � 0 with equality if and only if
S is an independent set. w

We note that, by definition of maximal r-degeneracy, in
order to determine whether a subgraph H of G (in particu-
lar, H ¼ G½�S�) is maximal r-degenerate we must look at all
x, y 2 VðHÞ such that xy 62 EðHÞ—regardless of whether
xy 2 EðGÞ— and determine whether H þ xy is still r-degen-
erate. In other words the maximality of H with respect to r-
degeneracy does not depend on whether we can add more
vertices or edges of G into H without losing the r-degenerate
property, but whether we can add an edge between two
non-adjacent vertices of H. In particular, when H ¼ G½�S�, H
is an induced subgraph so any additional edge xy under
consideration is necessarily absent from G.
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5. Cubic graphs

For k¼ 2, Proposition 3.4 gives the lower bound

c2ðGÞ �
�
nþ 2
4

�
(2)

for cubic graphs G of order n. In this section we present
classes of cubic graphs that attain this bound and others
that exceed it. We begin by stating a result by Payan and
Sakarovitch [27] that provides a sufficient condition for
equality in the bound.

A graph G is cyclically k-edge connected (cyclicallyk-vertex
connected) if at least k edges (vertices) must be removed to
disconnect G into two subgraphs that each contain a cycle.
A cubic graph G 62 fK4,K3, 3g is cyclically 4-edge connected
if and only if it is cyclically 4-vertex connected [26], so we
simply call such graphs cyclically 4-connected.

Theorem 5.1 [27]. If G is a cyclically 4-connected cubic
graph of order n, then

c2ðGÞ ¼
�
nþ 2
4

�
:

A fullerene is a planar cubic graph whose faces, including
the outer face, in any plane representation, all have size 5 or
6. Do�s li�c [9, Theorem 8] proved that all fullerenes are cyc-
lically 4-edge connected, and therefore by Theorem 5.1 they
achieve equality in the lower bound (2).

5.1. Snarks and would-be snarks

By Vizing’s theorem [5, Theorem 17.2], if G is a graph with
maximum degree D, then G has chromatic index D or Dþ
1; in the former case, G is of Class 1, and in the latter case,
of Class 2.

A snark is a connected, bridgeless, Class 2 cubic graph.
To avoid degenerate cases, it has long been standard to
require snarks to be triangle-free. They have been studied
since the 1880’s, when Tait [34] proved that the Four Color
Theorem is equivalent to the statement that no snark is pla-
nar. We refer to such snarks (connected, bridgeless, triangle-
free Class 2 cubic graphs) as Gardner snarks, as this was the
common definition of snarks when Martin Gardner gave
them the name “snark” in 1975 [14]. The name, taken from
the elusive creature in Lewis Carroll’s poem The Hunting of
the Snark, reflects the scarcity of examples in the years after
Tait defined them. The smallest and earliest known example
of a snark is the Petersen graph, first mentioned by Alfred
Bray Kempe in 1886 [21] and named after the Danish math-
ematician Julius Petersen, who presented it as counterexam-
ple to Tait’s claim that all cubic graphs were 3-edge
colorable. Due to their connection with the Four Color
Theorem (Four Color Conjecture, at the time), much atten-
tion was given to the pursuit of new examples of snarks
(with the hope of finding a planar one, perhaps), but a
second example was not discovered until 1946. Since then,
more examples have been discovered, including infin-
ite families.

Interest in snarks has remained steady, due in part to
their connection to other important conjectures in graph
theory, notably the Cycle Double Cover Conjecture [6, 33].
In 1985, Jaeger [20] proved that a smallest counterexample
to the conjecture must be a snark; therefore, if the conjec-
ture is true for snarks, it is true for all graphs.

More recently, more restrictive definitions of snarks have
become the standard. It is now common to require snarks
to have higher connectivity and larger girth. Some authors
use even more restrictive definitions in order to exclude
snarks that can be obtained from other snarks. Some require
them to be cyclically 4-edge connected, rather than simply
triangle-free [17]. We call cyclically 4-edge connected snarks
of girth at least five (at least four) strong (weak) snarks. A
convenient overview of approximately the first century of
snark research, including a discussion of modern definitions,
can be found in [35].

By Theorem 5.1, strong and weak snarks achieve equality
in the lower bound (2). It is therefore natural to ask whether
all snarks do. However, we will show in Section 5.2 that
there exist infinitely many Gardner snarks that fail to meet
the bound.

Theorems 5.2 and 5.3 give well-known sufficient condi-
tions for cubic graphs to be Class 1 and Class 2, respectively,
which aids our search for examples in each category.
Theorem 5.2 was shown by Tait in 1880 to be equivalent to
the Four Color Theorem.

Theorem 5.2 [1, 2, 34]. Every bridgeless planar cubic graph
has chromatic index 3.

Theorem 5.3 [18]. Every bridged cubic graph has chromatic
index 4.

Theorem 5.3 allows us to limit our investigation to
graphs that are bridgeless or Class 2, since there are no
bridged, Class 1 cubic graphs. All other combinations—that
is, all allowable combinations—of the three defining charac-
teristics of snarks (bridgeless, Class 2, triangle-free) admit
graphs that meet the lower bound and graphs that do not
meet the lower bound. Table 1 gives an example of a graph
for each type for each of the combinations.

For each combination of properties except bridgeless,
Class 2, triangle-free cubic graphs (i.e., Gardner snarks), we
now show that the difference between the bound and the 2-
conversion number can be arbitrarily large (Propositions
5.6–5.11). We address the remaining category in Section 5.2,
where we consider 3-connected cubic graphs with arbi-
trary girth.

To prove that the difference between the bound and the
2-conversion number can be arbitrarily large for graphs with
bridges, we use the following lemma.

Lemma 5.4. Let G be a cubic graph with a bridge e, and
let H1 and H2 be the components of G – e. Then
c2ðGÞ ¼ c2ðH1Þ þ c2ðH2Þ:

Proof. Clearly, c2ðGÞ � c2ðH1Þ þ c2ðH2Þ: To show equality
we show that the minimal 2-immune sets of H1 and H2

(with respect to containment) are the sets U that induce
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chordless cycles in G. Let U be a minimal 2-immune set of
Hi and let a be the vertex of degree 2 in Hi. First consider
the case where a 62 U: Then every vertex in U has three
neighbors in Hi and, since U is 2-immune, at least 2 of
them are in U. By the minimality of U, this implies that
Hi½U� is a chordless cycle. Now consider the case where a 2
U: If Hi½U� does not contain a cycle then it has at least two
leaves, and one of these leaves is a vertex of degree 3 in Hi.
This is a contradiction, since such a vertex has two neigh-
bors outside U. On the other hand, by minimality, any cycle
in Hi½U� contains a (otherwise the cycle is a smaller 2-
immune set). Therefore, in both cases, the minimal 2-
immune sets of Hi induce chordless cycles. Since G is cubic
(and therefore its 2-conversion sets are decycling sets), these
are precisely the minimal 2-immune sets of G. Thus U is a
minimal 2-immune set of G if and only if it is a minimal 2-
immune set of H1 or H2: Since H1 and H2 are disjoint, the
result follows. w

We construct several classes of graphs that exceed the bound
from the four graphsH1,H2,H3 andH4 shown in Figure 2.

Lemma 5.5. Let H1, H2, H3 and H4 be as shown in Figure 2,
and let G be a cubic graph containing Hi as an induced sub-
graph, for some 1 � i � 4. Then any minimum 2-conversion
set of G contains exactly 2 vertices from each copy of Hi.

Proof. Figure 2 gives a 2-conversion set of size 2 for each
graph Hi. On the other hand, no vertex is on every cycle of
Hi, so there is no 2-conversion set of G containing fewer
than two vertices from any copy of Hi. w

In Propositions 5.6 and 5.7 we construct bridged, Class 2
cubic graphs with and without triangles, respectively, that
exceed the bound.

Proposition 5.6. Let m � 2 and let G be the cubic graph
constructed from Pm by replacing each leaf with a copy of H1

and each internal vertex with a copy of H2, where H1 and H2

are as shown in Figure 2. Then

(a) G is a bridged, Class 2 cubic graph with triangles, and

(b) c2ðGÞ � djVðGÞjþ2
4 e ¼ bm2c:

Table 1. Combinations of snark properties that permit equality/inequality in the lower bound on c2ðGÞ:
Bridgeless? Class 2? D-free? Example with c2ðGÞ ¼ dnþ2

4 e Example with c2ðGÞ > dnþ2
4 e

No Yes No

No Yes Yes Any triangle-free cubic
graph of the form

H H where H has
order n ≡ 1 (mod 4)

Yes No No

Yes No Yes Q3, Fullerenes

Yes Yes No

Yes Yes Yes All strong snarks Discussion will followa

aExamples and discussion are given in Section 5.2.
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Proof. For (a), the Class 2 property follows from the bridged
property by Theorem 5.3. For (b), jVðGÞj ¼ 6m� 2 and by
Lemma 5.5, c2ðGÞ ¼ 2m: w

Proposition 5.7. Let m � 2 and let G be the cubic graph
constructed from Pm by replacing each leaf with a copy of H3

and each internal vertex with a copy of H2, where H2 and H3

are as shown in Figure 2. Then

(a) G is a bridged, Class 2, triangle-free cubic graph, and

(b) c2ðGÞ � djVðGÞjþ2
4 e ¼ bm2c � 1:

Proof. For (a), the Class 2 property follows from the bridged
property by Theorem 5.3. For (b), jVðGÞj ¼ 6mþ 2 and by
Lemma 5.5, c2ðGÞ ¼ 2m: w

In Proposition 5.8 we construct bridgeless, Class 1 cubic
graphs with and without triangles that exceed the bound.

Proposition 5.8. Let m � 3 and let H2 and H4 be as shown
in Figure 2. Let G1 be the cubic graph constructed from Cm

by replacing each vertex with a copy of H4, and let G2 be the
cubic graph constructed from Cm by replacing each vertex
with a copy of H2. Then

(a) G1 is a bridgeless, Class 1 cubic graph with triangles,
(b) G2 is a bridgeless, Class 1, triangle-free cubic graph, and
(c) for i ¼ 1, 2, c2ðGiÞ � djVðGiÞjþ2

4 e ¼ bm�1
2 c:

Proof. Parts (a) and (b) can be easily verified, using
Theorem 5.2 for (a). For part (c), it is clear that jVðGiÞj ¼
6m and by Lemma 5.5, c2ðGiÞ ¼ 2m, for i¼ 1, 2. w

We have presented cubic graphs with an arbitrary differ-
ence between c2 and the lower bound for each of the first
four categories defined in Table 1. We now describe a con-
struction that produces graphs in the fifth category—bridge-
less, Class 2 cubic graphs of girth 3—with an arbitrary
difference between c2 and the bound (2). In fact, the same
construction can be used to produce additional examples for
any of the girth 3 categories.

To construct girth 3 graphs (which can be bridged or
bridgeless and Class 1 or Class 2) with an arbitrary differ-
ence between c2 and the bound (2), we begin with a cubic
graph G and replace each vertex with a triangle. We call this
operation triangle replacement of G and we call the resulting
girth 3 graph the triangle-replaced graph of G, and denote it
by T(G), as in [36]. Lemma 5.9 guarantees that the bridged/
bridgeless properties and the Class 1/Class 2 properties are
preserved under triangle replacement. Therefore in order to
produce a bridgeless, Class 2 cubic graph with triangles, for

example, we take the triangle replacement of any bridgeless,
Class 2 cubic graph. Figure 3 shows the triangle-replaced
graph of the Petersen graph. Since the Petersen graph is
bridgeless and Class 2, so is its triangle-replaced graph.

Lemma 5.9. For any cubic graph G, G and T(G) have the
same number of bridges and the same chromatic index.

Proof. The first statement is obvious. For the second state-
ment, let G0 ¼ TðGÞ and let T(v) denote the triangle in G0

arising from v, for each vertex v of G. We consider E(G) to
be a subset of EðG0Þ: We show that v0ðGÞ ¼ 3 if and only if
v0ðG0Þ ¼ 3; the result then follows by Vizing’s Theorem.
Suppose first that G0 has a proper 3-edge coloring f :
EðG0Þ ! f1, 2, 3g: Consider three edges incident with a ver-
tex v in G. In a proper 3-edge coloring of G0, these edges all
have different colors, since each is incident with two of the
three edges of T(v). Therefore the coloring of the edges of G
obtained by restricting f to E(G) is a proper 3-edge coloring
of G. Now suppose G has a proper 3-edge coloring. For
each v 2 VðGÞ we extend the coloring f to T(v) such that
the edge e of T(v) gets the same color as the edge of E(G)
that is incident with the other two edges of t(v). w

Lemma 5.10, which follows immediately from
Proposition 2.1(b), gives a lower bound on c2ðTðGÞÞ, from
which we deduce in Proposition 5.11 that there are triangle-
replaced graphs T(G) with arbitrary difference between
c2ðTðGÞÞ and the bound (2).

Lemma 5.10. Let G be a ðkþ 1Þ-regular graph with a collec-
tion of d pairwise disjoint cycles. Then ckðGÞ � d for all k.

We are now ready to show that the difference between
the 2-conversion number and the bound (2) for triangle-
replaced graphs T(G) grows with the order of G. Since there
are arbitrarily large graphs G for each feasible category of
cubic graphs defined in Table 1, there are arbitrarily large
differences between the 2-conversion number and the bound
for each category with triangles.

Proposition 5.11. Let H be a cubic graph of order m and let

G ¼ TðHÞ. Then c2ðGÞ � djVðGÞjþ2
4 e � bm�2

4 c. Moreover, G
has the same number of bridges and the same chromatic
index as H.

Figure 2. Building blocks for graphs that exceed the bound.

Figure 3. The triangle-replaced graph of the Petersen graph.
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Proof. By Lemma 5.10, c2ðGÞ � m: The first statement fol-
lows, with jVðGÞj ¼ 3m: The second statement follows from
Lemma 5.9. w

For each of the first five categories of cubic graphs
defined in Table 1, we have given a construction to produce
a graph G with an arbitrarily large difference between c2ðGÞ
and the lower bound djVðGÞjþ2

4 e: However, for all of the
triangle-free graphs, while the difference may be large, the

ratio c2ðGÞ
jVðGÞj approaches 1

4 , and hence the ratio c2ðGÞ
djVðGÞþ2

4 e
approaches 1, as jVðGÞj becomes large. By contrast, for the

girth 3 graphs we have constructed in this section, c2ðGÞ
jVðGÞj

approaches 1
3 as jVðGÞj becomes large. In the next section

we determine whether this ratio can be greater than 1
4 ,

asymptotically, for triangle-free graphs.

5.2. Three-edge connected cubic graphs

In the previous section we constructed infinite families of
graphs for which the difference between the 2-conversion
number and the lower bound (2) could be made arbitrarily
large. All of these examples—in fact, all examples we have
seen so far that do not meet the lower bound—contain tri-
angles or have connectivity at most 2. We also saw infinite

families of graphs for which the ratio c2ðGÞ
jVðGÞj exceeds

1
4 asymp-

totically (in jVðGÞj), but all of these examples have girth 3.
These observations lead us to the following two questions.

Question 5.12. Is there a family of 3-connected, triangle-

free cubic graphs G such that c2ðGÞ > djVðGÞjþ2
4 e?

Question 5.13. Is there a family of triangle-free cubic
graphs such that

c2ðGÞ
jVðGÞj ! r >

1
4

as jVðGÞj ! 1?

In this section we answer both questions in the affirma-
tive. In fact, for Question 5.12 we describe a construction
for an infinite family of 3-connected graphs of arbitrary
girth such that the difference between c2 and the lower

bound (2) increases with order. The same family of graphs
provides an answer to Question 5.13.

We begin by defining a graph product that produces an
r-regular graph from two smaller r-regular graphs. In this
section we use this product with r¼ 3.

Definition 5.14. Let G and A be r-regular graphs, r � 2,
and define A� ¼ A� a, for any vertex a. Let C be the class
of graphs that can be obtained by replacing each vertex v of
G by a copy A�

v of A– and joining a degree r – 1 vertex of
A�
u to a degree r – 1 vertex of A�

v if and only if uv 2 EðGÞ:
We denote by G � A� any graph in C:

This construction can yield non-isomorphic graphs
depending on a and on how the copies of A– are joined. We
will not need to differentiate between different elements of
C, as our results hold for any such graph. Figure 4 shows an
example of a cubic graph A with vertex a identified, and a
graph K3, 3 � ðA� aÞ:

Proposition 5.16 asserts that if A is a cubic graph of
order 4r then G � A� exceeds the bound (2). To answer
Question 5.12 we then show that the construction can yield
3-edge connected—and therefore 3-connected1— graphs of
arbitrary girth; this is achieved in Propositions 5.17 and
5.18. We begin with a lemma which guarantees that any
2-conversion set of G � A� contains at least r vertices from
each copy of A–.

Lemma 5.15. If A is a cubic graph of order 4r and A� ¼
A� a is an induced subgraph of a cubic graph H, then any
2-conversion set of H contains at least r vertices of A–.

Proof. Suppose H has a 2-conversion set S such that jS \
VðA�Þj < r: Then ðS \ VðA�Þ [ fag is a 2-conversion set
of A of cardinality at most r. However, by (2), c2ðAÞ �
d4rþ2

4 e ¼ 4rþ4
4 ¼ r þ 1: w

Proposition 5.16. For any cubic graphs G of order n � 6
and A of order 4r,

c2ðG � A�Þ �
� jVðG � A�Þj þ 2

4

�
�

�
n� 2
4

�
:

Proof. Let S be a 2-conversion set of G � A�: By Lemma
5.15, S contains at least r vertices of each copy of A–,
hence jSj � nr: The result follows because VðG � A�Þ has
order ð4r � 1Þn: w

Proposition 5.17. Let A and G be cubic graphs. Then G �
A� has girth at least g(A).

Proof. Let g(A) ¼ g and let C be any cycle in G � A�: If C is
contained in any copy of A–, then C has length at least g(A).
If C is not contained in a copy of A–, then for any copy A�

v

of A–, C \ A�
v ¼ ; or C \ A�

v is a single path, since each
copy of A– is joined by only three edges to the rest of G �
A�: Therefore C consists of segments Q1,Q2, :::,Qs of paths
in distinct copies of A–, together with edges ei joining Qi to
Qiþ1, i ¼ 1, :::, s� 1, and es joining Qs to Q1. Each Qi has
length at least g – 2, otherwise Qi and the vertex a that was

Figure 4. An example of the construction of a cubic graph G � A�:
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removed from A to form A– produce a cycle of length less
than g in A. Therefore C has length at least sðg � 2Þ: Since
G has no multiple edges, s � 3, and the result follows. w

We next show that the product G � A� preserves 3-
connectivity.

Proposition 5.18. Let A and G be 3-connected cubic graphs.
Then G � A� is 3-connected.

Proof. Let x and y be any distinct vertices of G � A�, say
x 2 VðA�

u Þ and y 2 VðA�
v Þ, for u, v 2 VðGÞ: Let ui and vi,

i¼ 1, 2, 3, be the vertices of degree 3 in A�
u and A�

v ,
respectively.

First, suppose u¼ v. Since A is 3-connected, A contains
three internally disjoint x – y paths, at most one of which
contains a. These correspond to three internally disjoint x –
y paths in G � A� : at least two are contained in A�

v and the
third may contain the vertices v1 and v2, say, and a v1 � v2
path in ðG � A�Þ � A�

v :
Now suppose u 6¼ v: Then in A, x is connected to a by

three internally disjoint paths; therefore in A–, x is con-
nected to the ui’s by three internally disjoint paths.
Similarly, in A�

v , y is connected to the vi by three internally
disjoint paths. Since G is 3-connected, there are, without
loss of generality, three internally disjoint paths ui � vi,
i¼ 1, 2, 3. Therefore x is connected to y in G � A� by three
internally disjoint paths. w

Together, Lemma 5.16 and Propositions 5.17 and 5.18
imply that if A is a 3-connected cubic graph of order 4r and
girth g, and G is a 3-connected cubic graph of order n � 6,
then G � A� is a 3-connected cubic graph of girth at least g
such that c2ðG � A�Þ exceeds the bound (2) by at least
bn�2

4 c : We note that for g¼ 3, we may use A ¼ K4, and
then the graph G � A� is the triangle-replaced graph of G.
That is, the 3-connected cubic graphs of girth 3 that we pre-
sented in Proposition 5.11 are obtainable from the construc-
tion presented in this section.

It remains to show that there exist appropriate cubic
graphs A and G for g � 4: For G, we simply require a 3-
connected cubic graph of order at least 6. There are many
such graphs; we highlight one example, which will also help
us find A.

For k � 2 and g � 3, a (k, g)-cage is a graph that has the
least number of vertices among all k-regular graphs with
girth g. Erd€os and Sachs [13], as cited in [5], proved that (k,
g)-cages exist for all k � 2 and g � 3, and Daven and
Rodger [7] showed that all (k, g)-cages are 3-connected.
Therefore a ð3, gÞ-cage is an appropriate choice for G, and if
the number of vertices in such a graph is a multiple of 4
then we may use it for A as well. (In fact, we may use a
ð3, g1Þ-cage for G, for any g1 � 3, and a ð3, g2Þ-cage for A,
provided that this graph has order 4r. The girth of G � A�

will then be at least g2, as shown in Proposition 5.17.)
If, for the specified girth g � 4, a ð3, gÞ-cage B has order

m � 2 ðmod4Þ, we can obtain a 3-connected cubic graph
of order 4r and girth at least g by modifying and joining
together two copies of any 3-connected cubic graph of order
4r þ 2 and girth at least g (such as B).

Theorem 5.19. For every g � 3 there exists a 3-connected
cubic graph of order 4r and girth at least g.

Proof. For every g � 3 there exists a 3-connected cubic
graph with girth g, for example a ð3, gÞ-cage. The (3, 3)-cage
is K4, so the statement is true for g¼ 3. Let g � 4 and sup-
pose B is a 3-connected cubic graph of girth g and order
n � 2 ðmod4Þ: Let u and v be two adjacent vertices of B.
Since g � 4, u and v have no common neighbor. Let a and
b be the neighbors of u in B – v and let c and d be the
neighbors of v in B – u. Consider two copies H and H0 of
B� fu, vg; for each vertex v in H, we denote its counterpart
in H0 by v0: Let A be the cubic graph obtained from H and
H0 by adding edges aa0, bb0, cd0 and dc0: We show that A is
3-edge connected and has girth at least g. Clearly, any cycle
in H has length at least g, since it is also a cycle in B. Let C
be a cycle in A containing vertices from both H and H0 and
suppose C has length ‘: Then, since the vertices a0, b0, c0

and d0 are all distinct, C \ H is a path P of length at most
‘� 3 whose endpoints are two of a, b, c and d. If the end-
points of P are a and b then P þ au þ ub is a cycle in B of
length at most ‘� 1 in B, so ‘� 1 � g: If the endpoints
of P are a and c, then P þ auþ uvþ vcþ is a cycle in B of
length at most ‘, so ‘ � g: It remains to show that A is 3-
connected. Let x be any vertex of H. To see that there are
three edge-disjoint x� x0 paths in A, consider three edge-
disjoint x – v paths in B. Without loss of generality, we may
assume that one contains the edge au, another contains the
edge cv and the third contains the edge dv. Therefore there
are paths x – a, x – c and x – d in H and paths a0 � x0, c0 �
x0 and d0 � x0 in H0 which are all edge-disjoint. Adding the
edges aa0, cd0 and dc0 produces three edge-disjoint x� x0

paths in A. Now let x and y be any two vertices of H. Since
B is 3-connected, H is connected. There are two cases to
show that there are three edge-disjoint x – y paths in A.

Case 1: Suppose there is only one x – y path P in H. Then
u and v are contained in distinct x – y paths of B, one of
which contains the subpath a� u� b and the other con-
tains the subpath c� v� d: Then H contains edge-disjoint
paths x – a, b – y, x – c, d – y, each of which is disjoint
from P, and these paths are copied in H0: Therefore A con-
tains three edge-disjoint x – y paths, ðx� aÞ þ aa0 þ ða0 �
x0Þ þ ðx0 � c0Þ þ c0d þ ðd � yÞ, ðx� cÞ þ cd0 þ ðd0 � y0Þ þ
ðy0 � b0Þ þ b0bþ ðb� yÞ, and P.

Case 2: Suppose there are exactly two edge-disjoint x – y
paths P1 and P2 in H. Then a third such path in B contains
u or v (maybe both), and therefore it contains two of a, b, c
and d, say a and b (the other cases are similar). Since H0 is
connected there is a path in H0 between any two of
a0, b0, c0, d0: Then there is a path ðx� aÞ þ aa0 þ ða0 � b0Þ þ
b0bþ ðb0 � yÞ in A which is edge-disjoint from P1 and P2.
Finally, we must show that for any two vertices x, y of H,
there are three edge-disjoint x� y0 paths in A. Let X be any
2-edge cut in A. Since there are three edge-disjoint x – y
paths in A, x and y are in the same component of A – X.
Likewise, since there are three edge-disjoint y� y0 paths in
A, y and y0 are in the same component of A – X. Therefore
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x and y0 are in the same component of A – X. Since X is any
2-edge cut, there are three edge-disjoint x� y0 paths in A. w

We are now ready to answer Question 5.12 by proving
the existence of 3-connected cubic graphs of arbitrarily large
girth that fail to meet the lower bound (2). However, chro-
matic index (either 3, corresponding to Class 1, or 4, corre-
sponding to Class 2) was central to our discussion in the
previous section, and we have not yet discussed the chro-
matic index of the graphs we have constructed to answer
Question 5.12. In Proposition 5.21 we show that the con-
struction produces a Class 1 graph if and only if G and A
are both Class 1. We need a lemma, the proof of which can
be found in, e.g., [37, Lemma 4.28].

Lemma 5.20. If H is a cubic Class 2 graph, then any 4-edge
coloring of H contains at least two edges of each color, and
H – v is Class 2 for each v 2 VðHÞ:

Proposition 5.21. For any cubic graphs G and A, the graph
G � A� is Class 1 if and only if G and A are Class 1.

Proof. If A is Class 2, then A– is Class 2, by Lemma 5.20,
and therefore G � A� is Class 2. Hence assume A is Class 1.
Say A� ¼ A� a and let a1, a2, a3 be the vertices of A adja-
cent to a. Arguing as in the proof of Lemma 5.20, we see
that in any 3-edge coloring of A–, a1, a2 and a3 are incident
with edges colored with three different pairs of colors.
Assume G is Class 1 and consider any 3-edge colorings of G
and A– in the same colors. Coloring the edges A�

u A
�
v of G �

A� the same color as uv in G and suitably permuting the
colors in the copies of A– produces a 3-edge coloring of G �
A�: Now assume G is Class 2 and suppose for a contradic-
tion that G � A� has a 3-edge coloring. For any copy A�

v of
A–, let xa1, ya2 and za3 be the three edges that join A�

v to
the rest of G � A�: Since a1, a2 and a3 are incident with
edges colored with three different pairs of colors, xa1, ya2
and za3 have three different colors. Contracting each copy
of A– to a single vertex yields G as well as a 3-edge coloring
of G, which is a contradiction. w

Theorem 5.22. For any g � 3 and m 2 N, there exists a 3-
connected cubic graph H ¼ G � A� of girth at least g such

that c2ðHÞ � 	 jVðHÞjþ2
4


 � m. Moreover, H is Class 1 if and
only if G and A are Class 1.

Proof. Theorem 5.19 guarantees the existence of a 3-con-
nected cubic graph of order 4r and girth at least g. Let A be

such a graph and let G be any 3-connected cubic graph of
order at least 4mþ 2: Then by Propositions 5.17 and 5.18,
H ¼ G � A� is a 3-connected cubic graph of girth at least g,
and by Proposition 5.16, c2ðHÞ exceeds the lower bound (2)
by at least m. The chromatic index of H is given by
Proposition 5.21. w

Any Class 2, girth g � 4 graph G � A� produced by our
construction is a Gardner snark. For example, taking A to
be the flower snark J5, a Gardner snark of order 20 and
girth 5, and any 3-connected cubic graph G, G � A� is Class
2 (by Proposition 5.21), 3-connected and has girth at least 5.
Therefore it is a Gardner snark (in fact it satisfies a more
restrictive definition of snarks, since it has girth greater than
4 and connectivity greater than 2).

We now turn our attention to Question 5.13. Consider a
3-connected cubic graph G of order n and a triangle-free 3-
connected cubic graph A of order 4r, as required for our
construction of the graph G � A�: In Lemma 5.15 we
showed that any minimum 2-conversion set of G � A� con-
tains at least r vertices from each copy of A–. Therefore

c2ðG � A�Þ
jVðG � A�Þj �

rn
ð4r � 1Þn ¼ r

4r � 1
>

1
4
:

For example, taking A to be the graph shown in Figure
4, and G any 3-connected cubic graph, G � A� has
c2ðG�A�Þ
jVðG�A�Þj ¼ 3

11 :

In fact, it follows from the proof of Lemma 5.15 that any
2-conversion set of G � A� contains at least c2ðAÞ � 1 verti-
ces from every copy of A–, with c2ðAÞ � r þ 1 by (2).
Therefore, if c2ðAÞ ¼ r þ 1þ s, s � 0, then every 2-conver-
sion set of G � A� contains at least rþ s vertices from each

copy of A–. Therefore c2ðG�A�Þ
jVðG�A�Þj ¼ rþs

4r�1 : That is, by choosing

A to be a cubic graph of order 4r that does not meet the

lower bound (2), we can increase the ratio c2ðG�A�Þ
jVðG�A�Þj :

Choosing smaller values of r also increases the ratio. For
example, if A is a cubic graph of order 8, then c2ðAÞ ¼ 3
(all cubic graphs of order 8 meet the lower bound (2)) and
for any cubic graph G, any 2-conversion set of G � A� con-
tains at least two vertices from each copy of A–. Then
c2ðG�A�Þ
jVðG�A�Þj ¼ 2

7 : Examples of 3-connected cubic graphs of order

8 with girth 4—suitable choices for A in the construction of
triangle-free 3-connected cubic graphs with ratio 2

7—are
shown in Figure 5.

For comparison we briefly mention some upper bounds on
the 2-conversion number of cubic graphs. Let G1 and G2 be
the graphs in Figure 5 and let G be the class of cubic graphs
obtained from trees, all of whose internal vertices have degree
3, by replacing each internal vertex by a triangle and each leaf
by a K4 in which one edge has been subdivided.

Theorem 5.23. Let G be a cubic graph of order n> 4.

(a) [4, 25] If G 2 G, then c2ðGÞ ¼ 3nþ2
8 , other-

wise c2ðGÞ � 3n
8 :

(b) [39] If G is triangle-free and G 62 fG1,G2g,
then c2ðGÞ � n

3 :

Figure 5. The graphs G1 and G2 of Theorem 5.23.
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(c) [12] If G is 2-connected, then c2ðGÞ � nþ2
3 and this

bound is sharp.

Together, Equation (2) and Theorem 5.23 bound the
value of c2ðGÞ between dnþ2

4 e and b3nþ2
8 c for cubic graphs

G of order n> 4. Observe that the ratio c2ðGÞ
jVðGÞj cannot exceed

1
3 for any triangle-free cubic graph. It also follows from
Theorem 5.23 that this ratio is bounded asymptotically by 3

8
for all cubic graphs, and that the asymptotic bound is
attained by the infinite family G: The graphs in G all have
girth 3, so the following question remains open.

Question 5.24. What is the largest ratio c2ðHÞ
jVðHÞj achievable by

an infinite family of 3-connected triangle-free cubic graphs H?

Note

1. The connectivity of any cubic graph is equal to its edge
connectivity [5, Theorem 4.6].
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