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ABSTRACT
A development of the theory of trigonometric polynomials (TPs) is con-
sidered that involves generalization of the notion of TP and extension of
the methods and results to cylindrical polynomials (CPs). On the basis of
the proposed augmentation of TPs and CPs, a general approach is pre-
sented to the analysis of guidedwaves and resonances in electromagnetics
and beyond. The method employs the known explicit forms of dispersion
equations (DEs) describing eigenoscillations and normal waves in layered
structures and is based on the development of the theory of generalized
TPs andCPs performed in the study. The approach enables one to complete
rigorous proofs of existence and determine domains of localization of the
TP and CP zeros and the DE roots and validate iterative numerical solution
techniques.
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1. Introduction

Trigonometric polynomials (TPs) arise in many areas of pure and applied mathematics: algebra of
polynomials and complex analysis [1,2], Fourier analysis, approximation theory, numerical methods
and interpolation [3] to name a few, as well as in various applications including signal processing
[4]. TPs occur (see e.g. [5] and references therein) in the search for eigenvalues of non-selfadjoint
Sturm–Liouville problems on the semi-axis, whole axis, or an interval with piecewise constant coef-
ficients in the equations and local or non-local boundary or transmission conditions or conditions at
infinity containing spectral parameter.

Analysis of TPs including the existence and distribution of their (real or complex) zeros constitutes
a specific direction of real and complex analysis developed inmany classical works. Information about
the existence and location of zeros is essential property of TPs (as it is the case of any polynomial).
The proofs of the existence and investigations of distribution of the TP zeros constitute complicated
mathematical problems addressed during the last two centuries by many famous mathematicians:
Littlewood [2,6,7], Erdelyi [8,9], Lanczos [10], and others [11].

Let us give an example (taken from an extended collection of problems [12]) and a typical
sophisticated task of the TP theory. A ’regular’ TP

LN(θ) =
N∑
j=0

(
Cj cos jθ + Sj sin jθ

)
(1)
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Figure 1. TP L100(x) = ∑100
m=1 cos nmx, x ∈ (0,π), with randomly distributed digits 1 ≤ nm ≤ 106.

where coefficients Cj and Sj do not vanish simultabeously has exactly 2N zeros. However, generally,
the occurrence of zeros of a TP may constitute a severe problem. Indeed, a cosine TP

LM(θ) =
M∑
j=1

cos njθ (2)

was considered by Littlewood in [2] who posed the following problem: if the nj are integral and all
different, what is the lower bound on the number of real zeros of TP (2)? PossiblyM−1, or not much
less. No progress has been made on this problem in the last half century until 2008 when it has been
shown [13] that there exists a cosine polynomial (2) with the nj integral and all different so that the
number of its real zeros in the period [−π ,π) isO(M5/6 logM). Belowwemake another contribution
to the analysis of the Littlewood TPs and prove a statement (Corollary 5.3) estimating the number of
zeros for a certain subfamily of TPs (2). Figure 1 gives an example of a TP (2) of order 100 with the
estimated number 2 · 1005/6 of zeros located in [−π ,π) to be around 93.

Many approaches in the TP theory deal with introduction of various TP families and obtaining
different sufficient conditions providing the existence of the TP zeros valid for each particular family
or class of TPs. In many cases, the developed approaches enable one to describe distribution of zeros
and determine their number (over a period). Let us give two examples illustrating such methods. In
[9] it is examined the size of a real TP of degree at most n having at least k zeros in K :=R (mod 2π)
(counting multiplicities). In [14] the following sufficient conditions are obtained for the existence of
zeros of a family of cosine TPs

CM(x) = 1
2

+
M∑

m=1
am cosmx, aM = 0, (3)

where {am}, a0 = 1, is a monotonically decreasing (am+1 − am < 0, m = 0, . . . ,M − 1) and con-
vex (am+2 − 2am+1 + am < 0,m = 0, . . . ,M − 2) number sequence: TP (3) has one simple zero on
every interval (mπ/M, (m + 1)π/M),m = 1, . . . ,M − 1.
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An example of the TP generalization according to [11] has the form

TM(x) = 1
2
a0 +

M∑
m=1

am cosmθ , aM �= 0, (4)

where θ = �(x) is a continuous function with positive (or negative, but not both) first derivative for
x real. In particular, Tk(x) = cos(k arccos x), x ∈ [−1, 1], are the Chebyshev polynomial of degree k.

Cylindrical polynomials (CPs) have much in common with TPs; however, their theory is much
less developed. CPs occur when particular solutions to Maxwell equations are sought in polar
or cylindrical coordinates in domains where boundary and interface contours or surfaces pos-
sess circular symmetry. Standard reference books on cylindrical functions (see e.g. [15–17]) con-
sider two-term sums of products of two cylindrical functions occurring, e.g. in the form [18,19]
Jn(κ1x)Yn(κ2x) − Jn(κ2x)Yn(κ1x) (n = 0, 1, 2, . . .) of cross-products of Bessel functions. Extension
to the greater number of factors in the products or greater number of product terms has not been
performed, to the best of our knowledge.

This study follows and contribute to the three main directions of the TP and CP theories: creating
a universal form of generalized TPs; extension of the methods of the TP analysis to the class of CPs
involving cylindrical functions of different kinds and order; and obtaining new sufficient conditions
providing the existence and description of distribution of zeros of certain families of TPs and CPs.
The latter employs non-periodic TPs and analysis of their parameter dependence.

Another objective is application of the obtained results in the electromagnetic field theory, namely,
to the determination of real and complex oscillations and waves. The latter are reduced to multi-
parameter eigenvalue problems [20,21] and then in many cases (when, e.g. the Helmholtz equation
admits closed-form solutions using separation of variables) to dispersion equations (DEs). Their com-
plete study is a sophisticated task which requires deep analytical–numerical investigations. In this
work, a major attention is paid to creating an introduction to a general method that enables obtain-
ing (sufficient) conditions of the existence and description of localization of the DE roots providing
thus justification for the methods of determination of oscillations and waves in multi-layered struc-
tures which can be easily implemented in calculations. The method is based on the studies of the
so-called generalized TPs (GTPs) and generalized CPs (GCPs) aimed in particular to finding zeros of
GTPs and GCPs using different approaches.

The approach proposed in this study makes use of the method [22,23] employing GCPs applied in
[23] to the rigorous analysis and determination of real waves in a dielectric waveguide (DW) and
a Goubau line (GL) of circular cross section. The technique involves recursive procedures of the
determination of zeros of TPs, GTPs, and GCPs.

2. Trigonometric polynomials

TPs are weighted linear combinations

TM(x) =
2∑

q=1

Mq∑
m=0

P(m)
q (x)Uq(nq,mx) or EM(t) =

M∑
m=0

P(m)(t)einmt (5)

of complex exponents or trigonometric functions U1(y) = sin y (q= 1) or U2(y) = cos y (q= 2),
whereM = M1 + M2 (for TM), nq,m and nm are integers forming integer ’frequency’ parameter vec-
tors κ̄q,M = (nq,1, . . . , nq,M), and P(m)

q (x) and P(m)(x) (m = 1, 2, . . . ,Mq, q= 1,2) are constants or
bounded continuous functions considered on the whole line, half-line x> 0, or an interval. A cosine
TP (2) considered by Littlewood has all P(m)(x) = 1 and is therefore 2π-periodic. One also sep-
arates the cases M1 = M2 = M0 and n1,m = n2,m = m or nm = m and all P(m)

q (x) = const (m =
1, 2, . . . ,M0) giving classical (2π-periodic) TPs, even (a cosine TP with all P(m)

1 (x) = 0) or odd (a
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sine TP with all P(m)
2 (x) = 0). A ’regular’ TP (1) constitutes, as well as TPs (2)–(4), examples of such

polynomials; several more are presented in the appendix.
Together with TPs (5) we will study more general cases of non-periodic TPs considering wieghted

trigonometric sums (TSs)

GM(x) =
2∑

q=1

Mq∑
m=0

P(m)
q (x)Uq(κq,mx) (6)

with generally non-integer ‘frequency’ parameter vectors κ̄q,M = (κq,1, . . . , κq,M), q= 1,2. TS (6) is a
TP having the form (5) of the orderM = M1 + M2.

Many standard examples of TPs and TSs calculated in the closed form for which it is possible to
determine all zeros explicitly are considered in the appendix.

3. Cylindrical polynomials

In this study, we call CPs the weighted linear combinations

CM(x) =
M∑

m=0
Q(m)(x)Im(κmx) (7)

of cylindrical functions Im, where each Im is either Bessel, Jp, or Neumann, Yp, function (p =
0, 1, 2, . . .), κm are real numbers forming parameter vectors κ̄M = (κ1, . . . , κM), and Q(m)(x) (m =
0, 1, . . . ,M) are constants or bounded continuous functions considered on the whole line, half-line
x> 0, or an interval. Unlike classical 2π-periodic TPs and TSs (A1)–(A6) with integer parameter
vectors, CPs (7) are non-periodic (and in this respect they are similar to TPs (6)) although every
term in (7) is an almost-periodic function. Namely, the following statements hold: (i) every func-
tion Im has a countable sequence of positive simple zeros {z(m)

k } increasing w.r.t. index k; (ii) the
distance d(m)

k = z(m)

k+1 − z(m)

k (k = 0, 1, 2, . . .) between two neighboring zeros of Im tends to a con-
stant (in particular, to π for the Bessel functions) as x → ∞; (iii) there is a number r> 0 such that
r = mink=0,1,... d

(m)

k (m = 1, 2, . . .); and (iv) zeros of every two different cylindrical functions Jm(x),
Jn(x), Ym(x), Yn(x) (m �= n), or Jm(x), Yn(x) (m, n = 0, 1, . . .) alternate.

Analysis of CPs including the existence and distribution of their (real or complex) zeros constitutes
a specific set of complicated mathematical problems that has been rarely addressed in the literature
as compared with TPs (where one may refer, e.g. to [1,2,10,12]).

4. Generalized TPs and CPs

Consider weighted linear combinations

TN,M(x) =
M∑

m=1
Q(m)(x)U (m,Nm)(x) (8)

or

GN,M(x) =
M∑

m=1
P(m)(x)W(m,Nm)(x) (9)

of the products U (m,Nm) = �
Nm
n=1U1,2(κ

(m)
n,T x) or W

(m,Nm)(x) = �
Nm
n=0I(m)

n (κ
(m)
n,G x) of trigonometric,

U1,2, or cylindrical, I(m)
n , functions, where N = ∑M

m=1 Nm, P(m)(x) and Q(m)(x) are constants or
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bounded continuous functions for x> 0 and κ
(m)
n,T and κ

(m)
n,G are real parameters forming the ‘fre-

quency’ parameter vectors κ̄
(m)
T = (κ

(m)
1,T , . . . , κ(m)

Nm,T) and κ̄
(m)
G = (κ

(1)
n,G, . . . , κ

(Nm)
n,G ),m = 1, 2, . . . ,M.

In this study, functions (8) or (9) are referred to, respectively, as generalized TPs (GTPs) or GCPs
of order (N,M). In particular, for TPs (5) and (6)

GM(x) =
M1∑
m=1

P(m)
1 (x) sin (κ1,mx) +

M2∑
m=0

P(m)
2 (x) cos (κ2,mx) = TM,M(x) (10)

all Nm = 1 so that they are GTPs of order (M,M) withM = M1 + M2.
In the studies of cylindrical functions (e.g. in [15–17]) zeros are considered of the two-

term sums of products of two cylindrical functions; that is, of G4,2(x) =
2∑

m=1
W(m,2)(x), where

W(m,2)(x) = I(m)
n1,m(κ(m)

n1,mx)I
(m)
n2,m(κ(m)

n2,mx) with n1,2,m denoting the order of two cylindrical func-
tions I(m)

n1,m and I(m)
n2,m that have either different kind, or the same kind and different order

or different parameters κ(m)
n1,m and κ(m)

n2,m (m= 1,2). Such two-term sums of products, e.g.
Jn(κ1x)Yn(κ2x) − Jn(κ2x)Yn(κ1x) (n = 0, 1, 2, . . .) as in [19] are called cross-product Bessel func-
tions.

Lemma 4.1: A product U (m,N)(x) = �N
n=1U1,2(κ

(m)
n,T x) of trigonometric functions U1,2 can be rep-

resented as a GTP of order (M′,M′) with a certain M′ = M′(N), that is, as a TP (6) of order
M′.

Proof: The first step of the induction proof is to check basic trigonometric identities sin x sin y =
0.5(cos(x − y) − cos(x + y)), sin x cos y = 0.5(sin(x − y) + sin(x + y)), and cos x cos y = 0.5(cos(x
− y) + cos(x + y)) and to apply them to the triple products, e.g. sin x sin y sin z = 0.5(sin z cos(x −
y) − sin z cos(x + y)) = 0.25(sin(z − x + y) + sin(x + y − z) + sin(z + x − y) + sin(−x − y − z))
so that �3

n=1U1(κnt) = 0.25
∑4

m=1 U1(κ
′
nt) = T4,4(x) = G4(x) with x = κ1t, y = κ2t, z = κ3t, κ ′

1 =
−κ1 + κ2 + κ3, κ ′

2 = κ1 + κ2 − κ3, κ ′
3 = κ1 − κ2 + κ3, and κ ′

4 = −κ1 − κ2 − κ3. �

Assuming now that

�N−1
n=1 U1,2(κnx) =

M′(N−1)∑
m=0

PqU1,2(κ
′
nx), (11)

one can easily verify, after converting each product of two trigonometric functions to a sum, that

�N
n=1U1,2(κnx) = U1,2(κNx)�N−1

n=1 U1,2(κnx) =
M′(N)∑
m=0

P′
mU1,2(κ

′′
n x).

Corollary 4.2: A GTP (8) of order (N,M) can be represented as a TP (6) of a certain order M1 =
M1(M,N).

Proof: Every product U (m,Nm) in (8) can be written according to Lemma 4.1 as a GTP of order
(M′

m,M′
m)with a certainM′

m = M′
m(Nm). Consequently, GTP (8) of order (M,N) can be represented

as a sum of TPs (6) and finally as a TP (6) of the orderM = ∑M
m=1M

′
m. �

Lemma 4.3: Denote by �(1)
m (α) = (x(1,m)

s (α), x(1,m+1)
s (α)) and �

(2)
l (β) = (x(1,l)

c (β), x(1,l+1)
c (β)),

m, l = 1, 2, . . ., intervals formed by two pairs of neighboring positive zeros of sinαx and cosβx given by
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(A9) and (A10) with α,β �= 0. Then for any three distinct positive numbers x1 > 0, x∗, and x2, x1 <

x∗ < x2, there are α > 0, β > 0, and integers m′ and l′ such that x∗ ∈ �
(1)
m′ (α) and�

(1)
m′ (α) ⊂ (x1, x2)

or x∗ ∈ �
(2)
l′ (β) and �

(2)
l′ (β) ⊂ (x1, x2).

Proof: Endpoints of �(1)
m (α) and �

(2)
l (β) form equidistant (uniform) grids of points on the half-

line x > 0 separated by d1 = πα−1 and d2 = πβ−1. Therefore, there is an interval between certain
neighboring grid points of each grid that contains one, two, or three of the numbers x1, x∗, and
x2 (we assume that x∗ does not coincide with any of the grid points). Choosing α or β such
that d1,2 < min {x∗ − x1, x2 − x∗} < x2 − x1 we see that there are integers m′ and l′ such that
x∗ ∈ �

(1)
m′ (α) or x∗ ∈ �

(2)
l′ (β) and �

(1,2)
,m′,l′ ⊂ (x1, x2). �

5. Zeros of GTPs and GCPs

In order to formulate sufficient conditions that guarantee the existence of zeros of GTPs and GCPs
and describe their localization, we will use the following

Lemma 5.1: Let fj(x) ∈ C[a, b], j= 1,2,3 (continuous in a closed interval [a, b]), f2(a) = f2(b) = 0,
and f1(a)f1(b) < 0 or, equivalently, there is an s ∈ (a, b) such that f1(s) = 0; then the equation

f (x) ≡ f2(x)f3(x) + f1(x) = 0

has a root x∗ ∈ (a, b).

Proof: Indeed, f (a) = f1(a) and f (b) = f1(b) so that f (a)f (b) < 0 and therefore f (x) = 0 has a root
x = x∗ ∈ (a, b). �

5.1. GTPs

We have already noted that TPs (A1)–(A6) have each infinitely many zeros for any number of their
terms N = 2, 3, . . . and that infinitely many zeros of ’neighboring’ TPs SN , SN−1, CN , CN−1, and
TN , TN−1 (N = 2, 3, . . .) alternate. This statement can be in a certain sense generalized for arbitrary
GTP using Lemma 5.1, validating simultaneously a recursive procedure of proving the existence and
determining the location of zeros of TPs, GTPs, and GCPs.

Theorem 5.2: There are (in general, non-integer) frequency vectors κ̄q,M = (κq,1, . . . , κq,M), q= 1,2,
such that a TP (6) of order 2M where P(m)(x) are arbitrary constants or bounded continuous functions
that do not vanish on the half-line x> 0 has a positive zero.

Proof: The first step of the induction proof is to call that TPs of orders 1 and 2, sin(κ1,1x), cos(κ2,1x),
and P1 sin κ1,1x + P2 cos κ2,1x, have each infinitely many positive zeros for any P1,2 = const, P21 +
P22 �= 0, and κq,1 �= 0, q= 1,2. The latter statement is easily extended to the case when P1,2 = P1,2(x)
are any two functions satisfying the condition of the theorem. Next, assume that TP G2M−2(x) in the
form (6) of order 2(M − 1) has a positive zero x∗

M−1 and consider TPs of order 2M−1

G1,2M−1(x) = P(M)
1 (x) sin(κ1,Mx) + G2M−2(x), (12)

G2,2M−1(x) = P(M)
2 (x) cos(κ2,Mx) + G2M−2(x). (13)

Applying Lemmas 4.3 and 5.1 with (a, b) being an interval formed by two neighboring zeros of
sin(κ1,Mx) or cos(κ2,Mx) and choosing κ1,M or κ2,M in line with Lemma 4.3 with respect to x∗

M−1 ∈
(a, b) we prove the statement of the theorem. �
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Statement of Theorem 5.2 is valid for cosine TP (2) considered by Littlewood in the form stronger
than that for non-periodic TPs and GTPs. Namely, one can estimate the number of zeros on half-
period (0,π] and establish the existence of infinitely many positive zeros of TP (2).

Corollary 5.3: TP (2) of order M ≥ 2 where n1 and n2, n2 > n1, are two aribtrary (different) integers,
has at least 2n2 zeros on half-period (0,π] and infinitely many positive zeros.

Proof: The first step of the induction proof is to call that TPs (2) of orders 1 and 2, L1(x) = cos n1x
and L2(x) = cos n21x + cos n22x = 2 cos((n22 + n21)/2)x cos((n22 − n21)/2)x, have each infinitely
many positive zeros

x(1,k)
n1 = (2k − 1)π

2n1
, x(2,l)

n+ = (2l − 1)π
n+ , x(3,m)

n− = (2m − 1)π
n− , k, l,m = 1, 2, . . . , (14)

for any integers n1, n21, and n22, n22 > n21, with n± = n22 ± n21; in particular, L1(x) has n1 zeros and
L2(x) has n22 = n+/2 + n−/2 (when parity of n+ and n− is the same) or n22 + 1 = (n+ + 1)/2 +
(n− + 1)/2 (parity of n+ and n− is different) zeros on half-period (0,π]. Thus, zeros of L2(x) form
a finite set of distinst points on the interval (0,π). To show details of the proof of the induction step,
consider L3(x) = cos n3x + L2(x). According to Lemma 4.3, one can choose n3 such that intervals
�

(s)
n3 = (x(1,s)

n3 , x(1,s+1)
n3 ), s = 1, 2, . . . , neo22 (where n

eo
22 = n22 or neo22 = n22 + 1) between two neighbor-

ing zeros of cos n3x contain each one zero of L2(x). This means, in line with Lemma 5.1, that L3(x)
has a zero on each �

(s)
n3 . Consider now LM(x) = cos nMx + LM−1(x) and assume that {x(p)

M }p=LM−1
p=1

are LM−1 zeros of LM−1(x) on (0,π). According to Lemma 4.3, one can choose nM such that intervals
between two neighboring zeros of cos nMx contain each one zero of LM−1(x). Therefore, Lemma 5.1
implies that the corollary is proved. �

Figures 2 and 3 illustrate the proofs and display examples of TPs (2) of different orders. Comparing
Figures 2 and 4 one observes a clear similarity between CPs and TPs with respect to the statements
of Theorems 5.2 and 5.4 and Lemma 4.3.

5.2. GCPs

According to Corollary 4.2, Theorem 5.2 can be applied to GTP (8). However it is reasonable to give
an independent proof which provides sufficient conditions of the existence of zeros of both GTPs (8)
and GCPs (9).

Theorem 5.4: There are ‘frequency’ vector sets 

(M)
T = ∪M

m=1κ̄
(m)
T and 


(M)
G = ∪M

m=1κ̄
(m)
G , where

κ̄
(m)
T = (κ

(m)
1,T , . . . , κ(m)

Nm,T) and κ̄
(m)
G = (κ

(1)
1,G, . . . , κ

(Nm)
Nm,G) (m = 1, 2, . . . ,M) have real components, such

that GTP (8) and GCP (9) of order (N,M) (N = ∑M
m=1 Nm) where Q(m)(x) and P(m)(x) (m =

1, 2 . . . ,M) are arbitrary constants or bounded continuous functions that do not vanish on the half-line
x> 0 have each a positive zero.

Proof: First, note that at M= 1, GTP (8) and GCP (9) of order (1,N1) are single products having
each (as a function of x) infinitely many positive zeros forming countable sets T(1)

N1
= ∪N1

n=0t
(1)
n and

Z(1)
N1

= ∪N1
n=0Z

(1)
n being unions of the infinite sets t(1)n and Z(1)

n of the zeros τ
(1)
n,k and z(1)n,k (k = 1, 2, . . .)

of all U1,2(κ
(1)
n,Tx) and I(1)

n that enter these products. �

Second, for anyM = 2, 3 . . . , andm = 1, 2 . . . ,M, the productsU (m,Nm)(x) andW(m,Nm)(x) com-
prising Nm factors have each infinitely many positive zeros forming countable sets T(m)

Nm
= ∪Nm

n=0t
(m)
n
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Figure 2. TPs L3(x) = cos 3x + cos 7x + cos 20x (M= 3, n22 = 7, n21 = 3, n3 = 20) with L2(x) = cos 3x + cos 7x =
2 cos 2x cos 5x, x ∈ (0,π); L2(x) (o) has 7 zeros located together with 7 zeros of L3(x) (*) between pairs of neighboring
zeros of cos 20x.

Figure 3. TPs L9(x) = ∑9
m=1 cos nmx (lower curve with greater number of oscillations) with κ̄M = (n1, . . . , n9) = (7, 13, 2,

15, 8, 4, 11, 17, 6), L8(x) = L9(x) − cos 6x (upper curve with greater number of oscillations), and cos 6x, x ∈ (0,π); zeros of TPs
alternate and L9(x) and L8(x) have each 11 zeros located between pairs of neighboring zeros of cos 6x.

and Z(m)
Nm

= ∪Nm
n=0Z

(m)
n being unions of the infinite sets t(m)

n and Z(m)
n of the zeros τ

(m)

n,k and z(m)

n,k
(k = 1, 2, . . .) of all U1,2(κ

(m)
n,T x) and I(m)

n . Elements of t(m)
n and Z(m)

n (and of T(m)
Nm

and Z(m)
Nm

) depend
on the parameter vectors κ̄

(m)
T and κ̄

(m)
G (m = 1, 2 . . . ,M).



APPLICABLE ANALYSIS 9

Figure 4. CPs C3(x) = J0(3x) + J0(7x) + J0(20x)with C2(x) = J0(3x) + J0(7x), x ∈ (0,π); C2(x) (o) has 4 zeros located together
with 6 zeros of C3(x) (*) between pairs of neighboring zeros of J0(20x).

Perform the next step of induction and represent GTP (8) and GCP (9) as

TN,M(x) = Q(M)(k(M)x)U (M,NM)(x) + TN′,M−1(x), (15)

GN,M(x) = P(M)(k(M)x)W(M,NM)(x) + GN′,M−1(x), (16)

where N ′ = ∑M−1
m=1 Nm, U (M,NM)(x) and W(M,NM)(x) vanish at the endpoints of the intervals

un,k(M) = (a, b) = (τ
(M)

n,k , τ (M)

n,k+1) and In,k(M) = (a, b) = (z(M)

n,k , z(M)

n,k+1) (n = 1, 2 . . . ,NM) between
every two their neighboring zeros.

Assume that the parameter vector sets 

(M−1)
T and 


(M−1)
G in (15) and (16) are such that GTP

TN′,M−1(x) and GCP GN′,M−1(x) of order (M − 1,N′) have each a zero x∗
T > 0 or x∗

G > 0. Choose



(M−1)
T and


(M−1)
G according to Lemma4.3with (a, b)being intervalsun′,k′(M − 1)or In′′,k′′(M − 1)

formed by two neighboring zeros of U (M,NM)(x) or W(M,NM)(x) with index pairs (n′, k′) or (n′′, k′′)
such that x∗

T ∈ (a, b) or x∗
G ∈ (a, b). Next, use Lemma 5.1 to conclude that GTP (8) and GCP (9) of

order (M,N) have each a zero on these intervals proving thus the statement of the theorem.

6. Application to DEs in electromagnetic field theory

6.1. Waveguides with circularly symmetric layeredmedia

When electromagnetic wave propagation is considered [20,24] in waveguides having circular sym-
metry, like DWs or GLs formed by several concentric layers of media, all the field components of
symmetric and non-symmetric waves are expressed [21,24] via a potential function φ(r) which is
sought generally as a linear combination of cylindrical functions of order m = 0, 1, 2, . . .. This fact
enables one to reduce finally the determination of the wave propagation constants to the solution of
DEs involving CPs and GCPs. Further stages of the mathematical model are described in the next
section.
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6.1.1. Sturm–Liouville problems
Analysis of running (normal) waves in waveguides filled with circularly symmetric layered media
is reduced [21,22,25] to the non-selfadjoint Sturm–Liouville problems for the Bessel equation with
piecewise constant coefficients on the semi-axis

Lφ ≡ 1
r
d
dr

(
r
dφ
dr

)
+ k̃2φ = 0, r > 0, [φ]|r=a =

[
α1(γ )

dφ
dr

]∣∣∣∣
r=a

= 0, (17)

φ ∈ C1[0,+∞) ∩ C2(0, a) ∩ C2(a,+∞), φ(r) → 0, r → ∞, (DW),

Lφ = 0, r > a, φ(a) = 0, [φ]|r=b =
[
α2(γ )

dφ
dr

]∣∣∣∣
r=b

= 0, (18)

φ ∈ C1[a,+∞) ∩ C2(a, b) ∩ C2(b,+∞), φ(r) → 0, r → ∞, (GL); (19)

here

k̃2 =
{
k20 − β2, r > a,
εk20 − β2, r < a

(DW), k̃2 =
{
k20 − β2, r > b,
εk20 − β2, a < r < b

(GL),

β is thewave propagation constant (spectral parameter of the problem), ε and k0 are, respectively (real
or complex) permittivity of the media and wavenumber of vacuum (a real parameter), and α1,2(γ )

with γ = β/k0 are given expicitly for a particular structure.
Finding eiganvalues of (17) and (18) (propagation constants of running waves) is reduced [20–26]

to the solution of functional equations w.r.t. spectral parameter γ or λ = γ 2 usually called DEs.
When real spectrum of problems (17) and (18) is considered, the quantities are sought as real-valued
functions of real spectral parameter γ (or λ) varying on a certain interval γ ∈ (γ1, γ2).

For multi-layered DWs or GLs when the numberM> 1 of dielectric layers (that is, discontinuities
of the coefficient in the differential equations entering (17) and (18)) may be arbitrary, transmission
conditions in (17) and (18) comprise 2M jump relations with different α(j)

1,2(γ ) at the layer boundaries
r = aj, aj+1 > aj > 0, for DW or r = bj, bj+1 > bj > a > 0 (j = 1, 2, . . .M − 1), for GL.

The general results of the classical Sturm–Liouville theory concerning the existence and distribu-
tion of (real or complex) spectrum for this type of problems are not applicable because the boundary
(transmission) conditions depend on the spectral parameter; this dependence which is specified by
concrete functions obtained explicitly governs the presence or absence of spectrum.

The explicit expressions for the DEs obtained in [22–24] for multi-layered DWs and GLs (open
or shielded) or structures formed by plane-parallel layers of media [27,28] show that these DEs
involve GCPs where weight coefficients P(m)(x) and Q(m)(x) are constants or bounded continu-
ous functions for x> 0 determined explicitly and κ

(m)
n,T and κ

(m)
n,G forming the parameter vectors

κ̄
(m)
T = (κ

(m)
1,T , . . . , κ(m)

Nm,T) and κ̄
(m)
G = (κ

(1)
n,G, . . . , κ

(Nm)
n,G ),m = 1, 2, . . . ,M are real quantities expressed

in terms of parameters of the particular structure (Figure 5) .

6.1.2. Single-layer DWand GL
The DEs for single-layer DW and GL can be represented [21–23,25,26] in the general form involving
GCPs (9)

Fd(x) ≡ PD(w)J1(x) + xJ0(x) = 0 (DW), (20)

Fg(x) ≡ PD(qw)�1(x) − qx�0(x) = 0 (GL), (21)

where Jm, Ym and Km (m= 0,1) are the Bessel, Neumann, and Macdonald functions, PD(w) = ε

(wK0(w)/K1(w)), �0 = J0(qx)Y0(x) − J0(x)Y0(qx) and �1 = J0(x)Y1(qx) − J1(qx)Y0(x) are Bessel
cross-products [19], and the waveguide geometric and material parameters x = κ

√
ε − γ 2, γ = β

k0 ,
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Figure 5. Zeros of a GCP Fg (curve with highest oscillation) given by (21) situated between neighboring zeros of�0 (curve with a
negative starting value) and�1 (curve with a positive starting value).

κ = k0a, u = κ
√

ε − 1 (β , ε, and k0 are, respectively, the wave progation constant, permittivity, and
free-space wavenumber),w = √

u2 − x2 = κ
√

γ 2 − 1, and q = (b/a) > 1 (a and b are characteristic
dimensions of DW and GL).

For a GCP Fg in (21) we can apply this reasoning and Lemma 5.1 by setting f1(x) = −qx�0(x) and
f2(x) = �1(x). Then Fg(x) has a zero between every two neighboring zeros h

(1)
k and h(1)

k+1 of�1(x) as
soon as q> 1 is such that a zero of �0(x) belongs to the interval (h

(1)
k h(1)

k+1). The latter condition can
be satisfied because zeros h(j)

k = h(j)
k (q) of �j(x) alternate for different j= 1,2 and form sequences of

points decreasing with respect to q [21,22,26]. The conclusion concerning the existence and location
of the zeros of Fg between neighboring alternating zeros of �0(x) and �1(x) is perfectly illustrated
by Figure 7.

Straightforward analysis of (20) and (21) demonstrates that functions Fd and Fg entering DEs have
distinct common features: they are sums of (products of) cylindrical functions Jm and�m each having
infinitely many alternating simple positive zeros. The latter yields an immediate proof (illustrated by
Figure 6 and verified below) of the (sufficient conditions) providing the existence of real roots of the
DEs located between zeros of Jm and �m (m= 0,1). The existence, localization, and number of the
DE roots are governed actually by a number of zeros of Jm or�m that are inside the domain x ∈ (0, u)
of Fd and Fg ; that is, by the value of parameter u.

6.1.3. Multi-layered waveguides
ForM-layer DWs or GLs withM> 1 DE takes the form [29] of the determinant equation

FM(γ ) ≡ detA(γ ) = 0, A = ∥∥apq(γ )
∥∥2M
p,q=1 , (22)

where ζ(γ ) is a one-to-one function of the spectral parameter considered on a certain interval γ ∈
(γ1, γ2) and apq(γ ) = I(pq)(κ

(p,q)
G ζ(γ )) are cylindrical functions, either of different order or type or

with different parameter factors κ
(p,q)
G (p, q = 1, 2, . . . 2M).
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Figure 6. Example for aGCP Fd(x) inDE (20): plots of J0(x) (upper curvewithnooscillations), J1(x) (lower curvewithnooscillations),
and Fd(x) (curve with one oscillations) at ε = 5 and κ = 2 (u = κ

√
ε − 1 = 4) displaying a zero of Fd(x) between neighboring

zeros of J1(x) and neighboring zeros of J0(x) and J1(x).

Figure 7. An example showing alternating zeros of �0(x) (curve starts at −0.3), �1(x) (curve starts above 0.2), and G(G)
2,4 =

PG�0 − �1 (curve starts above 0).

Thus, solution to Equation (22) reduces to the determination of zeros of a GCP (9) obtained as
a result of calculation of the determinant. The GCP involves products �

Np,q
n=0I

(p,q)
n (κ

(p,q)
n,G ζ(γ )) of the

cylindrical functions entering (22).
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A is a block-diagonal matrix obtained explicitly in [29] which yields the possibility of recursive
computation of its determinant and obtaining formulas similar to (15)

FM = I(11)(κ
(1,1)
G ζ )F1M−1 − I(12)(κ

(1,2)
G ζ )F2M−1 (23)

using low-order minors F1,2M−1 and cofactors so that at the first (and each subsequent) recursive step
the expression for FM(γ ) contains two terms. This enables one to apply the procedure outlined in the
proof of Theorem5.4: Assume that parameter κ(1,1)

G in (23) is such that an interval u(11)
k′ formed by two

neighboring zeros of I(11)(κ
(1,1)
G ζ )with index k′ contains one particular zero of I(12)(κ

(1,2)
G ζ ). Such a

choice of parameter is possible because each I(1p)(κ
(1,p)
G ζ ), p= 1,2, has infinitely many zeros forming

almost periodical sequences and each zero (as well as the distance between any two neighboring
zeros) is a monotonically decreasing function of κ(1,p)

G .
Next, we use Lemma 5.1 to conclude that FM in (23) has a zero on the interval u(11)

k′

6.2. Plane-parallel layered guiding structures

Determining resonant states and eigenfrequencies of plane-parallel layered dielectrics in free
space, between parallel perfectly conducting planes, or in a waveguide of rectangular cross
section is considered in terms of non-selfadjoint Sturm–Liouville problems (17) for the equation
Lφ ≡ −φ′′ + k̃2φ = 0 on the line with piecewise constant coefficients; eigenfunctions φ(r) are
sought as a linear combination of trigonometric functions

and the problem in question is reduced [27,28] to DEs involving complex-valued TPs

G2(z) = G(M)
2 (z) =

2∑
q=1

Pq(z)Uq(κqz); (24)

here z is a real or complex variable associated with one particular layer in anM-layer structure (e.g.
z = κ

√
εs − γ 2 with s being the index of the layer with permittivity εs, 1 ≤ s ≤ M) and P1,2(z) are

complex-valued functions depending on all the problemparameters. In particular, for the single-layer
structure (comprising one dielectric slab), we have [27]

G2(z) = G(1)
2 (z) = P1(z) sin(tz) + cos(tz), P1(z) = iZ(C, z) = i

2

(
z
C

+ C
z

)
, (25)

where t> 0 andC> 0 are (real) parameters. In [27], it is proved thatG(1)
2 (z) is an entire even function,

the DE G(1)
2 (z) = 0 has no real zeros and has infinitely many complex zeros located in pairs in the

first and third quadrants in the complex z-plane. This result is extended to M-layer plane-parallel
structures. Explicit (tedious) expressions for P1,2(z) in the cases of two and three layers may be found
in [27].

7. Conclusion

We have developed the theory of TPs and proposed a generalization of the notion of TP that can be
applied to the analysis of CPs.

The proposed method is based on the introduction and analysis of GTPs and GCPs. The tech-
nique can be applied in electromagnetics using the explicit forms of DEs expressed as weighted
sums of products of trigonometric and cylindrical functions that describe eigenoscillations and nor-
mal waves in layered structures. The approach enables one to complete rigorous proofs of existence
and determine domains of localization of the DE roots and validate iterative numerical solution
techniques.
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The obtained results complete mathematical theory of DEs for multi-layered waveguides possess-
ing circular or plane-parallel symmetry and can be extended to more general structures as well as to
determination of complex waves.

Disclosure statement
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Appendix
The Fejer kernel

Fn(x) = 1
n

n−1∑
k=0

Dk(x) = 1
n

( sin nx
2

sin x
2

)2

, (A1)

the Dirichlet kernel

Dn(x) =
n∑

k=−n

eikx = 1 + 2
n∑

k=1

cos(kx) = sin
[
x
(
n + 1

2
)]

sin x
2

(A2)

and other trigonometric sums like

EN(x) =
N−1∑
k=0

eikx = CN(x) + iSN(x) = ei(1/2)(N−1)x sin
Nx
2

sin x
2
, (A3)

a cosine TP with all P(k)
1 (x) = 0, P(k)

2 (x) = 1, and the parameter vector κ̄2,N−1 = (1, . . . ,N − 1)

CN(x) =
N−1∑
k=0

cos(kx) = sin Nx
2

sin x
2

cos
(N − 1)x

2
, (A4)

a sine TP with all P(k)
1 (x) = 1, P(k)

2 (x) = 0, and the parameter vector κ̄1,N−1 = (1, . . . ,N − 1)

SN(x) =
N−1∑
k=1

sin(kx) = sin Nx
2

sin x
2

sin
(N − 1)x

2
, (A5)

a TP with all P(k)
1 (x) = P(k)

2 (x) = 1

TN(x) =
N−1∑
k=0

(sin kx + cos kx) =
2∑

q=1

N−1∑
k=0

Uq(kx)

= SN(x) + CN(x) = √
2 sin

[
(N − 1)x

2
+ π

4

] sin Nx
2

sin x
2
, (A6)

‘shifted’ TPs (A4), (A5) with all P(k)
1 (x) = − sin a and P(k)

2 (x) = cos a

C̃N(x; a) =
N−1∑
k=0

cos(a + kx) =
2∑

q=1

N−1∑
k=0

(−1)q−1U3−q(a)U3−q(kx)

= CN(x) cos a − SN(x) sin a = cos
[
a + (N − 1)x

2

] sin Nx
2

sin x
2
, (A7)

and all P(k)
1 (x) = cos a and P(k)

2 (x) = sin a

S̃N(x; a) =
N−1∑
k=0

sin(a + kx) =
2∑

q=1

N−1∑
k=0

Uq(a)U3−q(kx)

= CN(x) sin a + SN(x) cos a = sin
[
a + (N − 1)x

2

] sin Nx
2

sin x
2
, (A8)

are examples of TPs which can be calculated in the closed form involving only products of trigonometric functions.
This enables one to obtain all zeros of TPs (A1)–(A6)

x(1,m)
C,N = (2m − 1)

π

N − 1
, m = 1, 2, . . . ; x(2,l)

C,N = 2l
π

N
, x(2,l)

S,N = x(2,l)
C,N , l = 1, 2, . . . ;

x(1,n)
S,N = 2n

π

N − 1
, n = 1, 2, . . . ; x(1,s)

T,N = 2π
N − 1

(
s − 1

4

)
, s = 1, 2, . . . ;

x(2,p)
T,N = x(2,p)

C,N , p = 1, 2, . . .

(limiting ourselves only to positive zeros, n = 1, 2, . . . ,).
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Zeros

x(1,m′)
c (k) = (2m′ − 1)π

2k
, k = 1, . . .N − 1, m′ = 1, 2, . . . , (A9)

x(2,l′)
s (k) = l′π

k
, k = 1, 2, . . .N − 1, l′ = 1, 2, . . . , (A10)

of all intermediate terms cos kx and sin kx in TPs (A1)–(A6) alternate with x(1,m)
C,N , x(2,l)

C,N , x
(1,n)
S,N , x(1,s)

T,N , and x(2,p)
T,N . In fact,

excluding, e.g. merging zeros of (A6) x(1,s)
T,N = x(2,p)

T,N when

N′(4s − 1) = l(4N′ − 1), N = 4N′, (A11)

which is valid particularly for p = s = N ′, N ′ = 1, 2, . . ., we have that zeros of (A6) are all different if condition (A11)
does not hold. Another valuable observation is that infinitely many zeros of SN , SN−1, CN , CN−1, and TN , TN−1 (N =
2, 3, . . .) alternate.

Also, the distances d(1)
T,N = x(1,s+1)

T,N − x(1,s)
T,N = (2π/(N − 1)) and d(2)

T,N = x(2,p+1)
T,N − x(1,p)

T,N = (2π/N) between neig-

boring zeros of CN(x), SN(x), and TN(x) are less than the distance d(12)
cs,k = x(2,m′)

s,k − x(1,m′)
c,k = (π/2k) between

neigboring zeros of cos kx and sin kx (k = 1, . . .N − 1) for N > 4k + 1.
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