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The game chromatic number of corona of two graphs

R. Alagammai and V. Vijayalakshmi

Department of Mathematics, Anna University, Chennai, India

ABSTRACT
In this paper, we compute an upper bound for the game chromatic number of corona of any two
simple graphs G and H, denoted by G � H: Also, we determine the game chromatic number of
Pn � Pm, Pn � Cm, Pn � Ka, b, Pn �Wm, K1,m � Pn, Kn � Kn and Kn � Kn, n:

KEYWORDS
Graphs; game chromatic
number; corona of
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1. Introduction

Let G ¼ ðV, EÞ be a finite simple graph and X be a set of
colors. The game chromatic number of G is defined through
a two person game. Two players, say Alice and Bob, alter-
nately color a vertex of G with a color from the color set X
so that no two adjacent vertices receive the same color.
Alice wins the game if all the vertices of G are colored. Bob
wins the game if at any stage of the game, there is an uncol-
ored vertex which is adjacent to vertices of all colors from
X. The game chromatic number, vgðGÞ, of G is the least
number of colors in the color set X for which Alice has a
winning strategy in the coloring game on G. This parameter
is well defined since Alice always wins if jXj ¼ jVj:

A variation of the game chromatic number called the
game coloring number was introduced by Zhu [4] as a tool
in the study of the game chromatic number. It is also
defined through a two person game, say Alice and Bob, with
Alice starting first. The players fix a positive integer k and
instead of coloring vertices, they mark an unmarked vertex
each turn. Bob wins if at some time some unmarked vertex
has k marked neighbours, otherwise Alice wins the game.
The game coloring number of G, denoted by colgðGÞ, is
defined as the least number k for which Alice has a winning
strategy in the marking game on the graph G. Clearly, if
Alice can win the marking game for some integer k, then
she can also win the coloring game with k colors. Thus
vðGÞ � vgðGÞ � colgðGÞ � �ðGÞ þ 1, where vðGÞ is the
usual chromatic number of G and �ðGÞ is the maximum
degree of G.

In 2007, T. Bartnicki, B. Bresar, J. Grytczuk, M. Kovsse,
Z. Miechowicz and I. Peterin [1] studied the game chro-
matic number of cartesian product of two graphs G and H.
In 2009, Charmaine Sia [3] determined the exact value of
vgðSm w PnÞ, vgðSm wCnÞ, vgðP2 wWnÞ and vgðP2 wKm, nÞ: In
2009, Andre Raspaud, Jiaojiao Wu [2] found the game chro-
matic number of toroidal grids. In this paper we study the

game chromatic number of the corona of any two simple
graphs G and H.

We say a color i is an available color for an uncolored
vertex x if no neighbours of x has been colored by color i.
As given by Raspaud and Wu [2], during the game, at any
instant, an uncolored vertex x is called color-i critical if the
following hold at that instant.

� i is the only available color for x.
� x has a neighbour y such that i is an available color

for y.

Note that, at some point of the game, if a vertex x is color-i
critical and if it is
? Bob’s turn to color, then Bob wins the game. Because Bob
colors a neighbor y of x (for which i is an available color)
with the color i.
? Alice’s turn to color, then Alice must defend the vertex x
so that after her move, vertex x is no more color-i critical.
To achieve this, Alice can do one of the following.

� she can color vertex x with color i
� she can choose a vertex z such that color i is available

for z and it is adjacent to all those neighbours of x for
which i is an available color and color the vertex z with
color i.

� If x has only one neighbour y for which color i is one of
the available colors, then she can color y with some color
other than color i.

2. Corona of two graphs

Definition 2.1. The corona of two simple graphs G and H
is the graph G � H formed from one copy of G and jVðGÞj
copies of H where the ith vertex of G is adjacent to every
vertex in the ith copy of H.
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Observation: It can be easily observed that the graphs G �
H and H � G are non isomorphic.

Notations:
Pn is the path on n vertices. Cn is the cycle on n vertices.

Kn is the complete graph on n vertices. Ka, b is the complete
bipartite graph with partite sets of sizes a and b. Wn is the
wheel on nþ 1 vertices.

Let G be a graph with n vertices, say v1, v2, :::, vn and H
be a graph with m vertices. The n copies of H in G � H are
denoted by F1, F2, F3, :::, Fn: The vertices of Fi are denoted
by vi1, v

i
2, v

i
3, :::, v

i
m, 1 � i � n: Let the colors in X be

f1, 2, 3, :::g: In the figures, a vertex v is labelled iðjÞ if the
vertex v is given color i in the jth move of the game and at
some point of the game, a vertex v is labelled � if vertex v
is color-i critical, for some i.

3. An upper bound for vgðG � HÞ

Theorem 3.1. [3] Let G1 ¼ ðV ,E1Þ and G2 ¼ ðV, E2Þ be two
graphs. Suppose that G ¼ ðV,EÞ is a graph with E ¼ E1 [ E2,
then vgðGÞ � colgðGÞ � colgðG1Þ þ�ðG2Þ:
Theorem 3.2. For any two simple graphs G and H,

vgðG �HÞ � colgðG � HÞ � maxf�ðGÞ,�ðHÞg þ 2:

Proof. Let G �H ¼ ðV, EÞ: Observe that the edges
vivi1, viv

i
2, viv

i
3, … , vivim, where 1 � i � n, form a copy of

star in G �H: Let it be Si, 1 � i � n: Let G1 ¼ ðV, E1Þ where
V is the set of vertices of G �H and E1 is the set of edges of
S1 [ S2 [ S3 [ ::: [ Sn: Let G2 ¼ ðV ,E2Þ where V is the set of
vertices of G � H and E2 is given by E2 ¼ E� E1: It is clear
that colgðG1Þ ¼ 2 and the maximum degree of G2, �ðG2Þ ¼
maxf�ðGÞ,�ðHÞg: Therefore by using Theorem 3.1 we get,
vgðG �HÞ � colgðG � HÞ � 2þmaxf�ðGÞ,�ðHÞg: w

4. The game chromatic number of corona of
two graphs

Theorem 4.1. For any two integers n and m with n � 6 and
m¼ 2 and with n � 2 and m � 3, vgðPn � PmÞ ¼ 4:

Proof. Let VðPnÞ ¼ fv1, v2, v3, :::, vng and VðFiÞ ¼
fvi1, vi2, vi3, :::, vimg: Note that a vertex of Pn in Pn � Pm has
degree either mþ 1 or mþ 2 and a vertex of Fi has degree
either 2 or 3. Now we find the exact value of the game

chromatic number of Pn � Pm for different values of n and
m. First we show that vgðPn � PmÞ > 3 for n � 6, m¼ 2 and
n � 2, m � 3: To prove this, we give a strategy for Bob to
win the game using three colors. The strategy of Bob for dif-
ferent values of n and m is as follows.

Case 1: n � 6 and m¼ 2.
In the first move, Alice can play either in a vertex of Pn

or in a vertex of Fi, 1 � i � n, as discussed in Sub-case 1(a)
and Sub-case 1(b).

Sub-case 1(a): Alice plays in Pn.
Suppose she plays in a vertex of Pn, say vi with color 1.

Bob replies with a vertex of Fiþ2 if ðiþ 3Þ � n or Fi�2 if
ði� 3Þ � 1 with color 1. If ðiþ 3Þ � n and ði� 3Þ � 1,
then Bob can choose either Fiþ2 or Fi�2 arbitrarily and color
a vertex with color 1. Let Fj be the copy of P2 on which Bob
plays in this move. Let Fk be the copy of P2 which lies
between Fi and Fj. Now Alice plays anywhere. Now it is
Bob’s turn and he checks for the following situations and
plays accordingly (Figure 1).

� Both the vertices of Fk are uncolored.
In this situation, Bob colors a vertex of Fk with color 2.
This makes the vertex vk color-3 critical. Now the game
is in Bob’s hand.

� Exactly one vertex of Fk is uncolored. [This means that
Alice should have colored the other vertex of Fk in
the previous move and she should have used color 1.
Had she used color 2 or 3, the game will be in Bob’s
hand.]
In this situation, Bob colors a vertex vl, ðl 6¼ kÞ,
with color 2 such that vl is adjacent to vj. This
makes vj color-3 critical and the game is in
Bob’s hand.

Sub-case 1(b): Suppose in the first move, Alice colors a ver-
tex of Fi, 1 � i � n, say, with color 1. Then Bob colors the
other vertex of Fi. This forces Alice to color vi. Now Bob
will be using a similar strategy as given in Sub-case 1(a) for
the course of the game and wins.

Case 2: n � 2,m � 3:
In the first move, Alice can color either a vertex of Pn or

a vertex of Fi ð1 � i � nÞ and the course of the game is as
discussed below (Figures 2 and 3).

Figure 1. Illustration for Case 1 with n¼ 6.

Figure 2. Illustration for Case 2 with n¼ 2 and m¼ 4.
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Thus vgðPn � PmÞ � 4 for n � 6, m¼ 2 and n � 2,m �
3: Now to show that vgðPn � PmÞ ¼ 4, we give a strategy for
Alice to win the game using four colors. The strategy of
Alice is as follows.

Alice colors any vertex of Pn in the first move. In the fol-
lowing moves, whenever

� Bob colors a vertex of Fi, Alice colors vi, if it is uncol-
ored. Otherwise she colors a vertex of Fi, if there is one
uncolored. If not, she replies with a vertex of Pn, if there
is one uncolored. Otherwise she colors any uncolored
vertex of Fj ðj 6¼ iÞ:

� Bob colors a vertex of Pn, Alice colors an uncolored ver-
tex of Pn, if there is one uncolored. Otherwise she replies
in any uncolored vertex of the graph.

Note: Recall that in Pn � Pm the maximum degree of a ver-
tex of Pn is mþ 2 and that of Fi, 1 � i � n, is 3. At any
point of the game, using this strategy, any vertex of Pn is
adjacent to at most three distinctly colored vertices. Hence
one color is available for all the vertices.
Thus vgðPn � PmÞ ¼ 4: w

Theorem 4.2. For any two integers n and m with n � 2 and
m � 3, vgðPn � CmÞ ¼ 4:

Proof. Observe that in Pn � Cm, a vertex of Pn has degree
either mþ 1 or mþ 2 and a vertex of Fi, 1 � i � n, has
degree 3. Each Fi in Pn � Cm has just one more edge than
the corresponding Fi in Pn � Pm: Hence, by using a similar
argument given for Pn � Pm, it is easy to check that
vgðPn � CmÞ ¼ 4: w

Theorem 4.3. For any three integers n, a and b with n �
2, a � 2 and b � 2, vgðPn � Ka, bÞ ¼ 4:

Proof. Let VðPnÞ ¼ fv1, v2, v3, :::, vng and VðFiÞ ¼
fvi1, vi2, vi3, :::, vimg where m ¼ aþ b: Let us denote the two

partite sets of Fi, 1 � i � n, by Ai
1 and Ai

2: First we show
that vgðPn � Ka, bÞ > 3: To prove this, we give a strategy for
Bob to win the game using three colors. The strategy of Bob
is as follows (Figure 4).

Thus vgðPn � Ka, bÞ � 4: Now to show that vgðPn �
Ka, bÞ ¼ 4, we give a strategy for Alice to win the game
using four colors. The strategy of Alice is as follows.

In the first move, Alice colors a vertex of Pn, say vi. In
the following moves, whenever

� Bob colors a vertex of Fj, say a vertex of Aj
1, Alice will

look at the following situations and plays accordingly.
� If exactly one vertex of Aj

1 is colored, then Alice
responds in vj, if it is uncolored. Otherwise she colors
a vertex of Aj

2:

The vertex in which Alice
colors in the first move The vertex with which Bob responds

� A vertex of Pn,
say vi with color 1.

vj1 where j ¼ i þ 1 if ði þ 1Þ � n
or j ¼ i � 1
if ði � 1Þ � 1 with color 2. If both ði þ 1Þ � n
and ði � 1Þ � 1, then Bob can choose j as either
iþ 1 or i – 1 arbitrarily. This forces Alice to color
vj with color 3 and hence vj2 becomes color-1
critical. Hence Bob wins.

� A vertex of degree
two in Fi, say vi1
with color 1.

vi3 color 2 and hence vi and vi2 becomes
color-3 critical. Hence Bob wins.

� A vertex of degree
three in Fi, say vi2
with color 1, 1 � i � n:

(i) When m> 3, Bob colors vi4 with color
2. This makes the vertices vi3 and vi color-3
critical. Hence Bob wins.
(ii) When m¼ 3, Bob colors vi1 with color 2. This
forces Alice to color vi with color 3. Now Bob
colors vj1 where j ¼ i þ 1 if ði þ 1Þ � n or
j ¼ i � 1 if ði � 1Þ � 1 with color 2. If both
ði þ 1Þ � n and ði � 1Þ � 1, then Bob
chooses j as either iþ 1 or i – 1 arbitrarily.
This forces Alice to color vj with color 1 and
hence vj2 becomes color-3 critical. Hence
Bob wins.

Figure 3. Illustration for Case 2 with n¼ 2 and m¼ 3.

Figure 4. Illustration for Bob’s strategy with n ¼ a ¼ b ¼ 2:

The vertex in which Alice
colors in the first move The vertex with which Bob responds

� A vertex of Pn, say
vi with color 1.

A vertex of Aj1 with color 2 such that j ¼ i þ 1 if
ði þ 1Þ � n or j ¼ i � 1 if ði � 1Þ � 1: If both
ði þ 1Þ � n and ði � 1Þ � 1, then Bob can
choose j as either iþ 1 or i – 1 arbitrarily. This
makes vj color-3 critical. By defending this, Alice
herself makes all the vertices of Aj2 color-1 critical.
Hence Bob wins.

� A vertex of Fi, say
vik with color 1

A vertex of the same partite set of Fi where Alice
colored in the previous move with color 2. This
makes the vertices of the other partite set of Fi
and vi color-j critical, for some j, 1 � j � 3: Hence
Bob wins.
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� If two vertices of Aj
1 are colored with distinct colors,

then Alice replies in a vertex of Aj
2:

� Otherwise she colors any uncolored vertex of Fj, if
there is one uncolored. If not, she colors any uncol-
ored vertex of Pn, if there is one uncolored.
Otherwise she colors in a vertex of a partition of Fi,
ði 6¼ jÞ, if no vertex of that partition is already col-
ored. If such a partition does not exist, then she col-
ors any uncolored vertex of the graph.

� Bob colors a vertex of Pn, Alice replies in a vertex of Pn,
if there is one uncolored. Otherwise she colors any
uncolored vertex.

Note: Using this strategy, at any point of the game, any uncol-
ored vertex is adjacent to at most three distinctly colored verti-
ces. Hence at least one color is available for all the vertices.
Thus vgðPn � Ka, bÞ ¼ 4: w

Theorem 4.4. For any two integers n and m with n � 2 and
m � 5, vgðPn �WmÞ ¼ 5:

Proof. Let VðPnÞ ¼ fv1, v2, v3, :::, vng and VðFiÞ ¼
fvi0, vi1, vi2, :::, vimg where vi0 is the center vertex of Fi, the ith

copy of Wm. First we show that vgðPn �WmÞ > 4: To prove
this, we give a strategy for Bob to win the game using four
colors. The strategy of Bob is as follows (Figure 5).

Thus vgðPn �WmÞ � 5: Now to show that vgðPn �WmÞ ¼
5, we give a strategy for Alice to win the game using five
colors. The strategy of Alice is as follows.

In the first move, Alice colors a vertex of Pn. In the fol-
lowing moves, whenever

� Bob colors a vertex of Pn, Alice colors a vertex of Pn, if
there is one uncolored. Otherwise she colors any uncol-
ored vertex of the graph.

� Bob colors a vertex of Fi, say vik, Alice colors the vertex
vi, if it is uncolored. Otherwise she colors any uncolored
vertex of the graph. Observe that while choosing any
uncolored vertex of the graph, Alice’s first preference is
the vertex vi0, her second preference is a vertex of Fi, her
third preference is a vertex of Pn and her last preference
is a vertex of any other Fi.

Note: Using this strategy, at any point of the game, any
uncolored vertex is adjacent with at most four distinctly col-
ored vertices and hence at least one color is available for all
the vertices.

Thus vgðPn �WmÞ ¼ 5: w

Theorem 4.5. For any two integers n and m with n � 3 and
m � 3, vgðK1, n � PmÞ ¼ 4:

Proof. Let VðK1, nÞ ¼ fv0, v1, v2, :::, vng where v0 is the center
vertex of K1, n and VðFiÞ ¼ fvi1, vi2, :::, vimg, 1 � i � n: First
we show that vgðK1, n � PmÞ > 3: To prove this, we give a
strategy for Bob to win the game using three colors. The
strategy of Bob is as follows (Figure 6).

Thus vgðK1, n � PmÞ � 4: Now to show that vgðK1, n �
PmÞ ¼ 4, we give a strategy for Alice to win the game using
four colors. The strategy of Alice is as follows.

In the first move, Alice colors a vertex v0. In the follow-
ing moves, whenever

� Bob colors a vertex of K1, n, Alice colors a vertex of
K1, n, if there is one uncolored. Otherwise she colors any
uncolored vertex of the graph.

Figure 5. Illustration for Bob’s strategy with n¼ 2 and m¼ 5.

The vertex in which Alice
colors in the first move The vertex with which Bob responds

� A vertex of Pn,
say vi.

vim: Now Alice can color any vertex. Note that vi0
is uncolored because if vi0 is colored by Alice,
then the game is in Bob’s hand. Now Bob colors
one of vi2 or vim�2 with the color different from
the color of vim: This makes (vi1 and vi0Þ or (vim�1
and vi0Þ color-4 critical. Hence Bob wins.

� The vertex
vi0, 1 � i � n:

vim: Now Alice can color any vertex. Note that vi
is uncolored because if vi is colored by Alice,
then the game is in Bob’s hand. Now Bob colors
one of vi2 or vim�2 with the color different from
the color of vim: This makes (vi1 and viÞ or (vim�1
and viÞ color-4 critical. Hence Bob wins.

� A vertex of Fi, say vij
with color 1,
1 � j � m, 1 � i � n:

A vertex vik which is at a distance two from vij
with color 2. Alice can play anywhere. Note that
both vi and vi0 are uncolored because if any one
of vi or vi0 is colored by Alice, then the game is
in Bob’s hand. Now Bob colors a vertex of Fi with
color 3. This makes vi and vi0 color-4 critical.
Hence Bob wins.

The vertex in which Alice
colors in her first move The vertex with which Bob responds

� v0 with color 1. v11 with color 2. This forces Alice to color v1.
This makes v12 color-1 critical. Hence Bob
wins.

� vi with color 1,
1 � i � n:

v01 with color 2. This forces Alice to color v0.
This makes v02 color-1 critical. Hence Bob wins.

� vik with color 1. (i) When m> 3
Bob colors a vertex of vil which is at a
distance two from vik with color 2. This makes
the two common neighbors of vik and vil color-
3 critical. Hence Bob wins.
(ii) When m¼ 3
Bob colors another vertex of Fi with color 2.
This forces Alice to color vi with color 3.
Now Bob colors v01 with color 2. This forces
Alice to color v0. This makes v02 color-3
critical. Hence Bob wins.
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� Bob colors a vertex of Fi, Alice colors a vertex vi, if it is
uncolored. If not, she colors a vertex of K1, n, if there is
one uncolored. Otherwise she colors any uncolored ver-
tex of the graph.

Note: Using this strategy, at any point of the game, a vertex
of K1, n is adjacent to at most three distinctly colored vertices
and the maximum degree of a vertex of Fi, 0 � i � n is
three and hence at least one color is available.
Thus vgðK1, n � PmÞ ¼ 4: w

Theorem 4.6. For any integer n � 3,

(i) vgðKn � KnÞ ¼ nþ 1;
(ii) vgðKn � Kn, nÞ ¼ nþ 1:

Proof. (i) As Knþ1 is an induced subgraph of Kn � Kn and
vðKnþ1Þ ¼ nþ 1, we have vgðKn � KnÞ � nþ 1: Now we
show that vgðKn � KnÞ ¼ nþ 1: To prove this, we give a
strategy for Alice to win the game using nþ 1 colors. The
strategy of Alice is as follows.

In the first move, Alice colors a vertex of Kn. In the fol-
lowing moves, whenever

� Bob colors a vertex of Fi, 1 � i � n, Alice colors vi, if it
is uncolored. Otherwise she colors a vertex of Fi, if there
is one uncolored. If not she colors a vertex of Kn, if there
is one uncolored. Otherwise she colors any uncolored
vertex of the graph.

� Bob colors a vertex of Kn, Alice colors a vertex of Kn, if
there is one uncolored. If not she colors any uncolored
vertex of the graph.

Note: Using this strategy, at any point of the game, any
uncolored vertex is adjacent to at most n distinctly colored

vertices and hence at least one color is available for all
the vertices.
Thus vgðKn � KnÞ ¼ nþ 1: w

(ii) Let VðKnÞ ¼ fv1, v2, v3, :::, vng and VðFiÞ ¼
fvi1, vi2, vi3, :::, vimg where m ¼ 2n: Let Ai

1 and Ai
2 are the two

partite sets of Fi, 1 � i � n: First we show that vgðKn �
Kn, nÞ > n: To prove this, we give a strategy for Bob to
win the game using n colors. The strategy of Bob is
as follows.

Alice starts the game by coloring any vertex. Bob colors
a vertex of Kn. In the following moves, irrespective of
Alice’s moves, Bob keeps coloring the vertices of Kn until
all but two vertices of Kn, say vi and vj, are colored. Each
time when Bob colors a vertex of Kn, his first preference
would be a vertex vk, if a vertex of Fk is colored by Alice
in the previous move. Note that, at this stage n – 2 colors
are used. Let the two remaining unused colors be color
n–1 and color n. Now it may be Bob’s turn or
Alice’s turn.

(i) If it is Bob’s turn, then he colors a vertex of Fi with
color n – 1. This forces Alice to color vi which in turn
makes vj color-(n-1) critical. Hence Bob wins.

(ii) If it is Alice’s turn, then we have the following
two cases.
� If Alice colors vi or vj, then the game is in

Bob’s hand.
� If Alice colors any vertex other than vi and vj, then

Bob plays in a way similar to his response given
above in (i).

Thus vgðKn � Kn, nÞ � nþ 1: Now to show that vgðKn �
Kn, nÞ ¼ nþ 1, we give a strategy for Alice to win the game
using nþ 1 colors. The strategy of Alice is as follows.

Alice colors a vertex of Kn in the first move. In the fol-
lowing moves, whenever

� Bob colors a vertex of Fi, say a vertex in Ai
1, Alice con-

siders the partite set where Bob has colored in the last
move. The course of the game is discussed below.
� If exactly one vertex of Ai

1 is colored, then Alice
responds in vi, if it is uncolored. Otherwise she colors
a vertex of Ai

2:
� If two vertices of Ai

1 are colored with distinct colors,
then Alice replies in a vertex of Ai

2:
� Otherwise she colors any uncolored vertex of Fi, if

there is one uncolored. If not, she colors any uncol-
ored vertex of Kn, if there is one uncolored.
Otherwise she colors in a vertex of a partition of Fj, j 6
¼ i, if no vertex of that partition is already colored.
If such a partition does not exist, then she colors any
uncolored vertex of the graph.

� Bob colors a vertex of Kn, Alice colors a vertex of Kn, if
there is one uncolored. Otherwise she colors in a vertex
of a partition of Fj, j 6¼ i, if no vertex of that partition is
already colored. If such a partition does not exists, then
she colors any uncolored vertex of the graph.

Figure 6. Illustration for Bob’s strategy with n ¼ m ¼ 3:
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Note: Using this strategy, at any point of the game, any
uncolored vertex is adjacent to at most n distinctly colored
vertices. Hence at least one color is available for all
the vertices.
Thus vgðKn � Kn, nÞ ¼ nþ 1: w
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