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Cycle stochastic graphs: Structural and forbidden graph characterizations
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ABSTRACT
A vertex (respectively, edge) cycle stochastic function of a graph G is a labeling of vertices
(respectively, edges) by a non-negative real valued function fV : VðGÞ ! R

þ [ f0g (respectively,
fE : EðGÞ ! R

þ [ f0g) such that for every cycle of G, the sum of labels of its vertices (respectively,
edges) is 1. The graphs where we can define such a function are called vertex cycle stochastic
graphs (respectively, edge cycle stochastic graphs). In this paper, we provide a structure theorem
for biconnected cycle stochastic graphs, which is extended to characterize edge cycle stochastic
graphs. We also find a minimal forbidden graph characterization for biconnected vertex cycle sto-
chastic graphs and its description for vertex cycle stochastic graphs.
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1. Introduction

Graph labeling is well studied in graph theory with wide
applications in communications networks, astronomy, data-
base management, secret sharing schemes etc. (see [3] for a
survey). Berge [2] observed such an application in strongly
perfect graphs (where every induced subgraph contains an
independent set of vertices that “hits” every maximal clique).
He defined stochastic graphs where every vertex is labelled
with a non-negative real number such that the sum of vertex
labels of every maximal clique is one. He proved that a
graph is strongly perfect if and only if it is perfect and all its
induced subgraphs are stochastic. We extend his definition
to the following, where maximal cliques are replaced by
cycles (such extensions are studied in [7]).

Definition 1. A vertex cycle stochastic function of a graph
G is a labeling of vertices fV : VðGÞ ! R

þ [ f0g such that
fVðCÞ ¼

P
v2VðCÞ fVðvÞ ¼ 1, for every cycle C of G. Vertex

stochastic graphs are those graphs that have vertex cycle sto-
chastic functions.

In [1], the authors considered edge labelings instead of
vertex labelings and gave the following definition.

Definition 2. An edge cycle stochastic function of a graph
G is a labeling of edges fE : EðGÞ ! R

þ [ f0g such that
fEðCÞ ¼

P
e2EðCÞ fEðeÞ ¼ 1, for every cycle C of G. Edge sto-

chastic graphs, denoted GECS, are those graphs that have
edge cycle stochastic functions.

One can combine both the definitions and consider ver-
tex as well as edge labelings fVE : VðGÞ [ EðGÞ ! R

þ [ f0g
such that fVEðCÞ ¼

P
v2VðCÞ fVEðvÞ þ

P
e2EðCÞ fVEðeÞ ¼ 1

holds for every cycle C of G. This class of graphs (where we
can define fVE) is equivalent to Edge stochastic graphs:
define fEðuvÞ ¼ fVEðuvÞ þ 1

2 ½fVEðuÞ þ fVEðvÞ�; so for cycle C,
P

v2VðCÞ fVEðvÞ þ
P

e2EðCÞ fVEðeÞ ¼ 1 implies
P

fEðuvÞ ¼ 1:

The other direction is trivial.
We denote the class of Vertex stochastic graphs and the

class of Edge stochastic graphs as GVCS and GECS, respect-
ively. They both are called as cycle stochastic graphs. GVCS is
contained in GECS (label edge uv as fEðuvÞ ¼ 1

2 ½fVðuÞþ
fVðvÞ�). Later we show this containment to be strict.

A straight forward application of graphs in GVCS is in
resource allotment [7]. Stochastic graphs have applications
in random walks and matrix theory (see [7]). In this article
we give structural as well as forbidden characterization for
cycle stochastic graphs.

In the first part of this article, we give structural charac-
terizations of cycle stochastic graphs. We need two classes of
biconnected series-parallel graphs GRSP and GGRSP for these
characterizations.

Definition 3. A biconnected graph G is in GRSP if G has a
cutset S such that

(1) S is an independent set,
(2) S has exactly two vertices of any cycle in G and
(3) G n S is union of two disjoint trees T1 and T2.

A graph is in GGRSP (precise definition is given later) if it
is obtained by adding some restricted edges to graphs in
GRSP: Now we are ready to present our structural
characterizations.
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Theorem 4. A biconnected graph G is in GVCS if and only if
G 2 GRSP or there exist a vertex v 2 VðGÞ such that G n fvg
is a tree.

Theorem 5. A graph G is in GECS if and only if its blocks Bi
belong to GGRSP or there exist a vertex vi 2 Bi such that
G½VðBiÞ n fvig� is a tree.

The second part of this article deals with forbidden graph
characterizations of cycle stochastic graphs. A class of graphs
G is said to be hereditary (respectively, strongly hereditary) if
every induced subgraph (respectively, subgraph) of G 2 G is
in G: The folklore result of Greenwell et al. [5] states that any
hereditary class of graphs G can be characterized by a set of
minimal forbidden graphs H: We say G 2 G to be H-free.

GECS and GVCS are strongly hereditary. Let H denote the
family of graphs shown in Figure 1. The forbidden graph char-
acterization of GECS was found by Balasubramanian et al. [1],
as the first five classes of H: The following result gives such a
characterization for biconnected graphs in GVCS:

Theorem 6. A biconnected graph is in GVCS if and only if it
is H–free.

Using this we give a description of forbidden graph char-
acterization of GVCS:

1.1. Organization

In the rest of this section, we give the necessary definitions.
In Section 2, we prove the structural results, namely
Theorem 4 and 5. In Section 3, we prove the forbidden
graph characterizations, namely Theorem 6 and description
of forbidden graph characterization of GVCS:

1.2. Definitions

We follow the notations of West [9]. A chord of a cycle is
an edge joining two of its non-adjacent vertices. A graph,
other than a cycle, is said to be chordless if none of the
cycles in it contain a chord. To avoid conflicts, we assume
cycles are not chordless.

A vertex (respectively, edge) is said to be a cut vertex
(respectively, cut edge) of a graph G, if its removal discon-
nects G. A graph is said to be biconnected if it has no cut ver-
tices. A block B of a graph is a maximal biconnected graph.

2. Structural characterizations: Proofs of Theorems
4 and 5

The idea of the proof of Theorem 4 is roughly the following.
Let G be a biconnected graph in GECS (since GVCS � GECS, it

is enough to consider G 2 GECS). Since G is biconnected, it
has a cycle. If any of the cycles have a chord, then we prove
G 2 GVCS if and only if there exists a vertex whose removal
makes G a tree. If G is chordless then we prove G 2 GVCS if
and only if G 2 GRSP: In order to prove these results we use
the forbidden graph characterization of Balasubramanium
et al. [1].

Before going into the proof of Theorem 4, we need the
following construction.

2.1. Zone decomposition

In this construction, we divide a chordless biconnected
graph G 2 GECS into zones, which are composed of 1–zones:
consisting of one path, and 2–zones: consisting of two paths.
Let C be a cycle in G. Since G is chordless, it contains verti-
ces a and b that are connected by a path P. Let G1 ¼
C [ P : we update Gi as we proceed. Now G1 is a collection
of three ab–paths, each of which is a 1–zone.

Consider a vertex v 2 VðGÞ n VðGiÞ with internally dis-
joint paths, Pv1 and Pv2 , to Gi. The endpoints of Pv1 and Pv2
in Gi, say v1 and v2 lie in one of the 1–zones, else a
K4–subdivision is induced (and then G 62 GECS : see Figure
1.1). If v1 and v2 are not a and b, then the 1–zone in Gi

containing v1 and v2 is divided into a 1–zone v1v2 and a
2–zone ðav1, v2bÞ: (Note that a path in a 2–zone can be a
vertex.) Also Pv1 [ Pv2ð¼ v1vv2–path) is a new 1–zone. If v1
and v2 are a and b, then just one new 1–zone Pv1 [ Pv2 is
introduced. Update Gi as Gi [ Pv1 [ Pv2 :

Consider another vertex u 2 VðGÞ n VðGiÞ with two
internally disjoint paths, Pu1 and Pu2 , to Gi. Let the end-
points of Pu1 and Pu2 be u1 and u2 in Gi. None of the graphs
in Figure 2.1–2.5 can be induced, else one of the graphs in
Figure 1.1–1.5 is induced (and then G 62 GECS). It can be
checked that graphs in Figure 1.1–1.5 are not induced if u1
and u2 belong to exactly one of the zones of Gi. Update Gi

as Gi [ Pu1 [ Pu2 : Update the zones of Gi. Keep on adding
new vertices and updating the zones till Gi ¼ G (see
Figure 3).

We have the following observations.

Observation 2.1. G is chordless biconnected graph in GECS if
and only if G 2 GRSP:

Proof. For the “if” part: suppose G 2 GRSP, then G is bicon-
nected by definition. To see that G is chordless, suppose for
contrary G has a cycle C with chord ab: Then C [ fabg
induces 3 cycles. It can be checked that the only possibility
of choosing exactly two vertices per cycle whose removal
breaks each cycle into two components is if a,b 2 S, but
then S would not be an independent set, a contradiction.
Now we give an appropriate edge labeling. For each vertex

Figure 1. VCS forbidden graph classes (bold lines denote edges, dashed line denotes paths, dotted lines denote paths that are not edges).
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in the cutset, choose an edge and assign label 1/2 to it; to all
other edges assign label 0. So G is chordless biconnected
graph in GECS:

For the “only if” part: by zone construction, G is divided
into a set of zones (1–zones and 2–zones). By construction
every 1–zone in G has at least one internal vertex. Choose
one such internal vertex of each 1–zone in set S. Clearly S is
a cutset dividing G into exactly two trees. So G 2 GRSP: w

Observation 2.2. The class of chordless biconnected graph in
GECS is equivalent to the chordless biconnected graph in GVCS:

Proof. If G is chordless biconnected graph in GECS then there
is an edge labeling of G where each 1–zone of G has an
edge that has label 1/2. For each 1–zone select the end of
the edge that is an internal vertex of the 1–zone. By assign-
ing labels 1/2 to these vertices and 0 to the rest, we get G 2
GVCS: The other direction follows from the “only if” part of
proof of Observation 2.1. w

Definition 7. GGRSP is the class of graphs obtained after
adding edges (i.e. chords) with end points in the same zone
to graphs in GRSP:

Now we are ready to prove our results.

Proof of Theorem 4. Let G be a biconnected graph in GECS: If
G is a cycle then G 2 GVCS and removing any vertex results in
a path. The rest of the proof follows from these two claims.

Claim 2.1. If G has a cycle C with a chord ab, then G 2
GVCS if and only if G n fag or G n fbg is a tree.

Proof. The “if” part is obvious. We prove the “only if” part.
Assume G 2 GVCS; then fVðaÞ þ fVðbÞ ¼ 1: Any other vertex

v 2 VðGÞ n VðCÞ lies on a cycle containing a and b (since G
is biconnected); so fVðvÞ ¼ 0: So there cannot be any cycle
in G which does not contain a or b. Suppose there is a cycle
containing (wlog) a and not b, then fVðaÞ ¼ 1: So every
cycle in G contains a. Hence G n fag is a tree. 3

Claim 2.2. If G is chordless, then G 2 GVCS if and only
if G 2 GRSP:

Proof. For the “if” part, assign label 1/2 to all vertices in the
cutset and label 0 to rest of the vertices. The “only if” part
follows from Observation 2.1 and 2.2. 3

This completes the proof of Theorem 4. w

We have the following corollary.

Corollary 8. Any biconnected VCS graph can have
a f0, 1=2, 1g–labeling.

Now we prove Theorem 5, which is quite similar to the
proof of Theorem 4.

Proof of Theorem 5. If all blocks of a graph G are in GECS

then G 2 GECS, as each edge belongs to one block and no
new cycles are formed. So it suffices to characterize bicon-
nected graphs in GECS: Let B be such a graph. If B is a cycle
then B 2 GECS and removing any vertex results in a path.
The rest of the proof follows from these two claims.

Claim 2.3. If B is chordless, then B 2 GECS if and only
if B 2 GRSP:

Proof. This is exactly Observation 2.1. 3

Claim 2.4. If B has a cycle C with a chord ab, then B 2 GECS

if and only if B 2 GGRSP:

Proof. For “if” part assign label 1/2 to the chords in B 2
GGRSP and assign label 1/2 to one of the edges adjacent to
each vertex in the cutset of the underlying graph of GRSP

and assign label 0 to rest of the edges.
For “only if” part assume B is a biconnected graph in

GECS: The graph obtained after deleting all the chords in B
is a chordless biconnected graph in GECS (recall GECS is
strongly hereditary), which is characterized in Claim 2.3.
Now add back the chords to get a graph in GGRSP: 3

This completes the proof of Theorem 5. w

Figure 2. Obstructions and allowed configurations.

Figure 3. Chordless cycle: The solid (dashed) lines represent the
1–zones (2–zones).
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3. Minimal forbidden graph characterizations

We begin this section with the proof of Theorem 6.

Proof of Theorem 6. If all blocks of a graph G are in GECS

then G 2 GECS: So the minimal forbidden graph character-
ization of GECS is same as that of biconnected graphs in
GECS: It can be checked that biconnected GVCS is a subset of
biconnected GECS: So the graphs in Figure 1.1–1.5 are also
forbidden in biconnected GVCS:

To see the “only if” part: If a biconnected graph G con-
tains any of graphs in Figures 1.1–1.5, then G 62 GVCS: If G
contains the graph in Figure 1.6, then G 62 GVCS (follows
from Theorem 4).

Now we prove the “if” part. Suppose a biconnected graph
G is H–free. From Theorem 4 and 5, the only graphs that
are in GECS and not in GVCS belong to GGRSP, which are
biconnected. The graph in Figure 1.6 is the only minimal
forbidden graph of GGRSP: So G 62 GGRSP: Hence G 62 GVCS: w

3.1. Minimal forbidden graphs of GVCS

The above characterization can be extended to GVCS: Recall
that if blocks of a graph G belong to GECS, then G 2 GVCS:
However this is not true for GVCS, as there might be conflict
in the labels of the cut vertices. So apart from the forbidden
graphs of biconnected graphs in GVCS, we shall have some
forbidden graphs. Due to minimality every cut vertex
belongs to exactly two blocks.

From the structural analysis in Section 2 we have the fol-
lowing forced labels. For graphs with a chord ab label 0 is
forced on all vertices except a and b. If a label x is forced
on a, then label 1� x is forced on b. Label 1 is forced on a
when there are cycles that pass through a but not b, in
which case label 0 is forced on b. For chordless graphs label
0 is fixed on all vertices of 2–zones; label 1/2 is forced on
each 1–zone, hence if a 1–zone has just one internal vertex

label 1/2 is forced on it. Using these we can form a set of
basic blocks as shown in Figure 4.

We can divide the set of minimal forbidden graphs of
GVCS into two types. In type–1 forbidden graphs, there is a
conflict in labels of the cutvertex. Such graphs can be
obtained by merging two basic block at a vertex which has
different forced label in each block (see Figure 5). In type–2
forbidden graphs, one of the restrictions that every cycle has
label exactly 1 and every 1–zone has label exactly 1/2 is vio-
lated. This can be done by merging each vertex of the cycle
or 1–zone by a basic block at a vertex whose label is forced
in the basic block.

4. Conclusion

In this article, we explored various types of cycle stochastic
graphs and the connections between them. We gave struc-
ture theorems for GECS and biconnected graphs in GVCS: We
also provided an explicit minimal forbidden subgraph char-
acterization for biconnected graphs in GVCS and then
described such a characterization for GVCS:

Regarding graph characteristics, one can observe that
cycle stochastic graphs are series-parallel graphs and hence
many standard graph problems can be solved in linear time
[4, 6, 8]. Graphs in both GVCS and GECS have edge chromatic
number D except when the graph is a odd cycle where it is
3. Apart from the chordless cycle case, this is easy to see.
For the chordless case, it follows from an inductive argu-
ment on the number of 1–zones.
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