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On the maximum spectral radius of multipartite graphs
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ABSTRACT
Let r � 2 be an integer. A graph G ¼ ðV, EÞ is called r – partite if V admits a partition into r parts
such that every edge has its ends in different parts. All of the r – partite graphs with given integer
r consist of the class of multipartite graphs. Let Gðr, n,DÞ be the set of multipartite graphs with r
vertex parts, n nodes and diameter D. In this paper, we characterize the graphs with the maximum
spectral radius in Gðr, n,DÞ: Furthermore, we show that the maximum spectral radius is not only a
decreasing function on D, but also an increasing function on r.
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1. Introduction

All graphs considered here are connected, simple and undir-
ected. Let r � 2 be an integer. A graph G ¼ ðV ,EÞ is called
r – partite if V admits a partition into r parts such that
every edge has its ends in different parts:vertices in the same
part must not be adjacent. Instead of 2-partite, we usually
say bipartite. All of the r – partite graphs with given integer
r consist of the class of multipartite graphs. An r – partite
graph is called complete, if every two vertices from different
parts are adjacent. Let Gðr, n,DÞ be the set of multipartite
graphs with r vertex parts, order n and diameter D. The
diameter, denoted by D, is the maximum distance between
any two vertices.

For S � VðGÞ, let G½S� be the subgraph induced by S.
We will use V n V 0 to denote the set that arises from V by
removing the subset V 0 � V: We use G þ uv to denote the
graph arising from G by adding an edge uv 62 EðGÞ,
where u, v 2 VðGÞ:

Let A(G) be the adjacency matrix of a graph G. It follows
immediately that A(G) is a real symmetric (0, 1) matrix in
which every diagonal entry is zero, and that all of its eigen-
values are real. The spectral radius, qðGÞ, of G is the largest
eigenvalue of A(G). By the Perron-Frobenius Theorem, the
spectral radius is simple and has a unique positive eigen-
vector. We will refer to such an eigenvector as the Perron
vector of G.

The problem [3] concerning maximum spectral radius of
a given class of graphs has been studied extensively. The
chromatic number vðGÞ of a graph G is the minimum num-
ber of colors such that G can be colored in a way such that
no two adjacent vertices have the same color. According to
the result of Brooks [2], we have vðGÞ � DðGÞ þ 1 with

equality if and only if G is an odd cycle or a complete
graph. By using the spectral radius of a graph, Cao [4] and
Wilf [14] improved this result. Tian et al. [12] considered
the spectral radius of graphs with given chromatic number.
So, it is important to estimating the bounds of the spectral
radius of graphs. For given order n and diameter D, Zhai
et al. [15] determined bipartite graphs with the maximum
spectral radius. Van Dam [13] determined the extremal
graphs with maximum spectral radius among the ones on n
nodes with diameter D. It is well known that every graph
belongs to a class of multipartite graphs. So, it is important
to consider the maximum spectral radius of multipartite
graphs. This paper focuses on the maximum spectral radius
of multipartite graphs with given rðr > 2Þ vertex parts, order
n and diameter D. That is, we will consider the follow-
ing problem:

Of all the r�partite graphs in Gðr, n,DÞ, which achieves
the maximum spectral radius?

Let T dD�1
2 e, r � 1, 1, bD�1

2 c� � 2 Gðr, n,DÞ be the graph
obtained from a complete r�partite graph on n� Dþ 1 verti-
ces in which each vertex part has either bn�Dþ1

r c or dn�Dþ1
r e

vertices: joining one pendent vertex of the path PbD�1
2 c with all

vertices in one vertex part which has bn�Dþ1
r c vertices and

joining one pendent vertex of the path PdD�1
2 e with all vertices

in the other r – 1 vertex parts. In this paper, we will show that
the r – partite graph T dD�1

2 e, r � 1, 1, bD�1
2 c� �

is just the
extremal graph with the maximum spectral radius in
Gðr, n,DÞ: Note that the case D ¼ n� 1 is contained in [15]
and for D¼ 1, the extremal graph is just the complete graphs
Kn (see [6]). It is easy to check that 3 � r � n� Dþ 1:

The rest of this work is organized as follows. In the rest
of section 1, we give some results used in this paper. In
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section 2, the main results are given. In section 3, 4 and 5,
the main results are proved. In section 6, conclusion of our
paper is drawn. Next, there are some useful results used in
this paper.

The characteristic polynomial of G is just detðxI � AðGÞÞ,
which is denoted by UðG, xÞ or simply by UðGÞ:
Lemma 1 [8]. Let v be a pendent vertex in G, vw 2 E(G).
Then

UðG, xÞ ¼ xUðG� v; xÞ � UðG� v� w; xÞ:
By the Perron-Frobenius Theorem, we can obtain the following
results which can also be found in [5] and [7], respectively.

Lemma 2. Let G1 and G2 be two graphs. Then

(i) If UðG2,xÞ>UðG1,xÞ for x�qðG2Þ then qðG1Þ>qðG2Þ;
(ii) If G2 is a proper subgraph of a connected graph G1,

then qðG2Þ < qðG1Þ:
The complete r�partite graph on n vertices in which

each part has either bnrc or dnre vertices is denoted by Tr, n:

Let eðTr, nÞ denotes the number of edges of graph Tr, n: The
following result can be found in [1].

Lemma 3. Let G is a complete r�partite graph on n vertices.
Then eðGÞ � eðTr, nÞ, and the equality holds if and only
if G ffi Tr, n:

2. Main results

Theorem 1. Let n, D and r be integers with 3 � r �
n� Dþ 1 and 2 � D � n� 2. Then the graph

T
D� 1
2

� �
, r � 1, 1,

D� 1
2

� �� 	

is the unique graph with the maximum spectral radius
in Gðr, n,DÞ:
Theorem 2. Let r 2 3, n� Dþ 1½ � and order n be fixed inte-
gers. Then for D 2 ½2, n� 2�,

q T
D� 1
2

� �
, r � 1, 1,

D� 1
2

� �� 	� 	

the spectral radius of the extremal graphs in Gðr, n,DÞ is a
decreasing function on D.

Theorem 3. Let diameter D 2 ½2, n� 2� and order n be fixed
integers. Then for r 2 ½3, n� Dþ 1�,

q T
D� 1
2

� �
, r � 1, 1,

D� 1
2

� �� 	� 	

the spectral radius of the extremal graphs in Gðr, n,DÞ is an
increasing function on r.

3. Proof of Theorem 1

The proof of this result will be established in a number of
steps. Note that for G 2 Gðr, n,DÞ, there exists a distance
partition P:

U0 ¼ fug;
Ui ¼ vjdG u, vð Þ ¼ i, i ¼ 1, 2, 	 	 	 ,D, u 2 U0, v 2 VðGÞnU0


 �
;

VðGÞ ¼ [D
i¼0Ui:

Next, we will characterize the extremal graphs with the
distance partition P when the spectral radius of graph G 2
Gðr, n,DÞ achieves the maximum.

Proposition 3.1. Let G 2 Gðr, n,DÞ with the distance
partition P and maximal spectral radius. Then for
each i 2 f0, 1, 2, 	 	 	 ,D� 1g,

(i) G½Ui [ Uiþ1� induce a complete k�partite subgraph
with 2 � k � r;

(ii) There exist two partition sets Ui0 ,Ui0þ1 such that
G½Ui0 [ Ui0þ1� is a complete r�partite subgraph.

Proof of Proposition 3.1. (i) Suppose that for each i 2
f0, 1, 2, 	 	 	 ,D� 1g,G½Ui [ Uiþ1� induce a k�partite sub-
graph with k> r or k¼ 1. The inequality k> r contradicts
the fact that G 2 Gðr, n,DÞ: According to the partition U0,
U1,	 	 	 , UD of V(G), Ui and Uiþ1 are two different partition
sets. Thus, the integer k is not equal to 1. So, the inequality
2 � k � r holds. On the other hand, Suppose that for each
i 2 f0, 1, 2, 	 	 	 ,D� 1g,G½Ui [ Uiþ1� induce a k�partite
subgraph which is not complete. Let Uj(j ¼ 1, 2, 	 	 	 , k) be
the partition classes of the subgraph G½Ui [ Uiþ1�: Moreover,
for any different integers j1, j2 2 f1, 2, 	 	 	 , kg, we can
assume, without loss of generality, that there exist two vertices
u 2 Uj1 , v 2 Uj2 which are not adjacent. Now, we add the edge
uv to the induced subgraph. Let G0 be a graph obtained by
adding an edge between u and v. Then G0 2 Gðr, n,DÞ and
eðG0Þ > eðGÞ: Thus, we have qðG0Þ > qðGÞ, a contradiction.

(ii) This case is clear because G is a graph in Gðr, n,DÞ: w

Proposition 3.2. Let G 2 Gðr, n,DÞ with distance partition
P and maximum spectral radius. If V 0 is a vertex part of
induced subgraph Hi ¼ G½Ui [ Uiþ1�, i 2 f0, 1, 2, 	 	 	, D�1g,
then V 0 � Ui or V 0 � Uiþ1:

Proof of Proposition 3.2. Let X be the Perron vector of G,
where xx corresponds to the vertex x 2 V(G). For each i 2
f0, 1, 2, 	 	 	 ,Dg, we assume Ni

GðxÞ be the sets of x’s neigh-
bors in vertex sets Ui.

Suppose that there exist two vertices u 2 Ui \ V 0 and v 2
Uiþ1 \ V 0: Hence, these two vertices are not adjacent in the
subgraph G½Ui [ Uiþ1�: Now we consider the following two
cases to finish the proof.

Case 1: For the fixed integer i 2 f0, 1, 2, 	 	 	 ,D�1g,
G½Ui [ Uiþ1� induce a k�partite subgraph with 2 � k< r.
Let G0 be a graph obtained by adding an edge between u
and v. Clearly, G0 2 Gðr, n,DÞ and eðG0Þ > e(G). Thus, we
have qðG0Þ > qðGÞ, a contradiction.

Case 2: For the fixed integer i 2 f0, 1, 2, 	 	 	 ,D�1g,
G½Ui [ Uiþ1� induce a r�partite subgraph. Now we con-
sider the following three subcases to finish the proofs of
Case 2.
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Subcase 2.1: For the fixed integer i 2 f1, 	 	 	 , D�2g,
G½Ui [ Uiþ1� induce a r�partite subgraph. Without loss of
generality, we assume that xu � xv: Let G0 be the graph
obtained by deleting all edges between the vertex u and all
its neighbours in Ui�1, and joining u with all neighbours of
the vertex v in Uiþ2:Clearly, G0 2 Gðr, n,DÞ and

qðG0Þ � qðGÞ � XTAðG0ÞX � XTAðGÞX
¼ 2xu 	

X
x2Niþ2

G ðvÞ
xx �

X
c2Ni�1

G ðuÞ
xc

" #
:

Since AðGÞX ¼ qðGÞX,
qðGÞxv ¼

X
x2Niþ2

G ðvÞ
xx þ

X
x2Niþ1

G ðvÞ
xx þ

X
x2Ni

GðvÞ
xx,

qðGÞxu ¼
X

c2Ni�1
G ðuÞ

xc þ
X

c2Ni
GðuÞ

xc þ
X

c2Niþ1
G ðuÞ

xc

with X
x2Niþ1

G ðvÞ
xx ¼

X
c2Niþ1

G ðuÞ
xc,

X
x2Ni

GðvÞ
xx ¼

X
c2Ni

GðuÞ
xc:

Thus

qðG0Þ � qðGÞ � 2xuqðGÞðxv � xuÞ � 0

If qðG0Þ ¼ qðGÞ then xv ¼ xu; for the vertex x 2 Niþ2
G ðvÞ,

we have xu ¼ qðG0Þxx � qðGÞxx ¼ 0, a contradiction.
Consequently, we have qðG0Þ > qðGÞ, a contradiction.

Subcase 2.2: For i¼ 0, G½Ui [ Uiþ1� induce a
r�partite subgraph.

In this subcase, we can obtain the distance between u
and v will be greater than 1, a contradiction.

Subcase 2.3: For i ¼ D� 1,G½Ui [ Uiþ1� induce a
r�partite subgraph.

By Case 1, Subcase 2.1 and Subcase 2.2, for each integer
i 2 f0, 1, 2, 	 	 	 ,D� 2g, if u 2 Ui and v 2 Uiþ1 then uv 2
EðGÞ and G½Ui [ Uiþ1� induce a complete multipartite sub-
graph with k(2 � k � r) vertex parts. Therefore, if
G½Uiþ1� ffi G½UD� ffi jUDj 	 K1 then G½UD�2 [ UD�1� induce a
k�partite subgraph with k> r, implying a contradiction.
Thus we assume that G½Uiþ1� ffi G½UD� induce a k�partite
subgraph with 2 � k � r: Then let G0 be the graph obtained
by joining v with all neighbours of the vertex u in Ui�1 ¼
UD�2: Clearly, G0 2 Gðr, n,DÞ and eðG0Þ > eðGÞ: Thus, we
have qðG0Þ > qðGÞ, a contradiction. Therefore, Case 1 and
Case 2 complete the proof.

The following result can be deduced from Proposition 3.1
and Proposition 3.2.

Proposition 3.3. Let G 2 Gðr, n,DÞ with the distance
partition P and maximal spectral radius. Then, for each
integer i 2 f0, 1, 2, 	 	 	 ,D� 1g, if u 2 Ui and v 2 Uiþ1

then uv 2 EðGÞ:

Remark 3.4. Let G 2 Gðr, n,DÞ with the distance partition
P of V(G) have the maximal spectral radius. By the
Proposition 3.1, Proposition 3.2 and Proposition 3.3, G½Ui�
induce a complete k�partite subgraph with 2 � k � r � 1 or

G½Ui� ffi jUij 	 K1(here, we call this subgraph an empty graph
or 1�partite graph). Thus, we can give some useful symbols.

Let Ui ¼ [ki
m¼1Ui,m, where i ¼ 0, 1, 	 	 	 ,D, 1 � ki � r � 1

and G½Ui,m� ffi jUi,mj 	 K1: In particular, if ki ¼ 1 then Ui ¼
Vi, 1 and G½Ui� ffi jVij 	 K1 ffi jUi, 1j 	 K1: Clearly, U0 ¼ U0, 1:
By Proposition 3.1(ii), there exist two vertex parts Ui0 ,Ui0þ1

such that G½Ui0 [ Ui0þ1� induce a complete r�partite sub-
graph. In fact, the size of the other vertex parts can also
be determined.

Proposition 3.5. Let G 2 Gðr, n,DÞ with the distance parti-
tion P and maximal spectral radius. Then, there exist at
most two partition sets Ui and Uj containing more than one
vertex. Furthermore, ji – jj ¼ 1.

Proof of Proposition 3.5. The cases D¼ 2, 3 are trivial. Now
let D � 4 and G be an extremal graph in Gðr, n,DÞ: By

Remark 3.4, we have Ui ¼ [ki
m¼1Ui,m: Let X be the Perron

vector of G. We observe that xu ¼ xv for any two vertices
u,v 2 Ui,m, since they have the same neighbors. Let xi,m
correspond to the vertices in Ui,m: By Proposition 4.1(ii),
there exist two vertex parts Ui0 ,Ui0þ1 such that G½Ui0 [
Ui0þ1� induce a complete r�partite subgraph. Now we have
to show that the vertex parts contain no more than one ver-
tex other than Ui0 ,Ui0þ1:

Suppose that jUij, jUjj � 2 with ji� jj � 2 and i, j 62
fi0, i0 þ 1g: Without loss of generality, we assume that

xi, l � xj, h,

and by Remark 3.4,

Ui ¼ [l�1

m¼1
Ui,m

 !
[ [ki

m¼lþ1
Ui,m

 !
[ Ui, l,

Uj ¼ [h�1

m¼1
Uj,m

 !
[ [kj

m¼hþ1
Uj,m

 !
[ Uj, h:

Select a vertex u 2 Uj, h, and let G0 be a graph obtained
by deleting all edges incident to u and joining u with
all vertices in ðUi�1 [ Uiþ1Þ [ ðUi n Ui, lÞ: Clearly, G0 2
Gðr, n,DÞ and
qðG0Þ � qðGÞ � XTAðG0ÞX � XTAðGÞX

¼ 2xj, h 	
Xki�1

m¼1

jUi�1,mj 	 xi�1,m þ
Xkiþ1

m¼1

jUiþ1,mj 	 xiþ1,m

"

þ
Xl�1

m¼1

jUi,mj 	 xi,m þ
Xki

m¼lþ1

jUi,mj 	 xi,m
3
5

� 2xj, h 	
Xkj�1

m¼1

jUj�1,mj 	 xj�1,m þ
Xkjþ1

m¼1

jUjþ1,mj 	 xjþ1,m

2
4

þ
Xh�1

m¼1

jUj,mj 	 xj,m

þ
Xkj

m¼hþ1

jUj,mj 	 xj,m

3
5:

Since AðGÞX ¼ qðGÞX,
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qðGÞxi, l ¼
Xki�1

m¼1

jUi�1,mj 	 xi�1,m þ
Xkiþ1

m¼1

jUiþ1,mj 	 xiþ1,m

þ
Xl�1

m¼1

jUi,mj 	 xi,m þ
Xki

m¼lþ1

jUi,mj 	 xi,m,

qðGÞxj, h ¼
Xkj�1

m¼1

jUj�1,mj 	 xj�1,m þ
Xkjþ1

m¼1

jUjþ1,mj 	 xjþ1,m

þ
Xh�1

m¼1

jUj,mj 	 xj,m þ
Xkj

m¼hþ1

jUj,mj 	 xj,m:

Thus

qðG0Þ � qðGÞ � 2xj, hqðGÞðxi, l � xj, hÞ � 0

If qðG0Þ ¼ qðGÞ then xi, l ¼ xj, h,qðG0ÞX ¼ AðG0ÞX: Thus, we
have

qðGÞxi�1, 1 ¼
Xki�2

m¼1

jUi�2,mj 	 xi�2,m þ
Xki
m¼1

jUi,mj 	 xi,m

þ
Xki�1

m¼2

jUi�1,mj 	 xi�1,m,

qðG0Þxi�1, 1 ¼
Xki�2

m¼1

jUi�2,mj 	 xi�2,m þ
Xki
m¼1

jUi,mj 	 xi,m

þ
Xki�1

m¼2

jUi�1,mj 	 xi�1,m þ xj, h,

a contradiction. Consequently, we have qðG0Þ > qðGÞ, a
contradiction. w

Proposition 3.6. Let G 2 Gðr, n,DÞ with the distance parti-
tion P and maximal spectral radius. Then jUDj ¼ 1
for D � 3:

Proof of Proposition 3.6. Suppose that jUDj � 2: Then by
Proposition 3.5, jUij ¼ 1ði ¼ 0, 1, 2 	 	 	 ,D� 1Þ or jUij ¼
1ði ¼ 0, 1, 2 	 	 	 ,D� 2Þ: Let G0 be a graph obtained by delet-
ing the edge incident to u0 2 U0 and joining u0 with all ver-
tices in UD. Clearly, G0 2 Gðr, n,DÞ and eðG0Þ > eðGÞ: Thus,
we have qðG0Þ > qðGÞ, a contradiction. w

By Proposition 3.5 and 3.6, if G 2 Gðr, n,DÞ with the dis-
tance partition P and maximal spectral radius then there
exist at most two consecutive partition classes Ui0 and Ui0þ1

of P containing more than one vertex, and G½Ui0 [ Ui0þ1� is
a induced complete r�partite subgraph. That is, each of the
rest of the partition classes of P contains only one vertex.

Let G 2 Gðr, n,DÞ with the distance partition P and
maximum spectral radius. Without loss of generality, we
assume that the partition classes Ua and Uaþ1 satisfy the
conditions of Proposition 3.1–3.6. That is, for integer D �
3, Ua, Uaþ1 induce a complete ðaþ bÞ�partite graph with 2
� aþ b � vðGÞ: Each of the partition classes other than Ua

and Uaþ1 has only one vertex. Hence, the distance partition
P of extremal graph G 2 Gðr, n,DÞ with maximum spectral
radius can be displayed as

P : U0,U1, 	 	 	 ,Ua�1,Ua,Uaþ1,Uaþ2, 	 	 	 ,UD,

The extremal graph G ¼ Ga, b with the distance partition P
can be obtained by


 constructing the path Pa : u0 u1 	 	 	 ua�1 (ui 2 Ui, i ¼ 0,
1, 	 	 	 , a – 1), and joining the end vertex ua�1 2 Ua�1 to
every vertices in Ua;


 constructing the path Pb : uaþ2 uaþ3 	 	 	 uD (uj 2 Uj, j ¼
aþ 2, aþ 3, 	 	 	 , D), and joining the end vertex uaþ2 2
Uaþ2 to every vertices in Uaþ1:

Moreover, the vertex set, partition classes and diameter of
extremal graph Ga, b satisfy

VðGÞ ¼ VðPaÞ [ Ua [ Uaþ1 [ VðPbÞ,

Ua ¼ [a
i¼1

Ua, i,

Uaþ1 ¼ [b
j¼1

Uaþ1, j,

G Ua, i½ � ffi jUa, ij 	 K1,

G Uaþ1, j½ � ffi jUaþ1, jj 	 K1,

aþ b ¼ D� 1:

Proposition 3.7. Let G ¼ Ga, b 2 Gðr, n,DÞ with the distance
partition P and maximal spectral radius. Suppose that X be
a Perron vector of G. For any vertex x 2 V(G), its corre-
sponding component in X is denoted by xx. Then

(1) G½Ua [ Uaþ1� is an induced r�partite subgraph with
n� Dþ 1 vertices in Ga, b; note that each vertex part
have bn�Dþ1

r c vertices or n�Dþ1
r e�

vertices;
(2) Either a ¼ 1 and G½Ua� ffi bn�Dþ1

r c 	 K1 or b ¼ 1
and G½Uaþ1� ffi bn�Dþ1

r c 	 K1;
(3) a�b 2 {0, 1}, if xa�1 � xaþ2:

Proof of Proposition 3.7. (1) By Proposition 3.1–3.6, it is true
that Ua [ Uaþ1j j ¼ n� Dþ 1, and that G Ua [ Uaþ1½ � is a
complete induced ðaþ bÞ�partite subgraph with 2 � aþ
b � r. If aþ b < r, then G Ua�1 [ Ua½ � a complete induced
ðaþ 1Þ�partite subgraph with aþ 1 < r; G Uaþ1 [ Uaþ2½ � is
a complete induced ðbþ 1Þ�partite subgraph with bþ 1
< r. Thus, we have G 62 Gðr, n,DÞ, a contradiction. So, we
must have aþ b ¼ r. Furthermore, each vertex part in
G Ua [ Uaþ1½ � have bn�Dþ1

r c vertices or n�Dþ1
r e�

vertices by
Lemma 3, since it is well known that adding edges may
increase the value of the spectral radius of any graph G.

(2) Suppose that a> 1 and b> 1, and

xu ¼ xv, u, v 2 Ua, i or u, v 2 Uaþ1, jð Þ:
Without loss of generality, we assume that

xa�1 � xaþ2,

jUa, 1j � jUa, 2j � , 	 	 	 , jUa, aj
The corresponding components of vertices ua�1 2 Ua�1, ua, i

2Ua, i, uaþ1, j 2 Uaþ1, j, uaþ2 2 Uaþ2 in X are denoted
by xa�1, xa, i, xaþ1, j, xaþ2, respectively. Let graph G0 is
obtained by
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 deleting the edges between the vertices in Ua�1 and the
vertices in UanUa, a;


 joining the vertex uaþ2 2 Uaþ2 to every vertices
in UanUa, a:

Then, we have that

qðG0Þ � qðGÞ � XTAðG0ÞX � XTAðGÞX

¼ 2
Xa�1

i¼1

jUa, ij 	 xa, i
 !

	 xaþ2 � xa�1ð Þ

� 0

If qðG0Þ ¼ qðGÞ then xa�1 ¼ xaþ2,qðG0Þ ¼ XTAðG0ÞX: Thus,
we have

qðG0Þxaþ2 ¼ xaþ3 þ
Xb
j¼1

jUaþ1, jj 	 xaþ1, j þ
Xa�1

i¼1

jUa, ij 	 xa, i,

qðGÞxaþ2 ¼ xaþ3 þ
Xb
j¼1

jUaþ1, jj 	 xaþ1, j,

a contradiction. So, we must have qðG0Þ > qðGÞ, a contra-
diction. Hence, it is true that a ¼ 1, and that G½Ua� ffi
bn�Dþ1

r c 	 K1: Carrying out analogical proofs, for xa�1 �
xaþ2, we have b ¼ 1 and G½Uaþ1� ffi bn�Dþ1

r c 	 K1:

(3) Suppose that a – b � 2. Then, the graph Ga, b satisfy
(1) and (2) of this present proposition. By Lemma 1, we
have

U Ga, b; xð Þ ¼ xU Ga�1, b; xð Þ � U Ga�2, b; xð Þ (3.1)

U Ga�1, bþ1; xð Þ ¼ xU Ga�1, b; xð Þ � U Ga�1, b�1; xð Þ (3.2)

From the formulas (3.1) and (3.2), we have

U Ga, b; xð Þ � U Ga�1, bþ1; xð Þ ¼ U Ga�1, b�1; xð Þ � U Ga�2, b; xð Þ
¼ 	 	 	 	 	 	
¼ U Ga�b, 0; xð Þ � U Ga�b�1, 1; xð Þ:

By Lemma 2(ii), we have

qðGa�1, bþ1Þ > qðGa�b�1, 1Þ � qðGa�b, 0Þ:
Now, suppose that

U Ga�b, 0; xð Þ � U Ga�b�1, 1; xð Þ < 0:

Then, by Lemma 2(i), for x � qðGa�1, bþ1Þ > qðGa�b�1, 1Þ �
qðGa�b, 0Þ, we have

qðGa�b, 0Þ > qðGa�b�1, 1Þ,
a contradiction. In fact, qðGa�b, 0Þ � qðGa�b�1, 1Þ, since
eðGa�b, 0Þ < eðGa�b�1, 1Þ:

So, we must have

U Ga�b, 0; xð Þ � U Ga�b�1, 1; xð Þ > 0:

That is

U Ga, b; xð Þ � U Ga�1, bþ1; xð Þ > 0:

But, by the Lemma 2(ii), for x � qðGa�1, bþ1Þ > qðGa�b�1, 1Þ
�qðGa�b, 0Þ, we also have qðGa, bÞ< qðGa�1, bþ1Þ, which

contradicts the fact that Ga, b achieves the maximum spectral
radius. Therefore, a – b 2 {0, 1}.

By Proposition 3.1–Proposition 3.6, the extremal graph G
2 Gðr, n,DÞ with maximum spectral radius has a special dis-
tance partition P. According to the Proposition 3.7, the the
extremal graph G ¼ Ga, b: Therefore, the presented Theorem 1
is true.

4. Proof of Theorem 2

Clearly, the spectral radius of extremal graphs in Gðr, n,DÞ
is a function on D. We will show that it is a decreasing
function on D.

For any integers D1,D2 2 ½2, n� 2�, suppose that D1 >

D2. Let Tð D1�1
2 e,�

r � 1, 1, bD1�1
2 cÞ denoted by T1 and

T D2�1
2 e, r � 1, 1, bD2�1

2

� � �
denoted by T2 be the extremal

graphs in Gðr, n,D1Þ and Gðr, n,D2Þ, respectively. Next we
will show that qðT1Þ < qðT2Þ:

Let VðT1Þ ¼ VðPaÞ [ Va [ Vaþ1 [ VðPbÞ, where Va ¼
[r�1
i¼1Va, i, a ¼ D1�1

2

� �
,VðPaÞ ¼ fv0, v1, 	 	 	 , va�1g, VðPbÞ ¼

fvaþ2, vaþ3, 	 	 	 , vD1g: Now let T3 be the graph obtained
from T1 by

(1) selecting the p vertices v0, v1, 	 	 	 , vp�1 2 VðPaÞ and the q
vertices vD1�qþ1, vD1�qþ2, 	 	 	 , vD1 2 VðPbÞ, where pþ
q ¼ D1 � D2;

(2) deleting edges incident to these p þ q vertices;
(3) joining these p þ q vertices with all vertices in Va;
(4) joining these p þ q vertices with the vertex vaþ2 2

Vaþ2:

Clearly, T3 2 Gðr, n,D2Þ and qðT1Þ < qðT3Þ, since eðT1Þ <
eðT3Þ: By Theorem 1, we have qðT3Þ � qðT2Þ: Thus qðT1Þ <
qðT2Þ: According to the arbitrariness of D1 and D2, we can
get the result. w

5. Proof of Theorem 3

Next we will show that the spectral radius of the extremal
graphs in Gðr, n,DÞ is an increasing function on r.

For any integers r1, r2 2 ½3, n� Dþ 1�, suppose that r1 <

r2. Let Tð D�1
2 e,�

r1 � 1, 1, bD�1
2 cÞ denoted by T1 and

T D�1
2 e, r2 � 1, 1, bD�1

2

� � �
denoted by T2 be the extremal

graphs in Gðr1, n,DÞ and Gðr2, n,DÞ, respectively. Now we
will show that qðT1Þ < qðT2Þ:

Let VðT1Þ ¼ VðPaÞ [ Va [ Vaþ1 [ VðPbÞ, where Va ¼
[r1�1
i¼1 Va, i, a ¼ D�1

2 e:�
To obtain the graph T3 from T1, a

total of r2 � r1 times the following operations will be car-
ried out:

(1) joining one vertex u 2 Va, iðjVa, ij � 2, i ¼ 1, 2, 	 	 	 , r1 �
1Þ to all vertices in Va, i n fug;

(2) joining one vertex v 2 Vaþ1ðjVaþ1j � 2Þ to all vertices
in Vaþ1 n fvg:
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Clearly, T3 2 Gðr2, n,DÞ and qðT1Þ < qðT3Þ, since eðT1Þ <
eðT3Þ: By Theorem 1, we have qðT3Þ � qðT2Þ: Thus qðT1Þ <
qðT2Þ: According to the arbitrariness of r1 and r2, the proof
is finished. w

6. Conclusion

It is well known that every graph belongs to a class of multi-
partite graphs, and that estimating the spectral radius is
helpful for estimating the bounds for some parameters of
graphs. So, it is important to study the spectral radius of
multipartite graphs (see [9–11]). In this paper, we consider
the spectral radius of the class of multipartite graphs, and
get the extremal graphs with the maximum spectral radius.
To some extent, we extend the results in [15] to the class of
multipartite graphs (Theorems 1, 2 and 3). Furthermore, the
result (Theorem 1) is more specific than the result in [13].
That is, for estimating the maximum spectral radius of spe-
cific graph G, it is more accurate to using the result
(Theorem 1) in this work than to using the result in [13].
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