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ABSTRACT
We discuss a mathematical model for the equatorial current across the
Pacific Ocean, obtained as a leading-order solution to the Navier-Stokes
governing equations for geophysical flows in a rotating frame.
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1. Introduction

Equatorial currents are among the most significant currents in the oceans, being an essential part of
the flow. Classical theories ignore their effect, but in recent years their significance was recognized
and various theoretical investigations were devoted to this important aspect of geophysical flows.

The main features of the equatorial current are that the current is mainly azimuthal and presents a
strong depth-variation in the upper 500m of the ocean (of about 4 km mean depth), while at depths
larger than 500m there is practically no motion. The most significant features of the depth-variation
consist of a westward near-surface current (induced by the trade winds that blow towards the west)
and a stronger eastward flow – the Equatorial Undercurrent (EUC) that is a major feature of equato-
rial circulation. It occurs in Pacific (Cromwell Current), Atlantic (Lomonosov Current) and Indian
oceans, but only in the first two of them has a permanent character. In the equatorial Indian Ocean
region it is temporary and appears in its western part in spring towards the end of the northeast
monsoon season (see [1]).

A lot of attention is paid to study and mathematical modeling of the ocean flows in the equatorial
regions and their underlying currents, using the f - andβ-plain approximations and dealingwithwave
solutions for the governing equations in Lagrangian coordinates (see discussions in [2–8], [14–35]).
In addition, a recent research (see [9]) proposed an approach to explain how such a current with flow-
reversal might be induced by the action of the wind.Moreover the velocity profile derived in [10], also
allowed to include the westward Equatorial Intermediate Current (EIC), found under the EUC, and
which was not taken into account in [9]. The present paper is a natural continuation of [10], where
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2 K. MARYNETS

we prove that not only polynomial profiles of the velocity components, but also the hyperbolic ones
allow us to model the aforementioned flow behavior in the equatorial regions.

2. Preliminaries

Consider the Navier–Stokes equation and the equation of mass conservation in rotating spherical
coordinates (see discussion in [9])

(
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r′2
∂

∂r′
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respectively, where

• (ϕ, θ , r′) are the near the Equator spherical coordinates with r′ is the radius;
• θ ∈ (−π/2,π/2) is the angle of latitude and ϕ ∈ [0, 2π) is the angle of longitude;
• (eϕ , eθ , er) is the system of unit vectors, with eϕ pointing from West to East, eθ from South to

North and er upwards;
• (u′, v′,w′) are the ocean flow velocity components;
• p′(ϕ, θ , r′, t′) is the pressure in the fluid;
• ρ′ the constant density;
• Ω ′ ≈ 7.29 × 10−5 rad s−1 is the constant rate of rotation of the Earth;
• g′ = constant ≈ 9.81 m s−2 is the gravitational acceleration.

Here the notations with primes mean the physical (dimensional) variables. These will be removed
after the non-dimensionalization of Equations (1) and (2).

In the Navier–Stokes equation (1) the coefficients of the viscous terms are taken to be constant,
where ν′

1 represents the vertical and ν
′
2 the horizontal kinematic eddy viscosities.

At the ocean’s surface the dynamic and kinematic boundary constraints and the wind-stress are
expressed by

p′ = P′
s(ϕ, θ , t

′) on r′ = R′ + h′(ϕ, θ , t′), (3)

w′ = ∂h′

∂t′
+ u′

r′ cos θ
∂h′

∂ϕ
+ v′

r′
∂h′

∂θ
on r′ = R′ + h′(ϕ, θ , t′), (4)
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⎧⎪⎨
⎪⎩
τ ′
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′) = ρ′ν′
1
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∂r′
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τ ′
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′) = ρ′ν′
1
∂v′

∂r′
,

on r′ = R′ + h′(ϕ, θ , t′), (5)

respectively, where

• R′ ≈ 6378 km is the radius of the spherical Earth;
• P′

s is the surface pressure;
• (τ ′

1, τ
′
2) is the surface wind stress, related to the vertical eddy viscosity by ν′

1 = σ ′|(τ ′
1, τ

′
2)| on the

surface;
• σ ′ is a (dimensional) constant;
• (τ ′

1, τ
′
2) = cDρ′

airU
′
wind|U ′

wind|, ρ′
air ≈ 1.2 kg/m3 is the density of air;

• cD ≈ 0.0013 is a (dimensionless) drag coefficient.

The boundary condition at the bottom of the ocean r′ = R′ + d′(ϕ, θ) for the viscous flow is given
by relation

u′ = v′ = w′ = 0 on r′ = R′ + d′(ϕ, θ). (6)

By setting r′ = R′ + z′ and

p′ = ρ′ (−g′r′ + 1
2 r

′2�′2 cos2 θ
) + P′(ϕ, θ , r′, t′), (7)

the problem can be non-dimensionalized via following substitutions (see the discussion in [9]):

z′ = D′z, (u′, v′,w′) = U ′(u, v, kw), P′ = ρ′U ′2P, (8)

where

• D′ ≈ 200m is the average depth of the near-surface layer;
• U ′ ≈ 0.1m s−1 is the typical speed of mid-latitude ocean currents at the surface;
• k < 10−4 is the scaling factor for the vertical velocity.

In terms of the the shallow-water parameter

ε = D′/R′,

with a typical value of the order 10−5, we rewrite the governing equation (1) and the equation of mass
conservation (2) for steady flow in the non-dimensional form
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and
1
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+ k/ε
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∂z
{
(1 + εz)2w

} = 0, (10)

respectively, whereω = �′R′/U ′ = O(1) andRei = U ′R′/ν′
j (j = 1, 2) are the inverse Rossby number

and the pair of Reynolds numbers, respectively.
In addition, for (h′, d′) = D′(h, d), the non-dimensional boundary restrictions are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P = Ps(ϕ, θ),
∂u
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k
ε
w = u

(1 + εh) cos θ
∂h
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+ v
1 + εh

∂h
∂θ

on z = h(ϕ, θ), (12)

(u, v) decays rapidly below z = h(ϕ, θ). (13)

In [9] Constantin, Johnson show that for the equatorial Pacific flows it is adequate to consider

ω = O(1),
1
Re2

= ε2μ with μ = ν′
2
ν′
1
.

By multiplication of the third component in the governing equation (9) by ε, we obtain the
Navier-Stokes system with Coriolis effects in the non-dimensional form:
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In the non-dimensional system of Equations (14) and (10), the parameters (ω,μ, k, ε) are held fixed.
In fact the shallow-watermodel of the equatorial currentmay be obtained by passing to the limit for

ε → 0 and k/ε → 0 (see the discussion in [9]). This regime ignores the vertical velocity component
and the flow dynamics, governed by the horizontal flow components u and v, subject to the nonlinear
system

(
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which featuresCoriolis terms, viscous terms and the horizontal pressure gradients.On the other hand,
the boundary conditions (11)–(13) are simplified to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P = Ps(ϕ, θ),
∂u
∂z

= τ1(ϕ, θ),
∂v
∂z

= τ2(ϕ, θ),

on z = 0, (18)

(u, v) decays rapidly below z = 0. (19)

since setting w = 0 and h = 0 makes (12) irrelevant.

3. Main results

Relation (17) ensures (see the discussion in [11]) the existence of a stream function in spherical
coordinates, ψ(ϕ, θ , z), such that

u = −ψθ , v = 1
cos θ

ψϕ . (20)

Then we can exclude the pressure terms from Equations (15) and (16) to derive (see [9]) the vorticity
equation

(
ψϕ

∂

∂θ
− ψθ

∂

∂ϕ

) (
1

cos2 θ
ψϕϕ − ψθ tan θ + ψθθ + 2ω sin θ

)

= cos θ
(

1
cos2 θ

ψϕϕ − ψθ tan θ + ψθθ

)
zz
. (21)

We restrict our attention to the equatorial zonal band located in the Pacific between between 160◦E
and 80◦W. Its characteristic feature is the symmetry about the Equator and it corresponds to the angle
of latitude θ close to 0 and the angle of longitude ϕ near ϕ0 ∈ (8π/9, 14π/9). For the twice differen-
tiable functions α(z) and β(z), we look for longitude-independent meridional velocity components
under a linear dependence of the azimuthal velocity component on the longitude. As showed in [9],
this leads to the stream function

ψ(ϕ, θ , z) = {ϕα(z)+ β(z)} ln
[

cos θ
1 − sin θ

]
− ω

{
sin θ + ln

[
cos θ

1 − sin θ

]}
, (22)

satisfying the governing equation (21), valid for |ϕ − ϕ0| < ϕ̂ and |θ | < θ̂ with somefixed (and small)
values ϕ̂ > 0 and θ̂ > 0.

Taking into account relations (20), we obtain the horizontal velocity field and the boundary
constraints given by

u(ϕ, θ , z) = −ϕα(z)+ β(z)
cos θ

+ ω
sin2 θ
cos θ

,

v(ϕ, θ , z) = α(z)
cos θ

ln
[

cos θ
1 − sin θ

]
, (23)
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and

τ1(θ ,ϕ) = −ϕα
′(0)+ β ′(0)
cos θ

,

τ2(θ ,ϕ) = α′(0)
cos θ

ln
[

cos θ
1 − sin θ

]
(24)

respectively.
We will interpret the solution (23) as defined in the near-surface ocean region above the thermo-

cline z = −T, where we require the no-stress boundary condition

uz = vz = 0 on z = −T. (25)

The fundamental characteristic of the tradewinds in the equatorial Pacific is that, in each hemisphere,
they are oriented towards the Equator, blowing westwards with a more stronger westward direction
as the Equator (θ = 0) is approached. This property holds for the wind stress specified in (24) if

α′(0) < 0 < ϕα′(0)+ β ′(0) (26)

for all relevant values of the longitude ϕ, that is, for −ϕ̂ < ϕ − ϕ0 < ϕ̂. Note that this orientation
of the wind, in combination with the fact that the vanishing of the meridional component of the
Coriolis force, ω sin θ , at the Equator prevents it from inducing a deflection from the wind direction
(as is typical in Ekman theory atmid-latitudes), leads to a near-surface current thatmovingwestward.
This is ensured for the solution (23) if

ϕα(0)+ β(0) > 0. (27)

Moreover, if

α(0) > 0, (28)

then the meridional flow described by (23) is poleward near the surface. Note that the main features
of the near-surface flow in the equatorial Pacific are a westward motion at the surface and a pole-
ward meridional flow (see the discussion in [12]). One can see that a linear or quadratic dependence
on the z-variable of the azimuthal velocity profile u(ϕ, θ , z) of type (23) can not accommodate the
constraints (26)–(28) and (25).

In [9] Constantin, Johnson showed that at any fixed longitude ϕ ∈ (ϕ0, 1312ϕ0) the constraints
(25)–(28) are accommodated by the cubic azimuthal profile that represents the flow which feathtures
the westward drift at the surface and an eastward jet along the termocline.

In addition, a recent result [see discussion in [10]] proved that it is possible to capture not only
the presence of the eastward EUC but also the presence of the weaker westward EIC below the EUC,
which wasn’t taken into account in [9]. In particular a suitable quintic polynomial expressions for the
azimuthal velocity profile

α(z) = 144
2125

(195T2 − 2264)z5

T5 + 36
245

(195T2 − 2264)z4

T4 − 1
2
z2 − Tz + 1,

β(z) = ϕ0

{
18
2125

(2285T2 − 24982)z4

T4 + 1
4250

141180T2 − 1487411
T3 z3

+
(

3
340

1260T2 − 11531
T2 + 1

)
z2 + 2Tz

}

can accommodate this regime.
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Figure 1. Depiction of the vertical profile of the current in the upper 200–400m of the Pacific Ocean along the Equator: the west-
wardwind-drift current is near the surface z = 0, below it is the eastward EUC that dominates the subsurface flows, with theweaker
westward EIC found directly below the EUC (see the data provided in [13]).

Moreover the following theorem proves that also a hyperbolic azimuthal velocity profile coupled
with the third-order polynomial is suitable in modeling of the aforementioned currents.

Theorem 3.1. An equatorial current profile featuring an eastward jet at mid-depth of the near-surface
layer above the thermocline z = −T, a weak eastward jet just above the thermocline and a strong west-
ward jet near the surface z = 0 is accommodated by hyperbolic functions coupled with the third-order
polynomial

α(z) =
(
z3 + 21T

40
z2 − 17T2

40
z + T3

20

)
sinh(z + T),

β(z) = ϕ0

((
z2 + Tz

)
T sinh(z + T)− 1

100

)
.

Proof: It is easy to show that the azimuthal velocity component u(ϕ, θ , z) defined in the first relation
of system (23), vanishes at z = −T/10, z = −T/2 and z = −4T/5, giving the profile depicted in
Figure 1.

Simple calculations prove that

α(0) = T3

20
sinh(T) > 0,

φ0α(0)+ β(0) = φ0

(
T3

20
sinh(T)− 1

100

)
> 0

α′(0) = −17T2

40
sinh(T)+ T3

20
cosh(T) < 0,
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φ0α
′(0)+ β ′(0) = T2

40
φ0(2T cosh(T)+ 23 sinh(T)) > 0,

α′(−T) = 0,

β ′(−T) = 0.

i.e. all the constraints (25)–(28) hold. �
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