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Complexity of Roman {2}-domination and the double Roman domination
in graphs

Chakradhar Padamutham and Venkata Subba Reddy Palagiri

Department of Computer Science and Engineering, NIT Warangal, Telangana, India

ABSTRACT
For a simple, undirected graph G ¼ ðV , EÞ, a Roman {2}-dominating function (R2DF) f : V !
f0, 1, 2g has the property that for every vertex v 2 V with f(v) ¼ 0, either there exists a vertex u 2
NðvÞ, with f(u) ¼ 2, or at least two vertices x, y 2 NðvÞ with fðxÞ ¼ fðyÞ ¼ 1: The weight of an
R2DF is the sum fðVÞ ¼P

v2V fðvÞ: The minimum weight of an R2DF is called the Roman {2}-dom-
ination number and is denoted by cfR2gðGÞ: A double Roman dominating function (DRDF) on G is
a function f : V ! f0, 1, 2, 3g such that for every vertex v 2 V if f(v) ¼ 0, then v has at least two
neighbors x, y 2 NðvÞ with fðxÞ ¼ fðyÞ ¼ 2 or one neighbor w with f(w) ¼ 3, and if f(v) ¼ 1, then v
must have at least one neighbor w with fðwÞ � 2: The weight of a DRDF is the value fðVÞ ¼P

v2V fðvÞ: The minimum weight of a DRDF is called the double Roman domination number and
is denoted by cdRðGÞ: Given an graph G and a positive integer k, the R2DP (DRDP) problem is to
check whether G has an R2DF (DRDF) of weight at most k. In this article, we first show that the
R2DP problem is NP-complete for star convex bipartite graphs, comb convex bipartite graphs and
bisplit graphs. We also show that the DRDP problem is NP-complete for star convex bipartite
graphs and comb convex bipartite graphs. Next, we show that cfR2gðGÞ, and cdRðGÞ are obtained
in linear time for bounded tree-width graphs, chain graphs and threshold graphs, a subclass of
split graphs. Finally, we propose a 2ð1þ ln ðDþ 1ÞÞ-approximation algorithm for the minimum
Roman {2}-domination problem and 3ð1þ ln ðDþ 1ÞÞ-approximation algorithm for the minimum
double Roman domination problem, where D is the maximum degree of G.
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1. Introduction

Consider G ¼ (V,E) be a simple, undirected and connected
graph. For a vertex v 2 V, the open neighborhood of v in G
is NGðvÞ ¼ {uju 2 V, ðu, vÞ 2 E} and the closed neighborhood
of v is defined as NG½v� ¼ NGðvÞ [ fvg: We shall follow [11]
for graph theoretic terminology. A bipartite graph G ¼
ðX,Y , EÞ is called tree convex if there exists a tree T ¼ ðX, FÞ
such that, for each y in Y, the neighbors of y induce a sub-
tree in T. When T is a star (comb), G is called star (comb)
convex bipartite graph [10]. A bisplit graph is a graph in
which vertex set can be partitioned into an independent set
and a complete bipartite graph.

A vertex v in G dominates the vertices of its closed
neighborhood. A set of vertices S � V is a dominating set
(DS) in G if for every vertex u 2 V n S, there exists at least
one vertex v 2 S such that ðu, vÞ 2 E, i.e., NG½S� ¼ VðGÞ:
The domination number is the minimum cardinality of a
dominating set in G and is denoted by cðGÞ [8].

The concept of Roman domination was introduced in
2004 by Cockayne et al. [5]. A function f : V ! f0, 1, 2g is
a Roman dominating function (RDF) on G if every vertex
u 2 V for which f(u) ¼ 0 is adjacent to at least one vertex v

for which f(v) ¼ 2. The weight of an RDF is the value
f ðVÞ ¼P

u2V f ðuÞ: The Roman domination number is the
minimum weight of an RDF on G and is denoted by cRðGÞ:

Roman {2}-domination was introduced in 2016 by
Chellali et al. [4]. A Roman {2}-dominating function (R2DF)
f : V ! f0, 1, 2g has the property that for every vertex v 2
V with f(v) ¼ 0, either there exists a vertex u 2 NðvÞ, with
f(u) ¼ 2, or at least two vertices x, y 2 NðvÞ with f ðxÞ ¼
f ðyÞ ¼ 1: The weight of an R2DF is the value f ðVÞ ¼P

v2V f ðvÞ: The minimum weight of an R2DF is called the
Roman {2}-domination number and is denoted by cfR2gðGÞ:

Double Roman domination was initiated in 2016 by
Robert et al. [3]. A double Roman dominating function
(DRDF) on G is a function f : V ! f0, 1, 2, 3g such that for
every vertex v 2 V if f(v) ¼ 0, then v has at least two neigh-
bors x, y 2 NðvÞ with f ðxÞ ¼ f ðyÞ ¼ 2 or one neighbor w
with f(w) ¼ 3, and if f(v) ¼ 1, then v must have at least one
neighbor w with f ðwÞ � 2: The weight of a DRDF is the
value f ðVÞ ¼P

v2V f ðvÞ: The double Roman domination
number equals the minimum weight of a DRDF on G,
denoted by cdRðGÞ:

Given a graph G and a positive integer k, the R2DP
(DRDP) problem is to check whether G has an R2DF
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(DRDF) of weight at most k. Chellali et al. [4] have proved
that the R2DP problem is NP-complete for bipartite graphs.
Ahangar et al. [1] have proved that the DRDP problem is
NP-complete for bipartite and chordal graphs. Motivated by
their work [1, 4], we investigate the complexity of R2DP
and DRDP problems in subclasses of bipartite graphs and
chordal graphs.

2. Complexity results

In this section, we show that the decision versions of the
R2DF and DRDF problems are NP-complete for some sub-
classes of bipartite graphs by giving a polynomial time
reduction from a well-known NP-complete problem, Exact-
3-Cover (X3C) [9], which is defined as follows.
EXACT-3-COVER (X3C)
INSTANCE: A finite set X with jXj ¼ 3q and a collection C
of 3-element subsets of X.
QUESTION: Is there a subcollection C0 of C such that every
element of X appears in exactly one member of C0?
The decision versions of Roman {2}-domination and double
Roman domination problems are defined below.
ROMAN {2}-DOMINATION PROBLEM (R2DP)
INSTANCE: Graph G ¼ (V,E) and a positive integer k � jVj:
QUESTION: Does G have an R2DF of weight at most k?

DOUBLE ROMAN DOMINATION PROBLEM (DRDP)
INSTANCE: Graph G ¼ (V,E) and a positive integer k � 2jVj:
QUESTION: Does G have a DRDF of weight at most k?

Theorem 1. R2DP is NP-complete for star convex bipart-
ite graphs.

Proof. Given a graph G and a function f, whether f is an
R2DF of size at most k can be checked in polynomial time.
Hence R2DP is a member of NP. Now we show that R2DP
is NP-hard by transforming an instance hX,Ci of X3C,
where X ¼ fx1, x2, :::, x3qg and C ¼ fc1, c2, :::, ctg, to an
instance hG, ki of R2DP as follows.

Create vertices xi, yi for each xi 2 X, ci for each ci 2 C and
also create vertices a, a1, a2 and a3. Add edges (xi, yi) for each
xi 2 X, ðai, aÞ for each ai and ðci, aÞ for each ci. Also add
edges (cj, xi) if xi 2 cj: Let A ¼ fag [ fxi : 1 � i � 3qg and
B ¼ fyi : 1 � i � 3qg [ fci : 1 � i � tg [ fa1, a2, a3g: The
subgraph induced by A is a star with vertex a as central vertex
and the neighbors of each element of B induce a subtree of
star. Therefore G is a star convex bipartite graph and can be
constructed from the given instance hX,Ci of X3C in polyno-
mial time.

Next we show that, X3C has a solution if and only if G
has an R2DF with weight at most 4qþ 2: Let k ¼ 4qþ 2:
Suppose C0 is a solution for X3C with jC0j ¼ q: We define
a function f : V ! f0, 1, 2g as follows.

f ðvÞ ¼
1, if v 2 fyi : 1 � i � 3qg [ fci : ci 2 C0g
2, if v ¼ a
0, otherwise

8<
: (1)

It can be easily verified that f is an R2DF of G and f ðVÞ ¼
4qþ 2 ¼ k:

Conversely, suppose that G has an R2DF g with weight k.
Let M ¼ fa, a1, a2, a3g: Clearly,

P
u2M gðuÞ � 2, and so we

may assume, without loss of generality, g(a) ¼ 2 and
gða1Þ¼ gða2Þ ¼ gða3Þ ¼ 0. Since ða, cjÞ 2 E, it follows that
each vertex cj may be assigned the value 0. Clearly, gðxiÞ ¼
0 and gðyiÞ ¼ 0 case does not occur.

Claim 1. If g(V) ¼ k then for each pair of vertices (xi, yi),
gðxiÞ ¼ 0 and gðyiÞ ¼ 1:

Proof. (Proof by contradiction) Assume g(V) ¼ k and there
exist some pairs (xi, yi) such that gðxiÞ þ gðyiÞ > 1: Let m be
the number of pairs of (xi, yi) with gðxiÞ þ gðyiÞ ¼ 2: The
number of pairs of (xi, yi) with gðxiÞ ¼ 0 and gðyiÞ ¼ 1 is
3q�m: Since g is an R2DF, each xi with gðxiÞ ¼ 0, where
gðyiÞ ¼ 1, should have neighbor cj with gðcjÞ ¼ 1: Then the

minimum number of cj’s required with gðcjÞ ¼ 1 is
� 3q�m

3

�
:

Hence gðVÞ ¼ 3qþ 2þmþ � 3q�m
3

�
, which is greater than

k. Our assumption leads to a contradiction. Therefore for each
pair (xi, yi), gðxiÞ ¼ 0 and gðyiÞ ¼ 1: Hence the claim. w

Since each ci has exactly three neighbors in X, clearly,
there exist exactly q number of ci’s with weight at least 1
such that ð[gðciÞ�1 NðciÞÞ \ X ¼ X: Consequently, C0 ¼ fci :
gðciÞ ¼ 1g is an exact cover for C. w

Theorem 2. R2DP is NP-complete for comb convex bipart-
ite graphs.

Proof. Clearly, R2DP for comb convex bipartite graphs is a
member of NP. We transform an instance hX,Ci of X3C,
where X ¼ fx1, x2, :::, x3qg and C ¼ fc1, c2, :::, ctg, to an
instance hG, ki of R2DP as follows.

Create vertices xi, x0i and yi for each xi 2 X, ci for each
ci 2 C and also create vertices a, a0, a1, a2 and a3. Add
edges (xi, yi) for each xi 2 X, ðai, aÞ for each ai and (cj, xi)
if xi 2 cj: Next add edges ðcj, aÞ and ðcj, a0Þ for each cj. Also
add edges by joining each cj to every x0i: Let A ¼ fa, a0g [
fxi, x0i : 1 � i � 3qg and B ¼ V n A: The subgraph induced
by A is a comb with the elements fx0i : 1 � i � 3q g [ fa0g
as backbone and fxi : 1 � i � 3q g [ fag as teeth and the
neighbors of each element of B induce a subtree of the
comb. Therefore G is a comb convex bipartite graph and
can be constructed from the given instance hX,Ci of X3C in
polynomial time. Next, we show that, X3C has a solution if
and only if G has an R2DF with weight at most 4qþ 2:

Suppose C0 is a solution for X3C with jC0j ¼ q: We con-
struct an R2DF f, on G, same as in Theorem 1. Clearly,
f ðVÞ ¼ 4qþ 2 ¼ k:

The proof of the converse is similar to the proof given in
Theorem 1. w

Theorem 3. R2DP is NP-complete for bisplit graphs.

Proof. It is clear that R2DP for bisplit graphs is in NP. We
transform an instance of X3C, where X ¼ fx1, x2, :::, x3qg
and C ¼ fc1, c2, :::, ctg, to an instance hG, ki of R2DP
as follows.
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Create vertices xi for each xi 2 X, ci for each ci 2 C and
also create vertices a, a1, a2 and a3. Add edges ðai, aÞ for
each ai and ðci, aÞ for each ci. Also add edges (cj, xi) if xi 2 cj:
Let P ¼ fxi : 1 � i � 3qg, Q ¼ fci : 1 � i � tg [ fa1, a2, a3g
and R ¼ fag: In the constructed graph G, P forms an inde-
pendent set and Q [ R is a complete bipartite graph. Hence,
making G a bisplit graph and can be constructed from the
given instance hX,Ci of X3C in polynomial time. Next we
show that, X3C has a solution if and only if G has an R2DF
with weight at most 2qþ 2: Let k ¼ 2qþ 2:

Suppose C0 is a solution for X3C with jC0j ¼ q: We
define a function f : V ! f0, 1, 2g as follows.

f ðvÞ ¼ 2, if v 2 fag [ fci : ci 2 C0g
0, otherwise

�
(2)

It can be easily verified that f is an R2DF of G and f ðVÞ ¼
2qþ 2 ¼ k:

Conversely, suppose that G has an R2DF g with weight k.
Clearly, as in Theorem 1, g(a) ¼ 2 and 8ai, gðaiÞ ¼ 0: Since
ða, cjÞ 2 E, it follows that each vertex cj may be assigned the
value 0.

Claim 2. If g(V) ¼ k then for each xi 2 X, gðxiÞ ¼ 0:

Proof. (Proof by contradiction) Assume g(V) ¼ k and there
exist some xi’s such that gðxiÞ 6¼ 0: Let m ¼ jfxi : gðxiÞ 6¼ 0gj:
The number of xi’s with gðxiÞ ¼ 0 is 3q�m: Since g is an
R2DF, each xi with gðxiÞ ¼ 0 should have a neighbor cj with
gðcjÞ ¼ 2: So the number of cj’s required with gðcjÞ ¼ 2 is� 3q�m

3

�
: Hence gðVÞ ¼ 2þmþ 2

� 3q�m
3

�
, which is greater

than k. Our assumption leads to a contradiction. Therefore for
each xi 2 X, gðxiÞ ¼ 0: Hence the claim. w

Since each ci has exactly three neighbors in X, clearly,
there exist q number of ci’s with weight 2 such that
ð[gðciÞ¼2 NðciÞÞ \ X ¼ X: Consequently, C0 ¼ fci : gðciÞ ¼ 2g
is an exact cover for C. w

Theorem 4. DRDP is NP-complete for star convex bipart-
ite graphs.

Proof. The proof is obtained with similar arguments as in
Theorem 1, in which replace the assigned values 1 with 2
and 2 with 3. w

Theorem 5. DRDP is NP-complete for comb convex bipart-
ite graphs.

Proof. The proof is obtained with similar arguments as in
Theorem 2, in which replace the assigned values 1 with 2
and 2 with 3. w

3. Threshold graphs

In this section, we determine the Roman {2}-domination
number and double Roman domination number of thresh-
old graphs. A threshold graph is a graph that can be con-
structed from one vertex graph by repeated applications of

the following two operations: (i) Addition of a single iso-
lated vertex to the graph. (ii) Addition of a single dominat-
ing vertex to the graph. For the graph to be connected the
last vertex added must be a dominating vertex. Since every
threshold graph is a split graph, V ¼ C [ I, where C is a cli-
que constituting all dominating vertices and I is an independ-
ent set constituting all isolated vertices. Let C ¼ fc1, c2, :::, cng
and I ¼ fi1, i2, :::, img: If the clique vertices are added in the
order c1, c2, :::, cn and the independent vertices are added in
the order i1, i2, :::, im then by the definition it follows
that NG½c1� � NG½c2� � NG½c3� � � � � � NG½cn� and NGði1Þ �
NGði2Þ � NGði3Þ � � � � � NGðimÞ: For example, consider a
threshold graph in Figure 1, where the vertices are added in the
order i1, i2, c1, i3, c2, c3, … , im�1, im and cn. The vertices con-
stituting the clique are enclosed in a dotted rectangle in Figure 1.
If jVj ¼ 1 then, clearly, cfR2gðGÞ ¼ 1 and cdRðGÞ ¼ 2:

Theorem 6. Let G be a threshold graph. Then cfR2gðGÞ ¼
kþ 1 and cdRðGÞ ¼ 2kþ 1, where k is the number of con-
nected components in G.

Proof. Let G be a threshold graph with n clique vertices
such that NG½c1� � NG½c2� � NG½c3� � � � � � NG½cn�: Now,
define a function f : V ! f0, 1, 2g as follows.

f ðvÞ ¼
1, if degðvÞ ¼ 0
2, if v ¼ cn
0, otherwise

8<
: (3)

Clearly, f is an R2DF and cfR2gðGÞ � kþ 1: From the defin-
ition of R2DF, it follows that cfR2gðGÞ � kþ 1: Therefore,
cfR2gðGÞ ¼ kþ 1:
Similarly, let g : V ! f0, 1, 2, 3g be a function on G defined
as follows.

gðvÞ ¼
2, if degðvÞ ¼ 0
3, if v ¼ cn
0, otherwise

8<
: (4)

Clearly, g is a DRDF and cdRðGÞ � 2kþ 1: From the defin-
ition of DRDF, it follows that cdRðGÞ � 2kþ 1: Therefore,
cdRðGÞ ¼ 2kþ 1: w

4. Chain graphs

In this section, we propose a method to compute Roman
{2}-domination number and double Roman domination

i1

i2

i3

...

im−1

im

c1

c2

c3

...

cn

clique

Figure 1. A threshold graph.
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number of a chain graph in linear time. A bipartite graph
G ¼ ðX,Y , EÞ is called a chain graph if the neighborhoods of
the vertices of X form a chain, that is, the vertices of X can
be linearly ordered, say x1, x2, :::, xp, such that NGðx1Þ �
NGðx2Þ � ::: � NGðxpÞ: If G ¼ ðX,Y , EÞ is a chain graph,
then the neighborhoods of the vertices of Y also form a
chain. An ordering a ¼ ðx1, x2, :::, xp, y1, y2, :::, yqÞ of X [ Y is
called a chain ordering if NGðx1Þ � NGðx2Þ � � � � � NGðxpÞ
and NGðy1Þ � NGðy2Þ � ::: � NGðyqÞ: Every chain graph
admits a chain ordering [12]. The following is a proposition
without proof.

Proposition 1. Let G ¼ Kr, s be a complete bipartite graph
with r � s:

(a) If r ¼ 1 then cfR2gðGÞ ¼ 2:
(b) If r ¼ 2 then cfR2gðGÞ ¼ 3:
(c) If r � 3 then cfR2gðGÞ ¼ 4:

If G is a complete bipartite graph then cfR2gðGÞ is
obtained directly from Proposition 1. Otherwise, the follow-
ing theorem holds.

Theorem 7. Let G ð6¼ Kr, sÞ be a connected chain graph.
Then,

cfR2gðGÞ ¼ 3, if jXj ¼ 2 or jYj ¼ 2
4, otherwise

�
(5)

Proof. Let GðX,Y , EÞ be a connected chain graph with jXj ¼
n and jYj ¼ m, where n,m � 2: Now, define a function f :
V ! f0, 1, 2g as follows.

Case (1): jXj ¼ 2 and jYj ¼ 2 then f ðvÞ ¼
2, if v ¼ y1
1, if v ¼ y2
0, otherwise

8<
:

Case (2): jXj ¼ 2 and jYj 6¼ 2 then f ðvÞ ¼
2, if v ¼ x2
1, if v ¼ x1
0, otherwise

8<
:

Case (3): jXj 6¼ 2 and jYj ¼ 2 then same condition holds as
in case (1).

Clearly, f is an R2DF and cfR2gðGÞ � 3: From the definition
of R2DF, it follows that cfR2gðGÞ � 3: Therefore cfR2gðGÞ ¼ 3:

Case (4): jXj 6¼ 2 and jYj 6¼ 2 then f ðvÞ ¼ 2, if v 2 fxn,y1g
0, otherwise

�

Clearly, f is an R2DF and cfR2gðGÞ � 4: By contradiction,
it can be easily verified that cfR2gðGÞ � 4: Therefore
cfR2gðGÞ ¼ 4: w

If the chain graph G is disconnected then weight of the
R2DF is increased by k, where k is the number of isolated
vertices in G.

The following propositions are proved in [2, 3].

Proposition 2 ([2]). For any complete bipartite graph Kp, q,
with p, q � 3, cdRðKp, qÞ ¼ 6:

Proposition 3 ([3]). For any complete bipartite graph Kp, q

with p � q, cdRðK1, qÞ ¼ 3 and cdRðK2, qÞ ¼ 4:

If G is a complete bipartite graph then cdRðGÞ is obtained
directly from Propositions 2 and 3. Otherwise, the following
theorem holds.

Theorem 8. Let G ð6¼ Kr, sÞ be a connected chain graph. Then,

cdRðGÞ ¼ 5, if jXj ¼ 2 or jYj ¼ 2
6, otherwise

�
(6)

Proof. The proof is same as in Theorem 7 in which replace
the assigned values 1 with 2 and 2 with 3. w

If the chain graph G is disconnected then weight of the
DRDF is increased by 2k, where k is the number of isolated
vertices in G.

5. Bounded tree-width graphs

Let G be a graph, T be a tree and v be a family of vertex
sets Vt � VðGÞ indexed by the vertices t of T. The pair
ðT, v Þ is called a tree-decomposition of G if it satisfies the
following three conditions: (i) VðGÞ ¼ [t2VðTÞ Vt , (ii) for
every edge e 2 EðGÞ there exists a t 2 VðTÞ such that both
ends of e lie in Vt, and (iii) Vt1 \ Vt3 � Vt2 whenever t1, t2,
t3 2 VðTÞ and t2 is on the path in T from t1 to t3. The
width of ðT, v Þ is the number maxfjVtj � 1 : t 2 Tg, and
the tree-width tw(G) of G is the minimum width of any
tree-decomposition of G. By Courcelle’s thoerem, it is well
known that every graph problem that can be described by
counting monadic second-order logic (CMSOL) can be
solved in linear-time in graphs of bounded tree-width, given
a tree decomposition as input [7]. We show that R2DP and
DRDP problems can be expressed in CMSOL.

Theorem 9 (Courcelle’s theorem [7]). Let P be a graph prop-
erty expressible in CMSOL and k be a constant. Then, for
any graph G of tree-width at most k, it can be checked in lin-
ear-time whether G has property P.

Theorem 10. Given a graph G and a positive integer k,
R2DP can be expressed in CMSOL.

Proof. Let f : V ! f0, 1, 2g be a function on a graph G,
where Vi ¼ fvjf ðvÞ ¼ ig for i 2 f0, 1, 2g: The CMSOL for-
mula for the R2DP is expressed as follows.

Rom f2g DomðVÞ ¼ ðf ðVÞ � kÞ�9V0,V1,V2,8pððp 2 V0�
ðð9q 2 V2 � adjðp, qÞÞ � ð9r, s 2 V1 � adjðp, rÞ� adjðp, sÞÞÞÞ �
ðp 2 V1Þ � ðp 2 V2ÞÞ

where adj(p, q) is the binary adjacency relation which holds
if and only if, p, q are two adjacent vertices of G: w

Now, the following result is immediate from Theorems 9
and 10.

Theorem 11. R2DP problem can be solvable in linear time
for bounded tree-width graphs.

Theorem 12. Given a graph G and a positive integer k,
DRDP can be expressed in CMSOL.
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Proof. Let g : V ! f0, 1, 2, 3g be a function on a graph G,
where Vi ¼ fvjgðvÞ ¼ ig for i 2 f0, 1, 2, 3g: The CMSOL for-
mula for the DRDP is expressed as follows.

Double Rom DomðVÞ¼ ðgðVÞ� kÞ�9V0,V1,V2,V3,8pððp2
V0�ðð9q,r2V2�adjðp,qÞ�adjðp,rÞÞ� ð9s2V3 �adjðp,sÞÞÞ�
ðp2V1 � ð9t 2V2 � adjðp, tÞ� ð9u2V3 � adjðp,uÞÞÞÞÞ� ðp2
V2Þ� ðp2V3ÞÞ

where adj(p, q) is the binary adjacency relation which holds
if and only if, p, q are two adjacent vertices of G: w

Now, the following result is immediate from Theorems 9
and 12.

Theorem 13. DRDP problem can be solvable in linear time
for bounded tree-width graphs.

6. Approximation results

In this section, we design approximation algorithms for
optimization versions of Roman {2}-domination and double
Roman domination problems based on the approximation
result known for MINIMUM DOMINATION problem,
which is given below.
MINIMUM DOMINATION
Instance: A simple, undirected graph G ¼ ðV,EÞ:
Solution: Minimum cardinality dominating set D of G.
Measure: Cardinality of D.

The minimum Roman {2}-domination and the minimum
double Roman domination problems are defined as follows.
MINIMUMROMAN {2}-DOMINATIONPROBLEM (MR2DP)
Instance: A simple, undirected graph G ¼ ðV,EÞ:
Solution: An R2DF of G.
Measure: Weight of R2DF.

MINIMUM DOUBLE ROMAN DOMINATION PROBLEM
(MDRDP)
Instance: A simple, undirected graph G ¼ ðV,EÞ:
Solution: A DRDF of G.
Measure: Weight of DRDF.

Now, we propose a 2ð1þ ln ðDþ 1ÞÞ-approximation algo-
rithm for MR2DP.
The following approximation result has been obtained in [6]
for MINIMUM DOMINATION problem.

Theorem 14 ([6]). The MINIMUM DOMINATION problem
in a graph with maximum degree D can be approximated
with an approximation ratio of 1þ ln ðDþ 1Þ:
By Theorem 14, let APPROX-DOM-SET be an approxima-
tion algorithm that gives a dominating set D of a graph G
such that jDj � ð1þ ln ðDþ 1ÞÞcðGÞ, where D is the max-
imum degree of the graph G.

Next, we propose an algorithm APPROX-R2D to compute
an approximate solution of MR2DP problem. In our algorithm,
first we compute a dominating set D of the input graph G
using the approximation algorithm APPROX-DOM-SET. Next,
we construct a triple Tr in which every vertex in D will be

assigned with weight 2 and the remaining vertices will be
assigned with weight 0.

Now, let Tr ¼ ðD0, ;,DÞ be the triple obtained by using
the APPROX-R2D algorithm. It can be easily seen that every
vertex v 2 V is assigned with weight either 0 or 2. Since D
is a dominating set of G, every vertex v 2 D0 with weight 0
is adjacent to a vertex u 2 D with weight 2. Thus, Tr gives
an R2DF of G:

Algorithm 1: APPROX-R2D(G)

Input: A simple, undirected graph G.
Output: A Roman 2-dominating triple Tr of G.
1: D APPROX-DOM-SET(G)
2: Tr  ðV n D, ;,DÞ
3: return Tr:

We note that the algorithm APPROX-R2D computes a
Roman 2-dominating triple Tr of the given graph G in poly-
nomial time. Hence, we have the following result.

Theorem 15. The MR2DP in a graph with maximum degree
D can be approximated with an approximation ratio
of 2ð1þ ln ðDþ 1ÞÞ:

Proof. Let D be the dominating set produced by the algo-
rithm APPROX-DOM-SET, Tr be the Roman {2}-dominat-
ing triple produced by the algorithm APPROX-R2D and Wr

be the weight of Tr.
It can be observed that Wr ¼ 2jDj: It is known that

jDj � ð1þ ln ðDþ 1ÞÞcðGÞ: Therefore, Wr � 2ð1þ ln ðDþ
1ÞÞcðGÞ: Since cðGÞ � cfR2gðGÞ [4], it follows that
Wr � 2ð1þ ln ðDþ 1ÞÞcfR2gðGÞ: w

Similar to Algorithm 1, we propose an approximation algo-
rithm namely, APPROX-DRD, which produces a double
Roman dominating quadruple as follows.

Algorithm 2: APPROX-DRD(G)

Input: A simple, undirected graph G.
Output: A double Roman dominating quadruple Qr of G.
1: D APPROX-DOM-SET(G)
2: Qr  ðV n D, ;, ;,DÞ
3: return Qr:

We also note that the algorithm APPROX-DRD computes a
double Roman dominating quadruple Qr of a given graph G
in polynomial time. Hence, the following theorem holds.

Theorem 16. The MDRDP in a graph with maximum degree
D can be approximated with an approximation ratio
of 3ð1þ ln ðDþ 1ÞÞ:

Proof. The proof is obtained with similar arguments as in
Theorem 15. w

We have the following corollaries of Theorems 15 and 16,
respectively.

Corollary 1. MR2DP problem for bounded degree graphs is
in APX.
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Corollary 2. MDRDP problem for bounded degree graphs is
in APX.

7. Conclusion

In this article, we have shown that the decision versions of
Roman {2}-domination and the double Roman domination
problems are NP-complete for some subclasses of bipartite
graphs. Next, we have shown that R2DF and DRDF problems
are linear time solvable for bounded tree-width graphs, thresh-
old graphs and chain graphs. We have also given polynomial
time approximation algorithms for MR2DP and MDRDP. In
future work, one can investigate the algorithmic complexity of
R2DP and DRDP for other subclasses of bipartite graphs and
chordal graphs. Since, the MINIMUM DOMINATION prob-
lem is APX-hard for bounded degree graphs, the intuition sug-
gests that MR2DP and the MDRDP could be APX-hard.
Hence, determining whether or not MR2DP and MDRDP are
APX-hard for bounded degree graphs remains open.

Acknowledgments

The authors are grateful to the referees for their constructive comments
and suggestions that lead to the improvements in the article.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

[1] Ahangar, H. A., Chellali, M., Sheikholeslami, S. M. (2017). On
the double Roman domination in graphs. Discrete Appl. Math.
232:1–7.

[2] Anu, V., Lakshmanan, S. A. (2018). Double Roman domination
number. Discrete Appl. Math. 244:198–204.

[3] Beeler, R. A., Haynes, T. W., Hedetniemi, S. T. (2016). Double
Roman domination. Discrete Appl. Math. 211:23–29.

[4] Chellali, M., Haynes, T. W., Hedetniemi, S. T., McRae, A. A.
(2016). Roman {2}-domination. Discrete Appl. Math. 204:22–28.

[5] Cockayne, E. J., Dreyer, P. A., Jr, Hedetniemi, S. M.,
Hedetniemi, S. T. (2004). Roman domination in graphs.
Discrete Math. 278(1–3):11–22.

[6] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. (2009).
Introduction to Algorithms. Cambridge, MA: MIT Press.

[7] Courcelle, B. (1990). The monadic second-order logic of
graphs. I. Recognizable sets of finite graphs. Inf. Comput.
85(1):12–75.

[8] Haynes, T. W., Hedetniemi, S., Slater, P. (2013). Fundamentals
of Domination in Graphs. Boca Raton, FL: CRC Press.

[9] Johnson, D. S., Garey, M. R. (1979). Computers and
Intractability: A Guide to the Theory of NP-Completeness, Vol.
1. San Francisco, CA: W. H. Freeman & Co.

[10] Lin, M. S., Chen, C. M. (2017). Counting independent sets
in tree convex bipartite graphs. Discrete Appl. Math. 218:
113–122.

[11] West, D. B. (1996). Introduction to Graph Theory, Vol. 2.
Upper Saddle River, NJ: Prentice Hall.

[12] Yannakakis, M. (1978). Node-and edge-deletion NP-complete
problems. In: Proceedings of the Tenth Annual ACM Symposium
on Theory of Computing. ACM, pp. 253–264.

6 C. PADAMUTHAM AND V. S. R. PALAGIRI


	Abstract
	Introduction
	Complexity results
	Threshold graphs
	Chain graphs
	Bounded tree-width graphs
	Approximation results
	Conclusion
	Acknowledgments
	Disclosure statement
	References


