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ABSTRACT

In 1991, N. Shalaby conjectured that any additive group Z, where n=1 or 3 (mod 8) and
n > 11, admits a strong Skolem starter and constructed these starters of all admissible orders

KEYWORDS
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11 < n < 57. Shalaby et al. [24] was proved if n = Hf‘:1p‘f’, where p; is a prime number such

that ord(2),

=2 (mod 4) and o; is a non-negative integer, for all i =1, ...k, then Z, admits a

strong Skolem starter. On the other hand, the author [30] gives different families of strong
Skolem starters for Z, than Shalaby et al, where p =3 (mod 8) is an odd prime. Recently, the
author [31] gives different families of strong Skolem starters of Z, than Shalaby et al, where
p =3 (mod 8) and n is an integer greater than 1. In this paper, we give some different fami-
lies of strong Skolem starters of Z,,; where p,q =3 (mod 8) are prime numbers such that p

<gand (p—1)k(g-1).

1. Introduction

Let G be a finite additive abelian group of odd order n =
2k +1, and let G* = G\ {0} be the set of non-zero ele-
ments of G. A starter for G is a set S = {{x;, y;},i =1,...,k}
such that {x}u{y}:i=1,..k} =G and
{£(xi—y):i=1,..,k} = G*. Moreover, if all elements
{xi+yi:i=1..,k} CG" are different, then S is called
strong starter for G. The reader may consult [8, 9, 13, 14,
18, 20, 22, 23] for works related with.

Strong starters were first introduced by Mullin and
Stanton in [28] in constructing Room squares. Starters and
strong starters have been useful to construct many combina-
torial designs such as Room cubes [12], Howell designs [3,
20], Kirkman triple systems [20, 25], Kirkman squares and
cubes [26, 29], and factorizations of complete graphs [2, 4,
10, 11, 13, 16, 17, 21].

Let n=2k+1 and 1<2<--- <2k be the order of
Z;. A starter for Z, is Skolem if it can be written as S =
{{xsyi} :i=1,..,k} such that y; > x; and y;,—x; =i
(mod n), for i =1,...,k. In [27], it was proved the Skolem
starter for Z, exits if and only if n=1,3 (mod 8). A
starter which is both Skolem and strong is called strong
Skolem starter.

Shalaby in [27] proposed the following:

Conjecture 1.1. If n = 1,3 (mod 8) and n > 11, then Z,
admits a strong Skolem starter.

In [24], it was proved if n = [T p%, where p; is a prime
such that ord(2), =2 (mod 4) and o; is a non-negative
integer, for all i =1,...,k, then Z, admits a strong Skolem
starter, where ord(2), is the order of the element 2 in Z,,.
In [30], it was given different families of strong Skolem

starters of Z,, where p =3 (mod 8) is an odd prime, using
a different method than in [24]. Recently in [31], it was
given different families of strong Skolem starters of Z,,
where p =3 (mod 8) and n is an integer greater than I,
than in [24]. In this paper, we use the method of Vazquez-
Avila to give different families of strong Skolem starters for
Zypq than in [24], where p,q = 3 (mod 8) are prime numbers
such that p<gqand (p — 1)¥(q — 1).

This paper is organized as follows. In Section 2, we recall
some basic properties about quadratic residues and we pre-
sent the strong Skolem starters of Z, given in [30]; this idea
is used in the main result of this paper, Theorem 3.3.
Finally, in Section 3, we give the main result of this paper,
and we present one example. The main theorem states
the following:

Theorem 1.2. Let p,q =3 (mod 8) be odd prime numbers
such that p<q and (p —1)¥(q —1). If r € Z, is a primitive
root of Z,, and Zy, then Zyq admits a strong Skolem starter.

2. A family of strong Skolem starters for Z,

The following definitions and notations are obtained from [30]
and [31]: Let p be an odd prime power. An element x € Z,, is
called a quadratic residue if there exists an element y € Z;, such
that y* = x. If there is no such y, then x is called a non-quad-
ratic residue. The set of quadratic residues of Z; is denoted by
QR(p) and the set of non-quadratic residues is denoted by
NQR(p). It is well known that QR(p) is a (cyclic) subgroup of
Z; of cardinality P%l (see for example [15]); also, if either x,y €
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QR(p) or x,y € NQR(p), then xy € QR(p), and if x € QR(p)
and y € NQR(p), then xy € NQR(p).

The following theorems are well known results on quad-
ratic residues. For more details of this kind of results the
reader may consult [5, 15].

Theorem 2.1 (Euler’s criterion). If p is an odd prime and
x € Zy, then

1. x€ QR(p) zfandonlyzfxz =1
2. x & NQR(p) if and only if X'T = —1.

Theorem 2.2. Let p be an odd prime power, then

1. —1€QR(p) ifand only if p =1 (mod 4).
2. —1 € NQR(p) if and only if p = 3 (mod 4).

Theorem 2.3. Let p be an odd prime. If p = 3 (mod 4), then

1. x € QR(p) if and only if —x € NQR(p).
2. x € NQR(p) if and only if —x € QR(p).

In [1], it was proved the following (see also [22]):

Lemma 2.4. [1] If p=3 (mod 4) is an odd prime with
p # 3, then the following set

Sp = {{xfx} :x € QR(p)}

is a strong starter for Z,, for all f € NQR(p) \ {—1}.
In [30], it was proved the following:

Theorem 2.5. [30] Let p =3 (mod 8) be an odd prime, then
the following strong starter

Sp = {{x.fx} : x € QR(p)}

for Zy is Skolem, if f=2 and f=1.
We will use the strong Skolem starter of Theorem 2.5 for
the main result of this paper.

3. A family of strong Skolem starters for Zp,

In this section, we give different families of strong Skolems starters
that given in [24]. The following definitions and notations are
obtained from [24]: Let G,, be the group of units of the ring Z,
(elements invertible with respect to multiplication). It is denoted
by (x), the cyclic subgroup of G, generated by x € G,. Also, we
will use the notation aB = {ab : b € B}, where a € Z and B C
Z. On the other hand, it is denoted by ord(x),, the order of the
element x € G,; hence, ord(x), = |(x),|. Whenever the group
operation is irrelevant, it will consider G,, and its cyclic multiplica-
tive subgroups (x), in the set-theoretical sense and denote them
by G, and (x),, respectively.

Let p,q = 3 (mod 8) be odd prime numbers such that p < g
and (p — 1)4(q — 1). We have Gy = {x € Z,, : ged(x,pq) =
1}, with |Gpg| = (p — 1)(q — 1), see for example [6]. Hence,
pZ,,qZ, and G, forms a partition of Z,,, since every element
x € Zy, lies in one and only one of these sets. Moreover, it is not
difficult to prove that if r € Z, (or r € Z,) is a primitive root,

then |<r>pq\=lcm(p—1,q_1):%?q4>, o
1) f(qg—1).

since

Lemma 3.1. If p,q = 3 (mod 8) are odd prime numbers with
<4 anwc(l re Z, is such that r € NQR(p) and r € NQR(q),
then 5" = —1 (mod pq). Moreover, if r is a primitive
—ler(r >pq

root of Z, and Z, then

Proof. Recall that G,, is the group of units of Z,,. It is well
known that the map ¥ : G,y — G, x G, defined by ¥ (k,,) =
(ky,kq), is an isomorphism between G,, and G, x Gy, see for
example [7]. Since p and q are prime numbers then G, = Z;
and Gy =Zg. Let r € Z, such that re NQR(p) and r €
NQR(q ) Hence =1 (mod p)and r'T = —1 (mod g), by

(= )4( 1) (b= 4(q n (- 4(4 1) pzlqzl
Theorem 2.1. Then ‘I’(rpq =(r, JTq :(rp ,
gq—1p-1
S5 . —1 —1
ré 2)=(—1p, —1,)=Y¥(—1,,), since PT and 4= are odd

integers. On the other hand, if r is a primitive root of Z, and
Z;, then by Theorem 2.2, it follow that —1,¢€ r<r2>P and
—1,€ 7’<r2>q, which implies that —1,, € r<r2>pq' .

Lemma 3.2. Let p,q=3 (mod 8) be odd prime numbers
such that p<q If r € Z, is a primitive root of Z, and Z,
then 2 & (r )

Proof. Let W :Gpy — G, x Gy given by W(kyy) = (kp, kg)s
the isomorphism between G,; and G, X G4, and let r € Z;
be a primitive root of Z; and Z;. It is well known that 2 €
NQR(p) and 2 € NQR(q), where NQR(p) =r(r*), and

)
NQR(q) = r(r?),, see for example [19]. Hence, if 2 € (x?)

e

then there exists j € {0, .. (;>17q1} such that x¥ =2 (mod
pq)> which implies that ‘P( )= (qu) (x}z,’ ,xq) #(2,2),
a contradiction. Hence 2 ¢ (r?),,,. O

Theorem 3.3. Let p,q =3 (mod 8) be odd prime numbers
such that p<q and (p —1)¥(q —1). If r € Z, is a primitive
root of Z, and Zy, then Zp, admits a strong Skolem starter.

Proof Let r € Z* be a primitive root of Zp and Z*. Hence,
r is a generator of QR(p) and QR(q). Since pZ*,qZ* and
Gpg forms a partition of Z,,, define

pSq = {{px, 2px} :x € QR(q )}
S, = {{gx.29x} : x € QR(p) }

Spg = {{x, ) ix e <r2>m} U {{zx, 2x} i x € <r2>M},
where A& (1?),, U2(r?),,. It is easy to see that {*px:x €

QR(9)} = pZ*,{+qx xe QR(p)} =qZ, and {*x:x€
()t U{EAx 1 x € (7).} = Gpg, by Lemmas 3.1 and 3.2.

Hence, the set S = pS, U gS, U S, is a starter.
Let define

+ _ :

qS, = {3px:x € QR(p)}

pS; = {39x: x € QR(q)}

S;q ={3x:x¢ <r2>M} U{3Ax:x € <r2>Pq}
Since Lx+hLy#0, for all different x,y€ QR(p)U
QR(q) U (r*),,, with L,Lh€{l,p,q,A}. Then |[qS5]=
[QR(p)|, IpS;| = |QR(q)| and [S;, | = [(r*),,|. By Lemma 3.1,
195y UpSy USpq™| = 9S, | + [pSy 1 + 1S, =

we have

. Hence, the set S is strong.



Finally, we give a proof analogous to the case (i) of the proof of
Theorem 2.5 given in [30] to prove S is Skolem. Let pg = 2t + 1
and 1 < 2 < --- < 2t be the order of the non-zero elements of
Z,,- Define Q. = {1,2, ..., t}. To prove that S is Skolem, it is suf-
ficient to prove that, if 2Ix > Ix then Ix € Qi, and if Ix > 2Lx then
—Ix € Qi, where I € {1,p,q, 2}. Suppose that Ix € Qi, for | €
{L,p,q, 2}, then 2Ix > Ix, which implies that 2lx — Ix = Ix €
Q.- On the other hand, if Ix ¢ Qu, forl € {1,p,q, 4}, then —Ix €
Q.. Hence, 2(—Ix) > —Ix, which implies that —2Ix + Ix =
—Ix € Q%. Hence, the set S is Skolem. O

Corollary 3.4. Let p,q =3 (mod 8) be odd prime numbers
such that p<q and (p—1)k(q—1), and let r €Z, be a
primitive root of Z, and Zg. If pS; = {{px, 27'px} :x €
QR(q9)}.S, = {{gx.27'gx} : x € QR(p)} and Sy = Ux
27} ix € (), JU{{Ax 27 x} rx € (), ), where A ¢
(r),g U2(1?),, then set S~ =pS UqS, US, is a strong
Skolem starter for Zy,.

Proof. The proof is analogous to the proof of Theorem 3.3,
using the case (ii) of Theorem 2.5 given in [30]. O

Example 1. Consider Zi1.19. We have
Zi110 = 19G11 U11G19 U G119, and r=2 is a primitive root
of Z), and 73, Then, taking A=3, the pairs from
19G11,11G19 and G,z are:
19G,, : {19,38}, {76,152}, {95,190}, {171, 133}, {57, 114}.
11G , : {11,22}, {44,88}, {176,143}, {77,154}, {99, 198},
{187,165}, {121, 33}, {66,132}, {55, 110}.
G {1,2},{4,8},{16,32}, {64,128}, {47,94},
{188,167}, {125,41}, {82,164}, {119,29}, {58, 116},
{23, 46}, {92, 184}, {159,109}, {9, 18}, {36, 72},
{144,791, {158,107}, {5,10}, {20, 40}, {80, 160},
{111,13},{26,52}, {104,208}, {207,205}, {201, 193},
{177,145}, {81,162}, {115, 21}, {42, 84},
{168,127}, {45,90}, {180, 151}, {93, 186}, {163,117},
{25,501}, {100,200%, {191,173}, {137, 65},
{130,511, {102,204}, {199, 189}, {169, 129}, {49,981,
{196,183}, {157,105}, {3,6}
U {12,24}, {48,96}, {192,175}, {141, 73},
(146,83}, {166,123}, {37,74}, {148, 87}, {174, 139},
{69,138}, {67,134}, {59,118}, {27, 54},
{108,7}, {14,28}, {56, 112}, {15,301, {60, 120}, {31, 62},
{124,39}, {78,156}, {103,206}, {203, 197},
{185,161}, {113,17}, {34, 68}, {136, 63}, {126, 43},
{86,172}, {135,611}, {122, 35}, {70, 140},
{71,142}, {75,150}, {91,182}, {155, 101}, {202, 195},
{181,153}, {97,194}, {179, 149}, {89, 178},
(147,85}, {170,131}, {53,106}

This strong Skolem starter of Z;.19 is the same from the
Example 4.12 given in [24]. Now, by Corollary 3.4, we have

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS 3

a different strong Skolem starter of Zi;.;19, using the same
parameters:

19G,, : {19,114},{76,38}, {95,152}, {171,190}, {57, 133}.

11G,, : {11,110}, {44,22}, {176,88}, {77, 143}, {99, 154},
{187,198}, {121,165}, {66,33}, {55, 132}.

G110 {1,105}, {4,2},{16,8}, {64,32}, {47,128}
{188,941}, {125,167}, {82,41}, {119, 164}, {58,29},
{23,116}, {92,46}, {159, 84}, {9,109}, {36, 18},
{144,72},{158,79}, {5,107}, {20, 10}, {80, 40},
{111,160}, {26, 13}, {104, 52}, {207,208},

{201,205}, {177,193}, {81,145}, {115, 162}, {42,21},
{168,84},{45,127},{180,90}, {93,151},

{163,186}, {25,117},{100,50}, {191,200}, {137, 173},
{130,65},{102,51}, {199,204}, {169, 189},

{49,129}, {196,981, {157,183}, {3, 106}

U {12,6},{48,24}, {192,961}, {141,175}, {146, 73}
{166,83},{37,123},{148,74}, {174,87}, {69, 139},
{67,138}, {59,134}, {27,118}, {108, 54},
{14,7},{56,28}, {15,112}, {60,30}, {31, 120}, {124, 62},
{78,39},{103,156}, {203,206}, {185,197}

{113,161}, {34,17},{136,68}, {126,63}, {86, 43},
{135,172}, {122,61},{70,35}, {71, 140},
{75,142},{91,150},{155,182},{202, 101}, {181, 195},
{97,153}, {179,194}, {89, 149},
{147,178},{170,85}, {53, 131}.
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