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ABSTRACT
In the present work, we consider weakly-singular integral equations aris-
ing from linear second-order elliptic PDE systemswith constant coefficients,
including, e.g. linear elasticity. We introduce a general framework for opti-
mal convergence of adaptive Galerkin BEM. We identify certain abstract
conditions for the underlyingmeshes, the correspondingmesh-refinement
strategy, and the ansatz spaces that guarantee that the weighted-residual
error estimator is reliable and converges at optimal algebraic rate if used
within an adaptive algorithm. These conditions are satisfied, e.g. for dis-
continuous piecewise polynomials on simplicial meshes as well as cer-
tain ansatz spaces used for isogeometric analysis. Technical contributions
include the localization of (non-local) fractional Sobolev norms and local
inverse estimates for the (non-local) boundary integral operators associated
to the PDE system.
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1. Introduction

1.1. State of the art

For the Laplace model problem, adaptive boundary element methods (BEM) using (dis)continuous
piecewise polynomials on triangulations have been intensively studied in the literature. In particular,
optimal convergence of adaptive mesh-refining algorithms has been proved for polyhedral bound-
aries [1–3] as well as smooth boundaries [4]. The work [5] allows to transfer these results to piecewise
smooth boundaries; see also the discussion in the review article [6]. In [7], these results have been
generalized to the Helmholtz problem. In recent years, we have also shown optimal convergence of
adaptive isogeometric BEM (IGABEM) using one-dimensional splines for the 2D Laplace problem
[8,9]. However, the important case of 3D IGABEM remained open. Moreover, a generalization to
other PDE operators is highly non-trivial (see (6) below), but especially linear elasticity is of great
interest in the context of isogeometric analysis.

In [10], we have considered isogeometric finite element methods (IGAFEM). We have derived an
abstract framework which guarantees that, first, the classical residual FEM error estimator is reliable,
and second, the related adaptive algorithm yields optimal convergence; see [10, Section 2 and 4]. We
then showed that, besides standard FEMwith piecewise polynomials, this abstract framework covers
IGAFEMwith hierarchical splines (see [10, Section 3 and 5]) as well as IGAFEMwith analysis suitable
T-splines (see the recent work [11]).
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The aim of the present work is to develop such an abstract framework also for BEM, which is
mathematically much more demanding than FEM. In ongoing research [12], we aim to show that
this framework covers, besides standard discretizations with piecewise polynomials, also IGABEM
with hierarchical splines resp. T-splines.

To this end, the present work focusses on weakly-singular integral equations. For a given Lipschitz
domain� ⊆ Rd with compact boundary � := ∂� and right-hand side f : � → C, we consider

(Vφ)(x) :=
∫
�

G(x − y)φ(y) dy = f (x) for almost all x ∈ �. (1)

Here, the fundamental solution G stems from an elliptic PDE operator

Pu := −
d∑

i=1

d∑
i′=1

∂i(Aii′∂i′u)+
d∑

i=1
bi∂iu + cu, (2)

where the coefficients Aii′ = Ai′i
�, bi, c ∈ CD×D are constant for some fixed dimension D ≥ 1.

1.2. Outline & contributions

In Section 2, we fix some general notation, recall Sobolev spaces on the boundary, and precisely state
the considered problem. Section 3 can be paraphrased as follows.We formulate an adaptive algorithm
(Algorithm 3.3) of the form

SOLVE −→ ESTIMATE −→ MARK −→ REFINE (3)

driven by someweighted-residual a posteriori error estimator (see (4) below) in the frame of conform-
ing Galerkin BEM. The algorithm particularly generates meshes T�, BEM solutions�� in associated
nested ansatz spaces X� ⊆ X�+1 ⊂ L2(�)D ⊂ H−1/2(�)D, and error estimators η� for all � ∈ N0.
We formulate five Assumptions (M1)–(M5) on the underlying meshes (Section 3.1), five Assump-
tions (R1)–(R5) on the mesh refinement (Section 3.2), and six Assumptions (S1)–(S6) on the BEM
spaces (Section 3.3). First, these assumptions are sufficient to guarantee that the a posteriori error
estimator η� associated with the BEM solution�� is reliable, i.e. there exists a constant Crel > 0 such
that

C−1
rel ‖φ −��‖H−1/2(�) ≤ η� := ‖h1/2� ∇�(f − V��)‖L2(�) for all � ∈ N0, (4)

where h� ∈ L∞(�) denotes the local mesh-size function and ∇� is the surface gradient. Second,
Theorem 3.3 states that Algorithm 3.3 leads to linear convergence at optimal algebraic rate with
respect to the number of mesh elements. In Theorem 3.7, we briefly note that the introduced con-
ditions have already been implicitly proved for standard discretizations with piecewise polynomials
on conforming triangulations. Moreover, we mention expected applications to adaptive IGABEM on
quadrilateral meshes in Remark 3.8.

Section 4 is devoted to the proof of Theorem 3.3. To prove reliability (4), we use a localization argu-
ment (Proposition 4.2), which generalizes earlier works [13,14] for standard discretizations. More
precisely, we prove that

‖v‖2H1/2(�)
≤ Csplit

∑
T∈T�

∑
T′∈	�(T)

|v|2H1/2(T∪T′) (5)

for all v ∈ H1/2(�)D that are L2-orthogonal onto the ansatz spaceX� corresponding to somemesh T�,
whereCsplit > 0 is independent of v and	�(T) denotes the patch ofT ∈ T�. Finally, the proof of relia-
bility (4) requires the derivation of a local Poincaré-type inequality (Proposition 4.9). In Remark 4.10,
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we note that one obtains at least plain convergence lim�→∞ ‖φ −��‖H−1/2(�) = 0 if Algorithm 3.3
is steered by the so-called Faermann estimator

C̃−1
rel ‖φ −��‖H−1/2(�) ≤ �� :=

⎛⎝∑
T∈T�

∑
T′∈	�(T)

|f − V��|2H1/2(T∪T′)

⎞⎠1/2

≤ C̃−1
eff ‖φ −��‖H−1/2(�),

which is reliable and efficient. To prove linear convergence at optimal rate for the weighted-residual
estimator (4), we show that the assumptions of Section 3 imply the axioms of adaptivity [6]. The latter
are properties for abstract mesh-refinements and abstract error estimators, which automatically yield
the desired convergence result. In contrast to [1,3] which (implicitly) verify the axioms of adaptivity
only for the Laplace problem, our analysis allows for general PDE operators (2). The crucial step is the
generalization (Proposition 4.13) of the non-trivial local inverse inequality for the non-local boundary
integral operatorV:With the help of a Caccioppoli-type inequality (Lemma 4.12), we prove that there
exists a constant Cinv > 0 such that

‖h1/2� ∇�Vψ‖L2(�) ≤ Cinv

(
‖ψ‖H−1/2(�) + ‖h1/2� ψ‖L2(�)

)
for all ψ ∈ L2(�)D; (6)

see [5] for standard BEM discretizations of the Laplacian. Similar estimates hold also for the other
boundary integral operators related to (2), namely the double-layer integral operatorK, its adjointK′,
and the hypersingular integral operatorW. These are stated and proved in Appendix B; again we refer
to [5] for standard BEM discretizations of the Laplacian. In each case, ellipticity of the PDE operator
is not required for the inverse inequalities.

While the present work focusses on the numerical analysis aspects only, we refer to the literature
(see, e.g. [7,15–18]) for numerical experiments for the Laplace problem, the Helmholtz problem, and
linear elasticity.

2. Preliminaries

In this section, we fix some general notation, recall Sobolev spaces on the boundary, and precisely
state the considered problem. Throughout the work, let � ⊂ Rd for d ≥ 2 be a bounded Lipschitz
domain as in [19, Definition 3.28] and � := ∂� its boundary.

2.1. General notation

Throughout andwithout any ambiguity, | · | denotes the absolute value of scalars, the Euclidean norm
of vectors in Rn, as well as the Hausdorff measure of any d-dimensional set in Rn. Let Bε(x) :={
y ∈ Rn : |x − y| < ε

}
denote the open ball around x with radius ε > 0. For ∅ �= ω1,ω2 ⊆ Rn,

letBε(ω1) :=
⋃

x∈ω1 Bε(x).Moreover, let diam(ω1) := sup
{|x − y| : x, y ∈ ω1

}
, and dist(ω1,ω2) :=

inf
{|x − y| : x ∈ ω1, y ∈ ω2

}
. We write A � B to abbreviate A ≤ CB with some generic constant

C> 0, which is clear from the context. Moreover, A � B abbreviates A � B � A. Throughout, mesh-
related quantities have the same index, e.g. X• is the ansatz space corresponding to the mesh T•. The
analogous notation is used for meshes T◦, T, T�, etc.

2.2. Sobolev spaces

For σ ∈ [0, 1], we define the Hilbert spacesH±σ (�) as in [19, page 99] by use of Bessel potentials on
Rd−1 and liftings via bi-Lipschitz mappings1 that describe�. For σ = 0, it holds thatH0(�) = L2(�)
with equivalent norms. We thus may define ‖ · ‖H0(�) := ‖ · ‖L2(�).
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For σ ∈ (0, 1], any measurable subset ω ⊆ �, and all v ∈ Hσ (�), we define the associated
Sobolev–Slobodeckij norm

‖v‖2Hσ (ω) := ‖v‖2L2(ω) + |v|2Hσ (ω) with |v|2Hσ (ω) :=

⎧⎪⎨⎪⎩
∫
ω

∫
ω

|v(x)− v(y)|2
|x − y|d−1+2σ dxdy if σ ∈ (0, 1),

‖∇�v‖2L2(ω) if σ = 1.
(7)

It is well known that ‖ · ‖Hσ (�) provides an equivalent norm on Hσ (�); see, e.g. [20, Lemma 2.19]
and [19, Theorem 3.30 and page 99] for σ ∈ (0, 1) and [18, Theorem 2.28] for σ = 1. Here, ∇�(·)
denotes the usual (weak) surface gradient which can be defined for almost all x ∈ � as follows. Since
� is a Lipschitz boundary, there exist an open cover (Oj)

J
j=1 in Rd of � such that each ωj := Oj ∩ �

can be parametrized by a bi-Lipschitz mapping γωj : ω̂j → ωj, where ω̂j ⊂ Rd−1 is an open set.
By Rademacher’s theorem, γωj is almost everywhere differentiable. The corresponding Gram deter-
minant det(Dγ�

ωj Dγωj) is almost everywhere positive. Moreover, by definition of the space H1(�),
v ∈ H1(�) implies that v ◦ γωj ∈ H1(ω̂j). With the weak derivative ∇(v ◦ γωj) ∈ L2(ω̂j)

d, we can
hence define

(∇�v)|ωj :=
(
Dγωj(Dγ

�
ωj Dγωj)

−1∇(v ◦ γωj)
)

◦ γ−1
ωj for all v ∈ H1(�). (8)

This definition does not depend on the particular choice of the open sets (Oj)
J
j=1 and the correspond-

ing parametrizations (γωj)
J
j=1; see, e.g. [18, Theorem 2.28].With (8), we immediately obtain the chain

rule

∇(v ◦ γωj) = Dγ�
ωj ((∇�v) ◦ γωj(·)) for all v ∈ H1(�). (9)

Forσ ∈ (0, 1],H−σ (�) is a realization of the dual space ofHσ (�); see [19, Theorem3.30 and page 99].
With the duality bracket 〈· ; ·〉, we define an equivalent norm

‖ψ‖H−σ (�) := sup
{〈v ; ψ〉 : v ∈ Hσ (�) ∧ ‖v‖Hσ (�) = 1

}
for all ψ ∈ H−σ (�). (10)

Moreover, we abbreviate

(v ; ψ) := 〈v ; ψ〉 for all v ∈ Hσ (�), ψ ∈ H−σ (�). (11)

[19, page 76] states that the inclusion Hσ1(�) ⊆ Hσ2(�) for −1 ≤ σ1 ≤ σ2 ≤ 1 is continuous
and dense. In particular, Hσ (�) ⊂ L2(�) ⊂ H−σ (�) form a Gelfand triple in the sense of [21,
Section 2.1.2.4] for all σ ∈ (0, 1], where ψ ∈ L2(�) is interpreted as function in H−σ (�) via

〈v ; ψ〉 := (v ; ψ)L2(�) =
∫
�

vψ dx for all v ∈ Hσ (�), ψ ∈ L2(�). (12)

Here, (· ; ·)L2(�) is the usual complex scalar product on L2(�).
So far, we have only dealt with scalar-valued functions. For D ≥ 1, σ ∈ [0, 1], v = (v1, . . . , vD) ∈

Hσ (�)D, we define ‖v‖2H±σ (�) :=
∑D

j=1 ‖vj‖2H±σ (�). If σ > 0, and ω ⊆ � is an arbitrary measurable
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set, we define ‖v‖Hσ (ω) and |v|Hσ (ω) analogously. With the definition

∇�v :=

⎛⎜⎝∇�v1
...

∇�vD

⎞⎟⎠ ∈ L2(�)D
2

for all v ∈ H1(�)D, (13)

it holds that |v|H1(ω) = ‖∇�v‖L2(ω). Note that H−σ (�)D with σ ∈ (0, 1] can be identified with the
dual space of Hσ (�)D, where we set

〈v ; ψ〉 :=
D∑
j=1

〈vj ; ψj〉 for all v ∈ Hσ (�)D, ψ ∈ H−σ (�)D. (14)

As before, we abbreviate

(v ; ψ) := 〈v ; ψ〉 for all v ∈ Hσ (�)D, ψ ∈ H−σ (�)D (15)

and set

〈v ; ψ〉 := (v ; ψ)L2(�) =
D∑
j=1

∫
�

vjψj dx for all v ∈ Hσ (�)D, ψ ∈ L2(�)D. (16)

The spacesHσ (�) can also be defined as trace spaces or via interpolation, where the resulting norms
are always equivalent with constants depending only on the dimension d and the boundary �. More
details and proofs are found, e.g. in the monographs [19–21].

2.3. Continuous problem

We consider a general second-order linear system of PDEs

Pu := −
d∑

i=1

d∑
i′=1

∂i(Aii′∂i′u)+
d∑

i=1
bi∂iu + cu, (17)

where the coefficients Aii′ , bi, c ∈ CD×D are constant for some fixed dimension D ≥ 1. We suppose
that A�

ii′ = Ai′i. Moreover, we assume that P is elliptic on H1
0(�)

D in the sense of the Lax–Milgram
lemma, i.e. the sesquilinear form

(u ; v)P :=
∫
�

d∑
i=1

d∑
i′=1

(Aii′∂i′u) · ∂iv +
d∑

i=1
(bi∂iu) · v + (cu) · v dx (18)

satisfies that

(u ; u)P ≥ Cell‖u‖2H1(�) for all u ∈ H1
0(�)

D. (19)

of the matrices Aii′ in the sense of [19, page 119]. Here, the standard complex scalar product on CD

is denoted by w · z = ∑D
j=1 wjzj.

Let G : Rd \ {0} → CD×D be a corresponding (matrix-valued) fundamental solution in the sense
of [19, page 198], i.e. a distributional solution ofPG = δ, where δ denotes theDirac delta distribution.
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For ψ ∈ L∞(�)D, we define the single-layer operator as

(Vψ)(x) :=
∫
�

G(x − y)ψ(y) dy for all x ∈ �. (20)

According to [19, page 209 and 219–220] and [22, Corollary 3.38], this operator can be extended for
arbitrary σ ∈ (−1/2, 1/2] to a bounded linear operator

V : H−1/2+σ (�)D → H1/2+σ (�)D. (21)

[19, Theorem 7.6] states that V is always coercive, i.e. elliptic up to some compact perturbation. We
assume that it is elliptic even without perturbation, i.e.

Re (Vψ ; ψ) ≥ Cell‖ψ‖2H−1/2(�)
for all ψ ∈ H−1/2(�)D. (22)

This is particularly satisfied for the Laplace problem or for the Lamé problem, where the case d = 2
requires an additional scaling of the geometry�; see, e.g. [20, Chapter 6]. Moreover, the sesquilinear
form (V · ; ·) is continuous due to (21), i.e. it holds with Ccont := ‖V‖H−1/2(�)D→H1/2(�)D that

|(Vψ ; ξ)| ≤ Ccont‖ψ‖H−1/2(�)‖ξ‖H−1/2(�) for all ψ , ξ ∈ H−1/2(�)D. (23)

Given a right-hand side f ∈ H1(�)D, we consider the boundary integral equation

Vφ = f . (24)

Such equations arise from (and are even equivalent to) the solution of Dirichlet problems of the form
Pu = 0 in� with u = g on � for some g ∈ H1/2(�)D; see, e.g. [19, page 226–229] for more details.
The Lax–Milgram lemma provides existence and uniqueness of the solution φ ∈ H−1/2(�)D of the
equivalent variational formulation of (24)

(Vφ ; ψ) = (f ; ψ) for all ψ ∈ H−1/2(�)D. (25)

In particular, we see thatV : H−1/2(�)D → H1/2(�)D is an isomorphism. In the Galerkin boundary
element method, the test space H−1/2(�)D is replaced by some discrete subspace X• ⊂ L2(�)D ⊂
H−1/2(�)D. Again, the Lax–Milgram lemma guarantees existence and uniqueness of the solution
�• ∈ X• of the discrete variational formulation

(V�• ; �•) = (f ; �•) for all�• ∈ X•. (26)

Moreover, �• can in fact be computed by solving a linear system of equations. Note that (21)
implies that V�• ∈ H1(�)D for arbitrary �• ∈ X•. The additional regularity f ∈ H1(�)D instead
of f ∈ H1/2(�)D is only needed to define the residual error estimator (37) below. For a more detailed
introduction to boundary integral equations, the reader is referred to the monographs [19–21].

3. Axioms of adaptivity (revisited)

The aim of this section is to formulate an adaptive algorithm (Algorithm 3.3) for conforming BEM
discretizations of our model problem (24), where adaptivity is driven by the residual a posteriori error
estimator (see (37) below). We identify conditions for the underlying meshes, the mesh-refinement,
as well as the boundary element spaces which ensure that the residual error estimator is reliable and
fits into the general framework of [6] andwhich hence guarantee optimal convergence behavior of the
adaptive algorithm.Wemention that we have already identified similar (but not identical) conditions
for the finite element method in [10, Section 3]. The main result of this work is Theorem 3.3 which
is proved in Section 4.



APPLICABLE ANALYSIS 7

3.1. Meshes

Throughout, T• is amesh of the boundary � = ∂� of the bounded Lipschitz domain� ⊂ Rd in the
following sense:

(i) T• is a finite set of compact Lipschitz domains on �, i.e. each element T has the form T = γT(T̂),
where T̂ is a compact2 Lipschitz domain in Rd−1 and γT : T̂ → T is bi-Lipschitz.

(ii) T• covers �, i.e. � = ⋃
T∈T• T.

(iii) For all T,T′ ∈ T• with T �= T′, the intersection T ∩ T′ has (d − 1)-dimensional Hausdorff
measure zero.

We suppose that there is a countably infinite set T of admissiblemeshes. In order to ease notation,
we introduce for T• ∈ T the correspondingmesh-width function

h• ∈ L∞(�) with h•|T = hT := |T|1/(d−1) for all T ∈ T•. (27)

For ω ⊆ �, we define the patches of order q ∈ N0 inductively by

π0
• (ω) := ω, π

q
• (ω) :=

⋃{
T ∈ T• : T ∩ πq−1

• (ω) �= ∅}. (28)

The corresponding set of elements is

	
q
•(ω) :=

{
T ∈ T• : T ⊆ π

q
• (ω)

}
, i.e., πq

• (ω) =
⋃
	

q
•(ω). (29)

If ω = {z} for some z ∈ �, we simply write πq
• (z) := π

q
• ({z}) and 	q

•(z) := 	
q
•({z}). For S ⊆ T•,

we define πq
• (S) := π

q
• (

⋃
S) and 	q

•(S) := 	
q
•(
⋃

S). To abbreviate notation, the index q = 1 is
omitted, e.g. π•(ω) := π1• (ω) and	•(ω) := 	1•(ω).

We assume the existence of constantsCpatch,Clocuni,Cshape,Ccent,Csemi > 0 such that the following
assumptions are satisfied for all T• ∈ T:

(M1) Bounded element patch: The number of elements in a patch is uniformly bounded, i.e.

#	•(T) ≤ Cpatch for all T ∈ T•.

(M2) Local quasi-uniformity: Neighboring elements have comparable diameter, i.e.

diam(T)/diam(T′) ≤ Clocuni for all T ∈ T• and all T′ ∈ 	•(T).

(M3) Shape-regularity: It holds that

C−1
shape ≤ diam(T)/hT ≤ Cshape for all T ∈ T•.

(M4) Elements lie in the center of their patches: It holds3 that

diam(T) ≤ Ccent dist(T,� \ π•(T)) for all T ∈ T•.

(M5) Local seminorm estimate: For all v ∈ H1(�), it holds that

|v|H1/2(π•(z)) ≤ Csemi diam(π•(z))1/2|v|H1(π•(z)) for all z ∈ �.

The following proposition shows that (M5) is actually always satisfied. However, in general the
multiplicative constant depends on the shape of the point patches. The proof is inspired by [23, Propo-
sition 2.2], where an analogous assertion for norms instead of seminorms is found. For σ = 1/2 and
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d = 2, we have already shown the assertion in the recent own work [16, Lemma 4.5]. For polyhedral
domains� with triangular meshes, it is proved in [24, Proposition 3.3] via interpolation techniques.
A detailed proof for our setting is found in [17, Proposition 5.2.2], where we essentially follow the
proof of [16, Lemma 4.5].

Proposition 3.1: Let ω̂ ⊂ Rd−1 be a bounded and connected Lipschitz domain and γω : ω̂ → ω ⊆ �

be bi-Lipschitz, i.e. there exists a constant Clipref > 0 such that

C−1
lipref |s − t| ≤ |γω(s)− γω(t)|

diam(ω)
≤ Clipref |s − t| for all s, t ∈ ω̂. (30)

Then, for arbitrary σ ∈ (0, 1) there exists a constant Csemi(ω̂) > 0 such that

|v|Hσ (ω) ≤ Csemi(ω̂) diam(ω)1−σ |v|H1(ω) for all v ∈ H1(�). (31)

The constant Csemi(ω̂) > 0 depends only on the dimension d, σ , the set ω̂, and Clipref .

3.2. Mesh refinement

For T• ∈ T and an arbitrary set of marked elements M• ⊆ T•, we associate a corresponding
refinement T◦ := refine(T•,M•) ∈ T with M• ⊆ T• \ T◦, i.e. at least the marked elements
are refined. Moreover, we suppose for the cardinalities that #T• < #T◦ if M• �= ∅ and T◦ =
T• else. Let refine(T•) ⊆ T be the set of all T◦ such that there exist meshes T(0), . . . , T(J)
and marked elements M(0), . . . ,M(J−1) with T◦ = T(J) = refine(T(J−1),M(J−1)), . . . , T(1) =
refine(T(0),M(0)) and T(0) = T•. We assume that there exists a fixed initial mesh T0 ∈ T with
T = refine(T0).

We suppose that there exist Cson ≥ 2 and 0 < ρson < 1 such that all meshes T• ∈ T satisfy for
arbitrary marked elements M• ⊆ T• with corresponding refinement T◦ := refine(T•,M•), the
following elementary properties (R1)–(R3):

(R1) Son estimate: One step of refinement leads to a bounded increase of elements, i.e.

#T◦ ≤ Cson #T•,

(R2) Father is union of sons: Each element is the union of its successors, i.e.

T =
⋃{

T′ ∈ T◦ : T′ ⊆ T
}

for all T ∈ T•.

(R3) Reduction of sons: Successors are uniformly smaller than their father, i.e.

|T′| ≤ ρson |T| for all T ∈ T• and all T′ ∈ T◦ with T′ � T.

By induction and the definition of refine(T•), one easily sees that (R2)–(R3) remain valid if
T◦ is an arbitrary mesh in refine(T•). In particular, (R2)–(R3) imply that each refined element
T ∈ T• \ T◦ is split into at least two sons, wherefore

#(T• \ T◦) ≤ #T◦ − #T• for all T◦ ∈ refine(T•). (32)

Besides (R1)–(R3), we suppose the following less trivial requirements (R2)–(R3) with generic
constants Cclos,Cover > 0:
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(R4) Closure estimate: Let (T�)�∈N0 be a sequence in T such that T�+1 = refine(T�,M�) with
someM� ⊆ T� for all � ∈ N0. Then, it holds that

#T� − #T0 ≤ Cclos

�−1∑
j=0

#Mj for all � ∈ N0.

(R5) Overlay property: For all T•, T ∈ T, there exists a common refinement T◦ ∈ refine(T•) ∩
refine(T) which satisfies the overlay estimate

#T◦ ≤ Cover(#T − #T0)+ #T•.

3.3. Boundary element space

With each T• ∈ T, we associate a finite dimensional space of vector valued functions

X• ⊂ L2(�)D ⊂ H−1/2(�)D. (33)

Let�• ∈ X• be the corresponding Galerkin approximation of φ ∈ H−1/2(�)D from (24), i.e.

(V�• ; �•) = (f ; �•) for all�• ∈ X•. (34)

We note the Galerkin orthogonality

(f − V�• ; �•) = 0 for all�• ∈ X•, (35)

as well as the resulting Céa type quasi-optimality

‖φ −�•‖H−1/2(�) ≤ CCéa min
�•∈X•

‖φ −�•‖H−1/2(�) with CCéa := Ccont/Cell. (36)

We assume the existence of constants Cinv > 0, qloc, qproj, qsupp ∈ N0, and 0 < ρunity < 1 such that
the following properties (S1)–(S4) hold for all T• ∈ T:

(S1) Inverse inequality: For all�• ∈ X•, it holds that

‖h1/2• �•‖L2(�) ≤ Cinv ‖�•‖H−1/2(�).

(S2) Nestedness: For all T◦ ∈ refine(T•), it holds that

X• ⊆ X◦.

(S3) Local domain of definition: For all T◦ ∈ refine(T•), T ∈ T• \	qloc• (T• \ T◦) ⊆ T• ∩ T◦,
and�◦ ∈ X◦, it holds that

�◦|
π
qproj
• (T)

∈ {
�•|

π
qproj
• (T)

: �• ∈ X•
}
.

(S4) Componentwise local approximation of unity: For all T ∈ T• and all j ∈ {1, . . . ,D}, there
exists some�•,T,j ∈ X• with

T ⊆ supp(�•,T,j) ⊆ π
qsupp• (T),

such that only the jth component does not vanish, i.e.

(�•,T,j)j′ = 0 for j′ �= j

and

‖1 − (�•,T,j)j‖L2(supp(�•,T,j)) ≤ ρunity|supp(�•,T,j)j|1/2.
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Remark 3.2: Clearly, (S4) is in particular satisfied ifX• is a product space, i.e. X• = ∏D
j=1(X•)j, and

each component (X•)j ⊂ L2(�) satisfies (S4).

Besides (S1)–(S4), we suppose that there exist constants Csz > 0 as well as qsz ∈ N0 such that for
all T• ∈ T and S ⊆ T•, there exists a linear Scott–Zhang-type operator J•,S : L2(�)D → {

�• ∈ X• :
�•|⋃(T•\S) = 0} with the following properties (S5)–(S6):

(S5) Local projection property. Let qloc, qproj ∈ N0 from (S3). For allψ ∈ L2(�)D and T ∈ T• with
	

qloc• (T) ⊆ S , it holds that

(J•,Sψ)|T = ψ |T if ψ |
π
qproj
• (T)

∈ {
�•|

π
qproj
• (T)

: �• ∈ X•
}
.

(S6) Local L2-stability. For all ψ ∈ L2(�)D and T ∈ T•, it holds that

‖J•,Sψ‖L2(T) ≤ Csz‖ψ‖L2(πqsz• (T)).

3.4. Error estimator

Let T• ∈ T. Due to the regularity assumption f ∈ H1(�)D, the mapping property (21), and X• ⊂
L2(�)D, it holds that f − V�• ∈ H1(�)D for all �• ∈ X•. This allows to employ the weighted-
residual a posteriori error estimator

η• := η•(T•) with η•(S)2 :=
∑
T∈S

η•(T)2 for all S ⊆ T•, (37a)

where the local refinement indicators read

η•(T)2 := hT |f − V�•|2H1(T) for all T ∈ T•. (37b)

The latter estimator goes back to the works [25,26], where reliability (42) is proved for standard 2D
BEM with piecewise polynomials on polygonal geometries, while the corresponding result for 3D
BEM is found in [15].

3.5. Adaptive algorithm

We consider the following concrete realization of the abstract algorithm from [6, Algorithm 2.2].

Algorithm 3.3: Input: Dörfler parameter θ ∈ (0, 1] and marking constant Cmin ∈ [1,∞].
Loop: For each � = 0, 1, 2, . . . , iterate the following steps:

(i) Compute Galerkin approximation�� ∈ X�.
(ii) Compute refinement indicators η�(T) for all elements T ∈ T�.
(iii) Determine a set of marked elementsM� ⊆ T� which has up to the multiplicative constant Cmin

minimal cardinality, such that the following Dörfler marking is satisfied

θ η2� ≤ η�(M�)
2. (38)

(iv) Generate refined mesh T�+1 := refine(T�,M�).

Output: Refinedmeshes T� and corresponding Galerkin approximations�� with error estimators η�
for all � ∈ N0.
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3.6. Optimal convergence

Define

T(N) := {
T• ∈ T : #T• − #T0 ≤ N

}
for all N ∈ N0 (39)

and for all s> 0

Capprox(s) := sup
N∈N0

min
T•∈T(N)

(N + 1)s η• ∈ [0,∞]. (40)

We say that the solution φ ∈ H−1/2(�)D lies in the approximation class s with respect to the estimator
if

‖φ‖A
est
s

:= Capprox(s) < ∞. (41)

By definition, ‖φ‖A
est
s
< ∞ implies that the error estimator η• on the optimal meshes T• decays at

least with rate O((#T•)−s). The following main theorem states that each possible rate s> 0 is in fact
realized by Algorithm 3.1. We stress that the range of possible s> 0 depends, in particular, on the
chosen admissible meshes T. The proof is given in Section 4. It essentially follows by verifying the
axioms of adaptivity from [6]. Such an optimality result was first proved in [3] for the Laplace operator
P = −� on a polyhedral domain�. As ansatz space, they considered piecewise constants on shape-
regular triangulations. [1] in combination with [5] extends the assertion to piecewise polynomials on
shape-regular curvilinear triangulations of some piecewise smooth boundary �. Independently, [4]
proved the same result for globally smooth � and general self-adjoint and elliptic boundary integral
operators.

Theorem 3.4: Let (T�)�∈N0 be the sequence of meshes generated by Algorithm 3.3. Then, there hold the
following assertions (i)–(iii):

(i) Suppose (M1)–(M5), and (S4). Then, the residual error estimator satisfies reliability, i.e. there
exists a constant Crel > 0 such that

‖φ −�•‖H−1/2(�) ≤ Crelη• for all T• ∈ T. (42)

(ii) Suppose (M1)–(M5), (R2)–(R3), (S1)–(S2) and (S4). Then, for arbitrary 0 < θ ≤ 1 and Cmin ∈
[1,∞], the estimator converges linearly, i.e. there exist constants 0 < ρlin < 1 and Clin ≥ 1 such
that

η2�+j ≤ Clinρ
j
linη

2
� for all j, � ∈ N0. (43)

(iii) Suppose (M1)–(M5), (R1)–(R5), and (S1)–(S6). Then, there exists a constant 0 < θopt ≤ 1 such
that for all 0 < θ < θopt and Cmin ∈ [1,∞), the estimator converges at optimal rate, i.e. for all
s> 0 there exist constants copt,Copt > 0 such that

copt‖φ‖A
est
s

≤ sup
�∈N0

(#T� − #T0 + 1)s η� ≤ Copt‖φ‖A
est
s
, (44)

where the lower bound requires only (R1) to hold.

All involved constants Crel,Clin, qlin,θopt, and Copt depend only on the assumptions made as well as the
dimensions d,D, the coefficients of the differential operatorP, and�, while Clin, ρlin depend additionally
on θ and the sequence (��)�∈N0 , and Copt depends furthermore on Cmin, and s> 0. The constant copt
depends only on Cson, #T0, s, and if there exists �0 with η�0 = 0, then also on �0 and η0.

Remark 3.5: If the sesquilinear form (V · ; ·) is Hermitian, then Clin, ρlin, and Copt are independent
of (��)�∈N0 ; see Remark 4.14 below.
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Remark 3.6: Let �0 � � be an open subset of � = ∂� and let E0 : L2(�0)D → L2(�)D denote
the operator that extends a function defined on �0 to a function on � by zero. We define
the space of restrictions H1/2(�0) :=

{
v|�0 : v ∈ H1/2(�)

}
endowed with the quotient norm

v0 �→ inf
{‖v‖H1/2(�) : v|�0 = v0

}
and its dual space H̃−1/2(�0) := H1/2(�0)

∗. According to [5,
Section 2.1], E0 can be extended to an isometric operator E0 : H̃−1/2(�0)

D → H−1/2(�)D. Then,
one can consider the integral equation

(VE0φ)|�0 = f |�0 , (45)

where (VE0(·))|�0 : H̃−1/2(�0)
D → H1/2(�0)

D. In the literature, such problems are known as screen
problems; see, e.g. [21, Section 3.5.3]. Theorem 3.3 holds analogously for the screen problem (45).
Indeed, the works [1,3–5] cover this case as well. However, to ease the presentation, we focus on
closed boundaries �0 = � = ∂�.

Remark 3.7: (a) Let us additionally assume that X• contains all componentwise constant functions,
i.e.

x ∈ X• for all x ∈ CD. (46)

Then, under the assumption that ‖h�‖L∞(�) → 0 as � → ∞, one can show thatX∞ := ⋃
�∈N0

X� =
H−1/2(�)D. To see this, recall thatH1/2(�)D is continuously and densely embedded in L2(�)D which
is itself continuously and densely embedded inH−1/2(�)D. Forψ ∈ H−1/2(�)D and arbitrary ε > 0,
let ψε ∈ H1/2(�)D with ‖ψ − ψε‖H−1/2(�) ≤ ε. We abbreviate the projection operator J� := J�,T�
for all � ∈ N0. For all T ∈ T�, the projection property (S5) in combination with our additional
assumption (46), the triangle inequality, and the local L2-stability (S6) show that

‖(1 − J�)ψε‖L2(T) (S5)=
∥∥∥∥(1 − J�)

(
ψε − 1

|πqsz• (T)|
∫
π
qsz• (T)

ψε dx
)∥∥∥∥

L2(T)

(S6)≤ (1 + Csz)

∥∥∥∥ψε − 1
|πqsz• (T)|

∫
π
qsz• (T)

ψε dx
∥∥∥∥
L2(πqsz• (T))

.

With this, the Poincaré-type inequality from Lemma 4.6 below, and (M1)–(M3), we see that

‖(1 − J�)ψε‖L2(T) � h1/2T |ψε|H1/2(π
qsz• (T)) ≤ ‖h�‖1/2L∞(�)|ψε|H1/2(π

qsz• (T)).

Summing over all elements, we obtain that

‖(1 − J�)ψε‖2H−1/2(�)
� ‖(1 − J�)ψε‖2L2(�) � ‖h�‖L∞(�)

∑
T∈T•

|ψε|2H1/2(π
qsz• (T)).

With (M1)–(M4), Proposition 4.1 and Lemma 4.8 from below prove that
∑

T∈T• |ψε|2H1/2(π
qsz• (T))

�|ψε|2H1/2(�)
. Overall, this shows that

min
ψ�∈X�

‖ψ − ψ�‖H−1/2(�) ≤ ‖ψ − ψε‖H−1/2(�) + ‖(1 − J�)ψε‖H−1/2(�) � ε + ‖h�‖1/2L∞(�)|ψε|H1/2(�).

Since lim�→∞ ‖h�‖L∞(�) = 0 and ε was arbitrary, this concludes the proof.
(b) The latter observation allows to follow the ideas of [27] and to show that the adaptive algorithm

yields convergence provided that the sesquilinear forms (· ; ·)P as well as (V · ; ·) are only coercive,
i.e. elliptic up to some compact perturbation and that the continuous problem is well-posed; see also
the introductory text of Section 4.4. This includes, e.g. adaptive BEM for the Helmholtz equation;
see [20, Section 6.9]. For details, the reader is referred to [7,27].
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3.7. Application to BEMwith piecewise polynomials on triangulations

For d = 2, 3, we fix the reference simplex Tref as the closed convex hull of the d vertices
{0, e1, . . . , ed−1}. The convex hull of any d−1 vertices is called facet. A set T• of subsets of � is called
κ-shape regular triangulation if the following properties (i)–(v) are satisfied:

(i) T• is a finite set of elements T of the form T = γT(T̂), where γT : Tref → T is a bi-Lipschitz
mapping whose Lipschitz constants are bounded from above by κ .

(ii) T• covers �, i.e. � = ⋃
T∈T• T.

(iii) There are no hanging nodes in the sense that the intersection T ∩ T′ of any T,T′ ∈ T• with
T �= T′ is either empty or a common facet, i.e. T ∩ T′ = γT(f ) = γT′(f ′) for some facets f and
f ′ of Tref .

(iv) The parametrizations of neighboring elements are compatible in the sense that for all nodes z
(i.e. images of the {0, e1, . . . , ed−1} under an element map γT), there exists an interval π̃•(z) for
d = 2 and a convex polygonal π̃•(z) for d = 3 respectively as well as a bijective and bi-Lipschitz
continuous mapping γz : π̃•(z) → π•(z) such that γ−1

z ◦ γT is affine for all T ∈ 	•(z).
(v) If d = 2, T• is locally-quasi uniform in the sense that diam(T) ≤ κ diam(T′) for all T,T′ ∈ T•

with T ∩ T′ �= ∅.

Up to the fact that we allow γT to be bi-Lipschitz instead of C1, this definition is slightly stronger
than [5, Definition 2.4]. The property (iii) stems from [21, Assumption 4.3.25] and is stronger than
the corresponding assumption [5, Definition 2.4 (iii)]. Further, (i) implies [5, Definition 2.4 (v)], i.e.
for all T ∈ T•, there holds with the extremal eigenvalues λmin(·) and λmax(·) that

sup
t∈Tref

(
diam(T)2

λmin(Dγ�
T (t)DγT(t))

+ λmax(Dγ�
T (t)DγT(t))

diam(T)2

)
� 1; (47)

see, e.g. [24, (3.26)–(3.27)] or [17, Lemma 5.2.1].
Let T0 be a κ0-shape regular triangulation. For d = 2, we define refine(·) as in [28] via 1D-

bisection in the parameter domain. Ford = 3,we definerefine(·) as in [29] via newest vertex bisec-
tion in the parameter domain. In particular, all corresponding refinements T• ∈ T = refine(T0)
are again κ-shape regular triangulations with some fixed κ depending on κ0. We also note that the
number of different π̃•(z) in (iv) is uniformly bounded, i.e. there exist only finitely many reference
node patches. Finally, let p ∈ N0 be a fixed polynomial order. For each T•, we associate the space of
(transformed) piecewise polynomials

X• := Pp(T•) :=
{
�• ∈ L2(�) : �• ◦ γT is a polynomial of degree p for all T ∈ T•

}
. (48)

For this concrete setting, we already pointed out that [1] in combinationwith [5] proved linear conver-
gence (43) at optimal rate (44) ifP = −� is the Laplace operator. The following theorem generalizes
this result to arbitrary P as in Section 2.3.

Theorem 3.8: Piecewise polynomials on κ-shape regular triangulations satisfy the abstract proper-
ties (M1)–(M5), (R1)–(R5), and (S1)–(S6), where the constants depend only on the dimension D, the
regularity constant κ , the initial mesh T•, and the polynomial order p. By Theorem 3.4, this implies
reliability (42) of the error estimator and linear convergence (43) at optimal rate (44) for the adaptive
strategy from Algorithm 3.3.

Proof: The elementary mesh properties (M1)–(M3) are verified in [5, Section 2.3]. (M4) is stated in
[5, Section 4.1]. (M5) follows from Proposition 3.1 together with the fact that there are only finitely
many reference node patches.
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For d = 2, the son estimate (R1) is clearly satisfied with Cson = 2. For d = 3, it is well known
that NVB satisfies (R1) with Cson = 4. Further, (R1) holds true by definition. Reduction of sons
(R3) is obviously satisfied in the parameter domain, i.e. |γ−1

T (T′)| ≤ |γ−1
T (T)|/2 for all T′ ∈ T◦ ∈

refine(T•) with T′ � T. Since γT is bi-Lipschitz, this property transfers to the physical domain,
i.e. |γ−1

T (T′)| ≤ ρson|γ−1
T (T)|, where 0 < ρson < 1 depends only on κ ; see, e.g. [17, Section 4.5.3]

for details. For d = 2, (R4)–(R5) are found in [28, Theorem 2.3]. For d = 3, the closure estimate
(R4) is proved in [30, Theorem 2.4], [31, Theorem 6.1], or [32, Theorem 2], where the latter result
avoids any additional assumption on T0. The overlay property is proved in [31, Proof of Lemma 5.2]
or [33, Section 2.2].

The inverse inequality (S1) for piecewise polynomials on the boundary is proved, e.g. in [5,
Lemma A.1]. Nestedness (S2) is trivially satisfied. Also (S3) is trivially satisfied with qloc, qproj = 0.
Clearly, (S4) holds with (�•,T,j)j′ := 0 for j′ �= j and (�•,T,j)j := χT , where χT denotes the indicator
function on T. Finally, for S ⊆ T• ∈ T, we define with the elementwise L2(T)-orthogonal projection
P•,T : L2(T)D → {

�•|T : �• ∈ X•
}

J•,S : L2(�) → X•, ψ �→ J•,S :=
{
P•,Tψ on all T ∈ S ,
0 on all T ∈ T• \ S .

(49)

This definition immediately yields (S5)–(S6) with qsz = 0. �

Remark 3.9: We mention that Theorem 3.8 is also valid if d = 2 and X• is chosen as set of (trans-
formed) splines which are piecewise polynomials with certain differentiability conditions at the break
points. The required properties are (implicitly) verified in [16]. As in [10] (resp. [11]), where we have
verified the abstract FEM framework of [10] for IGAFEMwith hierarchical splines [34] and themesh-
refinement from [10] (resp. T-splines with the mesh-refinement from [35]), the verification of the
present abstract BEM framework for 3D IGABEM will be addressed in the future work [12].

4. Proof of Theorem 3.4

In the following sections, we prove Theorem 3.4. Reliability (42) is treated explicitly in Section 4.2.
It follows immediately from an auxiliary result on the localization of the Sobolev–Slobodeckij norm
which is investigated in Section 4.1. To prove Theorem 3.4 (ii)–(iii), we verify the following abstract
properties (E1)–(E4) for the error estimator. Together with (R1), the closure estimate (R4), and the
overlay property (R5), these already imply linear convergence of the estimator at optimal algebraic
rate; see [6].

There exist Cρ ,Cqo, Cref , Cdrel, Cson, Cclos, Cover ≥ 1, and 0 ≤ ρred, εqo, εdrel < 1 such that there
hold:

(E1) Stability on non-refined elements: For all T• ∈ T and T◦ ∈ refine(T•), it holds that

|η◦(T• ∩ T◦)− η•(T• ∩ T◦)| ≤ �•,◦ := Cρ‖�◦ −�•‖H−1/2(�).

(E2) Reduction on refined elements: For all T• ∈ T and T◦ ∈ refine(T•), it holds that

η◦(T◦ \ T•)2 ≤ ρredη•(T• \ T◦)2 + �2•,◦.

(E3) General quasi-orthogonality: It holds that

0 ≤ εqo < sup
δ>0

1 − (1 + δ)(1 − (1 − ρred)θ)

2 + δ−1 ,
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and for all �,N ∈ N0, the sequence (T�)�∈N0 from Algorithm 3.3 satisfies that

�+N∑
j=�
(�2j,j+1 − εqoη

2
j ) ≤ Cqoη

2
� .

(E4) Discrete reliability: For allT• ∈ T and allT◦ ∈ refine(T•), there existsT• \ T◦ ⊆ R•,◦ ⊆ T•
with #R•,◦ ≤ Cref (#T◦ − #T•) such that

�2•,◦ ≤ εdrelη
2
• + C2

drelη•(R•,◦)2.

4.1. Localization of the Sobolev–Slobodeckij norm

Let T• ∈ T. In contrast to the integer case, for σ ∈ (0, 1), the norm ‖ · ‖Hσ (�) is not additive in the
sense that

‖v‖2Hσ (�) �
∑
T∈T•

‖v‖2Hσ (T) for all v ∈ Hσ (�)D.

Although the upper bound ‘�’ is in general false (see [36, Section 3]), the lower bound ‘�’ can be
proved elementarily for arbitrary v ∈ Hσ (�)D.

Proposition 4.1: Let 0 < σ < 1 and T• ∈ T. Then, (M1) implies the existence of a constant C′
split > 0

such that for any v ∈ Hσ (�)D, there holds that∑
T∈T•

∑
T′∈	•(T)

|v|2Hσ (T∪T′) ≤ C′
split|v|2Hσ (�). (50)

The constant C′
split depends only on the constant from (M1)

Proof: With the abbreviation

V(x, y) := |v(x)− v(y)|2
|x − y|d−1+2σ for all x, y ∈ � with x �= y, (51)

(M1) shows that∑
T∈T•

∑
T′∈	•(T)

|v|2Hσ (T∪T′) =
∑
T∈T•

∑
T′∈	•(T)

(
|v|2Hσ (T) + 2

∫
T

∫
T′
V(x, y) dx dy + |v|2Hσ (T′)

)

= 2
∑
T∈T•

∑
T′∈	•(T)

(∫
T

∫
T
V(x, y) dx dy +

∫
T

∫
T′
V(x, y) dx dy

)
≤ 2(Cpatch + 1)|v|2Hσ (�).

This concludes the proof. �

However, if one replaces the elements T by some overlapping patches, then also the converse
inequality is satisfied for functions v ∈ Hσ (�)D which are L2-orthogonal to the ansatz space X•.

Proposition 4.2: Let 0 < σ < 1 and T• ∈ T. Then, (M1)–(M4) and (S4) imply the existence of a con-
stant Csplit > 0 such that for any v ∈ Hσ (�)D which satisfies that (v ; (�•,T,j)j)L2(�) = 0 for all T ∈ T•
and all j ∈ {1, . . . ,D}, where�•,T,j are the functions from (S4), it holds that

‖v‖2Hσ (�) ≤ Csplit
∑
T∈T•

∑
T′∈	•(T)

|v|2Hσ (T∪T′). (52)

The constant Csplit depends only on the dimension d, σ ,�, and the constants from (M1)–(M4) and (S4).
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With this result, one can immediately construct a reliable and efficient error estimator, namely
the so-called Faermann estimator; see Remark 4.10. For d = 2, the result of the proposition goes
back to [13], where X• is chosen as space of splines transformed via the arclength parametrization
γ : [a, b] → � onto the one-dimensional boundary. In the recent own works [37], we generalized
the assertion to rational splines, where we could also drop the restriction that γ is the arclength
parametrization. For d = 3, [14] proved the result for discrete spaces which contain certain (trans-
formed) polynomials of degree p ∈ {0, 1, 5, 6} on a curvilinear triangulation of �. Our proof of
Proposition 4.2 is inspired by [14]. The key ingredient is the assumption (S4) which is exploited in
Lemma 4.7. Before proving Proposition 4.2, we provide an easy corollary which is the key ingredient
for the proof of reliability (42).

Corollary 4.3: Let T• ∈ T. Then, (M1)–(M5) and (S4) imply the existence of a constant C′
rel > 0 such

that for any v ∈ H1(�)D which satisfies that (v ; �•,T,j)L2(�) = 0 for all T ∈ T• and all j ∈ {1, . . . ,D},
where�•,T,j are the functions from (S4), it holds that

‖v‖H1/2(�) ≤ C′
rel‖h1/2• ∇�v‖L2(�). (53)

The constant C′
rel depends only on the dimension d, �, as well as the constants from (M1)–(M5) and

(S4).

To prove Proposition 4.2, we start with the following basic estimate, which is proved in [38,
Lemma 8.2.4] or in [17, Lemma 5.3.1].

Lemma 4.4: For all λ > 0, there is a constant C(λ) > 0 such that for all x ∈ Rd and all ε > 0, there
holds that ∫

�\Bε(x)
|x − y|−d+1−λ dy ≤ C(λ)ε−λ. (54)

The constant C(λ) depends only on the parameter λ, the dimension d, and �.

The following lemma is the first step towards the localization of the norm ‖v‖Hσ (�) for certain
functions v ∈ Hσ (�)D. In [14, Lemma 3.1], this result is stated for triangularmeshes. The elementary
proof extends to our situation; see also [17, Lemma 5.3.2] for details.

Lemma 4.5: Let 0 < σ < 1 and T• ∈ T. Then, (M4) implies the existence of a constant C> 0 such that
for all v ∈ Hσ (�)D, it holds that

‖v‖2Hσ (�) ≤
∑
T∈T•

∑
T′∈	•(T)

|v|2Hσ (T∪T′) + C
∑
T∈T•

diam(T)−2σ ‖v‖2L2(T). (55)

The constant C depends only on the dimension d, σ ,�, and the constant from (M4).

It remains to control the second summand in (55). To this end, we need the following elementary
Poincaré-type inequality of [13, Lemma 2.5].

Lemma 4.6: For any σ ∈ (0, 1) and any measurable ω ⊆ �, there holds for all v ∈ Hσ (ω) that

‖v‖2L2(ω) ≤ diam(ω)d−1+2σ

2|ω| |v|2Hσ (ω) + 1
|ω|

∣∣∣∣∫
ω

v(x) dx
∣∣∣∣2 . (56)

We start to estimate the second summand in (55).
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Lemma 4.7: Let σ ∈ (0, 1), T• ∈ T and T ∈ T•. Then, (M1)–(M3) and (S4) imply the existence of
a constant C> 0 such that for all v ∈ Hσ (�)D with (vj ; �•,T,j)L2(�) = 0 for all j ∈ {1, . . . ,D}, where
�•,T,j are the functions from (S4), it holds that

‖h−σ
• v‖L2(T) ≤ C|v|Hσ (πqsupp

• (T)), (57)

where qsupp is the constant from (S4). The constant C depends only on the dimension d, σ ,�, and the
constants from (M1)–(M3) and (S4).

Proof: We prove (57) for each component vj of v, where j ∈ {1, . . . ,D}. Then, squaring and summing
up all components, we conclude the proof. (S4) and Lemma 4.6 show that

‖vj‖2L2(T) ≤ ‖vj‖2L2(supp(�•,T,j))

≤ diam(supp(�•,T,j))d−1+2σ

2|supp(�•,T,j)| |vj|2Hσ (supp(�•,T,j)) + 1
|supp(�•,T,j)|

∣∣∣∣∣
∫
supp(�•,T,j)

vj(x) dx

∣∣∣∣∣
2

.

(58)

Now, we apply the orthogonality and (S4) to get for the second summand that

1
|supp(�•,T,j)|

∣∣∣∣∣
∫
supp(�•,T,j)

vj(x) dx

∣∣∣∣∣
2

= 1
|supp(�•,T,j)|

∣∣∣∣∣
∫
supp(�•,T,j)

vj(x)(1 −�•,T,j(x)) dx

∣∣∣∣∣
2

≤ 1
|supp(�•,T,j)| ‖vj‖

2
L2(supp(�•,T,j))‖1 − (�•,T,j)j‖2L2(supp(�•,T,j)) ≤ ρ2unity‖vj‖2L2(supp(�•,T,j).

Inserting this in (58) gives that

(1 − ρ2unity)‖vj‖2L2(supp(�•,T,j)) ≤ diam(supp(�•,T,j))d−1+2σ

2|supp(�•,T,j)| |vj|2Hσ (supp(�•,T,j)). (59)

With (S4) and (M1)–(M3), we see that diam(supp(�•,T,j)) ≤ diam(πqsupp• (T)) � diam(T) � hT .
Further, (S4) implies that |supp(�•,T,j)| ≥ |T| = hd−1

T . Inserting this in (59) and using again (S4),
we derive that

‖vj‖2L2(T) ≤ ‖vj‖2L2(supp(�•,T,j)) � h2σT |vj|2Hσ (supp(�•,T,j)) ≤ h2σT |vj|2Hσ (πqsupp
• ))

.

Altogether, this concludes the proof. �

The following lemma allows us to further estimate the term |v|Hσ (πqsupp
• (T)) of (57).

Lemma 4.8: Let q ∈ N0 and T• ∈ T. Then, (M1)–(M4) imply the existence of a constant C(q) > 0
such that for all v ∈ Hσ (�)D and all T ∈ T• there holds that

|v|2Hσ (πq
• (T))

≤ C(q)
∑

T′ ,T′′∈	q•(T)
T′∩T′′ �=∅

|v|2Hσ (T′∪T′′). (60)

The constant depends only on the dimension d, σ , q, and the constants from (M1)–(M4).
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Proof: Without loss of generality, we may assume that D = 1. We prove the assertion in two steps.
Step 1: Let T0,T1, . . . ,Tm be a chain of elements in 	q

•(T) with Ti ∩ Tj = ∅ for |i − j| > 1 and
Ti ∩ Tj �= ∅ if |i − j| = 1, where 1 ≤ m ≤ q. We set Tj

i :=
⋃j

k=i T� for i ≤ j and prove by induction
onm that there exists a constant C1(m) > 0 which depends only on d, σ , q,m, and (M2)–(M4), such
that

|v|2Hσ (Tm
0 )

≤ C1(m)
m−1∑
i=0

|v|2Hσ (Ti∪Ti+1)
. (61)

For m = 1, (61) with C1(1) = 1 even holds with equality. Thus the induction hypothesis reads: for
all 1 ≤ m − 1 < q and for any chain T0, . . . ,Tm−1 of elements in	q

•(T), it holds that

|v|2Hσ (Tm−1
0 )

≤ C1(m − 1)
m−2∑
i=0

|v|2Hσ (Ti∪Ti+1)
. (62)

LetTm ∈ 	q
•(T)withTm ∩ Ti = ∅ for i ≤ m − 2 andTm ∩ Ti �= ∅ for i = m−1. For all x, y ∈ �, x �=

y, we abbreviate V(x, y) := |v(x)−v(y)|2
|x−y|d−1+2σ . The definition (7) of the Sobolev–Slobodeckij seminorm

shows that

|v|2Hσ (Tm
0 )

=
∫
Tm
0

∫
Tm
0

V(x, y) dx dy

=
∫
Tm−1
0

∫
Tm−1
0

V(x, y) dx dy +
∫
Tm

∫
Tm

V(x, y) dx dy + 2
∫
Tm

∫
Tm−1
0

V(x, y)d dx dy

= |v|2Hσ (Tm−1
0 )

+ |v|2Hσ (Tm) + 2
∫
Tm

∫
Tm−2
0

V(x, y) dx dy + 2
∫
Tm

∫
Tm−1

V(x, y) dx dy

≤ |v|2Hσ (Tm−1
0 )

+ |v|2Hσ (Tm−1∪Tm) + 2
∫
Tm

∫
Tm−2
0

V(x, y) dx dy.

With the induction hypothesis (62), it remains to estimate
∫
Tm

∫
Tm−2
0

V(x, y)dxdy. First, we note that

for x ∈ Tm−2
0 , y ∈ Tm, z ∈ Tm−1, it holds that

V(x, y) = |v(x)− v(y)|2
|x − y|d−1+2σ ≤ 2

|v(x)− v(z)|2
|x − y|d−1+2σ + 2

|v(z)− v(y)|2
|x − y|d−1+2σ . (63)

Moreover, (M4) shows that |x − y| ≥ dist(Tm,� \ π•(Tm)) � diam(Tm). Since x, y, z ∈ Tm
0 , (M2)

shows max{|x − z|, |y − z|} � diam(Tm). Hence, we can proceed the estimate of (63)

V(x, y) � V(x, z)+ V(z, y).

This implies that∫
Tm

∫
Tm−2
0

V(x, y) dx dy

= 1
|Tm−1|

∫
Tm−1

∫
Tm

∫
Tm−2
0

V(x, y) dx dy dz

� 1
|Tm−1|

∫
Tm−1

∫
Tm

∫
Tm−2
0

V(x, z)+ V(y, z) dx dy dz
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= 1
|Tm−1|

(∫
Tm−1

∫
Tm−2
0

|Tm|V(x, z) dx dz +
∫
Tm−1

∫
Tm−1

|Tm−2
0 |V(y, z) dy dz

)

≤ max{|Tm|, |Tm−2
0 |}

|Tm−1|
(
|v|2Hσ (Tm−1

0 )
+ |v|2Hσ (Tm−1∪Tm)

)
.

Note that max{|Tm|, |Tm−2
0 |}/|Tm−1| � 1 by (M2)–(M3). Together with the induction hypothe-

sis (62), this concludes the induction step.
Step 2:We come to the assertion itself. By definition, we have that

|v|2H1/2(π
q
• (T))

=
∑

T̃′ ,̃T′′∈	q
•(T)

∫
T̃′

∫
T̃′′

V(x, y) dx dy.

Let T̃′, T̃′′ ∈ 	q
•(T). First, we suppose that T̃′ �= T̃′′ = ∅. Then, there exists a chain as in Step 1 with

T̃′ = T0 and T̃′′ = Tm. Step 1 proves that∫
T̃′

∫
T̃′′

V(x, y) dx dy ≤ |v|2Hσ (Tm
0 )

�
∑

T′ ,T′′∈	q•(T)
T′∩T′′ �=∅

|v|2Hσ (T′∪T′′).

If T̃′ = T̃′′, the same estimate holds true. Since the number of T̃′, T̃′′ ∈ 	q
•(T) is uniformly bounded

by a constant, which depends only on the constant of (M1) and q, this estimate concludes the proof.
�

With the property (M5), one immediately derives the following Poincaré inequality.

Proposition 4.9: Let T• ∈ T and T ∈ T•. Then, (M1)–(M5) and (S4) imply the existence of a constant
Cpoinc > 0 such that for all v ∈ H1(�)D which satisfy that (v ; �•,T,j)L2(�) = 0 for all j ∈ {1, . . . ,D},
where�•,T,j are the functions from (S4), it holds that

‖h−1
• v‖L2(T) ≤ Cpoinc|v|H1

(
π
qsupp+1
• (T)

), (64)

where qsupp is the constant from (S4). The constant Cpoinc depends only on the dimension d,�, and the
constants from (M1)–(M5) and (S4).

Proof: We apply Lemma 4.7 and Lemma 4.8 to see that

‖h−1/2
• v‖2L2(T) � |v|2

H1/2(π
qsupp
• (T))

�
∑

T′ ,T′′∈	qsupp• (T)
T′∩T′′ �=∅

|v|2H1/2(T′∪T′′).

For T′,T′′ ∈ T• with T′ ∩ T′′ �= ∅, we fix some point z(T′,T′′) ∈ T′ ∩ T′′. With (M5), we continue
our estimate

‖h−1/2
• v‖2L2(T) � |v|2

H1/2(π
qsupp
• (T))

�
∑

T′ ,T′′∈	qsupp• (T)
T′∩T′′ �=∅

|v|2H1/2(π•(z(T′,T′′))

�
∑

T′ ,T′′∈	qsupp• (T)
T′∩T′′ �=∅

diam
(
π•(z(T′,T′′)

) ‖∇�v‖2L2(π•(T′)).

(M1)–(M3) imply that hT � h• on πqsupp+1
• (T), and that the last term of the latter estimate can be

bounded from above (up to a multiplicative constant) by ‖h1/2• ∇�v‖2
L2(π

qsupp+1
• (T))

. This concludes

the proof. �
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With all the preparations, we can finally prove the main result of this section.

Proof of Proposition 4.2: Together with (M3), Lemma 4.5 proves that

‖v‖2Hσ (�) �
∑
T∈T•

∑
T′∈	•(T)

|v|2Hσ (T∪T′) +
∑
T∈T•

h−2σ
T ‖v‖2L2(T).

It remains to estimate the second sum. With Lemma 4.7 and Lemma 4.8, we see that∑
T∈T•

h−2σ
T ‖v‖2L2(T) �

∑
T∈T•

|v|2
Hσ (π

qsupp
• (T))

�
∑
T∈T•

∑
T′ ,T′′∈	qsupp• (T)

T′∩T′′ �=∅

|v|2Hσ (T′∪T′′). (65)

If T ∈ T• and T′,T′′ ∈ 	qsupp• (T)with T′ ∩ T′′ �= ∅, then T ∈ 	qsupp• (T′) and T′′ ∈ 	•(T′). Plugging
this into (65) shows that∑

T∈T•

h−2σ
T ‖v‖2L2(T) �

∑
T′∈T•

∑
T∈	qsupp

• (T′)

∑
T′′∈	•(T′)

|v|2Hσ (T′∪T′′),

and #	qsupp• (T′) � 1 (see (M1)) concludes the proof. �

4.2. Reliability (42)

Let T• ∈ T. Recall that V : H−1/2(�)D → H1/2(�)D is an isomorphism. Due to Galerkin orthogo-
nality (35), Corollary 4.3 leads to

‖φ −�•‖H−1/2(�) � ‖f − V�•‖H1/2(�) � ‖h1/2• ∇�(f − V�•)‖L2(�) = η•. (66)

Remark 4.10: Proposition 4.1 and Proposition 4.2 show that

‖φ −�•‖2H−1/2(�)
� ‖f − V�•‖2H1/2(�)

�
∑
T∈T•

∑
T′∈	•(T)

|f − V�•|2H1/2(T∪T′). (67)

This is even true for arbitrary f ∈ H1/2(�)D without the additional restriction f ∈ H1(�)D. In
particular,

�•(T)2 :=
∑

T′∈	•(T)
|f − V�•|2H1/2(T∪T′) for all T ∈ T• (68)

provides a local error indicator. The corresponding error estimator �• is often referred to as Faer-
mann estimator. In BEM, it is the only known estimatorwhich is reliable and efficient (without further
assumptions as, e.g. the saturation assumption [39, Section 1]). Obviously, one could replace the resid-
ual estimator η� inAlgorithm3.3 by��. However, due to the lack of an h-weighting factor, it is unclear
whether the reduction property (E2) of Section 4.2 is satisfied. [24, Theorem 7] proves at least plain
convergence of �� even for f ∈ H1/2(�)D if one uses piecewise constants on affine triangulations of
� as ansatz space. The proof immediately extends to our current situation, where the assumptions
(M1)–(M5), (R2)–(R3), and (S1)–(S2) are employed. The key ingredient is the construction of an
equivalent mesh-size function h̃• ∈ L∞(�) which is contractive on each element which touches a
refined element, i.e. there exists a uniform constant 0 < ρctr < 1 such that

h̃◦|T ≤ ρctr̃h•|T for all T◦ ∈ refine(T•) and all T ∈ 	•(T• \ T◦). (69)

The existence of such a mesh-size function is proved in [6, Section 8.7] for shape-regular triangular
meshes. The proof works verbatim for the present setting.
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4.3. Convergence of ‖��+1 − ��‖H−1/2(�)

Nestedness (S2) ensures that X∞ := ⋃
�∈N0

X� is a closed subspace of H−1/2(�)D and hence admits
a unique Galerkin solution�∞ ∈ X∞. Note that�� is also a Galerkin approximation of�∞. Hence,
the Céa lemma (36) with φ replaced by �∞ proves that ‖�∞ −��‖H−1/2(�) → 0 as � → ∞. In
particular, we obtain that lim�→∞ ‖��+1 −��‖H−1/2(�) = 0.

4.4. An inverse inequality forV

In Proposition 4.13, we establish an inverse inequality for the single-layer operator V. Throughout
this section, neither the ellipticity of P nor the ellipticity of V are exploited (and we can drop these
assumption here). Indeed, it is sufficient to assume that P is only coercive. Then, the definitions
and properties presented in Section 2.3 remain valid; see [19, page 119]. For the Laplace opera-
tor P = −�, an inverse estimate as in Proposition 4.13 was already proved in [3, Theorem 3.1]
for shape-regular triangulations of a polyhedral boundary �. Independently, [4] derived a similar
result for globally smooth � and arbitrary self-adjoint and elliptic boundary integral operators. In [5,
Theorem 3.1], [3, Theorem 3.1] is generalized to piecewise polynomial ansatz functions on shape-
regular curvilinear triangulations. In particular, our Proposition 4.13 does not only extend these
results to arbitrary general meshes as in Section 3.1, but is also completely novel for, e.g. linear elas-
ticity. The proof follows the lines of [5, Section 4]. We start with the following lemma, which was
proved in [40, Theorem 4.1] on shape-regular triangulations.With Lemma 4.6, the proof immediately
extends to our situation; see also [17, Lemma 5.3.11].

Lemma 4.11: For T• ∈ T, let P0(T•)D ⊂ L2(�)D be the set of all functions whose D components are
T•-piecewise constant functions on �. Let P• : L2(�)D → P0(T•)D be the corresponding L2-projection.
Then, (M1) and (M3) imply for arbitrary 0 < σ < 1 the existence of a constant C> 0 such that

‖(1 − P•)ψ‖H−σ (�) ≤ C‖hσ•ψ‖L2(�) for all ψ ∈ L2(�). (70)

The constant C depends only on the dimension D, the boundary �, σ , and the constants from (M3).

In contrast to [5], we cannot use the Caccioppoli-type inequality from [41, Lemma 5.7.1] which is
only shown for the Poisson problem there. Therefore, we prove the following generalization. For an
open set O ⊂ Rd and an arbitrary u ∈ H2(O), we abbreviate |u|H1(O) := ‖∇u‖L2(O) and |u|H2(O) :=(∑d

i=1 |∂iu|2H1(O)

)1/2
.

Lemma 4.12: Let r > 0, x ∈ Rd, and u ∈ H1(B2r(x))D be a weak solution of Pu = 0. Then, u|Br(x) ∈
C∞(Br(x))D and there exists a constant C> 0 such that

|u|H2(Br(x)) ≤ C
(

‖u‖L2(B2r(x)) + 1 + r + r2

r
|u|H1(B2r(x))

)
. (71)

The constant C depends only on the dimensions d,D, and the coefficients of the partial differential
operator P.

Proof: By [19, Theorem 4.16], there holds that u|B3r/2(x) ∈ Hk(B3r/2(x))D for all k ∈ N0, and the
Sobolev embedding theorem proves that u|B3r/2(x) ∈ C∞(B3r/2(x))D. In particular, u is a strong solu-
tion of Pu = 0 on B3r/2(x). To prove (71), let λ ∈ RD be an arbitrary constant vector, and define
ũ := u ◦ ϕ with the affine bijection ϕ : B3/2(0) → B3r/2(x), ϕ(̃y) = r̃y + x for ỹ ∈ B3/2(0). Since the
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coefficients ofP are constant and u is a strong solution, there holds for all ỹ ∈ B3/2(0)with y := ϕ(̃y)
that

−
d∑

i=1

d∑
i′=1

∂i(Aii′∂i′ (̃u − λ))(̃y) = −
d∑

i=1

d∑
i′=1

∂i(Aii′∂i′(u − λ))(y) r2

= −r2
( d∑

i=1
bi∂i(u − λ)(y)+ c(u − λ)(y)+ c λ

)
. (72)

We define the right-hand side as f̃ ∈ C∞(B3/2(0)), i.e.

f̃ (̃y) := −r2
( d∑

i=1
bi∂i(u − λ)(ϕ(̃y))+ c(u − λ)(ϕ(̃y))+ c λ

)
.

This shows that ũ − λ is a strong (and thus weak) solution of a coercive system of second-order PDEs
with smooth coefficients and smooth right-hand side. The application of [19, Theorem 4.16] yields
the existence of a constant C1 > 0, which depends only on d,D, and the coefficients of the matrices
Aii′ , such that

|̃u − λ|H2(B1(0)) ≤ C1

(
‖̃u − λ‖H1(B3/2(0)) + ‖̃f ‖L2(B3/2(0))

)
. (73)

Standard scaling arguments prove that

|̃u − λ|H2(B1(0)) � r2

rd/2
|u|H2(Br(x)),

‖̃u − λ‖L2(B3/2(0)) � 1
rd/2

‖u − λ‖L2(B3r/2(x)),

|̃u − λ|H1(B3/2(0)) � r
rd/2

|u|H1(B3r/2(x)),

‖̃f ‖L2(B3/2(0)) � r2

rd/2
|u|H1(B3r/2(x)) + r2

rd/2
‖u − λ‖L2(B3r/2(x)) + r2|λ|.

Plugging this into (73), we obtain that

|u|H2(Br(x)) �
(
1 + r2

r2
‖u − λ‖L2(B3r/2(x)) + 1 + r

r
|u|H1(B3r/2(x)) + rd/2|λ|

)
. (74)

We choose λ as the integral mean λ := ∫
B3r/2(x) u(y)dy/|B3r/2(x)|. The Cauchy–Schwarz inequality

implies that

|λ| � ‖u‖L1(B3r/2(x))/|B3r/2(x)| ≤ ‖u‖L2(B3r/2(x))/|B3r/2(x)|1/2 � r−d/2‖u‖L2(B3r/2(x)).

Using this and the Poincaré inequality in (74), we see that

|u|H2(Br(x)) �
(

‖u‖L2(B3r/2(x)) + 1 + r + r2

r
|u|H1(B3r/2(x))

)
.

Together with the fact that B3r/2(x) ⊂ B2r(x), this concludes the proof. �
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For the proof of the next proposition, we need the linear and continuous single-layer potential from
[19, Theorem 6.11]

Ṽ : H−1/2(�)D → H1(U)D, (75)

where U is an arbitrary bounded domain with � ⊂ U. The single-layer operator V is just the trace
of Ṽ, i.e.

V = Ṽ(·)|� : H−1/2(�)D → H1/2(�)D; (76)

see [19, page 219–220]. Indeed, for ψ ∈ L∞(�), [19, page 201–202] states the following integral
representation:

(Ṽψ)(x) =
∫
�

G(x − y)ψ(y) dy for all x ∈ U. (77)

Proposition 4.13: Suppose (M1)–(M5). For T• ∈ T, let w• ∈ L∞(�) be a weight function which
satisfies for some α > 0 and all T ∈ T• that

‖w•‖L∞(T) ≤ αw•(x) for almost all x ∈ π•(T). (78)

Then, there exists a constant Cinv,V > 0 such that for all ψ ∈ L2(�)D, it holds that

‖w•∇�Vψ‖L2(�) ≤ Cinv,V
(‖w•/h1/2• ‖L∞(�)‖ψ‖H−1/2(�) + ‖w•ψ‖L2(�)

)
. (79)

The constant Cinv,V depends only on (M1)–(M5),�, the coefficients ofP, and the admissibility constant
α. The particular choice w• = h1/2• shows that

‖h1/2• ∇�Vψ‖L2(�) ≤ Cinv,V
(‖ψ‖H−1/2(�) + ‖h1/2• ψ‖L2(�)

)
. (80)

Proof: The proof works essentially as in [5, Section 4]. Therefore, we mainly emphasize the differ-
ences and refer to [17, Proposition 5.3.15] for further details.

By (M4) and with the abbreviation δ1(T) := diam(T)/(2Ccent) and UT := Bδ1(T)(T), there holds
for allT ∈ T• thatUT ∩ � ⊂ B2δ1(T)(T) ∩ � ⊂ π•(T). This provides uswith an open covering of� ⊂⋃

T∈T• UT . We show that this is even locally finite in the sense that there exists a constant C> 0 with
#
{
T ∈ T• : x ∈ UT

} ≤ C for all x ∈ Rd: Let x ∈ Rd. Clearly, we may assume that x ∈ ⋃
T∈T• UT .

Choose T0 ∈ T• with x ∈ UT0 such that δ1(T0) is minimal, and let x0 ∈ T0 with |x − x0| < δ1(T0).
If T ∈ T• with x ∈ UT , the triangle inequality yields that dist({x0},T) < 2δ1(T). By choice of δ1(T),
(M4) hence yields that x0 ∈ π•(T). Thus,

{
T ∈ T• : x ∈ UT

} ⊆ {
T ∈ T• : x0 ∈ π•(T)

}
, and (M1)

implies that

#
{
T ∈ T• : x ∈ UT

} ≤ #
{
T ∈ T• : x0 ∈ π•(T)} ≤ C2

patch. (81)

We fix (independently of T•) a bounded domain U ⊂ Rd with UT ⊂ U for all T ∈ T•. We define for
T ∈ T• the near-field and the far-field of uV := Ṽψ by

unearV,T := Ṽ(ψχ�∩UT ) and ufarV,T := Ṽ(ψχ�\UT ). (82)

In the following five steps, the near-field and the far-field are estimated separately. The first two steps
deal with the near-field, whereas the last three steps deal with the far-field.

Step 1: As in [5, Lemma 4.1], one shows that for all T ∈ T•, all T•-piecewise (componentwise)
constant functions�T• ∈ P0(T•)D with supp(�T• ) ⊆ π•(T) satisfy that

‖Ṽ�T
• ‖H1(UT) � ‖h1/2• �T

• ‖L2(π•(T)). (83)

The proof of [5] uses only (81) and the fact that |∇xG(x − y)| � |x − y|−d+1 (x, y) ∈ U × � with x �=
y for the Laplacian fundamental solution G. However, according to [19, Theorem 6.3 and Corollary
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6.5] this fact is also valid for general coercive second-order PDEs with C∞ coefficients. Moreover, [5]
bounds only theH1-seminorm in (83), but theL2-norm can be bounded similarly due to |G(x − y)| �
max{| log |x − y||, |x − y|−d+2} � |x − y|−d+1 (see again [19, Theorem 6.3 and Corollary 6.5]).

Step 2:With Step 1, one shows as in [5, Proposition 4.2] that unearV,T ∈ H1(U) and unearV,T |� ∈ H1(�)
with ∑

T∈T•

‖w•∇�unearV,T‖2L2(T) +
∑
T∈T•

‖w•/h1/2• ‖2L∞(T)‖unearV,T‖2H1(UT)
� ‖w•ψ‖2L2(�). (84)

In the proof, one applies the stability of V : L2(�)D → H1(�)D (see (21)) and Ṽ : H−1/2(�)D →
H1(U)D (see (75)). Moreover, the approximation property (70) is exploited by splitting ψχ�∩UT =
P•(ψχ�∩UT )+ (1 − P•)(ψχ�∩UT ) and choosing�T• := P•(ψχγ∩UT ). Note that [5] only proves (84)
with |unearV,T |2H1(UT)

instead of ‖unearV,T‖2H1(UT)
.

Step 3:We consider the far-field. We set�ext := Rd \�. According to [19, Theorem 6.11], for all
T ∈ T•, the potential ufarV,T is a solution of the transmission problem

PufarV,T = 0 on� ∪�ext,

[ufarV,T]� = 0 in H1/2(�)D,

[DνufarV,T]� = −ψχ�\UT in H−1/2(�)D,

where [·]� and [Dν(·)]� denote the jump of the traces and the conormal derivatives respectively
(see [19, page 117] for a precise definition) across the boundary �. Twofold integration by parts that
uses these jump conditions shows thatPufarV,T = 0 weakly onUT . Since Bδ1(T)(x) ⊆ UT for all x ∈ T,
Lemma 4.12 shows that ufarV,T ∈ C∞(Bδ1(T)/2(x)) with

|ufarV,T |H2(Bδ1(T)/2(x))
� ‖ufarV,T‖L2(Bδ1(T)(x)) + diam(T)−1|ufarV,T |H1(Bδ1(T)(x))

. (85)

Note that [5] proves (85) even without the term ‖ufarV,T‖L2(Bδ1(T)(x)). Indeed, since the kernel of the
Laplace operator contains all constants, [5] employs a Poincaré inequality to bound ‖ufarV,T‖L2(Bδ1(T)(x))
by diam(T)−1|ufarV,T |H1(Bδ1(T)(x))

.
Step 4: With inequality (85) at hand, one can prove the following local far-field bound for the

single-layer potential Ṽ

‖h1/2• ∇�ufarV,T‖L2(T) ≤ ‖h1/2• ∇ufarV,T‖L2(T) � ‖ufarV,T‖H1(UT). (86)

The proof works as in [5, Lemma 4.4] and relies on a standard trace inequality on�, the Caccioppoli
inequality (85) as well as the Besicovitch covering theorem. Note that in [5], the estimates (85) and
thus (86) even hold without the L2-norm of ufarV,T , since the Laplace problem is considered.

Step 5:Finally, (81), (82), (84), (86), and the stability of Ṽ : H−1/2(�)D → H1(U)D (see (75)) easily
lead to the far-field bound for Ṽ∑

T∈T•

‖w•∇�ufarV,T‖2L2(T) ≤
∑
T∈T•

‖w•∇ufarV,T‖2L2(T)

� ‖w•/h1/2• ‖2L∞(�)‖ψ‖2H−1/2(�)
+ ‖w•ψ‖2L2(�). (87)

For the simple proof, we refer to [5, Proposition 4.5]. By definition (82), (87) together with (84) from
Step 2 concludes the proof. �

[5] does not only treat the single-layer operatorV : H−1/2(�)D → H1/2(�)D but also derives sim-
ilar inverse estimates as in (79) for the double-layer operator, the adjoint double-layer operator, and
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the hyper-singular operator. With similar techniques as in Proposition 4.13, we will also general-
ize this result in Appendix B. However, we will indeed only need the inverse estimate (80) for the
single-layer operator in the remainder of the paper.

4.5. Stability on non-refined elements (E1)

We show that the assumptions (M1)–(M5) and (S1)–(S2) imply stability (E1), i.e. the existence of
Cstab ≥ 1 such that for all T• ∈ T, and all T◦ ∈ refine(T•), it holds that

|η◦(T• ∩ T◦)− η•(T• ∩ T◦)| ≤ Cstab‖�◦ −�•‖H−1/2(�). (88)

In Section 4.6, we will fix the constant C� for �•,◦ defined in (E1) such that Cstab ≤ C�. The reverse
triangle inequality and the fact that h◦ = h• on ω := ⋃

(T• ∩ T◦) prove that

|η◦(T• ∩ T◦)− η•(T• ∩ T◦)| = ∣∣‖h1/2◦ ∇�V(φ −�◦)‖L2(ω) − ‖h1/2• ∇�V(φ −�•)‖L2(ω)
∣∣

≤ ‖h1/2◦ ∇�V(�◦ −�•)‖L2(ω)
≤ ‖h1/2◦ ∇�V(�◦ −�•)‖L2(�).

(S2) shows that�◦ −�• ∈ X◦. Therefore, the inverse inequalities from (S1) and (80) are applicable,
which implies (88). The constantCstab depends only on d,D,�, the coefficients ofP, and the constants
from (M1)–(M5) and (S1).

4.6. Reduction on refined elements (E2)

We show that the assumptions (M1)–(M5), (R2)–(R3), and (S1)–(S2) imply reduction on refined
elements (E2), i.e. the existence of Cred ≥ 1 and 0 < ρred < 1 such that for all T• ∈ T and all T◦ ∈
refine(T•), it holds that

η◦(T◦ \ T•)2 ≤ ρred η•(T•\T◦)2 + Cred‖�◦ −�•‖2H−1/2(�)
. (89)

With this, we can fix the constant for �•,◦ defined in (E1) as

C� := max{Cstab,C
1/2
red }. (90)

Let ω := ⋃
(T◦ \ T•). First, we apply the triangle inequality

η◦(T◦ \ T•) = ‖h1/2◦ ∇�V(φ −�◦)‖L2(ω)
≤ ‖h1/2◦ ∇�V(φ −�•)‖L2(ω) + ‖h1/2◦ ∇�V(�◦ −�•)‖L2(ω).

Clearly, (R2)–(R3) show thatω = ⋃
(T◦ \ T•) = ⋃

(T• \ T◦) and h◦ ≤ ρ
1/(d−1)
son h• onω. Thus we can

proceed the estimate as follows:

η◦(T◦ \ T•) ≤ ρ
1/(2d−2)
son ‖h1/2• ∇�V(φ −�•)‖L2(ω) + ‖h1/2◦ ∇�V(�◦ −�•)‖L2(ω)

= ρ
1/(2d−2)
son η•(T• \ T◦)+ ‖h1/2◦ ∇�V(�◦ −�•)‖L2(ω).

Since �• ∈ X• ⊆ X◦ according to (S2), we can apply the inverse estimates (S1) and (80). Together
with the Young inequality, we derive for arbitrary δ > 0 that

η◦(T◦ \ T•)2 ≤ (1 + δ)ρ
1/(d−1)
son η•(T• \ T◦)2 + (1 + δ−1)C2

inv,V(1 + Cinv)
2‖�◦ −�•‖2H−1/2(�)

.

Choosing δ > 0 sufficiently small, we obtain (89). The constant Cred depends only on d, D, �, the
coefficients of P, and the constants from (M1)–(M5), (R2)–(R3), and (S1).
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4.7. General quasi-orthogonality (E3)

According to [6, Section 4.3], Section 4.3, Section 4.5, and Section 4.6 already imply estimator
convergence lim�→∞ η� = 0. Therefore, reliability (42) implies error convergence lim�→∞ ‖φ −
��‖H−1/2(�) = 0. In particular, we obtain thatφ ∈ X∞ = ⋃

�∈N0
X�. Recall that we have already fixed

the constant C� in (90). We introduce the principal part ofP as the corresponding partial differential
operator without lower-order terms

P0v := −
d∑

i=1

d∑
i′=1

∂i(Aii′∂i′v). (91)

According to [19, Lemma 4.5], the principal part is coercive onH1
0(�)

D.We denote its corresponding
single-layer operator which can be defined as in Section 2.3 by V0 : H−1/2(�)D → H1/2(�)D. Our
assumption A�

ii′ = Ai′i easily implies that V0 is self-adjoint; see, e.g. [19, page 218]. With (76) and
(A14) below, we particularly see the stability of V − V0 : H−1/2(�)D → H1−ε(�)D for all ε > 0.
Thus the Rellich compactness theorem [19, Theorem 3.27] implies that V − V0 : H−1/2(�)D →
H1/2(�)D is compact. This yields that V is an elliptic operator which can be written as the sum of a
self-adjoint operator V0 plus a compact operator V − V0. From [27,42], we thus derive the general
quasi-orthogonality (E3) (see also [17, Section 4.4.3] for all details), i.e. the existence of

0 ≤ εqo < sup
δ>0

1 − (1 + δ)(1 − (1 − ρred)θ)

2 + δ−1 (92)

and Cqo ≥ 1 such that

�+N∑
j=�
(C�‖�j+1 −�j‖2H−1/2(�)

− εqoη
2
j ) ≤ Cqoη

2
� for all �,N ∈ N0. (93)

Remark 4.14: If the sesquilinear form (V · ; ·) is Hermitian, (93) follows from the Pythagoras
theorem ‖φ −�j‖2V + ‖�j+1 −�j‖2V = ‖φ −�j‖2V and norm equivalence

�+N∑
j=�

‖�j+1 −�j‖2H−1/2(�)
�
�+N∑
j=�

‖�j+1 −�j‖2V = ‖φ −��‖2V − ‖φ −��+N‖2V

� ‖φ −��‖2H−1/2(�)
.

Together with reliability (42), this proves (93) even for εqo = 0, and Cqo is independent of the
sequence (��)�∈N0 .

4.8. Discrete reliability (E4)

The proof of (E4) is inspired by [3, Proposition 5.3] which considers piecewise constants on shape-
regular triangulations as ansatz space. Under the assumptions (M1)–(M5), (32), and (S1)–(S6), we
show that there exist Cdrel,Cref ≥ 1 such that for all T• ∈ T and all T◦ ∈ refine(T•), the subset

R•,◦ := 	
qsupp+qloc+2
• (T• \ T◦) (94)

satisfies that

C�‖�◦ −�•‖H−1/2(�) ≤ Cdrel η•(R•,◦), T• \ T◦ ⊆ R•,◦, and #R•,◦ ≤ Cref (#T◦ − #T•).

The last two properties are obvious with Cref = Cqsupp+qloc+2
patch by validity of (M1) and (32). The first

estimate is proved in three steps:
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Step 1: For S1 := T• ∩ T◦, let J•,S1 be the corresponding projection operator from (S5)–(S6). Ellip-
ticity (22), nestedness (S2) of the ansatz spaces, and the definition (34) of theGalerkin approximations
yield that

‖�◦ −�•‖2H−1/2(�)
� Re (V(�◦ −�•) ; �◦ −�•)L2(�)

= Re (V(φ −�•) ; (1 − J•,S1)(�◦ −�•))L2(�).

(S3) shows that (�◦ −�•)|πproj
• (T) ∈ {

�•|πproj
• (T) : �• ∈ X•

}
for anyT ∈ T• \	qloc• (T• \ T◦).More-

over, one easily sees that

	
qloc• (T) ⊆ T• ∩ T◦ = S1 for all T ∈ T• \	qloc• (T• \ T◦). (95)

Hence, the local projection property (S5) of J•,S1 is applicable and proves that J•,S1(�◦ −�•) =
�◦ −�• on � \ πqloc• (T• \ T◦). With S2 := 	

qloc• (T• \ T◦), Lemma A.1 provides a smooth cut-off
function χ := χ̃S2 ∈ H1(�) with 0 ≤ χ ≤ 1 such that χ = 1 on

⋃
S2, χ = 0 on � \ π•(S2), and

|∇�χ | � h−1• , where the hidden constant depends only on d and (M1)–(M4). This leads to

‖�◦ −�•‖2H−1/2(�)
� Re (χ V(φ −�•) ; (1 − J•,S1)(�◦ −�•))L2(�). (96)

We bound the two terms I := Re (χ V(φ −�•) ; �◦ −�•)L2(�) and II := Re (χ V(φ −�•) ;
J•,S1(�◦ −�•))L2(�) separately. Since H−1/2(�)D is the dual space of H1/2(�)D, it holds that

I ≤ ‖χ V(φ −�•)‖H1/2(�)‖�◦ −�•‖H−1/2(�). (97)

The Cauchy–Schwarz inequality shows that

II ≤ ‖h−1/2
• χ V(φ −�•)‖L2(�)‖h1/2• J•,S1(�◦ −�•)‖L2(�).

Since J•,S1 : L
2(�)D → {

�• ∈ X• : �•|⋃(T•\S1) = 0}, it holds that supp(J•,S1(�◦ −�•)) ⊆ ⋃
(T• ∩ T◦). This together with the fact that h• = h◦ on

⋃
(T• ∩ T◦), the local L2-stability (S6) and

(M1)–(M3) implies that

II = ‖h−1/2
• χ V(φ −�•)‖L2(�)

∥∥h1/2◦ J•,S1(�◦ −�•)
∥∥
L2(

⋃
(T•∩T◦))

� ‖h−1/2
• χ V(φ −�•)‖L2(�)‖h1/2◦ (�◦ −�•)‖L2(�).

With the inverse inequality (S1) applied to�◦ −�• ∈ X◦ (see (S2)), the latter estimate implies that

II � ‖h−1/2
• χV(φ −�•)‖L2(�)‖�◦ −�•‖H−1/2(�). (98)

Plugging (97)–(98) into (96) shows that

‖�◦ −�•‖H−1/2(�) � ‖h−1/2
• χ V(φ −�•)‖L2(�) + ‖χ V(φ −�•)‖H1/2(�). (99)

Step 2: Next, we deal with the first summand of (99). With supp(χ) ⊆ π
qloc+1
• (T• \ T◦) and 0 ≤

χ ≤ 1, this implies that

‖h−1/2
• χ V(φ −�•)‖L2(�) ≤ ‖h−1/2

• V(φ −�•)‖L2(πqloc+1
• (T•\T◦)

). (100)

By Galerkin orthogonality (35), we see thatV(φ −�•) is L2-orthogonal to all functions ofX• which
includes in particular the functions �•,T,j from (S4). Hence, we can apply Proposition 4.9. Together



28 G. GANTNER AND D. PRAETORIUS

with (M1)–(M3) and recalling (94), (100) proves that

‖h−1/2
• χ V(φ −�•)‖L2(�) � ‖h1/2• ∇�V(φ −�•)‖L2(πqsupp+qloc+2

• (T•\T◦)
) = η•(R•,◦).

Step 3: It remains to consider the second summand of (99). Lemma 4.5 in conjunction with shape-
regularity (M3) implies that

‖χ V(φ −�•)‖2H1/2(�)
�

∑
T∈T•

∑
T′∈	•(T)

|χ V(φ −�•)|2H1/2(T∪T′) + ‖h−1/2
• χ V(φ −�•)‖L2(�).

We have already dealt with the second summand in Step 2 (see (100)). For the first one, we fix again
some z(T,T′) ∈ T ∩ T′ for any T ∈ T•,T′ ∈ 	•(T). (M1)–(M3) and (M5) show that∑

T∈T•

∑
T′∈	•(T)

|χ V(φ −�•)|2H1/2(T∪T′)

≤
∑
T∈T•

∑
T′∈	•(T)

|χ V(φ −�•)|2H1/2(π•(z(T,T′)))

≤
∑
T∈T•

∑
T′∈	•(T)

‖h1/2• ∇�(χ V(φ −�•))‖2L2(π•(z(T,T′)) � ‖h1/2• ∇�(χ V(φ −�•))‖2L2(�).

With the product rule and (A2), we continue our estimate

‖χ V(φ −�•)‖2H1/2(�)
� ‖h−1/2

• V(φ −�•))‖2L2(supp(χ)) + ‖h1/2• ∇�V(φ −�•))‖2L2(supp(χ)).

Note that we have already dealt with the first summand in Step 2 (see (100)). Finally, supp(χ) ⊆
π
qloc+1
• (T• \ T◦) and	

qloc+1
• (T• \ T◦) ⊆ R•,◦ (see (94)) prove for the second one that

‖h1/2• ∇�V(φ −�•))‖2L2(supp(χ)) ≤ η•(R•,◦)2.

With this, we conclude the proof of discrete reliability (E4). The constant Cdrel depends only on
C�, d,D, �, and the constants from (M1)–(M5) and (S1)–(S6).

Notes

1. For ω̂ ⊆ Rd−1 and ω ⊆ Rd, a mapping γ : ω̂ → ω is bi-Lipschitz if it is bijective and γ as well as its inverse γ−1

are Lipschitz continuous.
2. A compact Lipschitz domain is the closure of a bounded Lipschitz domain. For d = 2, it is the finite union of

compact intervals with non-empty interior.
3. We use the convention dist(T,∅) := diam(�).
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Appendices

Appendix 1. Smooth characteristic functions
The following lemma provides a smooth cut-off function as used in the proof of discrete reliability (E4); see Section 4.8.
For regular simplicial meshes as in Section 3.7, such functions can easily be constructed by means of hat functions; see
[5, Section 5.3]. For the present abstract setting, the construction is more technical.

Lemma A.1: Let T• ∈ T and S ⊆ T•. Suppose (M1)–(M4). Then there exists a function χ̃S ∈ H1(�) such that for
almost all x ∈ �

χ̃S(x) = 1 if x ∈
⋃

S , (A.1a)

0 ≤ χ̃S(x) ≤ 1 if x ∈ π•(S), (A.1b)

χ̃S(x) = 0 if x �∈ π•(S). (A.1c)

Further, there exists a constant C> 0 such that

|∇�χ̃S(x)| ≤ Ch•(x)−1 for almost all x ∈ �. (A2)

The constant C depends only on the dimension d and the constants from (M1)–(M4).

Proof: In the following three steps, we will even prove the existence of a function χ̃S ∈ C∞(O) with an open superset
O ⊃ � such that the restriction to � has the desired properties. With the constants from (M1)–(M2) and (M4), we
define for all T ∈ T•,

δ1(T) := diam(T)
2CpatchClocuniCcent

, δ2(T) := diam(T)
Ccent

, δ3(T) := diam(T)
2Ccent

. (A3)

Step 1: First, we construct an equivalent smooth mesh-size function δ• ∈ C∞(Rd) with uniformly bounded gradient
on �. Let K1 ∈ C∞(Rd) be a standard mollifier with 0 ≤ K1 ≤ 1 on B1(0), K1 = 0 on Rd \ B1(0), and

∫
Rd K1 dx = 1.

For s> 0, we set Ks(·) := K1(·/s)s−d . By convolution, we define

δ• :=
∑
T∈T•

δ1(T) χBδ2(T)(T) ∗ Kδ2(T). (A4)

Note that supp(χBδ2(T)(T) ∗ Kδ2(T)) ⊆ B2δ2(T)(T) for T ∈ T•. Thus (M4) and the choice (A3) of δ2(T) yield that
supp(χBδ2(T)(T) ∗ Kδ2(T)) ∩ � ⊆ π•(T). Together with (M1)–(M2) and 0 ≤ χBδ2(T)(T) ∗ Kδ2(T) ≤ 1, this implies for the
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interior int(T′) of any T′ ∈ T• that

δ•|int(T′) ≤
∑
T∈T•

δ1(T)χπ•(T)|int(T′) =
∑

T∈	•(T′)
δ1(T) ≤ CpatchClocuni δ1(T′).

Note that the restriction to the interior is indeed necessary since the second term is discontinuous across faces of T•.
However, by continuity of δ•, this estimate is also satisfied if int(T′) is replaced by T′, i.e. δ•|T′ ≤ CpatchClocuniδ1(T′).
The fact that χBδ2(T′)(T′) ∗ Kδ2(T′) = 1 on T′ shows that also the converse estimate is valid. This leads to

diam(T′)
2CpatchClocuniCcent

= δ1(T′) ≤ δ•|T′ ≤ CpatchClocuni δ1(T′) = δ3(T′) for all T′ ∈ T•. (A5)

In particular, this proves the existence of an open setRd ⊃ O ⊃ � such that δ• > 0 onO. Finally, we consider the gradi-
ent of δ• for x ∈ �. Recall that supp(χBδ2(T)(T) ∗ Kδ2(T)) ⊆ π•(T). Together with the Hölder inequality, ‖∇Ks‖L1(Rd) �
s−1, and (M1)–(M2), this proves that

|∇δ•(x)| =
∑
T∈T•

δ1(T) χπ•(T)(x) |χBδ2(T)(T) ∗ ∇Kδ2(T)(x)|

�
∑
T∈T•

δ1(T) χπ•(T)(x)δ2(T)
−1 � 1. (A6)

Step 2: In this step, we construct χ̃S and prove (A.1a)–(A.1c). For x ∈ O, we define the quasi-convolution

χ̃S(x) :=
∫

Rd
χ̃S(y)Kδ•(x)(x − y) dy, where S̃ :=

⋃{
Bδ3(T)(T) : T ∈ S

}
.

Since δ• > 0 on O, the chain rule shows that any derivative with respect to x of the term Kδ•(x)(x − y) exists and is
continuous at all (x, y) ∈ O × S̃. This yields that χ̃S ∈ C∞(O) and χ̃S |� ∈ H1(�); see, e.g. [19, page 98–99]. Since
supp(Ks) = Bs(0), it holds that

χ̃S(x) =
∫
Bδ•(x)(x)

χ̃S(y)Kδ•(x)(x − y) dy. (A7)

If Bδ•(x)(x) ⊆ S̃ and thus χ̃S(y) = 1, the properties of K1 show that χ̃S(x) = 1. Due to δ•|T′ ≤ δ3(T′) for all T′ ∈ T•
(which follows from (A5)), this is particularly satisfied if x ∈ ⋃S . This proves (A.1a). Moreover, (A7) shows that 0 ≤
χ̃S(x) ≤ 1 for all x ∈ Rd (and hence verifies (A.1b)), and χ̃S(x) = 0 if Bδ•(x)(x) ∩ S̃ = ∅. For (A.1c), it thus remains
to prove that x ∈ � \ π•(S) implies that Bδ•(x)(x) ∩ S̃ = ∅. We prove the contraposition. Let x ∈ � and suppose that
Bδ•(x)(x) ∩ S̃ �= ∅. Then, there existsT ∈ S and y ∈ Rd such that |x − y| < δ•(x) and dist({y},T) < δ3(T). The triangle
inequality yields that

dist({x},T) ≤ |x − y| + dist({y},T) < δ•(x)+ δ3(T) ≤ 2max
{
δ•(x), δ3(T)

}
. (A8)

Now, we differ two different cases. If δ•(x) ≤ δ3(T), then we have that dist({x},T) < 2δ3(T). The choice (A3) of δ3(T)
together with (M4) shows that x ∈ π•(T) ⊆ π•(S). If δ•(x) > δ3(T), then we have that dist({x},T) < 2δ•(x). Let T′ ∈
T• with x ∈ T′ and z ∈ T with |x − z| = dist({x},T). Together with (A5) and (A8), this yields that

dist({z},T′) ≤ |x − z| = dist({x},T) < 2δ•(x) ≤ 2CpatchClocuni δ1(T′) = diam(T′)
Ccent

.

Hence, (M4) implies that z �∈ � \ π•(T′) and thus z ∈ π•(T′). Any z′ ∈ � that is sufficiently close to z also satisfies that
dist({z′},T′) < diam(T′)/Ccent and thus z′ ∈ π•(T′). Since z ∈ T = int(T), z′ can be particularly chosen in int(T).
Hence, we see that int(T) ∩ π•(T′) �= ∅. This is equivalent to T′ ∈ 	•(T), which concludes that x ∈ T′ ⊆ π•(T) ⊆
π•(S).

Step 3: Finally, we prove (A2). We recall that δ• > 0 on O; see Step 1. With the identity matrix I ∈ Rd×d and the
matrix (x − y)(∇δ•(x))� ∈ Rd×d , elementary calculations prove for all x ∈ O ⊃ � and all y ∈ Rd that

(∇x
[
Kδ•(x)(x − y)

])� =
[
∇K1

(
x − y
δ•(x)

)]�
δ•(x)I − (x − y)(∇δ•(x))�

δ•(x)2
δ•(x)−d

+ K1

(
x − y
δ•(x)

)
δ•(x)−d−1(−d)(∇δ•(x))�.

Considering the norm, we see that∣∣∇x
(
Kδ•(x)(x − y)

) ∣∣ � δ•(x)−d−1 + |x − y||∇δ•(x)| δ•(x)−d−2 + δ•(x)−d−1|∇δ•(x)|.
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Together with supp(Ks) = Bs(0), this shows for all x ∈ � that

|∇χ̃S(x)| =
∣∣∣ ∫

Rd
χ̃S(y)∇x

(
Kδ•(x)(x − y)

)
dy

∣∣∣
�

∫
Bδ•(x)(x)

δ•(x)−d−1 + |x − y||∇δ•(x)| δ•(x)−d−2 + δ•(x)−d−1|∇δ•(x)| dy

� δ•(x)−1(1 + ‖∇δ•‖L∞(�)).

Thus (A5)–(A6) and (M3) prove that |∇χ̃S(x)| � h•(x)−1 for almost all x ∈ �. Moreover, for smooth functions, the
surface gradient ∇� is the orthogonal projection of the gradient ∇ onto the tangent plane; see, e.g. [18, Lemma 2.22]).
With the outer normal vector ν, this implies that ∇�χ̃S = ∇χ̃S − (∇χ̃S · ν)ν almost everywhere on � and concludes
the proof with the previous estimate. �

Appendix 2. Inverse inequalities for other integral operators
In Proposition 4.13, we have generalized an inverse estimate from [5] for the single-layer operator V : H−1/2(�)D →
H1/2(�)D. [5] additionally derived similar estimates for the double-layer operator K′ : H1/2(�)D → H1/2(�)D,
the adjoint double-layer operator K′ : H−1/2(�)D → H−1/2(�)D, and the hyper-singular operator W : H1/2(�)D →
H−1/2(�)D; see, e.g. [19, page 218] for a precise definition (where these operators are denoted by 1

2T,
1
2 T̃

∗, and R,
respectively). Although [5] considered only the Laplace problem, the techniques of the proof of Proposition 4.13 extend
the result at least to partial differential operators without lowest-order term cu. With some further effort, one can even
prove it for arbitrary PDE operators P with constant coefficients as in Section 2.3, where, as in Section 4.4, ellipticity
of P can be replaced by ellipticity up to some compact perturbation. To this end, one requires additional regularity
of the trace operator (·)|� : H3/2(�)D → H1(�)D, which is satisfied for piecewise smooth boundaries �; see, e.g. [21,
Remark 3.1.18].

For the proof, we will frequently use [19, Theorem 4.24], which reads as follows: Let u ∈ H1(�) be arbitrary with
Pu ∈ L2(�)D in the weak sense and u|� ∈ H1(�). Then, Dνu ∈ L2(�)D and

‖Dνu‖L2(�) � ‖u|�‖H1(�) + ‖u‖H1(�) + ‖Pu‖L2(�). (B.1)

Proposition B.1: Suppose (M1)–(M5). For T• ∈ T, let w• ∈ L∞(�) be a weight function which satisfies for some α > 0
and all T ∈ T• that

‖w•‖L∞(T) ≤ αw•(x) for almost all x ∈ π•(T). (B.2)
Then, there exists a constant C1 > 0 such that for all ψ ∈ L2(�)D and v ∈ H1(�)D,

‖w•∇�Vψ‖L2(�) + ‖w•K′ψ‖L2(�) ≤ C1
(‖w•/h1/2• ‖L∞(�)‖ψ‖H−1/2(�) + ‖w•ψ‖L2(�)

)
, (B.3)

If we additionally suppose that the trace operator satisfies the stability (·)|� : H3/2(�)D → H1(�)D, there exists a constant
C2 > 0 such that for all ψ ∈ L2(�)D and v ∈ H1(�)D,

‖w•∇�Kv‖L2(�) + ‖w•Wv‖L2(�) ≤ C2
(‖w•/h1/2• ‖L∞(�)‖v‖H1/2(�) + ‖w•∇�v‖L2(�)

)
. (B.4)

The constants C1 and C2 depend only on (M1)–(M5), �, the coefficients of P, and the admissibility constant α.

Proof of (B.3): The bound for ‖w•∇�Vψ‖L2(�) is just the assertion of Proposition 4.13.With the results from the proof
of Proposition 4.13, one can easily estimate the second summand ‖w•K′ψ‖L2(�) as in [5, Section 6]. In particular,
the stability of K′ : L2(�) → L2(�) is exploited, which is stated in [19, page 209]. Further, one uses the fact from
[19, page 218] that K′ = D̃int

ν Ṽ − 1/2, where D̃int
ν (·) denotes the interior modified conormal derivative from [19,

page 117–118]. �

Proof of (B.4): As in the proof of Proposition 4.13, we abbreviate δ1(T) := diam(T)/(2Ccent) and UT := Bδ1(T)(T)
for all T ∈ T•. Let vT := |T|−1 ∫

T v dx. Further, let χ̃T := χ̃{T} be the smooth quasi-indicator function of T from
Lemma A.1. With the Poincaré inequality (56), the localization properties (55) as well as (60), and (M5), one can
easily verify that

h−1
T ‖v − vT‖L2(π•(T)) + h−1/2

T ‖(v − vT)χ̃T‖H1/2(�) + ‖(v − vT)χ̃T‖H1(�) � ‖∇�v‖L2(π•(T)). (B.5)

We fix (independently of T•) a bounded domain U ⊂ Rd with UT ⊂ U for all T ∈ T•. Let K̃ : H1/2(�)D → H1(U \
�)D denote the double-layer potential from [19, Theorem 6.11]. With these preparations and if P has no lower-order



APPLICABLE ANALYSIS 33

terms, i.e. bi = 0 for all i ∈ {1, . . . , d} as well as c = 0, the proof of (A4) follows as in [5, Section 5 and Section 6]. In
particular, one exploits the fact that

K̃vT = −vT on� and K̃vT = 0 on�ext := Rd \�, (B.6)

which follows from the representation formula [19, Theorem 6.10] together with the assumption thatP has no lower-
order terms. The proof of (B.4) then employs the Poincaré inequality (B.5), the property (B.6), the stability of K :
H1(�)D → H1(�)D and of W : H1(�)D → L2(�)D from [22, Corollary 3.38] or [19, page 209], and the Caccioppoli
inequality (71) in combination with the transmission property [19, Theorem 6.11].

To prove (A12) for generalP with lower-order terms, where (B.6) is in general false, we recall the principal partP0
from (91). In the following five steps, we show for the corresponding double-layer operator K0 : H1/2(�) → H1/2(�)
and the hyper-singular operator W0 : H−1/2(�) → H1/2(�) that

K − K0 : H1/2(�) → H1(�) and W − W0 : H1/2(�) → L2(�) (B.7)

are continuous. Since (B.4) is satisfied for the operators corresponding to P0, this and the trivial estimate w• �
‖w•/h

1/2• ‖L∞(�) will conclude the proof.
Step 1: Let Ñ, Ñ0 be the Newton potentials from [19, Theorem 6.1] corresponding to P,P0. According to [19,

Theorem 6.1], they satisfy the mapping property Ñ, Ñ0 : Hσ (Rd)D → Hσ+2(Rd)D for all σ ∈ R. In the proof of the
latter stability, the fundamental solution is defined in terms of the Fourier transformation. The definition involves a
multivariate polynomial P : Rd → CD×D resp. P0 : Rd → CD×D associated toP resp.P0 (which is obtained from the
differential operator by replacing the derivatives with variables) such that |P(ξ)| � |P0(ξ)−1| = O(|ξ |−2) for ξ ∈ Rd

and |ξ | → ∞; see [19, Equation (6.7)]. Indeed, the latter inequality is the key of the proof. As elementary analysis even
shows that |P(ξ)−1 − P0(ξ)−1| = |P(ξ)−1[I − P(ξ)P0(ξ)−1]| = O(|ξ |−3) with the identitymatrix I ∈ CD×D, one sees
along the lines of [19, Theorem 6.1] the additional regularity

Ñ − Ñ0 : Hσ (Rd)D → Hσ+3(Rd)D. (B.8)

Since multiplication with a fixed compactly supported smooth function is stable (see, e.g. [19, Theorem 3.20]), we also
see for arbitrary χ1,χ2 ∈ C∞

c (R
d) the continuity of

A : Hσ (Rd)D → Hσ+3(Rd)D, g �→ χ1(Ñ − Ñ0)(gχ2). (B.9)

Step 2: For sufficiently large λ > 0, the sesquilinear forms (· ; ·)P+λ and (· ; ·)P0+λ from (18) are both even elliptic on
H1
0(�)

D. Let uλ ∈ H1(�) be the unique weak solution of (P + λ)uλ = 0 and uλ|� = v. Similarly, let u0,λ ∈ H1(�) be
the solution of (P0 + λ)u0,λ = 0 and u0,λ|� = v. We extend both functions by zero outside of �. Since Puλ = −uλ
and P0u0,λ = −u0,λ, the representation formula [19, Theorem 6.10] yields that

(K̃ − K̃0)v = (uλ − u0,λ)− λ(Ñuλ − Ñ0u0,λ)+ (ṼDνuλ − Ṽ0Dνu0,λ). (B.10)

We note that K − K0 = (K̃ − K̃0)(·)|� and W − W0 = −Dν(K̃ − K̃0) with the conormal derivative Dν(·). To
see (B.7) and hence to conclude the proof, we thus only have to bound the trace as well as the conormal derivative
of each summand in (B.10) separately, which will be done in the following three steps.

Step 3: By definition, the trace of the first summand in (B.10) vanishes, i.e. (uλ − u0,λ)|� = 0. According to (A9)
(where the differential operator can also be chosen as P + λ instead of P), the normal derivative satisfies that

‖Dν(uλ − u0,λ)‖L2(�)
(A9)
� ‖(uλ − u0,λ)|�‖H1(�) + ‖uλ − u0,λ‖H1(�) + ‖(P + λ)(uλ − u0,λ)‖L2(�).

Since the first summand vanishes and ‖(P + λ)(uλ − u0,λ)‖L2(�) � ‖u0,λ‖H1(�) due to (P + λ)(uλ − u0,λ) =
−(∑d

i=1 bi∂iu0,λ)− cu0,λ, the stability of the solution mapping v �→ uλ and v �→ u0,λ gives that

‖Dν(uλ − u0,λ)‖L2(�) � ‖v‖H1/2(�). (B.11)

Step 4:Due to our assumption that the trace operator (·)|� : H3/2(�)D → H1(�)D is well-defined and continuous, the
stability of the Newton potentials, the stability of the solution mapping v �→ uλ and v �→ u0,λ, the trace of the second
summand in (B.10) satisfies that

‖(Ñuλ − Ñ0u0,λ)|�‖H1(�) ≤ ‖(Ñuλ)|�‖H1(�) + ‖(Ñ0u0,λ)|�‖H1(�)

� ‖Ñuλ‖H3/2(�) + ‖Ñ0u0,λ‖H3/2(�) � ‖uλ‖H−1/2(Rd) + ‖u0,λ‖H−1/2(Rd)

� ‖uλ‖L2(Rd) + ‖u0,λ‖L2(Rd) = ‖uλ‖L2(�) + ‖u0,λ‖L2(�) � ‖v‖H1/2(�).
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Note that Ñ and Ñ0 are indeed potentials, i.e. PÑ = 0 weakly and P0Ñ0 = 0 weakly. With (B.1) (applied for P and
P0), the stability of the Newton potentials, and the estimates for the trace of Ñuλ and Ñ0u0,λ, we thus see that

‖Dν(Ñuλ − Ñ0u0,λ)‖L2(�)
(A9)
� ‖(Ñuλ)|�‖H1(�) + ‖Ñuλ‖H1(�) + ‖(Ñ0u0,λ)|�‖H1(�) + ‖Ñ0u0,λ‖H1(�)

� ‖v‖H1/2(�) + ‖uλ‖H−1(Rd) + ‖u0,λ‖H−1(Rd) � ‖v‖H1/2(�) + ‖uλ‖L2(Rd) + ‖u0,λ‖L2(Rd).

Again, the stability of the solution mappings allows to bound the last terms by ‖v‖H1/2(�).
Step 5: To deal with the third summand in (B.10), we first rewrite it as follows:

ṼDνuλ − Ṽ0Dνu0,λ = ṼDν(uλ − u0,λ)+ (Ṽ − Ṽ0)Dνu0,λ. (B.12)

Due to the stability of Ṽ(·)|� = V : L2(�) → H1(�) (see (21) and (76)) and (B.11), we have for the first summand
in (B.12) that

‖(ṼDν(uλ − u0,λ))|�‖H1(�) � ‖v‖H1/2(�). (B.13)

To deal with the conormal derivative, we apply again (B.1) together with the fact that Ṽ is a potential, i.e. PṼ = 0
weakly. This leads to

‖DνṼDν(uλ − u0,λ)‖L2(�)
(A9)
� ‖(ṼDν(uλ − u0,λ))|�‖H1(�) + ‖ṼDν(uλ − u0,λ)‖H1(�).

The first summand can be bounded as in (B.13). For the second summand, we use the stability (75) in combination
with ‖ · ‖H−1/2(�) � ‖ · ‖L2(�) and (B.11).

Finally, it only remains to bound the trace as well as the conormal derivative of the second summand in (B.12).
Choosing σ = −1 in the additional regularity (B.9), one sees as in the proof of [19, page 203] (which proves stability
of Ṽ : H−1/2(�)D → H1(�)D) that

Ṽ − Ṽ0 : H−1/2(�)D → H2(�)D (B.14)
With the assumption (·)|� : H3/2(�)D → H1(�)D, this implies that

‖((Ṽ − Ṽ0)Dνu0,λ)|�‖H1(�) � ‖(Ṽ − Ṽ0)Dνu0,λ‖H3/2(�) � ‖Dνu0,λ‖H−1/2(�). (B.15)

Recall that (P0 + λ)u0,λ = 0 with u0,λ|� = v. Thus [19, Theorem 4.25] (which states boundedness of the Dirichlet to
Neumann mapping) gives that

‖((Ṽ − Ṽ0)Dνu0,λ)|�‖H1(�)

(A23)
� ‖Dνu0,λ‖H−1/2(�) � ‖v‖H1/2(�). (B.16)

Moreover, (A9), the fact that P(Ṽ − Ṽ0) = −(∑d
i=1 bi∂iṼ0)− cṼ0, the stability (75), and (B.16) show for the

conormal derivative that

‖Dν(Ṽ − Ṽ0)Dνu0,λ‖L2(�) � ‖((Ṽ − Ṽ0)Dνu0,λ)|�‖H1(�) + ‖(Ṽ − Ṽ0)Dνu0,λ‖H1(�)

+ ‖P(Ṽ − Ṽ0)Dνu0,λ‖L2(�) � ‖v‖H1/2(�).

Overall, we have estimated the trace as well as the conormal derivative of all terms in (B.10). Since K − K0 = (K̃ −
K̃0)(·)|� and W − W0 = −Dν(K̃ − K̃0), this verifies the stability (B.7) and thus concludes the proof. �
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