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ABSTRACT 
 

Contextualized Motivation Theory (CMT): Intellectual Passion, Mathematical Need, Social 

Responsibility, and Personal Agency in Learning Mathematics 

 
Janelle Marie Hart 

 
Department of Mathematics Education 

 
Master of Arts 

 
 

Student motivation has long been a concern of mathematics educators. Here, I 
characterize motivation, defined as an individual’s desire to act in particular ways, through 
analysis of students’ extended, collaborative problem solving efforts. Grounded in a longitudinal 
research project in calculus learning and teaching, Contextualized Motivation Theory (CMT) 
offers a means for understanding the complexities of student motivations in mathematics 
learning. Students in this study chose to act upon various intellectual-mathematical motivations 
and social-personal motivations, existing simultaneously, within a supporting “web” of 
motivations. Students exhibited intellectual passion in persisting beyond obtaining correct 
answers to build understandings of mathematical ideas. CMT positions personal agency as the 
active power in intellectual passion, foregrounds mathematical need as a kernel of students’ 
problem solving industry, characterizes the social nature of motivation, and encompasses 
conceptually driven conditions that foster student engagement in mathematics learning.  
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CHAPTER 1: INTRODUCTION 

“He who is not alive to the subtleties of student desires and student motivation—indeed, 

he who is not thrilled and intrigued by them—has little likelihood of being a good teacher” 

(Davis, 1955, p. 134). Teachers’ perceptions about student motivation have been shown to 

influence classroom activities and lesson plans (Middleton, 1995). Based on these findings, 

Middleton (1995) suggested that teachers and teacher educators need to better understand student 

motivations in learning mathematics. Some theorists have also “suggested that motivation is the 

key to enhancing learning. Many teachers would agree” (Middleton & Midgley, 2002, p. 374). 

Little is actually known about student motivation in the mathematics classroom, 

especially student motivation to understand mathematics. The National Council of Teachers of 

Mathematics (NCTM) has recognized the desire and need for more information about student 

motivation in the mathematics classroom. In 2011, the NCTM yearbook will comprise 

manuscripts that explore motivation as an important element in student learning. 

 As a teacher and researcher, I am intrigued by the persistence students display in 

mathematics problem solving when they are invited to work together on carefully designed 

problems without instruction on solution procedures. This thesis presents a qualitative analysis of 

student motivation based on data collected from a university experimental calculus class. 

Additionally, Contextualized Motivation Theory (CMT) is introduced to illuminate some of the 

complexities and nuances of motivation in learning that are manifest through students’ 

mathematical actions. 

  

 

  



2 
 

CHAPTER 2: THEORETICAL PERSPECTIVE 

My perspective on motivation in learning is grounded in the exercise of personal agency 

(Walter & Gerson, 2007). In this perspective, the individual is an “active performer who makes 

purposeful choices in constructing mathematical knowledge” (Walter & Gerson, 2007, p. 208). 

With personal agency playing a central function in the classroom, one can detect student 

motivations because one can see student decision making in action.  

Agency and Personal Causation 

As was mentioned before, personal agency involves students making purposeful choices 

(Walter and Gerson, 2007). In his agency in social cognitive theory, Bandura (1989) commented 

that most human behavior is purposive and “regulated by forethought” (p. 1179). He also defines 

agency as “the power to originate actions for given purposes” (Bandura, 1997, p. 3)  

If personal agency is to play an important role in the mathematics classroom, students 

must feel they are the originators of their own mathematical actions and that they have the power 

to make and act upon decisions to bring about change (Bandura, 1989). Such intentional choice 

making to effect change has been termed “personal causation” (deCharms, 1984). Personal 

causation is an essential part of my view of personal agency.   

Without a sense of personal causation, agency is limited. “When …the person has not 

caused the change—some other agent or object has interfered with personal causation and the 

person feels that he or she is a pawn” (deCharms, 1984, p. 276). When personal causation is 

interfered with, individuals can become passive—losing both appetites and desires (Marcel, 

2003). As will be discussed in the next sections, teachers, other students, and the subject matter 

are all agents that can affect a student’s personal causation—positively or negatively.   
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However, it is important to note that although choices are purposeful, “Motivation, like 

much of our mind, is only partially available to introspection” (Hannula, 2006, p.166). 

Sometimes individuals are so entrenched in routines that most choices are made without explicit 

reflection (Martin, 2004). In essence, students choose to act based on a set of desires they 

possess, but the student may not be aware of which desire they are acting upon at a given time.  

Agency and the Teacher’s Role 

 Students’ exercise of personal agency can be enhanced or hindered by teacher actions in 

the classroom (Boaler, 2003; deCharms, 1984; Walter & Gerson, 2007). In order to enable 

students to be powerful personal agents in their own learning, teachers should provide 

appropriate structure, support, and challenge for students during mathematical problem solving 

(Elmore, 2005).  

Giving structure to students in the mathematics classroom can be done through task 

wording or teacher guidance. Tasks with closed questions that lead students to particular solution 

paths are highly structured tasks. When a teacher probes students by asking them questions, 

suggests directions for students to explore, or tells students to perform a certain mathematical 

action, they are providing structure for their students.  Too much or too little structure limits 

personal agency and thus limits student motivation (Boaler, 2003; deCharms, 1984). This is due 

to the fact that “structure is always both enabling and constraining" (Giddens, 1984, p. 169). If a 

student is not given any structure at all, they can become confused—not knowing which choices 

would lead to the desired goal. Agency is constrained in this instance because, in order for 

agency to be successful, individuals must have knowledge of different options to pursue. On the 

other hand, if the teacher gives too much structure, students no longer have a range of choices 

upon which to act—thus making them to feel like pawns (Ryan & Grolnick, 1986).  
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Supporting the student by respecting them, listening to them, and helping them in their 

creative mathematical efforts is fundamental in the teaching of mathematics. In order to enhance 

the exercise of agency, students must be treated as adults who are actively engaged in the 

learning process. According to Speiser and Walter (1996), 

Treating students as adults means, fundamentally, to help open ways for them to learn 
and reason critically. The history of science flows through complex, many-sided 
conversations, told through further conversations, heard through acts of personal 
engagement and imagination. Our integrity as teachers flows in part from how we see our 
students in this dialogue, which includes our conversations with them….Each crack 
someone falls through represents, not just potentially but actually, a voice…which we 
need to hear, a person whose experience and growth should matter to us. (p. 371) 
 
Finally, it is crucial that students be challenged in their mathematical work, but not so 

much that they become discouraged (see Meyer, Turner, & Spencer, 1997; Stein, Smith, 

Henningsen, & Silver, 2000). Challenging problems require students to think about, analyze, and 

reason through the problem or task at hand in order to come to a conclusion about how to use 

mathematical ideas to invent solutions. Challenge is often measured by the cognitive demand 

required by the task—the higher the cognitive demand, the higher the challenge. Stigler and 

Heibert (1999) distinguished between three types of thinking required for various mathematics 

problems: “practice routine procedures, apply concepts or procedures in new situations, and 

invent something new or analyze situations in new ways” (p. 70).  Stein, Grover, and 

Henningsen (1996) similarly categorized tasks into four levels by increasing cognitive demand: 

“memorization tasks,” “procedures without connections,” “procedures with connections,” and 

“doing mathematics” (p. 472).  “Doing mathematics” means students must use “formulas, 

algorithms, or procedures with connection to concepts, understanding, or meaning” (Stein, et al. 

1996, p. 467). Tasks that require high cognitive demand are optimally challenging when 

accompanied by sufficient structure. Conversely, consistently presenting students with problems 
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that involve practicing routine procedures fails to encourage students to choose to become active 

problem solvers.  

Agency and Social Systems  

One metaphor describes the relationship of agency and social systems as a room. In this 

room, an individual is bound by the social system, or walls, in the room. However, inside the 

walls, "he or she is able to move around at whim" (Giddens, 1984, p. 174). The tension between 

the metaphor and the actual agency and social systems relationship is that the metaphor does not 

take into account the responsibility that comes with agency. Personal agency is an individual 

matter, but the consequences of enacted agency affect others. Personal agency involves “the 

responsibility to act with mindful awareness of others” (Walter & Gerson, 2007, p. 205). In 

contrast to the metaphor of moving around “at whim,” I see the actors inside the walls of the 

room participating in a “dance of agency” (Pickering, 1995). Teachers and students participate in 

this dance with each other (Boaler, 2003) and with the subject matter (Pickering, 1995) as they 

engage in meaningful mathematical discourse. It is easy to imagine how teachers and students 

could participate in a “dance of agency”. The teachers could use their agency to guide students in 

the right direction and students could choose to make mathematical decisions (dance steps) based 

on the structure and guidance provided by the teacher and suggested by the type of mathematics 

(music) that is involved. 

 Mathematics as a discipline does not have the same kind of agency that humans possess, 

but Pickering (1995) has described what is meant by the “agency of a discipline”.   

It is, I shall say, the agency of a discipline—elementary algebra, for example—that leads 
us through a series of manipulations within an established conceptual system. The notion 
of discipline as a performative agent might seem odd to those accustomed to thinking of 
discipline as a constraint upon human agency, but I want to recognize that discipline is 
productive. There could be no conceptual practice without the kind of discipline at issue; 
there could be only marks on paper. (p. 115) 
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Agency and Motivation 

The grounding principle of personal agency does not imply that external motivation does 

not exist, but rather that the learner purposefully chooses to act upon some motivations and 

chooses not to act upon other motivations (Patterson, Grenny, McMillan & Switzler, 2005). This 

contrasts with perspectives that neglect choice or suggest that motivations completely determine 

actions (Deckers, 2001). Individuals, as agents, “act for themselves” instead of being “acted 

upon” (2 Nephi 2:26, The Book of Mormon). 

From the Book of Mormon we also learn the following truth: “there is an opposition in all 

things” (2 Nephi 2:11). There are always conflicting choices upon which one can act. For 

example, one could choose to participate in understanding mathematics or choose not to. Lehi 

continues to explain, “Wherefore, the Lord God gave unto man that he should act for himself. 

Wherefore, man could not act for himself save it should be that he was enticed by one or the 

other” (2 Nephi 2:15-16). When a person is “enticed” by one choice over another, that person has 

a desire to act in a certain way. In other words, they are motivated to make that choice. Lehi 

explained that without being enticed, we would not be able to act. I believe the word “enticed” 

could respectfully be replaced by the word “motivated” without changing the meaning of the 

scripture. Thus the scripture would read, “Wherefore, man could not act for himself save it 

should be that he was [motivated] by one or the other” (2 Nephi 2:15). One can conclude then, 

that agency could not exist without motivation. Also, it would not make sense to have motivation 

without agency.  

. 
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Capacity to Develop Desires 

I agree with Dewey (1913) that there is no such thing as an uninterested child and extend 

this view by suggesting that there is no such thing as an unmotivated student (Maslow, 1943; 

Middleton & Spanias, 1999). Each student has and acts upon motivations that ground personal 

action with respect to mathematical engagement. Furthermore, students have the capability to 

develop new motivations. Framed by the perspective of agency, motivation may be generally 

defined as an individual’s desire to act in particular ways (Weiner, 1992). Harel (2008) 

mentioned how students can develop the desire to be puzzled: 

Humans—all humans—possess the capacity to develop a desire [italics added] to be 
puzzled and to learn to carry out mental acts to solve the puzzles they create. Individual 
differences in this capacity, though present, do not reflect innate capacities that cannot be 
modified through adequate experience. (p. 894) 
 
Because all humans are able to develop new desires, motivation should not be seen as 

static. An individual’s desires can and do change over time. In this thesis, it is shown how a 

group of students act on desires (motivations) to understand mathematics. Other groups of 

students may not possess similar desires, yet, through “adequate experience” such students are 

capable of developing similar desires to understand mathematics. 
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CHAPTER 3: LITERATURE REVIEW 

This chapter provides a literature review that is organized into seven thematic sections: 

Definitions of Motivation, Theories of Motivation, Intrinsic vs. Extrinsic Motivation, Findings 

and Significant Statements of Motivation Literature in Mathematics Education, Deficiencies in 

the Literature, Learning Mathematics with Understanding, and The Cat Task. The first four 

sections build relationships between extant literature within each theme. The fifth section, 

Deficiencies in the Literature, articulates the cumulative deficits in existing literature that this 

study is designed to explore. The two final sections, Learning Mathematics with Understanding 

and The Cat Task, give essential background information to help situate the research question 

and methods for this thesis.     

Definitions of Motivation 

The literature in the field of motivation has been described as full of “fuzzy but powerful 

constructs” (Pintrich, 1994, p. 139). One of those fuzzy constructs is the word motivation itself. 

This is partly due to the fact that motivation researchers have used over 140 different definitions 

of motivation for their studies (Kleinginna and Kleinginna, 1981). Pinder (1984) explained the 

lack of consensus and cohesion,  

It is only a slight exaggeration to say that there have been almost as many definitions of 
motivation offered over the years as there have been thinkers who have considered the 
nature of human behavior….Some writers view motivation from a strictly physiological 
perspective, while others view human beings as primarily hedonistic, and explain most of 
human behavior as goal oriented, seeking to gain pleasure and avoid pain. Others stress 
the rationality of humans, and consider human behavior to be the result of conscious 
choice processes. Some thinkers stress unconscious or subconscious factors. (p. 7) 
 
One definition stated, “to be motivated means to be moved to do something” (Ryan & 

Deci, 2000, p. 54). Many dictionaries, textbooks, and researchers defined motivation in a similar 

manner. For example, Denhardt, Denhardt, and Aristigueta (2008) defined motivation as “what 
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causes people to behave as they do” (p. 146). These definitions of motivation were limiting 

because they were often interpreted to mean that something, or someone, forced one to act in a 

certain way. Such interpretation rejected personal agency as a fundamental aspect of human 

actions.  

Huitt (2001) combined many other definitions of motivation to come up with the 

following definition: “Motivation is an internal state or condition (sometimes described as a 

need, desire, or want) that serves to activate or energize behavior and give it direction (see 

Kleinginna and Kleinginna, 1981)” (p. 1). Though there is a plethora of definitions of 

motivation, many educational researchers chose not to define motivation in their papers. Murphy 

and Alexander (2000) conducted a review of motivation studies in education and found that only 

four percent of the articles defined the word motivation explicitly (see p. 33).  When motivation 

is not defined (e.g. Francisco, 2005; Mayer, 1998) clarity and meaning are compromised.   

How researchers choose to define motivation, whether they state the definition or not, 

significantly influences how they interpret and analyze data. For example, Hannula (2004) 

defined motivation as “a potential to direct behavior through the mechanisms that control 

emotion. This potential is structured through needs and goals” (p. 9). Hannula (2006) used his 

definition in analysis of the motivational structure of one particular student, Frank. Hannula’s 

findings were based on identification of Frank’s needs and goals that were evidenced by his 

behavior and interpretations of his cognition and emotions. Further details about Hannula’s 

definition and research will be elaborated upon later.  

For the purposes of this study, motivation is defined as an individual’s desire to act in 

particular ways (Weiner, 1992) and framed by the perspective of agency. Notice in this 

definition, motivation is conceptualized as a desire instead of a need, want, or goal. The word 
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“desire” was chosen intentionally to encapsulate needs, wants, and goals.  Though not contained 

in the definition of motivation for this study, I will also refer to the powers of student motivation 

in the mathematics classroom. Powers may be defined as “capacit[ies] for action or 

performance” (Porter, 1913, p. 1122) or “tendencies in action” (Dewey, 1913, p. 62). The 

educational philosopher John Dewey (1913) said motive “is the name for the end or aim in 

respect to its hold on action, its power to move” (p. 60). Examining the powers of student 

motivation will help researchers and educators more fully recognize and foster the capacities of 

students’ desires.  

As will be further discussed, there are many definitions and theories of motivation. 

However, the purpose of this study is to add a new perspective on motivation in the mathematics 

classroom by developing a contextualized motivation theory grounded in the mathematical 

activities of agentive calculus students.   

Theories of Motivation 

Just as no single definition of motivation is suitable for all contexts, there is no widely 

accepted single standard theory on motivation. Numerous theories and models of motivation 

permeate the literature. Here I discuss the following major types of motivational theories: 

behavioral theories, attribution theories, need theories, goal theories, and personal construct 

theories. 

Behavioral Theories 

 Behavioral theories of learning attempt to explain the motivations behind an individual’s 

actions.  Behavioral theorists focus on the effects of rewards and punishments on students’ 

behaviors. In Pavlov’s (1928) classical conditioning, individuals are viewed as acting reflexively 

in response to stimuli. The relationship between stimulus and response can be enhanced through 



11 
 

enforcement. In operant conditioning (Skinner, 1938), when a student’s behavior is reinforced, or 

rewarded, the student will be motivated to continue that behavior. The reward is seen as an 

incentive for acceptable behavior. Conversely, if a behavior is punished, the student will be 

motivated to decrease the behavior. For example, if a student is given praise after completing a 

math problem, the student would be seen to do math problems in the future.  On the other hand, 

if the student is given no praise or is reprimanded for getting a wrong answer, the student would 

have less motivation to do work. Behavioral theories on motivation are limiting because they 

assume humans act in a certain way because they automatically respond to stimuli or 

incentives—personal choices and intentions are neglected.   

 Behavioral theories dominated the literature on motivation for the first half of the 20th 

century (Bindra, 1968; Hull, 1943; Pavlov, 1928; Rescorla & Solomon, 1967; Skinner, 1938; 

Skinner, 1953; Spence, 1960; Watson, 1913). They are not extremely popular in research today 

because researchers no longer accept the mechanistic views associated with the theories. 

However, “newer reformulations of these theories have focused on the potential conflict between 

an individual’s perceived necessity for success and perceived necessity for avoiding failure” 

(Middleton & Spanias, 1999, p. 68).  

Attribution Theory 

 Mid-century, researchers began to question whether behaviorist theories were sufficient 

to account for motivations in learning. Attribution theorists attempted to explain what factors 

students perceived to contribute to success or failure (Heider, 1958; Weiner, 1972). In Middleton 

and Spanias’s (1999) review of motivation literature, attribution theory was found to be the 

theoretical orientation most widely held by mathematics education researchers. It has also been 

called the “dominant contemporary theory of motivation” (Graham and Weiner, 1996, p. 72). 
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Weiner (1972, 1974) was the main researcher who applied attribution theory to 

education. In his view, students’ perceptions of success or failure are dependent on three 

different components: locus, stability, and controllability. Locus describes where causality 

originates. If a student feels success or failure is due to an outside factor, the locus is external. 

Otherwise, the locus is internal–attributable to factors for which an individual is responsible. 

Stability describes whether or not causes change over time. Finally, controllability explains 

whether students have control over the factors that attribute to success or failure. For example, 

ability is an attribution that has an internal locus and no control. Effort, on the other hand, is an 

attribution with an internal locus that one can control. An example of an attribution with an 

external locus is luck. Luck also has no controllability (Huitt, 2001). 

The principle idea of attribution theory is that if students believe achievement depends on 

factors that they can control, they will be more motivated to learn and will achieve more 

(Pintrich, 2004). In one study, the researchers found that “overall…students are confident in their 

ability, feel they try hard, and see achievement as connected to effort” (Sullivan, Tobias, & 

McDonough, 2006, p. 89). On the other hand, if students think their failures are due to factors 

that they cannot control, such as a lack of ability, students tend to fail. Learned helplessness 

(Dweck, 1986) is a condition that arises when a student has experienced so much failure that he 

or she believes that success is not possible.  

Need Theories 

 Often referred to as Maslow’s Hierarchy of Needs, Maslow’s (1943) theory of motivation 

is still one of the most influential and well-known theories in the field today (Huitt, 2004; 

Koltko-Rivera, 2006). Maslow argued that there was a lack of a well-founded theory on 

motivation. Maslow’s theory took into account modern understandings about motivation and 
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avoided adopting a model that was based on animal behavior. Generally depicted as a pyramid, 

Maslow’s (1943) theory contains two groups of needs: deficiency needs and growth needs. 

Figure 1 shows one interpretation of Maslow’s hierarchy of needs. 

 
Figure 1: Maslow's Hierarchy of Needs 

 
 The bottom four needs in this pyramid represent the deficiency needs (Maslow, 1943). 

Deficiency needs, beginning from the bottom, are:  

• Physiological needs: basics of life, such as food and water 

• The safety needs: stay away from dangers  

• Belongingness and love needs: affectionate relationships whether for friends or for family  

• Esteem needs: self respect and esteem for oneself and others  

Maslow (1943) suggested the needs be arranged in a hierarchy because lower needs have 

to be met before the higher ones are considered.  

It is quite true that man lives by bread alone—when there is no bread. But what happens 
to man’s desires when there is plenty of bread and when his belly is chronically filled? At 
once other (and “higher”) needs emerge and these, rather than physiological hungers, 
dominate the organism. And when these in turn are satisfied, again new (and still 
“higher”) needs emerge and so on. This is what we mean by saying that the basic human 
needs are organized into a hierarchy of relative prepotency.  (p. 375) 

Transcendence

Self-Actualization

Esteem Needs

Belongingness and love needs

Safety Needs

Psychological Needs
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 In his first conceptualization of the theory, Maslow (1943) only listed one growth need, 

self-actualization. Self-actualization represents an individual’s need to do and be what he is 

capable of doing and being—to realize one’s potential. Later, Maslow (1971) described self-

transcendence as a category of needs even higher than self-actualization (see Koltko-Rivera, 

2006). Self-transcendent people go beyond meeting their own needs and consider those of others 

and of society. Two additional needs not included in the pyramid, the need to know or to 

understand and aesthetic needs, were recently included in Maslow’s theory (Maslow & Lowery, 

1998; Huitt, 2004). Aesthetic needs include the need for beauty and order.  

Maslow (1943) noted one shortcoming of his theory was that some people go backwards 

in the hierarchy. For example, there are martyrs, people who would sacrifice food, safety, and all 

else for what they believed to be a higher cause. 

 Following Maslow’s lead, other theorists suggested humans have categories of basic 

needs. McClelland (1975) claimed people acquire needs as they experience life. These needs 

include: the need for achievement, the need for affiliation, and the need for power. Ryan and 

Deci’s (2000b) Self-Determination Theory suggests students possess three innate needs: the need 

for autonomy, competence, and relatedness. 

Goal Theories 

 Achievement goal theories deal with the cognitive and affective components of students’ 

behaviors (Ames, 1992; Covington, 2000; Dweck, 1986; Dweck & Leggett, 1988). Goal 

theorists focus on people’s perceptions and interpretations as well as patterns of self-regulation 

(Middleton & Spanias, 1999).   

 Two opposing orientations permeate the educational research on goal theory. In goal 

theory, a student is thought to have either a learning goal orientation or a performance goal 



15 
 

orientation (Dweck, 1986; Dweck & Leggett, 1988). Learning goal orientation has also been 

labeled a mastery goal (Ames & Archer, 1988) or task-involvement goal (Maehr & Nicholls, 

1980) orientation. If a student possesses a learning (mastery/task) goal orientation, they value the 

importance of the skill to be learned and believe success comes from controllable factors, such as 

hard work and effort (Ames & Archer, 1988; Weiner, 1979). Such a student also sees difficulties 

as challenges to be faced instead of insurmountable feats (Francisco, 2005). On the other hand, if 

a student has a performance or ego-involvement (Maehr & Nicholls, 1980) goal orientation, they 

value outperforming other students and believe that success depends on uncontrollable factors 

such as ability and self-worth instead of hard work and effort (Dweck, 1986). These students 

tend to avoid challenging tasks (Dweck & Leggett, 1988) and rely heavily on short-term learning 

strategies such as memorizing (Dweck, 1986). 

Middleton and Midgley (2002) said a learning (mastery/task) goal orientation “clearly 

represents the most beneficial form of motivation” (p. 375). Much research has also confirmed 

that a mastery orientation leads to better academic and motivational outcomes than a 

performance orientation (Dweck, 1986; Dweck & Leggett, 1988; Elliot & Dweck, 1988; 

Midgley & Urdan, 2001; Pintrich, Roeser, & DeGroot, 1994; Stipek, 1997). 

Ames (1992) identified certain classroom structures that impact whether or not students 

adopt a mastery goal orientation. They included, “design of tasks and learning activities, 

evaluation practices and use of rewards, and distribution of authority or responsibility” (p. 263). 

In order for students to develop a mastery goal orientation, tasks and activities must be 

challenging, meaningful and diverse (Brophy, 1987; Nicholls, 1989). Evaluation practices are 

most beneficial when social comparison is not often employed (Ames, 1992). Rewards tend to 

increase a mastery orientation only when they are based on effort instead of seen as a bribe 
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(Brophy, 1987; Deci & Ryan, 1985). Finally, when students have autonomy in the classroom and 

are involved in decision making, they are also more likely to have a mastery goal orientation 

(e.g., Ryan & Grolnick, 1986).  

 Although learning and performance goal orientations are generally seen as mutually 

exclusive, some researchers are beginning to find that an individual can simultaneously hold 

learning and performance goals. These goals can also be supportive of each other (Dweck, 2002; 

Hannula, 2004; Harkness, D’Ambrosio, & Morrone, 2007). As part of a larger study, Hannula 

(2002) interviewed two middle school students, Maria and Laura. Hannula found that both girls 

simultaneously held a learning goal and a performance goal for doing mathematics. Due to this 

observation and a theoretical background of self-regulated learning, Hannula (2002, 2004, 2006) 

theorized students could have a variety of personal needs and goals, not just those few outlined 

by research. For one student, competence and social status were both perceived as needs, but 

social status was of more value to the student. Likewise the student had various goals, but the 

goal to perform was more important than the goals to understand and avoid failures.  

Hannula (2004) suggested each student held their own individualized needs-goals 

structure. Furthermore, Hannula surmised that emotions were important indicators of motivation. 

Hannula (2006) also said, “Motivation cannot be directly observed,” it is only manifest in 

“affect, cognition, and behavior” (p. 175). Thus, by combining these theoretical beliefs and the 

data shared earlier, Hannula (2006) conceptualized a new definition of motivation: Motivation is 

“a potential to direct behavior through the mechanisms that control emotion. This potential is 

structured through needs and goals” (p. 9).  

Dowson and McInerney (2003) also recognized that students possess multiple goals. 

Through classroom observations and individual interviews, the researchers identified nine 
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different social and academic goals held by middle school students in general. The academic 

goals were categorized as mastery, performance, and work avoidance goals. The social goals 

included: social affiliation, social approval, social responsibility, social status, and social 

concern.  Dowson and McInerney suggested that students can possess more than one goal at a 

time and that motivational orientations “comprise a much more complex and dynamic system 

than has been acknowledge[d] in the [goal orientation] literature” (p. 109). Nuttin (1984) 

described why research about students’ personal goals could be problematic, “the multiplicity of 

goals sought by man represents a chaotic puzzle that is inconsistent with the simplicity sought by 

science” (p. 83). Such a chaotic puzzle becomes even more difficult when it is realized that each 

individual has a unique set of personal goals that vary over time.  

Personal Construct Theories 

 Personal construct psychology was developed by Kelly (1955). Kelly believed people are 

scientists in that they construct knowledge about their world through experience and use that 

knowledge to predict future events. Individuals build up their own personal theories about the 

world and act accordingly. These theories are filled with personal constructs. Constructs are 

ideas of reality forged by observation or experience that consist of two extremes—such as sad 

and happy. As individuals go throughout life, they build ideas of what sad people are like and 

what happy people are like and then place everyone they meet somewhere along the sad/happy 

continuum. Individuals go through a similar process for every personal construct they hold.  

Studies in education using personal construct theories have found that motivations are 

highly individual (Dweck & Molden, 2005; Hannula, 2006; Middleton, 1995; Owens, 1987). 

One of the limitations of the usefulness of these theories for educational practices is that if 
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motivation is so individual in nature, it would be onerous for a teacher to try to identify and cater 

to all the different personal constructs of students.    

Intrinsic vs. Extrinsic Motivation 

 Studies across theoretical orientations recognize the dichotomy between two types of 

motivation: intrinsic and extrinsic (Corpus, McClintic-Gilbert, & Hayenga, 2009; Harter, 1980; 

Murphy and Alexander, 2000; Renninger, 2000; Ryan & Deci, 2000). Intrinsic motivation is 

where “a task is performed because it is rewarding within itself not because of a reward to be 

earned as a consequence” and extrinsic motivation is “performing a task to get something outside 

of the activity itself” (Whang & Hancock, 1994, p. 306).  

Intrinsic behavior was first noticed while observing animal behavior (Ryan & Deci, 

2000). Researchers discovered that animals would engage in playful and exploratory behaviors 

even in the absence of reinforcement. Although the origins of intrinsic and extrinsic motivations 

in the classroom are unclear, these constructs can be explained by elements of Weiner's (1972) 

attribution theory, Bandura's (1977) conception of self-efficacy and other prominent motivational 

theories. In behavioral theories, intrinsic motivation is evident where the action itself is the 

reward. Students are extrinsically motivated when they are given an incentive to do their work. 

In attribution theories, intrinsic and extrinsic motivations are described by the locus of control. If 

the locus is internal, then the motivation is said to be internal. If the locus is external, then 

motivation is extrinsic. In a goal theory orientation, a learning (or mastery) goal is associated 

with intrinsic motivation and a performance goal with extrinsic motivation.  

Generally, positive connotations are often thought to be associated with intrinsic 

motivation and negative connotations with extrinsic motivation. Some researchers found that 

students who are intrinsically motivated spend more time engaged in the activity, learn better, 
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and enjoy the activity more than those who are motivated extrinsically (e.g. Lepper, 1988). 

Despite this, Cameron, Banko, and Pierce (2001) discovered that providing extrinsic rewards, 

related to performance, can sometimes enhance intrinsic motivation.  On the other hand, 

superfluous extrinsic rewards or extrinsic pressures have been found to decrease student’s 

intrinsic motivation and academic involvement in the future (Condry, 1977; Deci, 1975; Lepper 

& Greene, 1978).  

In order to give more credibility to the notion of extrinsic motivation, Ryan and Deci 

(2000) revised the general definitions of intrinsic and extrinsic motivation. For Ryan and Deci, 

intrinsic motivation is “doing something because it is inherently interesting or enjoyable” and 

extrinsic motivation is “doing something because it leads to a separable outcome” (p. 55). Using 

these definitions, Ryan and Deci claim there are various levels of extrinsic motivation, some of 

which are self-regulated. In other words, a person can be extrinsically motivated without feeling 

pressure to act in a certain way. For example, a student might be motivated to participate in 

mathematics because it will help them gain a better career. Though such a reason would be 

considered an extrinsic motivation, it is not necessarily a bad one. Also, since certain activities 

and subjects are not inherently interesting to a child, Ryan and Deci maintained the view that 

extrinsic motivation is necessary. The quest for educators then becomes “how to motivate 

students to value and self-regulate such activities… without external pressure” (p. 60). Although 

Ryan and Deci shed a more positive light on extrinsic motivation, their view still maintains a 

dichotomy of motivations—either an individual is intrinsically motivated or extrinsically 

motivated to act in a certain way. 

Commonly held distinctions between intrinsic and extrinsic motivations may be 

insufficient to enlighten our understandings of student motivations in learning mathematics or to 
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appropriately shape pedagogical decisions. Lin, McKeachie, and Kim (2003) suggested that 

“intrinsic and extrinsic motivation, rather than being at opposite ends of a single dimension, may 

be much more complex in their relationships with one another and other variables affecting 

student achievement” (p. 253). Partitioning motivation as inherently intrinsic or extrinsic may 

foster inadequate and potentially erroneous views of lived experiences and choices by learners in 

classrooms. 

Findings and Significant Statements of Motivation Literature in Mathematics Education 

In order to inform pedagogical decisions to help students learn, many mathematics 

teachers seek to understand what motivates their students. Middleton (1995) asked both middle 

school students and teachers about their beliefs as to what makes mathematics intrinsically 

motivating for students and found that teacher’s beliefs played a big role in the types of activities 

they provided in the classroom. Also, the better teachers were at anticipating their students’ 

motivational beliefs, the better they were at providing an environment that fostered intrinsic 

motivation. Middleton concluded, “Overall, teachers were poor at predicting their students’ 

motivational constructs” (p. 276). It seems that as teachers, we need to learn more about student 

motivations in learning mathematics. Unfortunately, in mathematics education, “motivation has 

not been a popular topic of study lately” (Hannula, 2006, p. 165). Those who do write about 

motivation in the mathematics classroom tend to focus on motivational constructs such as 

ethnicity, interest, engagement, affect, self-regulated learning, and ethnicity.  

Ethnicity and Motivation 

 Many of the studies reviewed with respect to motivation in mathematics centered on 

motivational differences across ethnicities, especially between Asians and Caucasians (Chen & 

Stevenson, 1995; Lee, Tinsley, & Bobko, 2003; Leung, 2002; Rao, Moely, & Sachas, 2000; 
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Salili & Lai 2003; Stevens, Olivarez, Lan, & Tallent-Runnels, 2004; Treisman, 1992; Whang & 

Hancock, 1994). International comparisons of mathematics achievement have consistently 

shown Asians outperform their American counterparts (Chen & Stevenson, 1995; Stevenson & 

Stigler, 1992; Wang & Lin, 2005). Due to these findings, some researchers sought to determine 

factors that contribute to greater success for Asian students—including motivational factors. 

Many factors were familial, cultural, and social. According to Chen and Stevenson (1995), Asian 

students are held to higher standards by their parents to achieve, they study more diligently, and 

have less outside interferences to compete with their time. 

 Although students in Asia showed superiority in standardized tests, Chinese students 

have been reported to have lower self-efficacy than Caucasian American students (Leung, 2002; 

Whang & Hancock, 1994). One might conclude, therefore, that Chinese students may not feel as 

confident in their abilities to do well in mathematics or that they had a more accurate perception 

of their abilities than did Americans. Another interpretation may conclude that some American 

students reported over-confidence in their abilities because they did not want to be considered 

less intelligent than their peers. 

 Another difference between Asian students and Caucasians was found in their attribution 

beliefs. In general, Asian students generally believed that controllable factors, such as hard work 

and effort, undergird success. On the other hand, Caucasians attributed their success to external 

factors such as having innate ability or having a good teacher (Chen & Stevenson, 1995; Salili & 

Lai, 2003; Stevenson & Stigler, 1992, Yan & Gaier, 1994). Despite these findings, other research 

suggested there is no difference in attribution across ethnicities–students across the world believe 

effort is important to achieve in mathematics (Elliott & Bemperchat, 2002; Leung, 2002).  
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 Lack of success in minorities has been studied as well. For example, Treisman (1992) 

wanted to know what kept Blacks, Hispanics, Native Americans, and rural Caucasians from 

performing as well as the other students in the University of California, Berkeley calculus 

classes. At first, part of the hypothesis was that these minority students were not as motivated to 

achieve as were their Asian and affluent White counterparts. However, after completion of the 

study, a different conclusion was drawn. Treisman wrote, “These kids [minorities] were 

motivated! Unfortunately, we had been mistaking ‘disorientation’ for lack of motivation” (p. 

366). In a comparison of Black students and Chinese students, it was found that the Chinese 

students spent more time working together on calculus problems. After implementing a course 

that was designed to help students realize the importance of working together, vast 

improvements were made. In fact, “Black and Latino participants…substantially outperformed 

not only their minority peers, but their White and Asian classmates as well” (Treisman, 1992, p. 

369).    

Interest and Motivation 

According to Dewey (1913), learning based on intrinsic interest is qualitatively superior 

to coercive learning. Furthermore, Dewey postulated that emphasis on items peripheral to an 

object/task in order to make it more interesting do not work. He said, “When things have to be 

made interesting, it is because interest itself is wanting. Moreover, the phrase is a misnomer. The 

thing, the object, is no more interesting than it was before. The appeal is simply made to the 

child’s love of something else” (p. 11). Dewey believed researchers needed to go beyond the task 

and the subject to see motivation. A reason must be found in the person, apart from the subject 

matter, to give the lesson a moving force.  
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Interests are often assumed to be “intrinsic motivational determinants of academic 

achievement” (Koaler, Baumert, & Schnabel, 2001, p. 448). Over 100 studies have documented 

a positive correlation between interest and achievement (see Schiefele, Krapp, & Winteler, 

1992). In one particular study, 7th and 10th students in Germany were asked about their interest in 

math and the value math had for their lives. Students who reported more interest in mathematics 

tended to go on to take higher level classes in mathematics and had greater test scores (Koaler, 

Baumert, & Schnabel, 2001).  

Engagement and Motivation  

Engagement in mathematics is a major part of current motivation literature. In a 

traditional perspective (see McMahon & Portelli, 2004), the definition of engagement is 

discussed in behavioral terms. “Engaged students attend their classes, try reasonably hard to do 

well in them, complete the homework they are assigned, and don’t cheat” (Steinberg, 1996, p. 

67). Some researchers and many educators wonder what motivates students to engage in 

mathematics in this traditional sense. Sullivan, Tobias, and McDonough (2006) found that some 

students might purposefully choose not to participate during mathematics classes. When pulled 

out of class to work on mathematics with the researchers, students exerted effort the entire time. 

In contrast, the same students would not engage during their normal mathematics classroom. 

Social pressures were evident in students’ interview responses that it was not “cool” or “popular” 

to be good at math and that it was easy to “pass” mathematics courses without trying. Thus, 

Sullivan, et al. claimed that motivation “may be as much a product of group or cultural factors as 

individual goals” (p. 91).   

Williams and Ivey (2001) found the engagement pattern of one student, Bryan, to be 

particularly fascinating. In observing Bryan at the first of the year in his beginning algebra class, 
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the researchers noted, “Bryan’s face registered no interest, no involvement, virtually no 

expression” (p. 83). However, during the first group work of the year, Bryan’s engagement 

changed drastically. He was smiling, answering questions, and solving the problems at hand. 

Then a few days later, he was back to his old behaviors of apathy and impassiveness. Williams 

and Ivey examined several current theories of motivation, including goal orientations, to try to 

elucidate Bryan’s changing engagement. Nevertheless, “none of the motivational frameworks 

discussed…is sufficient by itself to explain Bryan’s attitudes” (p. 92). The researchers suggested 

that current motivation theories “focus on the ‘what’ or the ‘why’ but have forgotten the ‘who’” 

(p. 96). Such findings suggest the need for a theory of motivation grounded in actual student 

actions in the mathematics classroom. 

Affect and Motivation 

 Affect is often discussed as a component of motivation. Affect has been defined as “a 

feeling or emotion as distinguished from cognition, thought or action” (Huitt, 2003). Studies on 

affect in the mathematics classroom focused on attitudes, beliefs, emotions (McLeod, 1994), 

values, ethics, and morals (DeBellis & Goldin, 1997).  

 Part of the research on affect in psychology revolves around emotions. Davis (1955) 

said, “The human mind…is devastatingly subject to the influence of the emotions” and that this 

influence is a central “problem of good teaching” (p. 133). Meyer and Turner (2002) discussed 

the historical separation of motivation and emotion in extant research. Meyer and Turner felt 

emotions are “important mediators of motivated actions to approach or avoid learning rather than 

merely as outcomes” (Meyer & Turner, 2002, p. 110). In other words, emotions are not just 

results of actions; they help individuals decide what to act upon. In addition to needs and goals, 

Hannula (2006) also looked at the importance of emotions for motivation. He suggested that 
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“emotions are the most direct link to motivation” (p. 167). Hannula studied a student’s behavior 

during problem solving, his responses to an Online Motivation Questionnaire (OMQ), responses 

to a Mathematics Related Beliefs Questionnaire (MRBQ), and student interviews. The student, 

Frank, was found to have a need for competence and a need to please his teacher. Franks goals 

included: doing well in mathematics, solving the problem at hand, being fluent, and mastering 

the content. When Frank was able to have his needs fulfilled by accomplishing his goals, he was 

happy and this emotion allowed him to be more motivated to do mathematics.   

Another portion of affect literature is dedicated to student’s self-efficacy beliefs. Self-

efficacy refers to a student’s assessment of their potential to accomplish a certain task or succeed 

in a particular subject matter (Bandura, 1997; Mayer, 1998; Schunk, 1991). Researchers found 

that students tend to learn from an early age that success in the classroom is valued in society and 

the more they perceive they will succeed, the more they will want to achieve (McClelland, 1965; 

Stipek, 1984). When students had high self-efficacy, they were more motivated and achieved 

more in the mathematics classroom (Stevens, Olivarez, Lan, & Tallent-Runnels, 2004; Schunk & 

Hanson, 1985).  

In order to measure mathematics self-efficacy in Texas high school students, Stevens et 

al. (2004) employed an instrument formed by Pajares and Graham (1999). Using an 8-point 

Likert-scale, students were asked to rate their confidence in solving specific problems. The 

instructions stated: “Suppose that you were asked the following math questions in a multiple 

choice test tomorrow. Please indicate how confident you are that you will give the correct answer 

to each question” (p. 212). The researchers also measured motivation using a scale of intrinsic 

versus extrinsic motivation. Stevens, et al. (2004) found that “self-efficacy predicts motivational 

orientation and mathematics performance” (p. 208) and that self-efficacy strongly correlated with 
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whether or not students continued to take additional mathematics courses. Furthermore, no 

distinction was found in the motivational systems across ethnicity—Hispanic and Caucasian 

students.  

Self-regulated Learning and Motivation 

Self-regulated learning “refers to the self-directive processes and self-beliefs that enable 

learners to transform their mental abilities, such as verbal aptitude, into an academic 

performance skill, such as writing” (Zimmerman, 2008, p. 166). Students who used more self-

regulatory strategies have been found to attain greater academic performance and acquire higher 

grades than students who used little self-regulatory strategies (Pintrich, Smith, Garcia, & 

McKeachie, 1993). It is also of interest to note that students’ awareness of choice is an important 

element of self-regulated learning (Winne & Perry, 2000). 

Boekaerts (1999) presented a three layer model of self-regulated learning. The three 

layers, starting with the inner layer, were: regulation of processing modes, regulation of the 

learning processes, and regulation of the self (p. 449). Motivation, or directing one’s behavior, is 

discussed as part of the second layer, regulation of the learning processes. Schmitz and Wiese 

(2006) wanted to see how self-regulated learning training affected, or was related to, motivation. 

University engineering students answered questionnaires and surveys about aspects of self-

regulated learning and motivation. The conclusion was that “students who received self-

regulatory training displayed significant improvements in the following questionnaire measures: 

intrinsic studying motivation, self-efficacy, effort, attention, self-motivation” (Zimmerman, 

2008, p. 174). In other words, when students learned how to regulate their own learning, they 

displayed more interest in the subject, felt more confident in their mathematical abilities, and 

exerted more effort in the mathematics classroom. 
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Other Motivation Findings in Mathematics Classrooms 

Francisco (2005) conducted a longitudinal study with a group of five high school students 

that sought to describe students’ views on mathematical learning. Clinical interviews were 

conducted with each of the students. Five themes emerged from students responses to these 

interviews, one of which was motivation. One student said “doing interesting stuff” and “being 

into what’s going on” helped him “do math all day” (p. 63). Other sources of motivation in 

mathematics included interesting tasks, social environment, opportunity to discover, using 

objects, knowing why, and helping others. Francisco (2005) said his findings “challenge the 

prevalent view that motivation is only a task-related issue” (p. 67).  

Middleton and Spanias (1999) reviewed the findings in research on motivation in 

mathematics and found some consistencies in the results as well as some deficiencies (which will 

be reported on later). The following were five commonalities in the findings:  

First, findings across theoretical orientations indicate that students' perceptions of success 
in mathematics are highly influential in forming their motivational attitudes. 
Second, motivations toward mathematics are developed early, are highly stable over time, 
and are influenced greatly by teacher actions and attitudes. 
Third, providing opportunities for students to develop intrinsic motivation in mathematics 
is generally superior to providing extrinsic incentives for achievement. 
Fourth, inequities exist in the ways in which some groups of students in mathematics 
classes have been taught to view mathematics. 
Last, and most important, achievement motivation in mathematics, though stable, can be 
affected through careful instructional design.  (pp. 79-82) 
 

Deficiencies in the Literature 

 The following paragraphs summarize deficiencies found in extant mathematics education 

motivation literature.  
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Definitions of Motivation  

There is no common definition of motivation in studies dealing with motivation. Some 

researchers do not even define motivation, hoping it would be apparent to the readers. Many who 

do state a definition do not mention students’ agency as a central feature of motivation. If one 

believes that personal agency is essential to purposeful decision making, then it follows that 

students would be able to choose from among motives and decide which to act upon.  

Theories of Motivation 

Studies on important related topics such as engagement, interest (Renninger, 2000), affect 

(Zan, Brown, Evans, & Hannula, 2006), self-efficacy (Bandura, 1997), competence (Urdan & 

Turner, 2005), achievement goals (Urdan & Midgley, 2003) or motivational beliefs (Middleton, 

1995) do not provide a level of detail sufficient to reveal the complexities of motivations 

exhibited by students during mathematical argumentation, collaborative problem solving, and 

learning mathematics with understanding in actual classrooms. Hannula (2006) suggested the 

lack of detail is, “perhaps inevitable, given that the authors’ approaches aim to measure 

predefined aspects of motivation, not to describe it” (p. 166).  

Motivation research studies in mathematics education tend to be atheoretical, lacking a 

theoretical basis to support claims or predictions for learning and teaching (Middleton & 

Spanias, 1999). For example, atheoretical studies may compile lists of motivations (such as 

wanting to win the teacher’s approval, wanting to develop self-confidence, and wanting to 

contribute a new idea) to reveal that the “diversity and depth of these phenomena [are] never 

exhausted, however long and carefully the teacher may observe the student’s motives” (Davis, 

1955, p. 134). Hence, atheoretical lists do little to help us understand the dynamic powers of 
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student motivations in learning mathematics with understanding. In contrast, this study builds 

theoretical constructs from which inferences concerning student motivations emerge. 

Measures of Motivation 

Traditional measures of student motivation have been criticized as being “static, in the 

sense that a student’s momentary response to a test task is viewed as an indicator of his or her 

position on some scale representing a certain underlying trait” (Järvelä, Salonen, & Lepola, 

2002, p. 210). These traditional methods of measuring motivation tend to label students with 

particular motivational traits without observing their behavior in the classroom. Research 

evidence has shown that how students behave in the classroom is not always consistent with 

student’s self-reported intentions and desires. Actual enacted behavior depends largely on 

specific learning contexts (Boekaerts, 1996). Thus, the On-line Motivation Questionnaire 

(OMQ), a self-report measure of motivation, was developed to assess student’s “situation-

specific motivational beliefs (appraisals) and emotions” (Boekaerts, 2002, p. 80).  Although the 

OMQ helps teachers and researchers understand how students feel about specific tasks, it does 

not explain student’s motivations for enacted mathematical behaviors during the task.  

Murphy and Alexander (2000) remarked, “one assumption seemingly underlying a 

segment of  [motivation] research is that individual’s motives, needs, or goals are explicit 

knowledge that can be reflected upon and communicated to others” (p. 38). Due to this 

assumption, most mathematics education studies “used self-report measures as indices of 

motivation without actually looking at and listening to children who are engaged in mathematical 

activity. The potential biases associated with self report measures of attitude have been clearly 

delineated” (Middleton & Spanias, 1999, p. 83).  
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Because most motivation theories have been “developed by psychologists and tested 

outside classroom contexts” (Urdan & Turner, 2005, p. 297), Urdan and Turner expressly point 

to a need for “inductive, grounded studies of motivation in classrooms” (p. 313). Järvelä et al. 

(2002) also suggested motivation be dynamically assessed in natural learning environments.  

Corpus, McClintic-Gilbert, and Hayenga (2009) utilized a “domain-general framework of 

motivation” (p. 164) to document within-year changes in students’ intrinsic and extrinsic 

motivations and suggested that “Future domain-specific and person-centered approaches” (p. 

164) are needed to help us understand the complexities of student motivation in mathematics 

learning in actual classroom settings. 

Other Deficiencies 

Middleton and Spanias (1999) reported some other deficiencies in extant research 

literature on motivation.  For one, motivation is sometimes reported as an ancillary affect in 

studies designed to examine other factors (see Francisco, 2005).  Another deficiency was that 

most research data are gathered under models of mathematics instruction that are not driven by 

students’ conceptual development (Middleton & Spanias, 1999). This thesis was intentionally 

designed to identify student motivations for understanding mathematics in a conceptually based 

classroom setting.  

Learning Mathematics with Understanding 

According to Harel (2008), an essential feature of learning mathematics is the necessity 

principle. The necessity principle states, “For students to learn the mathematics we intend to 

teach them, they must have a need for it, where ‘need’ here refers to intellectual need” (p. 900). 

Although Harel makes a distinction between the necessity principle and motivation in his work, 
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it is suggested in this thesis that recognizing a mathematical need encourages students to gain 

greater conceptual understanding of mathematics.  

NCTM posits that conceptual understanding plays a critical role in learning and building 

mathematical proficiency (NCTM, 2000). “Students must learn mathematics with understanding, 

actively building new knowledge from experience and prior knowledge” (NCTM, 2000 p. 20). 

Students need to learn with understanding not only for gaining procedural fluency but also for 

establishing competency in mathematical reasoning, argumentation, and problem solving. 

Substantial evidence suggested that “[s]tudents will be served well by school mathematics 

programs that enhance their natural desire to understand” (NCTM, 2000, p. 21). Given my 

definition of motivation, students’ natural desires to understand may reasonably be interpreted to 

mean students’ motivations to understand.  

Teachers rarely have opportunities to gain insight into students’ motivations for learning 

mathematics with understanding. However, I suggest that careful consideration of motivation as 

the powers, or “tendencies in action” (Dewey, 1913, p. 62), for learning mathematics with 

understanding and “the ways in which these can be carried forward” (Dewey, 1913, p. 62) may 

comprise a fundamental fulcrum upon which classroom practices pivot. In other words, it would 

be beneficial if teachers could learn to realize the capacities various motivations hold to 

empower students to understand mathematics in the classroom. Then teachers could strive to 

foster such desires and encourage students to strive to develop them. This thesis aims to give 

more insight into the powers of student motivation to understand mathematics. 

The Cat Task 

 According to Speiser, Walter, and Maher (2003), “For many students, to learn calculus 

with understanding poses special challenges” (p. 3). The task students worked on during this 
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study is called the Cat Task. For the Cat Task, students were given a series of 24 photos taken of 

a cat in motion (Muybridge, 1887/1957). Students are asked to find how fast the cat was moving 

when photographed in two different frames, 10 and 20 (see methods section for more details). 

The Cat Task, also known as the Catwalk Task, has been successfully used in many calculus 

classes (Speiser & Walter, 1996; Speiser, Walter & Maher, 2003), including a calculus class of 

dance majors (Speiser & Walter, 1994) and a graduate mathematics education course for current 

and prospective teachers (Case, 2008; Rasmussen, 2008; Speiser & Walter, 2008). The goal of 

the Cat Task is to “motivate the derivative as a rate of change” (Speiser & Walter, 1994, p. 137) 

and “confront the basic concepts underlying calculus with the data that calculus is supposed to 

help us understand” (Speiser & Walter, 1996, p. 351). As derivative is a fundamental aspect of 

calculus, it is imperative students gain more than a procedural fluency in calculating derivative—

they should understand the mathematical need for derivative and understand how derivatives are 

used in real-world situations. Another reason the Catwalk was used in the calculus classes was 

because it required students to make sense of real-world, discrete motion data as opposed to 

continuous functions. As Speiser and Walter (1994) pointed out, “The traditional calculus course 

views functions, rather than data, as the primary objects of study. The traditional pitfall is to 

think of a function as defined by a formula” (p. 150). With the Catwalk, “Data, not just 

functions, move to center stage” (p. 151).   

Rationale for the Research Question 

As described in the preceding review on extant literature, little is known about student 

motivation in the mathematics classroom. In viewing video data from an honors calculus 

classroom, I noted students often persisted in problem solving to build mathematics 
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understanding. The deficits in current research and my observations of the honors calculus 

students led me to ask and search for an answer to the following question: 

What insights might be gained about the powers and nuances of student motivation by 

studying the actions of students as they engage in mathematics problem solving in an inquiry-

based calculus classroom?  

This thesis will address this question by careful articulation of analyses of data and the 

resulting emergence of Contextualized Motivation Theory (CMT) in an effort to contribute to the 

body of research in motivation in mathematics education. 
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CHAPTER 4: METHODS 

This qualitative study, using grounded theory techniques, was based on data collected 

from a teaching experiment at a large private university in the western United States. Two 

mathematics education professors taught experimental honors calculus courses at the university 

for three semesters. The first two semesters focused on building student understanding of topics 

in Calculus I whereas the third semester focused on Calculus II. Topics in Calculus I included: 

limits, continuity, the derivative and applications, extrema, the definite integral, fundamental 

theorem of calculus, and L'Hopital's rule. Calculus II focused on techniques and applications of 

integration, sequences, series, convergence tests, power series, parametric equations, and polar 

coordinates. Typically, the enrollment in each honors class was between 20 to 25 students. A 

team of graduate and undergraduate mathematics education majors helped gather data for the 

larger study. All of my data, excepting a follow up survey, were collected in the second semester 

of the Calculus I course, Fall 2006.  

In designing this study, an honors calculus class was intentionally chosen because honors 

students are typically considered motivated to learn. There may be many other instances where 

students are less motivated. However, exploring the case in which students are motivated 

allowed for an analysis of data in order to discern and categorize these students’ various desires 

to understand mathematics. The findings can then be employed to help those students, who may 

be less motivated, develop their own desires (Harel, 2008) to understand mathematics. 

Classroom Atmosphere 

The Honors Calculus I class met for two hours a day three times per week throughout the 

semester. The room was set up so students sat at tables, but the students also could see the 

whiteboards if they turned around their chairs. All materials in the classroom were available for 
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students to use at their convenience. Examples of such materials were: graphing calculators, 

graph paper, rulers, overhead projector and sheets, white board and markers, big poster paper, 

and computers.  During each class session, students worked in collaborative settings, in groups 

of 4-6 people, on open-ended mathematics tasks with limited teacher lecture.  

Tasks were carefully designed and selected to elicit mathematical need and engage 

students in building fundamental mathematics through problem solving. Solving the tasks 

required the development of invention by students of the central tools of calculus.  Students often 

presented their intermediate work as well as final solutions in whole class discussions. 

Homework assignments included final write-ups of student-developed solutions for each task 

and for student-posed extension problems as well as textbook exercises selected from the 

homework list for all university calculus sections assigned by the mathematics department. 

Formative and summative assessments were given periodically throughout the semester, as well 

as the same mathematics department final taken by all students enrolled in any Calculus I course 

at the university. 

From the beginning of the semester, students were encouraged to explain their thinking 

and to provide compelling arguments for their mathematical actions. Students worked together to 

negotiate the meaning of the problems and the paths that should be taken to make progress. The 

instructors did not tell students how to proceed to solve any of the presented tasks. Instead, the 

teacher’s role was to facilitate students’ growth of mathematical understanding by listening 

carefully to student discourse, observing students’ problem solving activity, and occasionally 

asking probing questions to prompt student explanation and reflection on their work. Instructors 

“made pedagogical decisions,” including design or selection of tasks, “based on how students 

were framing or structuring and solving problems” (Walter & Hart, 2009, p. 164). If students 
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asked if they were done or had the right answer, the instructors would respond with statements 

and questions such as: “Tell me what you have done,” “What do you think?” “Help me 

understand your thinking,” “Have you thought about the advantages and disadvantages of using 

the model you did?” and “What do you understand about the relationship between velocity and 

acceleration?” In this way, teachers placed the responsibility on the students to determine when 

they have understood the problem well enough and have come to reasonable conclusions. 

Forms of Data Collected 

Table 1 gives a timeline for data collection. I will elaborate on each form of data in the 

next few paragraphs. 

Table 1 
 
Timeline of data collected 
 
Type of data When collected Who collected 
1. Student 
Introduction 
Survey 

Beginning of Fall 2006 semester, before 
class started 

Principal 
researchers/ 
teachers of the 
larger calculus 
teaching 
experiment 

2. Video data of 
class 
3. Field notes 

During every class period in the Fall 2006 
semester 

Graduate and 
undergraduate 
research team 
members 

4. Student work: 
homework, write-
ups, assessments 

During the Fall 2006 semester when they 
were due or given 

Teachers of 
calculus class 

5. Transcripts of 
video data 

After the course ended 
Winter 2007-Winter 2008 

Graduate and 
undergraduate 
research team 
members, including 
myself 

6. Follow-up 
survey 

Winter 2008 semester Research team 
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Before the course began, each student filled out a student introduction survey. In this 

survey, students listed their class standing, current or anticipated major, all of their previous 

math classes in high school and college, and scores on standardized tests (ACT, SAT, AP 

Calculus). In addition, students answered sixteen open-ended questions regarding their 

perspectives about mathematics learning and teaching (Student Introduction Survey, Appendix 

A). For example, one question asked, “What are the purposes of mathematics?”  Another asked, 

“What do you find least appealing about mathematics? Why?”  

Each class period during the semester, members of the research team videotaped the 

class.  One camera focused on students and student inscriptions as they collaboratively worked 

on mathematics tasks, and another camera focused on student presentations or whole class 

discussions. Each video was transcribed. Verbatim transcripts were linked with video time codes. 

The transcripts were created line-by-line, with each new line and time code corresponding to a 

turn, meaning a change from one speaker to the next. Timecodes were used to help identify the 

passage of time between utterances as well as help researchers and readers identify certain 

episodes in the data. Transcripts were also annotated with interpretative phrases, and checked for 

accuracy by research team members. 

 After video transcription, particularly compelling episodes were identified within 

sessions grouped according to the tasks upon which students worked. Often, work on one task 

extended over several two-hour class sessions. Also, during each class, other team members took 

field notes to characterize student interactions and class activities. Researchers’ field notes, 

students’ homework, and exams were available for analysis. Student background information 

and pre- and post-course mathematical beliefs surveys contributed to the data corpus.  
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All the previously mentioned data were collected prior to my joining the research team. 

In addition to analyzing that data, a follow-up survey was used to support the grounded theory. 

The follow-up survey (Appendix D), written collaboratively by our research team, was sent out 

to each student from the class in Winter 2008, a little over a year after the class ended. The 

survey asked students what they thought about the class.  I authored one question that was of 

particular interest to me: “During our honors calculus class, we often noticed that students would 

work to go beyond just finding a correct answer. When you did this, why? When you did not do 

this, why not?” This question was asked to see what motivated students to understand the 

mathematics. I did not ask students, “What motivates you to do mathematics?” Students have 

many different ideas about motivation, which are not necessarily consistent with my definition. I 

sought to collect data that would help describe student motivation in mathematics learning 

without using the actual word to elicit student responses.  

The follow-up survey is a form of self-reported data about motivation.  As previously 

stated, self-reported data is not always the best measure of motivation (Hannula, 2006). There 

are also potential biases associated with self-reported measures (Gall, Borg, & Gall, 1996; 

Pintrich & Schunk, 1996). Therefore, this additional piece of data will serve as secondary data to 

support analysis of student desires to understand mathematics.    

Participants 

Students voluntarily enrolled and self-selected into honors calculus classes, usually not 

knowing beforehand that the section in which this study was conducted was part of a teaching 

experiment. After the first semester of the project, some students knew about the class by word 

of mouth and made the decision to join the class. The determining factor of participation was that 

each student agreed to be a part of the research project.  
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This study reports on the mathematical actions of a group of six students seated at the 

focus table. At the beginning of the semester, the principal researchers chose a table to videotape 

so that student progress could be captured and carefully followed throughout the semester. Table 

2 illustrates background information for each student. 

Table 2 
 
Background participant information 
 
Participant’s 
name 

Year in school Anticipated major Last mathematics 
courses taken 

Justin Junior Some type of 
Engineering 

AP Calculus AB 
AP Statistics 

Riley  Freshman Undeclared Pre-Calculus 
Andrew Senior International Relations Pre-Calculus 
Daniel Sophomore Actuarial Science AP Calculus AB 

Statistics (HS) 
Derrick Freshman Mechanical Engineering AP Calculus AB 
Kacy Freshman Mathematics AP Calculus AB 
 
 As explained earlier, these students took a survey about mathematics learning and 

teaching (Student Introduction Survey, Appendix A) at the beginning of the semester. One of the 

questions on the survey asked: “What do you feel are the responsibilities of a student in this 

course?” Initial responses to this question indicate that students expected to come to class every 

day to receive a lecture on calculus. Five of the six participants emphasized that it was important 

for students to come to class and pay attention to the teacher. Kacy stressed that students needed 

to be prepared for class so “they are not holding back the rest of the class.”  

 When asked “What do you like most about mathematics?” the majority of students 

commented on there being definite processes or answers to math problems. Derrick’s answer 

encapsulates the sentiments of the others. He said, “You know what you have to do to get the 

answer [in mathematics] and you will know if you are right or wrong. In a similar vein, Justin 

said, “the solutions to problems in math are definite and exact.”   
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Another question on the survey stated “List three necessary qualities of an excellent 

mathematics learner.” Responses to this question varied. Some of the qualities listed were: 

memory, focus, comprehension, organization, patience, humility, diligence, self-discipline, 

attention to detail, and application skills. Daniel also chose “desire to learn” as one of the 

necessary qualities of a mathematics learner. He said, “Having a desire to learn is important 

because it is the first step to learning anything. If a student has desires to understand the 

mathematics, they will work towards that goal.”  

Task 

During the calculus course, students worked on many carefully selected tasks designed to 

help them build up essential conceptual understandings of the critical ideas of calculus. The 

analysis presented here is primarily of video data collected at the beginning of the semester while 

students were working on the cat task (Speiser & Walter, 1994) 1

Sessions during which students worked on the Cat Task were selected for presentation 
and analysis here, in part, because the task is designed to elicit student mathematics 
wherein the motivations of the students might be other than showing that they can 
recognize and follow a procedure or demonstrate technical skills. In this way, students 
are presented with opportunities to enact personal agency in mathematical choice for 
problem solving in an unfamiliar context. We wanted to know what motivates students as 
problem solvers at the initial points in their experiences in a particular class before 
formation of motivational patterns (Corpus, et al., 2009) or emphases by teachers 
translate into student endorsement of those emphases (Urdan & Turner, 2005). (p. 165) 

. Walter and Hart (2009) 

described the reasoning for selecting the Cat Task for the study: 

 
 

                                                      
1 The cat task was initially created by Bob Speiser to challenge honors calculus students in creating meaning for the 
derivative as it relates to motion.  
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Figure 2: Series of photos (Muybridge, 1887/1957) given to the students as part of the Cat Task 

 
The Cat Task involves a series of photos of a cat going from a walk to a gallop in front of 

a grid (Figure 2). The 24 photos, or frames, were taken at intervals of 0.031 seconds (Muybridge, 

1887/1957). The gridlines are 5 centimeters apart, with a dark vertical gridline every tenth line. 

Students are invited to find how fast the cat was moving when photographed in frame 10 and in 

frame 20. The task was chosen to elicit the intellectual need for derivative as a mathematical tool 

in problem solving and to prompt students’ conceptual development of the derivative without 

teacher lecture. 

Prior to the cat task, students had not received instruction in this class on derivatives. 

Calculus ideas that the students had built up before this task include: making and interpreting 

distance and time graphs and computing limits. During the Desert Motion task (diSessa, 

Hammer, Sherin, & Kolpakowski, 1991), students also developed some basic understandings of 

displacement, velocity, and acceleration.  
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Constructing a Grounded Theory 

A grounded theory approach (Charmaz, 2006; Corbin & Strauss, 2008) is appropriate for 

building contextual theory about motivation in learning through analysis of video data of 

students’ mathematical problem solving. In this approach, “observed student powers and 

tendencies in action were analyzed to provide theoretical indices of motivation” (Walter & Hart, 

2009, p. 164).  

In particular, the data analysis procedure used for this study combines the grounded 

theory process described by Charmaz (2006) and a model for analyzing videotape data 

developed by Powell, Francisco, and Maher (2003). The process is outlined below and details 

will be given in the following sections.  

• Data collection 

• Developing a research question 

• Viewing attentively the video data 

• Identifying critical events 

• Coding  

• Memo writing 

• Theoretical sampling 

• Theoretical sorting and diagramming concepts 

• Composing narrative 

It is important to note that although steps are outlined in a specific order, previous steps 

were often revisited to strengthen the analysis. Charmaz (2006) described the grounded theory 

process by saying, “We start with gathering data and end by writing our analysis and reflecting 

on the entire process. In practice, however, the research process is not so linear” (p. 10). Refining 
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analysis and revisiting data were recurring and important parts of each step of the process 

outlined above. 

Data Collection and Research Question 

 The collection of data was elaborated upon earlier in this chapter and the development of 

the research question was explained in Chapter 3. 

 
Viewing Attentively the Video Data 

The primary data for this study were the classroom videos and verbatim transcripts of the 

videos. Integration of student write-ups of solutions to mathematics tasks, student introduction 

survey, and follow-up survey into the analysis will be explained later. Video data allowed me to 

look at and listen to students who are engaged in mathematical activity and use their actual 

mathematical experiences to build theory. In grounded theory, “data form the foundation of our 

theory and our analysis of these data generates the concepts we construct” (Charmaz, 2006). 

Thus, self-report is not the only index of motivation. 

 The videos of student problem solving on the cat task were viewed in their entirety 

several times as well as videos of students working on the task preceding the cat task. In this 

way, I became well acquainted with the environment of the class as well as with the students’ 

mathematics. Factual, time-coded descriptions of each video were written to construct a timeline 

of the classroom video data. For example, twelve minutes into the fifth class period, the 

following description was written:  

12:35—Justin said it would be more precise to find the slope at the point 10 than 
to do the average between the two points in order to find the speed of the cat at 
frame 10.  Justin suggested that someone try to figure out the slope.  This episode 
is right before the group is going to present their work in progress to the class. 
The group decides to graph their cubic function on the calculator instead of 
drawing the graph on overheads. 
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During initial viewing of the video, video was watched and descriptions were written 

without “intentionally imposing a specific analytical lens” (Powell, et al., 2003, p. 415). Such a 

timeline made it easy to quickly locate particular video content and to situate each event relative 

to other events.  

Identifying Critical Events 

In order to describe and understand students’ motives, I needed to characterize what 

students were doing, what choices they were making, and evidence of possible reasons for their 

activities. After several viewings of the videos, salient episodes of classroom happenings were 

selected as critical events. Critical events “demonstrate a significant or contrasting change from 

previous understanding, a conceptual leap from earlier understanding….[a critical event] may be 

any event that is somehow significant to a study’s research agenda” (Powell et al., 2003, p. 416-

417). At first, events for this study were deemed critical when students chose to engage in doing 

mathematics in any form during the Cat Task. After initial coding was completed, critical events 

became limited to episodes during work on the Cat Task when students chose to seek an 

understanding of the mathematics. Open codes such as questioning, persisting, explaining, and 

extending mathematical activity beyond answering explicit questions posed in the task, served as 

indicators of student motivation for learning mathematics with understanding. 

Using Transana (Woods & Fassnacht, 2007), clips of the critical events were created to 

allow in depth analysis of small segments of video data. Transana also has features that allow 

researchers to create keywords and codes that link to specific clips. The coding that is essential 

to and emergent during the grounded theory process is described in the next section. 
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Coding 

Open and focused coding (Charmaz, 2006) of selected classroom episodes supported the 

development of Contextualized Motivation Theory (CMT). Open coding is “breaking data apart 

and delineating concepts to stand for blocks of raw data. At the same time, one is qualifying 

those concepts in terms of their properties and dimensions” (Corbin & Strauss, 2008, p. 195). 

Open codes at the beginning of data analysis were developed to locate and note videotaped 

activities and student utterances. Open coding was done line-by-line for each class period in 

which students worked on the Cat Task. As might be expected, a single statement by a student 

was often coded with multiple open codes. Open codes reflected student language and activity. 

For example, when Daniel said, “I still don’t know the derivative of ‘Q’ though or what ‘Q’ is,” 

the transcript was memoed with open codes such as “don’t know” and “still” to note verbatim 

linguistic activity as possible indicators of motivation. Other open codes for that statement 

included derivative, formal notation, and looking at text to note mathematics content or students’ 

mathematical work or inquiry. Gestures, inscriptions, facial expressions, and emotions were also 

noted during open coding. For example, when a student spontaneously raised both arms and 

excitedly said, “got it” the open code “got it” noted emotion. Open coding also noted the 

indicators of student motivation for learning mathematics with understanding as described in the 

previous section. 

 During each phase of analysis, constant comparisons were made between data, 

categories, and concepts. This is known as a constant comparative method (Charmaz, 2006; 

Corbin & Strauss, 2008). In this phase, critical events were compared with each other and 

similarities were noted among several open codes. Open codes with common themes were 

clustered to create focused codes (Coding Organization, Appendix B). Focused codes are 
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theoretical constructs from which inferences emerge regarding student motivations for learning 

mathematics with understanding. For example, one focused code was precision. It was observed 

that when students desired precision in problem solving, they were also striving to gain better 

understandings of the mathematics. Some open codes that were clustered in the focused code 

precision were mathematical activities, such as re-measuring distances, and verbatim phrases 

including “most accurate”, “as close as possible”, “more precise”, and “little more perfect”.  

Focused codes within context were characterized according to intellectual-mathematical 

motivations and social-personal motivations. Intellectual-mathematical motivations are focused 

codes that note intellectual desires of students to understand mathematics. Precision is one 

example of an intellectual-mathematical motivation. Students also exhibited social-personal 

motivations. Social motivations include desires to belong to a community and to help others. For 

example, a social motivation in building understanding of mathematics is a desire to 

communicate effectively within a community of learners. Personal motivations are seen as desires 

to invest, define, or evaluate self. Personal motivations might include self-investment or 

enjoyment.  

Memo writing 

Writing of initial and focused codes was accompanied by memo writing. Powell et al. 

(2003) describes this process: “In our model, as researchers watch, describe, code, and otherwise 

attend to their video data they continually write in a notebook…about their emerging and 

evolving theoretic, analytic, and interpretive ideas” (p. 414). Whereas the codes were written in 

few words and in the same language the students used, memos were not similarly restricted. 

Insights, observations, and connections among events in the video as well as among the other 
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forms of collected data were documented. These memos were in my own words and at times 

included connections to existing literature.  

The following memo was written while watching video from the second hour of the ninth 

day of class, over a period of about 8 minutes. 

11:23-19:55—The group is trying to figure out how to find a tangent line at a point which 
corresponds to a corner on a piecewise graph without using their calculator. The fact that 
the group knows how to find tangent lines using their calculator, but decides to use 
another way, is indicative that the students sought to understand the mathematics. At this 
point in the conversation, Derrick finds the equation of the tangent line in the book.  
Daniel looks in the book too and says: “Can you make any sense out of that?”  Daniel 
poses a question to the group and the group decides to respond to the question. This 
happens a lot with this group. Someone asks a question or says they don’t understand a 
concept and then the group works to answer the question. Derrick then says it [the 
equation of the tangent line] is close to the equation of the derivative.  Sense making 
seems to be important to these students at this point in time. Also, here Derrick is trying 
to relate new concepts to his previous knowledge. After this, the group discusses what 
happens if you jump off a moving thing that is swirling in a circle, such as a merry-go-
round.  Perhaps students think the mathematics would make more sense if they could 
relate it to something they already understand. The group discusses which way they 
would fall off a merry-go-round and decide one would fly off linearly perpendicular to 
the circle.  Derrick says: “Oh yeah!  That makes sense!” Again, the word “sense” comes 
into the conversation. Andrew then says: “So we can draw a curve through those three 
points [meaning three discrete points representing the position of the cat at frames 9, 10, 
and 11] and find the tangent line through point 10.” Here it can be seen that Andrew is 
able to apply the discussion of the playground equipment to what the group is trying to do 
mathematically in the Cat Task.  
     
 Memos and focused codes helped me to develop theoretical categories for motivations. 

After theoretical categories were initially developed, advanced memos helped illuminate 

connections among the focused codes. At this point, conceptual categories started to become 

more refined as the theory was emerging. The subsequent advanced memo, written from the 

same piece of video data used above (Day 9, Hour 2, 11:23-19:55), illustrates the use of focused 

codes and emerging theory in memo writing:  

The indication that these students are learning mathematics with understanding is their 
persistence in extending mathematical activity beyond answering explicit questions posed 
in the task. The students have a desire to make sense of tangent lines and how they relate 
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to the Cat Task. This desire seems to be intellectual in nature. Other motivation 
researchers would say that the individuals in the group have a “learning” orientation 
instead of a “performance” orientation. Simply classifying it as a learning orientation 
does not adequately capture the complexities of what is going on here because we already 
know these students are motivated to learn and understand the mathematics. Furthermore, 
the students want to make sense of the mathematics as a community of learners. They 
seem to also desire to build shared meaning within the group. Finally, it is interesting that 
students rely on their knowledge from the playground to help them understand tangent 
lines. During the Cat Task, students have also related their knowledge of lasers, physics, 
and running track to help them understand the mathematics that emerged while working 
on the task. Because students often refer to other knowledge, I think they have a desire to 
make connections between their previous knowledge and new things they learn. Piaget 
talked about something similar—assimilation.  
 

Theoretical Sampling 

 Theoretical sampling was done to further develop the theoretical categories. Theoretical 

sampling may be defined as “a method of data collection based on concepts derived from data” 

(Corbin & Strauss, 2008, p. 144). The follow-up survey (Appendix D) was one form of 

theoretical sampling. After I developed some theoretical categories, such as 

intellectual/mathematical motivations, the follow-up survey was sent out to help further develop 

these categories by using student responses to an open-ended question. Student write-ups of the 

cat task and the student introduction survey were two other pieces of data under the category of 

theoretical sampling. Even though these data were previously collected, they were analyzed after 

basic categories were developed from the video data.  

 The follow-up survey, student write-ups, and the student introduction survey were all 

analyzed using the same steps as the video analysis. In other words, identifying critical events, 

coding, and memo writing were done for these three pieces of data just as was done with the 

video data.  
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Theoretical Sorting and Diagramming Concepts 

Memos were written on note cards with corresponding theoretical categories as their 

titles. The memos were sorted according to their titles and compared to other memos to discern 

relationships among various categories. Sorting memos and diagramming concepts were often 

done simultaneously. Whereas sorting memos gives us ideas, diagrams can also “offer concrete 

images of our ideas” (Charmaz, 2006, p. 117). Many different diagrams were constructed during 

analysis. For an example of one of the early diagrams made, see Appendix C (Analytic 

Diagram). During this step of the analysis, interpretive insights, observations, and diagrams 

served to build the narrative and refine important relationships within the structuring of the 

emerging theory. Corbin and Strauss (2008) stated, “When an analyst actually sits down to write 

a memo or do a diagram, a certain degree of analysis occurs. The very act of writing memos and 

doing diagrams forces the analyst to think about the data” (p. 118). 

Composing Narrative 

After all previously mentioned steps in the analytic process, a first draft of the findings 

was written. However, writing did not stop the refining process. I constantly revisited each piece 

of data and strengthened codes, concepts, diagrams, and theoretical categories. Many subsequent 

drafts ensued before the paper, and the theory, was finalized. In the following section, analysis is 

presented according to theoretical categories of CMT—classroom episodes are not always in 

chronological order.    
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CHAPTER 5: DATA AND ANALYSIS 

I present typical transcript excerpts from classroom video to characterize student 

motivations for learning mathematics with understanding during problem solving and to 

demonstrate the grounded development of CMT. For clarity in analysis, interpretation, and 

theory building, transcript excerpts are formatted in columns to include, from left to right: video 

time codes; name of student speaker; verbatim utterances with bracketed annotations and bolded 

emphases; and open and focused codes. Italicized codes represent focused codes. Focused codes 

that are both italicized and bolded characterize student motivations. At first, open coding is 

displayed to illustrate how open coding was conducted. Open codes are then omitted in later 

transcripts in order to more prominently emphasize student motivations. Refer to Appendix F to 

see open codes for all transcripts (Coded Transcripts, Appendix F). Time codes identify the day 

and hour, (D-H), and the minutes and seconds, M:S, when each student began speaking.  

The focus is primarily on a group of six students: Justin, Riley, Daniel, Derrick, Kacy, 

and Andrew. During the interval students worked on the Cat Task, these six students were in two 

different groups. Group 1 included Daniel, Andrew, Justin, and Riley. After a few days, some 

students switched groups so that Daniel, Andrew, Justin, Kacy, and Derrick were together in 

Group 2. 

Intellectual-Mathematical Motivations 

When presented with the Cat Task, students in the calculus class began to make sense of 

the problem. Much time was spent on measuring the position of the cat in each frame. The 

students in Group 1 determined the distances the cat moved in each of the 24 frames by using the 

gridlines in the photographs to measure the position of the cat’s nose in each frame (Figure 3). In 

his final write-up Justin explained how the group started thinking about the problem. He wrote, 
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“To start we began analyzing the photographs. We decided that all measurements will be made 

from the cat’s nose. We decided that that nose represents the front of the cat and any flexing of 

the cat’s body won’t cause any confusion in measuring. Measurements began using the first 

visible solid line in frame 1 as 0 cm.” 

 

Figure 3: The cat photos again (Muybridge, 1887/1957). The arrow indicates the dark gridline 
from which students began measuring the cat's position. 

 
The following table (Table 3) shows the measurements of the cat’s position obtained 

through group effort. 
 
 

This dark line is 0 cm 
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Table 3 
 
Group 1 measurements for the cat’s position 
 
Frame Time (seconds) Distance (cm) 
1 0 5 
2 0.031 5.5 
3 0.062 7.5 
4 0.093 9 
5 0.124 10 
6 0.155 11 
7 0.186 11.5 
8 0.217 12 
9 0.248 13 
10 0.279 15 
11 0.310 25 
12 0.341 26 
13 0.372 36.5 
14 0.403 45 
15 0.434 52.5 
16 0.465 59.5 
17 0.496 65.5 
18 0.527 75 
19 0.558 85 
20 0.589 95 
21 0.620 109 
22 0.651 115 
23 0.682 125 
24 0.713 136.5 
 
Note. Distance was measured starting from the first dark gridline of the cat photographs. 

After making a table of measurements, Group 1 plotted points to obtain a graph 

representing the cat’s position (Figure 4).  
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Figure 4: Recreated student graph representing the cat's position for each frame 

 
Prior to the first episode presented here, students calculated an average rate of change 

between frames 9 and 10 by dividing the distance (2 cm) the cat moved by the time interval 

(0.031 sec) between frames to determine that the cat was moving 64.52 centimeters per second at 

frame 10 and chose this as an initial value for the rate of change at frame 10. 

Then, Justin suggested the possibility of a three-step solution approach: 1) plot every 

frame number and corresponding distance as ordered pairs on a graphing calculator, 2) use the 

regression capabilities of the calculator to find a differential function to fit the data points, and 3) 

use the derivative function on the calculator to predict the instantaneous velocity of the cat at any 

frame. 

At this point it is clear that Group 1 knew about the word derivative and knew that it 

could be found on the calculator. However, all of the students in the group seemed unsure about 

their understanding of the derivative (3-2, 26:44-27:13). Daniel voiced his uncertainty to the 

group (Figure 5, 26:44). 
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Timecode Speaker Transcript Codes (Focused) 
(3-2) 
26:44 

Daniel I still don’t know the 
derivative of “Q” though, or 
what “Q” is. [Looks at p. 76 
in book-recreated below]       
           
𝑄𝑄′(𝑎𝑎) =  lim𝑏𝑏→𝑎𝑎

𝑄𝑄(𝑏𝑏)−𝑄𝑄(𝑎𝑎)
𝑏𝑏−𝑎𝑎

 
 

-Still don’t know 
-Derivative 
-Persistence in 
understanding derivative 
and notations 
-Poses problem 
-Desire to know 
 

Figure 5: Transcript. Daniel desires to know 

 
Instead of acting on Justin’s earlier suggestion of using the derivative function on the 

calculator, Daniel extended mathematical activity beyond answering explicit questions posed in 

the task when he posed a problem by saying that he still did not “know the derivative of Q 

though or what Q is” (26:44). Because Daniel said, “still don’t know”, I infer that he desired to 

persist in trying to conceptually understand the derivative and associated textbook notations. 

Since persistence is viewed as an indicator of motivation, in this instance (26:44), the focused 

code desire to know notes Daniel’s motivation to satisfy a mathematical necessity to 

conceptually understand derivative. Furthermore, Daniel’s expression of his desire to know was 

also interpreted as problem posing by the rest of his group (Figure 6, 26:49-26:52). 
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26:49 Riley “Q” is the quantity of the 
function [Quietly, matter-of-
fact] 

-Response 
-Respond to student 
posed problem 
-Reads book 

26:52 Andrew Thank-you [chuckles]…what 
does that mean? [Garbled 
words]…we’re trying to 
figure out what the book’s 
talking about. ‘Cuz I mean, 
we already know how to get 
the average [average rate of 
change], and it took us like 
ten minutes to figure out 
what he [book author] was 
talking about. 

-What does that mean? 
-Desires meaning for 
book language and 
notation 
-Emulate other’s use of 
agency 
-Question for 
understanding 
-Figure out 
-Ten minutes 
-Persistence in 
understanding average 
rate of change 
-Book notation  
-Build shared meaning 
-Already know 
 

Figure 6: Transcript. Riley and Andrew responding to Daniel 
 

Riley and Andrew responded to Daniel’s problem posing by also looking at the textbook 

to see if they understood the notation used for derivative (26:49-26:52). “In the excerpt provided 

above, note that these students’ discussion was a reflection of their choice to act on a student-

posed extension of the Cat Task. The extension, what was Q and what was the derivative of Q, 

was posed by a student after the intellectual need for the derivative had been elicited” (Walter & 

Hart, 2009, p. 168). Hence, respond to a student-posed problem was often a motivation for 

students to learn mathematics with understanding. Riley read from the book that “Q” was 

“quantity”. However, Andrew, questioning for understanding, responded, “What does that 

mean?” For Andrew, at this juncture, a desire for meaning was a motivation for understanding 

derivative and the book notation. As Andrew said, the group could already compute an average 

rate of change, but then spent “ten minutes” trying to make sense of the book notation. Again, 
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student persistence in sense making is noted as an indication of motivation for building 

conceptual understanding of mathematics (26:52).   

After students in Group 1 worked to build shared meaning for the notation in the book, 

they decided that their somewhat protracted work to find the average rate of change 

corresponded to how the book “was talking” (Figure 7, 27:09) about the average rate of change. 

 
27:09 Justin To find out we already 

knew what he was talking 
about. 

-We 
-Build shared meaning 
for average rate of change 
-Already knew 
-Statement of 
understanding 

27:13 Andrew Huuh—that’s horrible. 
[Laughs, a moment’s 
silence.]…ok, I’ll try an’ 
figure out what he’s talking 
about. 

-Laughing 
-Displaying emotion 
-Try an’ figure out 
-Persistence in 
understanding derivative 
-Extend scope of ideas 
-Trying to figure things 
out 
 

Figure 7: Transcript. Extend scope of ideas. 
 

Students in Group 1 might have chosen to proceed by taking the derivative on the 

calculator, or to stop working and settle with average rate of change for their answer to the task-

posed question about how fast the cat was moving. Nonetheless, they chose to endeavor to make 

sense of the definition of derivative in the textbook (27:13). Therefore, to extend scope of ideas 

related to average rate of change was a motivation for these students. 
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Figure 8: Students in Group 1 responding to a student posed problem 
 

After a minute and a half, Andrew and Daniel were still trying to figure out “Q” and what 

it is. The group had not yet come to an understanding of derivative as described in the book. In 

striving to understand derivative, these students had a desire to adapt to mathematical norms 

described by experts, such as a textbook in the previous episode, and, as in the next episode, 

mathematics instructors. Daniel decided to ask one of the instructors about the notation in the 

book (Figure 9, 3-2, 30:25). At this point in the data presentation, open codes will be omitted as 

explained previously.  
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(3-2) 
30:25 

Daniel We understand “Q” 
signifies like—we figured 
out this [equation for 
derivative] could help us to 
understand exactly, like 
how to get the 
instantaneous-- 

-Statement of 
understanding 
-Precision 
-Adapt to mathematical 
norms 

30:29 Instructor The 
instantaneous…[Daniel: 
Yeah] So is your question 
about what is “Q”? 

 
-Teacher influence 

30:32 Daniel Yeah, “Q” defined in this, I 
guess [pointing to the 
equation students were 
discussing in the book]. I’d 
like to know how to find 
that too [another equation 
on the same page], but 
basically, I needed to know 
what “Q” was. 

-Desire to know 
-Recognize 
mathematical need 
 

Figure 9: Transcript. Precision as a motivation. 
 

When talking to the instructor, Daniel stated that they thought the equation for derivative 

in the book could help them be precise, to “understand exactly, like how to get the instantaneous 

velocity” (3-2, 30:25) of the cat. The group decided they had already found average rate of 

change to answer how fast the cat was moving at frame 10, but they were also “trying to think 

how much farther [they] could go” (3-2, 35:58). Students decided that the instantaneous velocity 

would give a better answer for how fast the cat was moving at a particular frame than average 

velocity would. Students looked to the book as an authoritative source because they wanted to 

“understand exactly” how to find the instantaneous velocity. Thus, precision was a motivation 

for these students. The use of the word “understand” is of note here because it indicates that 

Daniel desires to know more than a procedure to find instantaneous velocity. It is clear from 

previous discussions and work that he has figured out how to substitute numbers into the 
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equation. Instead, Daniel voices his group’s desire to expand their current understanding on the 

mathematics they were developing while working on the Cat Task. 

In order to better understand the equation for derivative in the book, Group 1 then talked 

about derivatives, limits, and velocity. They did not know much about limits, so the group started 

to discuss something they were familiar with, driving on the freeway, and applied it to the cat 

situation (Figure 10, 3-2, 33:07). 

(3-2) 
33:07 

Justin It’s like when you’re driving 
in your car, and you’re 
looking at your speedometer, 
you just look at your 
speedometer, it’s saying 65 
mph, so instantaneous 
velocity is at, zero [the 
interval of time is zero 
seconds], because, at that 
exact moment; but what 
we’re trying to work out here 
is, we’re looking at two 
different time frames, and 
say, ‘k, we’re goin’ 60 miles 
an hour-this is the time frame 
[at this time frame]-we’re 
going 63 miles an hour at 
this time frame, what do we 
do if we’re somewhere right 
in the middle? ‘s kinda what 
we’re looking at. 

-Relating to other 
experiences 
 
 
-Desire to make 
connections 
 
 
-Trying to figure out  
 

Figure 10: Transcript. Desire to make connections. 
 

All members of the group looked beyond the required answer for the Cat Task and were 

searching for a greater understanding of how to find the instantaneous velocity between two 

established discreet points. Students had calculated the average rate of change to find the average 

velocity between frames 9 and 10 to be 64.52 cm/s and between frames 10 and 11 to be 322.58 

cm/s. However, students were striving to find the velocity exactly at frame ten, between two 
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significantly different average velocities. To visualize the situation, students used the position 

graph displayed earlier (Figure 4) zoomed in on frames 9-11 (Figure 11).  

 

Figure 11: Graph of cat's position in frames 9, 10, and 11 
 

At this point of the discussion (33:07), Justin compared the cat’s movement to driving in 

a car. Justin argues that if you were in a car, you could tell the instantaneous velocity by looking 

at the speedometer at a specific time. But, Justin notes that the problem they have come up 

against in the Cat Task is more like knowing “we’re goin’ 60 miles an hour” during one time 

frame and “63 miles an hour” during another time frame, but wanting to know the speed “right in 

the middle” (3-2, 33:07). Because he related to other experiences, I infer that Justin had a desire 

to make a connection between his current knowledge and the task at hand. This desire to make 

connections was often a motivation for students to continue to make sense of the mathematics.  

Prior to the next episode, Andrew asked, “how are we going to present this information” 

to the class? At this time, Group 1 did not have sufficient time to continue to explore their ideas 

on instantaneous velocity, so their preliminary answers for how fast the cat was moving at frame 

10 and frame 20 were found by calculating the average rate of change from frames 9-10 and 19-
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20, respectively. At frame 10, they decided the cat was moving at 64.516 cm/s and at frame 20, 

the cat was moving at 354.85 cm/s. However, Riley seems to have a concern about the obtained 

answers (Figure 12, 3-2, 45:28). 

(3-2) 
45:28 

Riley 64.5 [cm/s] from 9 to 10 
[their answer for average rate 
of change from frame 9 to 
10]. The thing that bugs me 
on that one is from 10 to 11 I 
got 225 [225 cm/s-average 
rate of change from frame 10 
to 11]. 

 
 
 
-Inconsistency/cognitive 
conflict 
 

45:35 Justin That’s what- yeah, I was just 
looking at too. But that’s 
just, it’s the cat’s 
accelerating really quick 
there. 

-Resolve 
inconsistencies/conflict 

Figure 12: Transcript. Students resolve inconsistencies. 
 

Although Group 1 had an answer and were getting ready to present their results to the 

class, Riley was concerned about the answer they got for how fast the cat was moving at frame 

10 (45:28). The group had calculated the rate of change from frames 9 to 10 to get their answer. 

However, Riley (and other members of the group) noticed that the rate of change from frames 10 

to 11 was significantly different. There was an inconsistency among calculations which equated 

to a cognitive conflict for Riley. This inconsistency powered Riley and members of his group to 

look deeper into what was going on. Thus, a desire to resolve inconsistencies and/or cognitive 

conflicts became evident as motivations for these students to understand the mathematics. In 

essence, students were motivated to move from a state of disequilibrium to state of equilibrium 

(Harel, 2008). 

As active learners, students continued to try to extend the scope of ideas associated with 

finding the cat’s velocity at frame 10 by attempting to determine the slope of the tangent line, but 

they did not know how to situate the tangent line relative to a function that was non-
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differentiable at frame 10. Upon completion of their work on the task, in his final write-up 

Daniel poses a question that highlights a mathematical necessity elicited by their work on the 

task, “The problem that arises is that one can take many tangent lines at .279 seconds-which is 

right?” Andrew, in his final write-up of the task, tied the group’s work back to the question about 

derivative that Daniel posed several days earlier (3-2, 26:44). Andrew summarized the groups’ 

building of shared meaning for derivative, 

 As an extension to the project we explored tangent lines relative to 
finding the instantaneous velocity of the cat in frame 10. Although we were not 
able to find a way to find a tangent line that touches the curve of the line from 
points 9 to 11 we were able to solidify our idea that the average velocity obtained 
from frames 9 to 11 was as close to instantaneous velocity as were going to get. 
The idea of using the tangent line in accompaniment of a secant line is finding 
points on the curve of the line. If Q is the point that the tangent line touches the 
[curve and] P is the point that the secant line crosses the curve of the line. As Q 
and P are brought closer together the limit is made smaller and smaller. As the 
limit gets smaller the closer we get to the instantaneous velocity. The limit in this 
situation is the amount of time that has lapsed between the two points P and Q. In 
this project we were striving to bring the difference between points Q and P on 
the x-axis to be zero. The closest that we could bring these two points was 0.031 
seconds. 

 
Figure 13 represents Kacy’s drawing of Andrew’s explanation. (Note: Kacy’s points P 

and Q are opposite of Andrew’s description.)  

 
Figure 13: Kacy's drawing of the group understanding of derivative 
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Andrew’s description of the group’s motivation to build shared meaning will be 

discussed in the section on social-personal motivations. The focused code recognize 

mathematical necessity notes the intellectual-mathematical motivation that is fundamental to 

these students’ building conceptual understanding of the definition of derivative and the role of 

tangent lines in finding instantaneous rate of change. Daniel posed a question, “which [tangent 

line] is right?” and Andrew shares the group response–they recognized the mathematical 

necessity of average rate of change imposed by discrete data, the mathematical necessity of a 

continuous, differentiable function over an interval including frame 10 in order to determine 

instantaneous velocity of the cat at frame 10, and the mathematical necessity of interpolation.  

Confirming evidence shows that students chose to exhibit “intellectual passion” (Polanyi, 

1958/1974, p. 142) in pursuit of clarity, meaning, and coherence in their mathematical work. 

Focused-code examples of intellectual passion–desire to know, desire for meaning, recognize 

mathematical necessity, respond to a student-posed problem, adapt to mathematical norms, 

resolve inconsistencies and/or cognitive conflict, desire to make connections, extend the scope of 

ideas, and precision–are all directly connected with the mathematics in which the students were 

engaged. Recognize mathematical necessity, desire meaning, desire to know, etc. are theoretical 

constructs for student motivations that emerged from open coding, focused theoretical coding 

and from the construction of stratified categories. Motivations of this nature were stratified as 

intellectual-mathematical motivations and make up one component of Contextualized Motivation 

Theory (CMT). Walter and Hart (2009) describe how the motivations in CMT are more than an 

inventory list:  

In contrast to providing an inventory list, our theoretical constructs resulted from analytic 
refinement of open and focused codes and our interpretive analysis demonstrates the 
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relationships between these constructs. “An interpretive analysis invites the reader’s 
imaginative participation in related experiences through the theoretical rendering of the 
category...pure description, in contrast, invokes interest in, and often, identification with 
research participants’ stories” (Charmaz, 2006, p. 147). (pg.169) 
 

Social-Personal Motivations 

Social-personal motivations emerged similarly in the development of CMT. Social 

motivations include desires to belong to a community and to help others. Personal motivations 

include desires to invest, define, or evaluate self, which, if enacted, satisfy a personal need 

(Maslow, 1954), want, goal, or belief (Hannula, 2006; Deckers, 2001). However, in practice, 

trying to tease apart personal motivations from social motivations is similar to trying to tease 

apart the mathematics one learns from the contexts in which the mathematics is learned. For 

example, an individual’s “knowing is inherent in the growth and transformation of identities and 

it is located in relations among practitioners, their practice, the artifacts of that practice, and the 

social organization and political economy of communities of practice” (Lave & Wenger, 1991, p. 

122). 

In the episodes described above, students worked as communities of learners to build 

shared meanings for average rate of change and the derivative to answer the questions explicitly 

posed by the Cat Task and in response to student-posed problems. They collaboratively gathered 

measurement data to construct a collection of ordered pairs representing displacement of the cat. 

They calculated average rate of change and checked each other’s calculations. As evidenced by 

Andrew’s final write-up presented earlier, students succeeded to build shared meanings for the 

derivative. Within CMT, the focused code building shared meaning is a social-personal 

motivation. 

Another social-personal motivation, closely tied to intellectual-mathematical motivations, 

was identified as emulate others’ use of agency.   At times, students were seen to choose to 



65 
 

persist in understanding the mathematics after they had seen one of their peers use their agency 

to seek understanding.  Seeing and emulating choices made by others can be represented as a 

cycle (Figure 14) where choices are continually being acted upon. 

 

 
As an illustration of the motivation, emulate others’ use of agency, I take the reader back 

to the first presented episode in this analysis (3-2, 26:44-27:13).  In this instance, Daniel had a 

choice to try to understand derivative or just follow a procedure.  Daniel expressed his desire to 

know more about derivative and chose between simultaneously existing intellectual-

mathematical motivations. Riley, Justin, and Andrew (3-2, 26:52) emulated Daniel’s use of 

agency by also choosing to learn more about derivative by responding to a student-posed 

problem. The group proceeded to critically examine notations in the book to extend their 

understandings of the derivative. 

 
 

Individuals use 
own agency to 
act on motives 

 

Others see the 
use of agency by 

the individual 
and emulate it 

There are 
individual 

choices to try to 
understand the 
mathematics or 
do something 

else 

 
 Figure 14: Agency emulation cycle 
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 After Group 1 came up with their initial answers to the Cat Task, they were preparing to 

present their work-in-progress to the entire class. After a suggestion that the group get up and 

report their answers, Andrew used his agency to express a different desire (Figure 15, 3-2, 

46:07). 

(3-2) 
46:07 

Andrew Well, we’ve got to present 
the information in a way that 
makes sense. [Daniel: Yeah, 
that’s true] Ok, why don’t we 
just make a table, you know, 
out of the rate of change 
from 9 to 10 and the rate of 
change from 19 to 20 and 
then that’s how we display, 
you know the rate of change 
of the uh, centimeters. 

-Desire to communicate 
effectively 
 
-Consensus 
 

Figure 15: Transcript. Desire to communicate effectively. 
 

Andrew said their group needed to “present the information in a way that makes sense” 

(3-2, 46:07). It is inferred that a desire to communicate effectively with peers was a social 

motivation for students when presenting their mathematical work either to the entire class or 

within a group.  

Recall from before (3-2, 45:28) that Riley had a concern with finding how fast the cat 

was moving at frame 10 by calculating the average rate of changes from frames 9-10. Riley 

attempted to resolve his concern about the average velocity being so different from frames 9-10 

and from frames 10-11 by subtracting the two average rates of change (225 cm/s minus 64.5 

cm/s) to get 160.5 cm/s for the velocity at frame 10. Riley’s ideas had been temporarily set aside 

in favor of preparing for the group presentation. However, in the next episode, Daniel decided to 

reintroduce and pursue Riley’s concern (Figure 16, 3-2, 52:00). 
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(3-2) 
51:57 

Riley About 354 [cm/s for frame 
20] and 64.5 [cm/s for 
frame 10]. [Referring to the 
answers they will present to 
the class] 

 

52:00 Daniel Yeah, 64.5 [cm/s] and I 
don’t know though, that was 
kind of interesting what you 
[Riley] did though minusing 
the amount [subtracting 
velocities obtained from 
frames 9-10 and from 
frames 10-11]. I don’t know 
if that gets closer. 

 
 
-Social responsibility 
and interaction 
 

52:11 Riley That was the idea of at 11 o’ 
clock you were moving 65 
and at 12 o’clock you were 
moving 68. The difference 
is 3, like one subtracted 
from the other one. 

-Desire to make 
connections 
 

Figure 16: Transcript: Social responsibility and interaction. 
 

Daniel chose to revisit Riley’s idea by saying, “it was kind of interesting what you did” 

(52:00). Daniel acted upon a perceived social responsibility to consider other’s ideas. Together 

with a desire to communicate effectively, the motivation of social responsibility and interaction 

proved to be one of the most salient of the social-personal motivations. This is also evident from 

analysis of answers given to a question given in the follow-up survey (Appendix D). The 

question asked: “During our honors calculus class, we often noticed that students would work to 

go beyond just finding a correct answer. When you did this, why? When you did not do this, why 

not?” 

Part of Daniel’s response included: “Other people’s ideas also made me want to look 

deeper into different subjects.” Justin said, “I remember many times not only would we try to 

find the correct answer, but we’d see if there were alternative methods in getting that answer. 

Since there were a number of us in our groups, each person thinks differently and therefore 
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approaches each problem a different way. This leads to various ideas on how to solve it. It was 

helpful to view everyone’s approaches.” In their responses, Daniel and Justin voiced that a social 

responsibility to consider other’s ideas led to desires to understand the mathematics and to 

explore alternative solution paths to the problem.      

Andrew also perceived a social responsibility in collaborating with his classmates. In 

addition, a desire to communicate effectively and being able to participate in group interactions 

motivated him to persist in understanding the mathematics. Andrew said, “When I worked to go 

beyond finding an answer it was to participate in group discussions. I was interested in finding 

out what others had discovered, and they were interested seeing other ideas I had discovered on 

my own.” Andrew’s response also indicates that he was “interested” in the ideas that had been 

“discovered”.  This enjoyment in learning will be discussed in more detail later. 

The next time the students had an opportunity to work on the Cat Task in class was on 

Day 5-two class periods later. There was some change in the group arrangement resulting in 

Group 2 together at the focus table: Derrick, Kacy, Andrew, Daniel, and Justin. Since the 

students formed a new group, they tried to understand what each other had done so far. Students 

in Group 2 were desirous to build consensus of meaning from work in previous groups so they 

shared their measurements and preliminary answers for the speed of the cat at frame 10. Derrick 

and Kacy got 161.29 cm/s and Group 1 (Andrew, Justin, Daniel) said they got 141.16 cm/s. The 

new group, Group 2, then started to think about the upcoming presentation they had to give on 

their work in progress.  

During the second hour of class, Group 2 presented their findings to their peers. They 

explained how they determined the velocity for frames 10 and 20 by setting up an equation, 

velocity = change in distance divided by time, to get the answers discussed (Frame 10: 64.52 
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cm/s, Frame 20: 354.84). Then, they went on to talk about how they graphed the distance on the 

calculator, found an equation to match the data and took the derivative to get the velocity. The 

velocities that the group reported finding from using the derivative function on the calculator and 

the cubic regression are the following: Frame 10: 143.362 cm/s (3.2 mph) and Frame 20: 

325.531 cm/s (7.28 mph). Then, members of Group 2 went back to their seats to discuss the 

problem. In the following episode, they discussed what they knew about the “r”-value they 

presented (Figure 17, 5-2, 31:21-31:47).  

(5- 2) 
31:21 

Andrew Make sure we’re all on the 
same page. 

-Consensus 
-Build shared meaning 

31:26 Daniel How do you do the, like 
“r”… 

-Posing problem 

31:29 Andrew That’s something like, I 
learned in my statistics class, 
[Daniel: ‘k] ‘cuz we use a lot 
of stat plots and all that stuff, 
and you have to find a line 
that uh, fits all the statistic 
plots when you’re trying to 
find like y’know like define 
like trends or whatever 
[Daniel: Yeah] And so like 
“r” is just, can’t remember 
how to find “r”, I can’t 
remember. 

 
-Desire to make 
connections 
 
 

31:47 Daniel Wait-how did you find “r”? -Student posed problem 
 

Figure 17: Transcript. Group builds shared meaning. 
 

When Andrew wanted to “make sure [the group was] all on the same page” (31:21), he 

sought to build shared meaning for mathematical ideas by coming to a consensus with his peers 

on presented work. In response to Andrew’s statement, Daniel asked a question about the 

obtained “r” value (31:26). The cubic regression that the group found had an associated r value 

of approximately 0.996, representing a tight fit to the plotted data.  Andrew shared the r value 

during the presentation but it was not previously discussed in their group.  Since the group was 
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working as a community of learners, they seemed to have a desire to come to a consensus on 

mathematical ideas in the Cat Task. This desire of consensus often led students to further explore 

and seek to understand the mathematics. 

On the next day of class, Group 2 developed a velocity graph by plotting the change in 

distance for each consecutive pair of displacement, or position, data points (Velocity Graph, 

Appendix E). While they were working, Derrick mentioned how fast the time passed during class 

(Figure 18, 6-2, 50:02). 

6-2  
50:02 

Derrick This class seems to go by 
pretty fast [As they talk, 
everyone continues to work]. 

-Self-investment in 
focused effort 
 

50:05 Daniel Yeah. -Consensus 
50:06 Derrick That’s a good thing. -Value judgment 
50:07 Kacy It is. -Consensus 
50:08 Daniel Cuz we’re like learning and 

like, it’s…entertaining I 
guess [rising intonation]? 

-Enjoyment in learning 

50:15 Derrick Yeah, we’re not just sitting 
here taking notes; we’re 
actually like doing stuff 

 
-Active learning 

Figure 18: Transcript. Social and personal motivations. 
 

In the preceding excerpt, Derrick said it was “a good thing” for the class to “go by pretty 

fast” (6-2, 50:02). When cognitive effort is sharply focused over time, awareness of temporal 

measurement is often lessened. Hence, the perception that time is passing quickly is heightened. 

Daniel credited his experience of that phenomenon to “learning” as “entertainment” (50:08). 

This idea of learning being fun was also described in several of the responses to the follow-up 

survey. Daniel said, “Everyday in coming to class has helped shape me and my opinion on what 

mathematics and in general, what learning can be. It can be something fun, engaging and 

ultimately a great learning experience.” In the same follow-up survey, Justin commented, “It was 

a fun class. Can you believe I was actually excited to go to class? A math class none the less!”  
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Derrick also preferred to be actively engaged in “doing stuff” instead of “just sitting here taking 

notes” (50:15). There seemed to be consensus about personal motivations of self-investment with 

focused effort and enjoyment in learning, as well the intellectual-mathematical motivation for 

active learning. 
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CHAPTER 6: DISCUSSION OF FINDINGS 

This chapter is dedicated to the introduction and elaboration of Contextualized 

Motivation Theory (CMT). In order to understand what CMT is, one must first understand what 

CMT is not. CMT is not designed to be a general theory of motivation—it does not explain the 

reasons for all of individuals’ enacted behaviors. CMT does not describe student motivations to 

be interested in mathematics, student motivations to achieve good grades in mathematics, or 

student motivations to be engaged in the mathematics classroom. Finally, CMT does not attempt 

to explain instances in which students decided not to seek an understanding of the mathematics.    

Contextual theories explain actions in terms of their circumstances. Hägerstrand (1984) 

explained, “Every action is situated in space and time and… its immediate outcome dependent 

on what is present and absent as help or hindrance where the events take place” (p. 377). CMT 

offers a lens for understanding the complexities of student motivations in mathematics learning 

within particular, contextual conditions. CMT states that student motivations for understanding 

mathematics fall under two major categories, intellectual-mathematical motivations and social-

personal motivations. These motivations are manifested simultaneously within a supporting 

“web” of closely related contextual motivations. In seeking to understand mathematics, students 

choose to act upon one or more of their motivations at a time. Although students’ motivational 

“webs” are individual in nature, groups of students can share motivations. Finally, the powers of 

motivations to understand mathematics are the same for all students. The subsequent paragraphs 

will serve to elaborate on the following constructs of CMT: Categories of Motivations, The 

Motivational Web, and Powers of Student Motivations. 
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Categories of Motivations 

Complete analysis of extended student collaborations over several days grounded the 

development of Contextualized Motivation Theory (CMT). Here, from analysis of selected data, 

I note students’ intellectual-mathematical motivations– recognize mathematical necessity, desire 

for meaning, desire to know, precision, extend scope of ideas, respond to student-posed 

problems, active learning, resolve inconsistencies and/or cognitive conflicts, adapt to 

mathematical norms, and desire to make connections. I also note students’ social-personal 

motivations– build shared meaning, emulate others’ use of agency, desire to communicate 

effectively, social responsibility and interaction, consensus, self-investment, and enjoyment in 

learning. These motivations are not intended to be comprehensive in nature—they do not 

encapsulate all motivations that a student may choose to act upon in a given situation.  

Intellectual-mathematical motivations were the most frequently coded student 

motivations in this study—accounting for approximately 60 percent of the total motivations. 

Social-personal motivations made up the other 40 percent. At first, this finding suggested social-

personal motivations were not as dominant in these students’ motivational systems as 

intellectual-motivations. This conclusion may be valid since this thesis focused on motivations to 

understand the mathematics as opposed to just engaging in following mathematical procedures. 

However, when we remember the motivations were coded in situ—from classroom happenings, 

student write-ups, and student surveys—a different interpretation can be surmised. Students may 

possess many other social-personal desires such as the desire to please a parent or a desire to get 

a good job in the future. Such desires were not evident because the actual detailed “work” 

required to seek an understanding of mathematics during problems solving does not connect to 

the more removed motivational forces (parents, career) as do the intellectual/mathematical 
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motivations. This finding has close ties to Harel’s (2008) necessity principle. Recall that the 

necessity principle states that for students to learn mathematics, they must perceive an 

intellectual need for the mathematics. Thus, it would make sense that motivations to understand 

mathematics would be largely intellectual-mathematical in nature. The implications for such 

conclusions will be discussed in the following chapter. 

Shah, Hall, and Leander (2009) advocate that individuals dynamically contextualize, 

manage, regulate, and prioritize choices of action. Indeed, in this study, students chose to act 

upon various intellectual-mathematical motivations and social-personal motivations, which are 

intricately intertwined with each other. For example, the social-personal motivation of build 

shared meaning may be closely related to and exist concurrently with the intellectual-

mathematical motivations of desire meaning and respond to student-posed problems. The 

intellectual-mathematical motivation of active learning may be associated with a social-personal 

motivation of emulating others’ use of agency (see Figure 19). 

 

Intellectual-Mathematical         Social-Personal 

Desire Meaning & Respond to Student-Posed 

Problems 

Build Shared Meaning 

Active Learning Emulate others’ use of agency 

Figure 19: Relationship of intellectual-mathematical and social-personal motivations 
 

The Motivational Web 

Contextualized Motivation Theory would be hard to fully understand without relating it 

to something more familiar. For this reason, a spider web metaphor will be introduced to help 

illuminate some features of CMT. In CMT, the plethora of motivations one chooses to act upon 
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can be represented metaphorically by a complex web (Figure 20) of related desires. Figure 20 

provides a visual image of this web and the following paragraphs will address aspects of a spider 

web that can be compared to student motivation. 

 

Figure 20: CMT’s motivation web metaphor. This is a partial diagram of Daniel and Andrew’s 
possible motivation web. The arrows represent connections among different motivations that 
were acted upon during the same choice. The motivations in the middle were used by Daniel and 
Andrew during the same time period, so they are communal motivations.   
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1.  Every web is unique and communal webs can be built. 

When spiders make their webs, no web looks exactly like another, though they may 

contain similar characteristics. Likewise, each student possesses their own web of motivations, 

which they weave by strands of their individual intellectual-mathematical and social-personal 

desires. In figure 20, Daniel and Andrew both have a different set of motivations. The 

intellectual-mathematical motivations are shaded in blue and the social-personal motivations are 

in orange. 

Some spiders have been found to weave communal webs—where the spiders intertwine 

their individual threads to create a stronger, giant web (Jackson, 1979).  Due to the social nature 

of the studied calculus classroom, this idea of a communal web will provide additional insight 

into student motivations for understanding mathematics. In CMT, motivations are individual in 

that each individual must possess the desire themselves and not all motivations are shared by 

others. One motivation might be more salient for one student than others. For example, Justin 

expressed a desire to make connections more than did any other student. Motivations may also 

be communal when a group of students choose to act on the same desires to achieve their shared 

purposes. In figure 20, the communal or shared motivations are represented by the circled boxes 

in the middle of the diagram. To further illustrate this idea of communal motivations, consider 

the first transcript presented in the last chapter (Figure 21):  

Timecode Speaker Transcript Codes (Focused) 
(3-2) 
26:44 

Daniel I still don’t know the 
derivative of “Q” though, or 
what “Q” is. [Looks at p. 76 
in book-recreated below]       
           
𝑄𝑄′(𝑎𝑎) =  lim𝑏𝑏→𝑎𝑎

𝑄𝑄(𝑏𝑏)−𝑄𝑄(𝑎𝑎)
𝑏𝑏−𝑎𝑎

 
 

-Persistence in 
understanding derivative 
and notations 
-Poses problem 
-Desire to know 
 

26:49 Riley “Q” is the quantity of the 
function [Quietly, states fact] 

-Respond to student 
posed problem 
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26:52 Andrew Thank-you [chuckles]…what 
does that mean? [Garbled 
words]…we’re trying to 
figure out what the book’s 
talking about. ‘Cuz I mean, 
we already know how to get 
the average [average rate of 
change], and it took us like 
ten minutes to figure out what 
he [book author] was talking 
about. 

-Desires meaning for 
book language and 
notation 
-Emulate other’s use of 
agency 
-Question for 
understanding 
-Persistence in 
understanding average 
rate of change 
-Build shared meaning 

27:09 Justin To find out we already knew 
what he was talking about. 

-Build shared meaning 
for average rate of 
change 
-Statement of 
understanding 

27:13 Andrew Huuh—that’s horrible. 
[Laughs, a moment’s 
silence.]…ok, I’ll try an’ 
figure out what he’s talking 
about. 

-Displaying emotion 
-Persistence in 
understanding derivative 
-Extend scope of ideas 
-Trying to figure things 
out 

Figure 21: Transcript. Shows idea of communal motivations. 
 

In analysis, I did not always find it necessary to attribute particular motivations to 

individual students only. For example, in this episode, it was Daniel who initially stated the 

desire to know more about derivatives. However, as Group 1 responded to Daniel’s posed 

problem, this desire to know became more of a communal motivation as students continued to 

work together to understand more about derivative. Thus, as Sullivan, et al. surmised, motivation 

is not purely individual, but can also be a “product of group factors” (p. 91). All of the other 

motivations reported in this thesis, such as the desire to communicate effectively and precision, 

were manifested in the words and actions of multiple students, but were not always communal in 

nature. Motivations that might have been strictly held by one individual were not identified 

because I was interested in the powers of motivations held by multiple students.  
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2.  Webs are made up of a complex system of connected strands.  

In a web, many strands of silk intersect each other in the web. A student’s motivational 

web is also a complex design of intersecting motivations. In the calculus classroom, students 

used their agency by choosing to seek an understanding of the mathematics as opposed to blindly 

following mathematical procedures. When choosing to understand mathematics, students acted 

on one or more of their motivations. In figure 20, each box contains a motivation, and the arrows 

represent instances in which the pair of motivations was acted upon at the same time for one 

choice. For example, in Andrew’s web, there is an arrow between the intellectual-mathematical 

motivation “desire to know” and the social-personal motivation “build shared meaning.” These 

motivations were manifest simultaneously during at least one of Andrew’s attempt to understand 

mathematics. Note that the motivations are tightly interconnected. In a spider web, if one were to 

pick up a strand somewhere in the web, many other strands would be affected. Likewise, in 

CMT, motivations are so interrelated that students cannot act upon one motivation without such 

action being affected by their other desires. One desire may be a student’s main motivation for 

an action, but many secondary and/or related motivations are always present but sublimated. 

For example, let us revisit the transcript about Group 1’s exploration of derivative (3-2, 

26:44-27:13). Here students’ main motivation might have been a desire to know more about 

derivative and its associated notations.  However, Group 1 also acted on desires of build shared 

meaning, respond to a student posed problem and emulate the use of another’s agency in order 

to further their knowledge of derivative. The group’s choice to understand more about the 

derivative in this instance was therefore activated by at least four different, yet related, 

motivations. At other times during the class, students had many other desires, such as a desire to 

make connections and a desire to communicate effectively. Although these motivations were not 
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manifest during this particular episode, they cannot be ruled out as secondary motivations that 

may have also influenced student’s decision making. For example, students’ desires to 

communicate their understanding of the derivative effectively to the class may have also been a 

factor in the group’s further exploration of the derivative.       

3. Webs can have varying powers. 

 Spider silk is one of the strongest materials known to man. Its tensile strength can be five 

times greater than that of steel (Vollrath & Knight, 2001). However, some spider webs are more 

structurally sound than others and are therefore more effective, or powerful. Recall that power 

may be defined as “capacity for action or performance” (Porter, 1913, p. 1122). Consider the 

power of a spider web. Spider webs have one tendency or capacity for action—to catch prey. No 

web will look alike, yet all webs were created for this same purpose. The power of a spider web 

therefore depends on its ability to allure and catch prey. 

Motivations to understand mathematics can also be very powerful. What is needed, 

Dewey (1913) said, is not an inventory of personal motives, but rather “a consideration of their 

powers, their tendencies in action, and the ways in which these can be carried forward by a given 

subject-matter” (p. 62).  

Now, consider the powers of student motivations to understand mathematics. No 

motivational web will look the same as another, yet all webs are created with the same capacity 

for action in mind—understanding mathematics. Intellectual-mathematical and social-personal 

motivations to understand mathematics, when acted upon, can hold similar powers. For example, 

Andrew’s sense of social responsibility and Justin’s desire to make connections both had the 

capacity to urge each student to seek an understanding of mathematics. In the calculus 

classroom, both motivations were noted for their tendencies in action. The subject matter, 
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mathematics, “carried forward” these powers (Dewey, 1913) because the studied calculus 

classroom consisted of a social problem solving environment where students were encouraged to 

pursue their intellectual passions. In CMT, motivations to understand mathematics differ in 

power according to the strength given them by the individual. Developing desires to understand 

mathematics is the first and most important thing a student can do. After that, students will 

benefit from strengthening their desires and using their agency to act more frequently on their 

intellectual-mathematical and social-personal motivations to understand mathematics.  

Although a web presents an interesting metaphor to a student’s motivational system, the 

connection should not be taken too far. Unlike a web, if one strand (motivation) were removed 

from a student’s motivational system, the whole structure would not be destroyed. Also, not all 

spiders have the capacity to make webs, but all students can develop motivations to understand 

mathematics. Finally, most technical aspects of a web, such as details of how it is made, do not 

correspond to a student’s development of motivations. The power of the metaphor is in the fact 

that webs, like motivational systems, are very individualized, socially intertwined, complex, 

powerful, and beautiful.  

Summary of CMT 

 The following sections will give a summary of Contextualized Motivation Theory by 

discussing: intellectual-mathematical and social-personal categorizations, unique set, communal, 

power, and agency. Each construct is then compared and contrasted with existing theories of 

motivation to show the distinctiveness of CMT. 

Intellectual-Mathematical and Social-Personal 

CMT serves to supplant dichotomous notions of extrinsic versus intrinsic motivation. In 

particular, CMT states that motivations to understand mathematics consist of two major 
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categories: intellectual-mathematical desires and social-personal desires. When an individual 

strives to understand mathematics they are acting on one or more of these related desires. 

A few current motivation theories have begun to recognize intellectual desires as 

motivations.  In Maslow’s theory of motivation, one of the levels of growth needs was the need 

to know and understand (Maslow & Lowery, 1998). Also, goal theories posit that some students 

have a learning goal orientation (Dweck, 1986) in which students learn solely for the sake of 

learning. However, these two theories do not assert that all students possess such desires nor do 

they attempt to explain content-specific actions such as those involved with mathematical 

problem solving. Social-personal desires are recognized by many other theorists, but again, these 

types of desires are removed from the social atmosphere of a group of students striving to 

understand mathematics.  

Unique Set 

As an individual faces the many experiences of life, they develop desires along the way. 

No individual has the same collection of desires as another. An individual’s collection of desires 

is an intertwined, complex network—many desires are related to and affect each other.  Each 

choice an individual makes is associated with one or more of these desires. Also, a single desire 

may be employed for more than one choice. For example, the desire to communicate effectively 

may be a motivation for an individual’s choice to understand mathematics as well as for their 

choice to start a conversation with a friend.  

Personal construct theories and many need and goal theories have also found motivations 

to be highly individualized. It may be argued that if students all had a unique set of motivations, 

it would be impossible for teachers to cater to each individual’s desires. CMT reduces this 
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dilemma by categorizing the motivations and attending to their powers, as explained in a 

subsequent paragraph.   

Communal 

Motivations to understand mathematics may also be communal in nature. In other words, 

a group of students may share a desire as they strive to achieve the same goal. A desire that was 

initially expressed by one individual and then adopted by others may also be considered a 

communal motivation.  

In other theories on motivation, students can have desires similar to those of others. For 

example, in attribution theory, many different students believe that success is attributable to 

uncontrollable factors, such as innate ability (Weiner, 1972). Furthermore, desires such as the 

desire to work hard can be an intrinsic motivation for many students. CMT goes beyond to show 

how students can actually share and influence the desires of others by building communal 

motivations.   

Power 

In CMT, the power of a motivation to understand mathematics is more important than the 

particular motivation a student acts upon. Power may be defined as a capacity for action, or 

tendency in action. Webs that consist of motivations with greater power are stronger. To increase 

motivation, students can develop and strengthen those desires which encourage them to strive to 

understand mathematics.  

Power is a unique construct of CMT. Dewey (1913) originated the idea of examining the 

powers of student motivations. 
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Agency 

In the end, it is a student’s use of agency that will determine the choice, no matter the 

power of the desire. For example, a student may have a strong desire to communicate effectively, 

but if he or she chooses not to act on it, the desire will not initiate action. 

The majority of theories reviewed for this thesis did not explicitly mention agency as a 

fundamental part of motivation. Personal agency is a central part of mathematical problem 

solving and therefore central to CMT.  

Figure 22 gives a concise summary of the constructs of CMT discussed in this chapter.  

Contextualized Motivation Theory (CMT) Summary 
Intellectual-
mathematical 
and social-
personal 

Motivations to understand mathematics can be categorized as intellectual-
mathematical motivations or social-personal motivations. 

Unique set Individuals have their own unique set of closely intertwined motivations 
(desires) to understand mathematics. 

Communal A group of students can share a motivation to achieve the same goal. These 
motivations are communal. 

Power The power, or tendency in action, of motivations is more important than the 
particular motivation a student acts upon. If a certain motivation more often 
tends to influence a student to understand mathematics, that motivation is 
more powerful. 

Agency A student’s use of agency, influenced but not determined by their desires, 
determines the choices they make. 

Figure 22: Contextualized Motivation Theory (CMT) summary. 

CMT’s Contributions to Motivation Literature in Mathematics Education 

 The complexities of motivations exhibited by students in learning mathematics may be 

generously described as a “chaotic puzzle” (Nuttin, 1984, p. 83). CMT aims to begin to piece 

together that chaotic puzzle in order to illuminate the intricacies and powers of student 

motivations to understand mathematics in a conceptually based calculus classroom. CMT was 

created using a fine grain analysis—dissecting students’ words and actions during collaborative 

problem solving—to discern student motivations. Such an analysis is rare among motivation 
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studies, including studies in mathematics education. Using this analysis, individuals were found 

to possess their own collection of motivations unlike any other individual’s collection. Various 

mathematics education researchers have also found that motivations are highly individualized 

(Hannula, 2002; Dowson & McInerney, 2003). However, CMT further elucidates how 

motivations can be social, or communal, in nature. CMT also simplifies the chaotic puzzle by 

showing that student motivations share similar powers, or tendencies in action.        

CMT is also unique among motivational theories in mathematics education because of 

the nature of the motivations analyzed. Many motivation studies have examined students’ 

motivations for achievement (e.g. Koaler, Baumert, & Schnabel, 2001) or motivations for 

engagement (e.g. Williams & Ivey, 2001) in mathematics. In contrast, CMT describes students’ 

motivations for understanding mathematics.  

CMT was not created to discount previous motivational theories or findings in 

mathematics education, only to contribute to the growing corpus of information related to student 

desires. However, few of the motivating factors coded for in this thesis could be found in the 

traditional motivation literature in mathematics education and popular motivation theories, 

especially the intellectual-mathematical motivations. CMT positions personal agency as the 

active power in intellectual passion, foregrounds mathematical need as the kernel of students’ 

problem solving industry, characterizes the social nature of motivation, and encompasses 

conceptually driven conditions that foster student engagement in mathematics learning. These 

aspects of CMT carry more direct and pertinent implications for teaching mathematics with 

understanding than other general motivation findings. The next chapter will discuss the 

implications in more detail. 
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CHAPTER 7: FURTHER DIRECTIONS AND IMPLICATIONS 

Contextualized Motivation Theory (CMT) is one of the few theories on motivation 

developed from students’ actual lived experiences in a conceptually centered mathematics 

classroom. CMT can and should be refined and expanded by studying students in other 

mathematics classrooms where agency is valued—including high school classrooms. Also, in 

future studies, other forms of data could be collected and compared to CMT’s claims. More self-

report data could also be incorporated into future conceptualizations of CMT. As mentioned 

earlier, self-reported information has its limitations and should not be used as the only source of 

data, but it could provide valuable insights into student thinking. Hopefully, studies like this one 

will also encourage more domain specific explorations of motivation, which will help 

mathematics educators build better classrooms.      

Implications of CMT for building best practices in mathematics classrooms depend on 

teachers, teacher educators, and researchers recognizing and facilitating the productive role that 

students’ personal agency plays in enriching intellectual-mathematical and social-personal 

motivations that may be unanticipated by teachers, yet which foster student engagement in 

learning and that contribute to building meaningful understandings of mathematics. The question 

may then be asked: “We can train habits, we can impart knowledge, but how do we enhance 

agency?” (deCharms, 1984, p. 275). The answer to such a question is not within the scope of this 

thesis. The interested reader should turn to associated literature on agency. Having said this, one 

way to enhance the use of agency in the classroom would be to allow students to create an 

understanding of mathematics by making mathematical choices.  

 George Bernard Shaw (1921) penned the words, “Imagination is the beginning of 

creation. You imagine what you desire, you will what you imagine and at last you create what 
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you will” (p. 9). Shaw pointed out that, although “imagination is the beginning of creation,” an 

individual’s imaginations stem from their desires. Therefore, it may be concluded that desire is 

the actual beginning of creation. If we want students to create an understanding of the 

mathematics, they must first have a desire to do so. It is clear that students can and do have such 

desires when given the opportunity to exercise their agency. However, despite the best efforts to 

create a classroom atmosphere which encourages the manifestation of these desires, a few 

students may come into the classroom with very little desire to understand mathematics. These 

students should not be ignored and labeled “unmotivated”. Everyone has the capacity to develop 

such desires and possesses a right to be given the opportunity to do so.    

As stated in the conclusions, intellectual-mathematical motivations were the most 

frequently coded motivations in this study. This may be because students acted upon intellectual-

mathematical motivations more often while engaged in problem solving, or students chose not to 

reveal their social-personal motivations while in the classroom setting. Either way, such a 

finding should give hope to teachers. While teachers are fundamental in setting up a productive 

and respectful classroom environment where student thinking is valued and important, it is not 

the teacher’s job to cater to other extraneous social-personal needs and desires. For example, if a 

student has a social-personal desire to look “cool” in the presence of their friends, such a 

motivation may not be able to be influenced by the teacher. However, teachers do have the 

ability to help educate many intellectual-mathematical desires of students in the classroom.  

One way instructors can strengthen students’ desires to understand mathematics is to ask 

probing questions that prompt explanation and reflection of mathematical work. While students 

were seeking to understand the book notation for derivative, one of the instructors asked: “So, 

tell me what you understand about this limit [points to 𝑄𝑄′(𝑎𝑎) =  lim𝑏𝑏→𝑎𝑎
𝑄𝑄(𝑏𝑏)−𝑄𝑄(𝑎𝑎)

𝑏𝑏−𝑎𝑎
 ] as B 
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approaches A” (3-2, 31:59). This question not only encouraged students to explain their work 

and reflect on the meaning of the derivative, but helped facilitate students’ desire to make 

connections. After the instructor asked the question, students discussed how derivates related to 

driving on the freeway.   

One of the intellectual-mathematical motivations held by students in this study was 

recognize mathematical need. Walter and Hart (2009) noted the power of mathematical 

necessity. They affirmed, “Conceptually driven classroom conditions that encourage the 

emergence of mathematical necessity have been shown to support the growth of intellectual 

passion and persistence in mathematics learning” (Walter and Hart, 2009, p. 170).  As has been 

shown, students do exhibit powers of intellectual passion and tendencies in action to choose 

among simultaneous intellectual-mathematical and social-personal motivations and to persist 

beyond obtaining correct answers to build conceptual understandings of mathematics.  
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APPENDIX A: STUDENT INTRODUCTION SURVEY 

 
Math 112H: Calculus I, Section 25 

Student Introduction—Homework Assignment 
 

Due Date: First Day of Class 
 

Please help us to get to know you better by responding to the questions as completely as 
possible. One paragraph may be sufficient for some responses, while several paragraphs may be 
needed to provide the detail necessary to fully answer some questions. Expand the provided 
space as needed. Please submit your responses in the digital drop box in Blackboard. 
 
Name:_____________________________________ 
 
Please circle your current academic standing:   
Freshman  Sophomore  Junior   Senior 
 
What is your declared (or expected) major?__________________________ 
  

Exam (if you did not take an exam, please indicate) 
 
Score 

ACT  
SAT  
AP Calculus AB  
AP Calculus BC  

 
Mathematics Background 
  

High School Mathematics Courses 
 
Grade Earned  

  
  
  
  
  
University Mathematics Courses                     Grade Earned 
  
  
  
  
  

 
Perspectives on Mathematics Learning  
1. List three necessary qualities of an excellent mathematics learner. 
 



105 
 

2. Which of the qualities you listed above, do you feel is your strongest? Please explain. 
3. Which of the qualities you listed above, do you feel is your weakest? Please explain. 
 
4. What does it mean to be a successful mathematics learner? 
 
5. Describe an optimum classroom environment for learning mathematics. Why are these 
conditions optimum? What would be the practices within this environment? 
 
Perspectives on Mathematics 
6. What is mathematics? 
 
7. What are the purposes of mathematics?  
 
8. What do you like most about mathematics? Please explain. 
 
9. What mathematics have you most enjoyed learning? Please be specific and explain why you 
find these particular topics engaging. 
 
10. What do you find least appealing about mathematics? Why? 
 
Perspectives on Mathematics Teaching 
11. List three necessary qualities of an excellent mathematics teacher. 
 
12. Please describe the teaching style of your best mathematics teacher  
 
Perspectives on Technology 
13. What role does technology have in learning mathematics? Please explain. 
 
14. What technologies have helped you learn mathematics? How? 
 
Perspectives on Responsibilities 
15. What do you feel are the responsibilities of a student in this course? 
 
16. What do you feel are the responsibilities of a teacher in this course? 
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APPENDIX B: CODING ORGANIZATION 

 
 
Codes in bold are the focused codes. The italicized words below the focused code gives a 
description of that focused code. The words under each focused code represent the open codes 
that were clustered to form the focused codes.  
 
 
 
 
Participating in Meaningful Mathematics 
These open codes signify that students were 
working on meaningful mathematics during 
their extending problem solving. 
 
Average rate of change 
Plotting points 
Table 
Displacement 
Curve 
Slopes 
Derivative 
Average 
Graph 
Instantaneous velocity 
Acceleration 
Using equations 
Speed  
Average speed/velocity 
Equation 
Distance 
Speed= d/t 
Stat plot 
Regression 
Exponential regression 
Cubic regression 
r-value 
Statistics 
Trends 
Line that goes through the middle 
Tangent line 
Arctangent 
Negative velocity  
Negative acceleration 
 

 
Adapting to Mathematical Norms 
Students looked to convention and outside 
tools to help them understand their own 
work 
 
Notation 
Reads book 
Examples 
Textbook 
Calculator 
Book notation 
Calculate button 
 
 
 
Displaying Emotion 
Many different types of emotions were 
evident in student interactions. Some of 
these emotions also have a social purpose. 
 
Scared 
Laughing 
Apologizing 
Good 
Joking 
For fun 
Surprise 
Actual work? 
Excitement 
Stating feeling 
Not boring  
Good thing 
Value judgment 
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Social Responsibility and Interaction 
There are responsibilities we all tend to 
adopt when we are working in group 
settings. One is a responsibility to listen to 
others and try to understand them. 
 
Relating to other group 
Group answer 
All of us 
We 
Laughing  
Apologizing 
Joking 
Thinking about another’s idea 
Listening 
Kind of interesting 
I don’t know because… 
Don’t think 
I mean 
I’m guessing 
Attempt to verify another’s idea 
Attempt to explain another’s answer 
 
Consensus 
Coming to an agreement 
 
Yeah 
Uh huh 
Consensus 
Agreement 
Group answer 
Building consensus 
 
Building shared meaning 
This is related to consensus because usually 
when there is shared meaning, there is 
consensus. However, I chose to make it a 
separate category. 
 
Same page 
Building consensus 
Make sense to everybody? 
Reference to shared classroom knowledge 
Share ideas 

All of us 
We 
Explanation of group’s method 
 
Teacher influence 
It is hard to detect how the teacher’s 
presence in the classroom affects students, 
however, there were a few times when the 
teachers talked directly with the students. 
 
Asking the teacher a question 
Teacher response to student question 
Teacher question 
Teacher validating student 
Response to teacher question 
 
Grades 
Students only talk about grades once, and it 
is very brief. They wonder if they get graded 
for presentations. 
 
Grades 
It’s school 
 
Desire to complete task 
There are times when students are so 
focused on a small part of the task 
(personally or as a group) that the time 
comes where there is a desire to move on. 
 
Let’s finish 
Moving on 
Desire to move on 
Overanalyzing 
Focus 
K, so… 
Taking it too far 
 
Satisfaction with answer 
When students feel good about where they 
are in the task. 
 
Satisfaction with answer 
As good as we can 
As far as we can go 
We’re there 
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Overanalyzing 
 
Precision 
Students try to get as close as they can to a 
correct answer/interpretation. They realize 
that sometimes they cannot achieve 
perfection, so they try to get close. 
 
Exactly 
Pretty close, but 
Exact moment 
Exact 
More precise 
As close as possible 
Wouldn’t be exact, but 
As close as we can 
About (ish…) 
Pretty close 
As close to zero 
Close 
Approximating 
Really good 
Technically 
Ballpark figures 
Line that fits the points best 
Skewed 
 
Relating to other experiences/Prior 
knowledge 
Students try to understand the task by using 
what they know about other situations to 
guide their thought process. 
 
Giving a related example 
It’s like 
Speeds in a car 
Speedometer 
Arctangent 
Using previous knowledge 
Statistics 
State origin of idea 
Depends 
Lasers 
Running 
Track 
Relate to other experiences 

Imagining 
Reference to shared classroom knowledge 
 
Keeping context in mind 
Students don’t just try to do the math after 
they have collected the numbers they need. 
They keep the context of the problem in 
mind. 
 
Looking at situation in context 
Pauses/leaps 
Running 
Modeling 
Look at cat’s perspective 
Just going 
(Cat) Not paying attention 
 
 Justification 
Students often asked for or gave justification 
for why they did what they did. This is an 
indication that students are striving to learn 
with understanding. 
 
Justifying 
‘Cuz 
‘Cause 
Any questions? 
Explaining method and logic 
Attempt to verify another’s idea 
Explaining conflict 
Clarifying 
 
Extending 
Students were often observed going beyond 
what was asked of them by the task and the 
teacher. 
 
How much further 
Extending 
See what it gives us 
Figure that out 
Could potentially 
Thinking about extensions 
Just to see what happens 
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Satisfying curiosity 
This idea of curiosity is closely linked to 
extending. Students wanted to see what 
happened when they tried their ideas. 
 
Fake it 
Risk taking 
Trying an idea 
Leads somewhere 
Just to see what happens 
See what it gives us 
What if 
Play around with it 
Try something 
 
Trying to figure things out 
Perhaps many of these codes could also be 
coded for desire to make sense of. 
 
Play around with it 
Try an’ figure out 
Figure out 
Figure things out 
Trying to figure out 
Trying to make sense of 
Trying to think 
I figured (what we can do) 
Wait a second! 
I don’t know 
We figure 
I think 
I think you can 
Thinking aloud 
 
Poses problem/suggestion 
These are occasions when a student brings 
up a problem or suggestion and then the 
group works at resolving the problem. 
 
I don’t know, but 
Well 
Offering a suggestion 
Presenting an idea 
Shows idea 

What if 
Suggestion 
Makes a proposition 
Poses problem 
Want  
Try something 
How? 
Student question 
Question for information 
Asking a question 
Still don’t know 
Question for understanding 
What does that mean? 
Like to know 
 
Statement of understanding 
Wherein someone states or displays they 
already have come to know something. 
 
Figured out 
We understand 
You understood 
Already knew 
Already know 
Describing what they know 
Stating what she does know 
Attempt to describe r 
Derivative 
 
Responding to a student posed 
problem/explanations 
When students are offering explanations, 
answering a student question, or responding 
to a problem posed by a student. Responding 
to a problem is usually manifest by students 
pursued course of action. 
 
Answering question 
Answering student question 
Response 
Response to a previous concern 
Response to student question 
Continuing and building on the conversation 
Expounding on a previous explanation 
Explaining conflict 
Explaining  
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Clarifying 
Explaining method and logic 
Explanation of work 
Continuing discussion 
Thinking of another’s idea 
 
Explaining answers/Comparing work 
Students want to make sure they are on the 
same page by comparing answers and 
asking what is going on. 
 
Question to compare 
Comparing work 
Confirming answer 
Stating answer/fact 
Statement 
Statement of answers 
I got 
How to find 
Explanation of how to find answer 
Explaining group’s method 
Explanation of previous work 
How to get 
How? 
Procedure question 
Asking for confirmation 
Did you get? 
Asking a question 
Asking a clarifying question 
Question for information 
Question to know what’s happening 
 
Desire to know/for meaning 
Students had a desire to know more about a 
particular mathematical topic or desired 
meaning. These are two very similar 
motivations. 
 
Question for understanding 
What does that mean? 
Means (meaning) 
To know 
Still don’t know 
Attempt to make sense of 
Makes more sense 
Reiterating question 

Repeating the question 
Trying to make sense of 
I don’t know because… 
Wanting further information 
Like to know 
Don’t know how 
Can’t remember 
 
Persistence  
When students continue to work on a task or 
student posed problem, even when they 
don’t get a quick answer. 
 
Took us ten minutes 
Persistence 
Persistence in understanding average rate of 
change 
Still don’t know 
Reiterating question 
Repeat the question 
Responding to a previous concern 
Re-measuring distances 
Continuing and building on the conversation 
Much better 
 
Self-Investment 
When students are invested in the work, 
aside from the group. 
 
Myself 
Did them all 
Doing work 
Talking to self 
Individual work 
Seems to go by fast 
 
Inconsistency/Cognitive or Group 
Conflict 
There are times when student’s work 
conflicts with their experience and 
knowledge. Also, there are times when 
students work or thoughts contradict that of 
another students’. 
 
In the middle 
Bugs me 
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Confusion 
Conflict in individual’s mind 
Disagreement among measurement 
Don’t get that 
Did same thing… 
Inconsistency in answers 
Isn’t right 
Wait 
Can’t be right 
Not right 
Something’s weird 
Answers different than expected 
Wrong 
Make it weird 
Negative velocity 
 
Resolving inconsistencies and conflict 
Much of the resolution of conflict in also 
done in students’ normal conversations. 
 
Explanation of troubles 
Resolving inconsistency 
Why not 
Recognizing the problem 
Affirmation 
Resolution of confusion 
Explaining conflict 
Attempt to explain another’s answer 
Attempt to verify another’s idea 
I mean 
 
Enjoyment in learning 
Students seem to enjoy learning. 
 
Learning 
Entertaining 
Excitement 
Wait a second! 
Not boring 
Good thing 
 
 
 

 
Active learning 
Students are active participants in their own 
learning. 
 
Group work 
Asking questions 
Actually doing stuff 
Not passive learners 
Participation 
 
Desire to communicate effectively 
Students want to be able to communicate 
with others and to be understood. 
 
How to present 
Present-makes sense 
Preparing presentation 
Share ideas 
What we did 
Presenting to class 
Did everyone understand? 
Wish to communicate ideas effectively 
Reference to shared classroom knowledge 
Make sense (to everybody)? 
Relating to other group 
Building consensus 
 
Emulating other’s use of agency 
This happens when other’s respond to a 
student posed problem, especially when that 
problem is not in a form of a question. It is 
when a student uses his/her agency to try to 
understand the mathematics and other 
students pick up on that decision and also 
strive to understand.  
Thinking about another’s idea 
Continuing and building on the conversation 
Well 
Actually do work 
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APPENDIX C: ANALYTIC DIAGRAM 

 
This represents one of the early diagrams made between concepts during the analysis process. 

Many changes and rearrangements were made before the final diagram was constructed.  
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APPENDIX D: FOLLOW-UP SURVEY 

This survey was distributed to students a little over a year after the calculus class ended. I 
authored the fifth question and some answers to that question have been analyzed in this thesis. 

 
 
1.   Has your major changed since taking our honors calculus course? If so, what is your current 
major and why did you change majors?  
 
2.  Please describe how the learning conditions in our honors calculus course helped you 
understand mathematics in subsequent courses. 
  
3.  How has taking our honors calculus course affected your academic studies, goals, or 
perspectives? 
  
4.  Reflecting on our honors calculus course, please share with us any additional compelling or 
central experiences that may have shaped, directed, or influenced you.  
 
5.  During our honors calculus class, we often noticed that students would work to go beyond 
just finding a correct answer. When you did this, why? When you did not do this, why not?  
 
6.  Please rate the following:  

 

         Excellent  Above 
Average  Average  Below 

Average  Inadequate  

Your procedural skill in and 
computation of honors calculus right 

after completing our course  
           

 
Your retention of procedural skill in 
and computation of honors calculus  

           

 
Your conceptual understanding of 
calculus right after completing our 

honors course  

           

 
Your retention of conceptual 

understanding of calculus  
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APPENDIX E: VELOCITY GRAPH 

 
This velocity graph was created by members of Group 2 by calculating the average rate of 
change between consecutive points on the position graph. For example, to get the velocity at 
frame 2, students took the change in position from frames 1 to 2 and divided it by the change in 
time between the frames (0.031 seconds). 
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APPENDIX F: CODED TRANSCRIPTS 

 
These are some transcripts that were chosen as critical events and then coded with both open and 
focused codes. Focused codes are in italics. All the transcripts below aided in the development of 
Contextualized Motivation Theory (CMT), but not all appear in the data and analysis section in 
this thesis.  
 
   

Timecode Speaker Transcript Annotations Codes (Focused) 
3-2 
26:44 

Daniel I still don’t know the 
derivative of “Q” though, 
or what “Q” is. [Looks at 
p. 76 in book-recreated 
below]             
              𝑄𝑄′(𝑎𝑎) =
 lim𝑏𝑏→𝑎𝑎

𝑄𝑄(𝑏𝑏)−𝑄𝑄(𝑎𝑎)
𝑏𝑏−𝑎𝑎

 
 

He moved his 
calculator off his 
book and looked 
at the left page 

-Still don’t know 
-Persistence in 
understanding 
derivative and 
notations 
-Poses problem 
-Desire to know 
 

 
3-2 
26:49 

Riley “Q” is the quantity of the 
function [Quietly, matter-
of-fact] 

 -Response 
-Responding to 
student posed 
problem 
-Reads book 

26:52 Andrew Thank-you 
[chuckles]…what does 
that mean? [Garbled 
words]…we’re trying to 
figure out what the book’s 
talking about.  ‘Cuz I 
mean, we already know 
how to get the average 
[average rate of change], 
and it took us like ten 
minutes to figure out what 
he [book author] was 
talking about. 

 -What does that 
mean? 
-Desires meaning for 
book language and 
notation 
-Emulating other’s 
use of agency 
-Question for 
understanding 
-Figure out 
-Ten minutes 
-Persistence in 
understanding 
average rate of 
change 
-Book notation  
-Building shared 
meaning 
-Already know 
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3-2 
27:09 

Justin To find out we already knew 
what he was talking about. 

Emphasis on 
the word knew. 

-We 
-Building shared 
meaning for average 
rate of change 
-Already knew 
-Statement of 
understanding 

27:13 Andrew Huuh—that’s horrible. 
[Laughs, a moment’s 
silence]…ok, I’ll try an’ 
figure out what he’s talking 
about. 

During the 
silence, each 
member of the 
group stares off 
into space and 
most have their 
hands on their 
heads 

-Laughing 
-Displaying emotion 
-Try an’ figure out 
-Persistence in 
understanding 
derivative 
-Extending scope of 
ideas 
-Trying to figure 
things out 
 

 
 

3-2 
30:25 

Daniel We understand “Q” 
signifies like—we figured 
out this could help us to 
understand exactly, like 
how to get the 
instantaneous-- 

 -We understand 
-Statement of 
understanding 
-Figured out 
-Understand exactly 
-Precision 
-How to get 
-Instantaneous 
velocity 
-Asking teacher a 
question 

30:29 Instructor The 
instantaneous…[Daniel: 
Yeah]  So is your question 
about what is “Q”? 

 -Teacher asking a 
clarifying question 
-Teacher influence 

30:32 Daniel Yeah, “Q” defined in this, 
I guess [pointing to the 
book].  I’d like to know 
how to find that too, but 
basically, I needed to 
know what “Q” was. 

I’m unsure of 
what “that” is 
here.  
 
 
  

-Clarifying 
-Like to know 
-Desire to know 
-Needed to know 
-Recognize 
mathematical need 
-Textbook 

 
 

3-2 Justin It’s like when you’re  -It’s like…driving 
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33:07 driving in your car, and 
you’re looking at your 
speedometer, you just look 
at your speedometer, it’s 
saying 65 mph, so 
instantaneous velocity is at, 
zero, because, at that exact 
moment; but what we’re 
trying to work out here is, 
we’re looking at two 
different time frames, and 
say, ‘k, we’re goin’ 60 miles 
an hour-this is the time 
frame-we’re going 63 miles 
an hour at this time frame, 
what do we do if we’re 
somewhere right in the 
middle? ‘s kinda what we’re 
looking at. 

-Speedometer 
-Relating to other 
experiences 
-Instantaneous 
velocity 
-Exact moment 
-Trying to work out 
-Trying to figure 
out  
-Giving a related 
example  
-Two different time 
frames 
-In the middle 

 
 
 

3-2 
 
35:51 

Instructor So have I sort of answered 
your question [garbled 
words]? 

 -Teacher question 
-Teacher influence 

35:56 Andrew I think pretty much what 
we’re getting to is we’re 
there [he chuckles]. 

Emphasis on 
there. 
 
 

-We’re there 
-Satisfaction with 
answer 
-Answering teacher 
question 
-Satisfaction with 
answer 

35:58 Justin But we’re trying to think 
about how much further 
we can go [trailing off]. 

 -Trying to think 
-How much further 
-Extending 

36:01 Andrew Yeah-I think that we’re 
taking it too far, I think 
we got-- 

 -Taking it too far 

36:04 Daniel ‘Bout as good as we can 
go. 

Daniel says it 
in a nonchalant/ 
definitive 
manner 

-Satisfaction with 
answer 
-As good as we can 
go 
-Satisfaction with 
answer 

36:07 Justin Well let’s finish the other 
half then.  We only 

He looks at the 
cat pictures to 

-Let’s finish 
-Making a 
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worked on number ten, 
let’s do number twenty. 

signify his 
getting back to 
work. 

suggestion 
-Moving on 
-Desire to move on 

36:13 Daniel Wait-so-ooo…  -Wait so… 
-Wondering 

 
 
 

3-2 
37:01 

Andrew  Ok so it was [inaudible]. 
Man did we overanalyze 
that. 

 -Overanalyze 

37:19 Daniel Sorry.  -Apologizing 
-Displaying 
emotion 
-Social 
responsibility 

37:21 Andrew Oh, no, it’s, I think it was 
all of us like trying to 
figure out what it was 
talking about. That’s 
pretty much a .0312 plus 
it’s a zero… 

 -Assuring Daniel 
-All of us 
-Social 
responsibility and 
interaction 
-Building shared 
meaning 
-Trying to figure 
out 
-Trying to figure 
out 
-Continuing to 
work 

 
 
 

3-2 
45:15 

Riley So, we decided it [speed 
of cat at frame 10] was 
64.5 [cm/s]? 

Riley looks 
over at the 
overhead the 
group has 
created  

-Speed 
-Clarifying question 
-Group answer for 
speed 
-Consensus 

45:19 Andrew That’s for, that’s the 
average [average rate of 
change] from 9 to 10. Is 
that what you guys got? 

Riley grabs his 
orange paper 
and looks at it. 

-Answering 
question 
-average rate of 
change 
-Comparing work 

45:25 Justin and 
Daniel 

64.5 ish  -Confirming answer 
-ish 

3-2 
45:28 

Riley 64.5 from 9 to 10. The 
thing that bugs me on 

 -Bugs me 
-Stating answer 
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that one is from 10 to 11 
I got 225 [225 cm/s 
average rate of change]. 

-
Inconsistency/cogni
tive conflict 
-Conflict in 
individual’s mind 
-Major difference in 
numbers 

45:35 Justin That’s what- yeah, I was 
just looking at too. But 
that’s just, it’s the cat’s 
accelerating really quick 
there. 

Justin says this 
quietly 

-Agreement 
-Looking at too 
-Acceleration 
-Explaining conflict 
-Resolving 
inconsistencies/conf
lict 

45:44 Daniel It changes in that much 
from 9 to 10. 

 -Statement 

 
 

3-2 
46:04 

Andrew Well, we’ve got to 
present the information 
in a way that makes 
sense. [Daniel: Yeah, 
that’s true] Ok, why 
don’t we just make a 
table, you know, out of 
the rate of change from 
9 to 10 and the rate of 
change from 19 to 20 
and then that’s how we 
display, you know the 
rate of change of the uh, 
centimeters. 

Andrew is now 
looking directly 
at Daniel. 

-Well 
-Present in a way 
that makes sense 
-Desire to 
communicate 
effectively 
-Table 
-Consensus 
-Agreement 
-Rate of change 

 
 
 

3-2 
 
47:19 

Justin So have we taken it [the 
cat task] about as far as 
we can go, for now? 
[Others: for now] 

Daniel and 
Andrew are 
working on 
drawing tables 
and such for the 
presentation, 
Riley is 
working alone 

-As far as we can 
go 
-Asking for 
confirmation  
-Consensus 
-Satisfaction with 
answer 

47:24 Riley Well, on the 9 and 10 I 
took from 10 to 11 it’s the 
huge 200 whatever. From 

 -Extending  
-Responding to a 
previous concern 
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9 to 10 it’s 64 so I just 
subtracted the one from 
the other and got 160.5. 
Which makes more sen-, 
that’s for number 10. 

-Persistence 
-Makes more sense 
-Subtracting speeds 
-Offering a 
suggestion 

47:44 Daniel For number 10?  -Question 
47:45 Riley So that’s what I’m 

guessing is instantaneous. 
Emphasis on 
“guessing” 

-Guessing 
-Instantaneous 
-Proposition 

 
 
 

3-2 
51:09 

Andrew Beyond my level. Ok, cuz 
I was getting scared. I’m 
like, everybody else seems 
to know what this 
[derivative] means. 
[Riley: I don’t even know 
how to use it; Justin: I 
know the word…] 

In a relieved 
voice. 

-Derivative beyond 
my level 
-Scared 
-Displaying 
emotion 
-Derivative 
-To know 
-Meaning 
-Don’t know how 
-Know word 

51:19 Daniel ‘Cuz, the derivative of the 
displacement is velocity. 
The derivative of the 
velocity is the 
acceleration. And that’s 
what this little y thingy 
means. That means the 
common. The Q prime 
is…[Garbled words from 
members of the group]. So 
like derivative, you just 
find like slopes [pretends 
to make lines in the air 
with his arms] of the line. 

In a mechanical 
voice, quickly 
said 

-Explaining 
knowledge of 
derivative 
-Statement of 
understanding 
-Displacement 
-Velocity 
-Acceleration 
-Slopes 

51:52 Andrew So how about we focus on 
our project [the Cat Task] 
now. 

Stretches out 
his arms, then 
points them 
forward. 

-Focus now 
-Desire to move on  

51:57 Riley About 354 and 64.5.  -States answers 
52:00 Daniel Yeah, 64.5 and I don’t 

know though, that was 
kind of interesting what 
you [Riley] did though 
minusing the amount. I 

 -I don’t know 
-Kind of interesting 
-Social 
responsibility and 
interaction 
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don’t know if that gets 
closer. 

-Subtracting 
velocities 
-Thinking about 
another’s idea 

52:11 Riley That was the idea of at 11 
o’ clock you were moving 
65 and at 12 o’clock you 
were moving 68. The 
difference is 3, like one 
subtracted from the other 
one. 

 -States origin of 
idea  
-Speeds in a car 
-Relating to other 
experiences 
-Difference 

 
 

5-1 
8:57 

Derrick Did you guys actually get 
to where you figured out 
the average speed, or its- 
[Justin: its instantaneous 
speed]  its speed on that? 

 -Asking a question 
-Comparing work 
-Comparing work 
-Figured out 
-Average speed 
-Instantaneous 
speed 

9:04 Andrew Yeah, we did, didn’t we?  -Responding to 
student question 

9:07 Justin Did we do instantaneous 
[Directed toward 
Andrew]? 

 -Unsure 
-Instantaneous 

9:09 Andrew We [group 2] got an 
instantaneous velocity, I 
think-is what we figured 
out. 

Daniel is 
working on 
something—
looks like 
measuring—
while Justin and 
Andrew talk to 
Derrick and 
Kacy 

-Response 
-Instantaneous 
-I think 
-Figured out 
instantaneous 
velocity 

9:11 Derrick Ok  -Listening 
9:14 Kacy What’d you get for that?  -Comparing work 
9:16 Andrew Um, it’s pretty much you 

just, however you get the 
velocity, um ‘cuz the 
whole deal with 
instantaneous velocity is 
you got to get as close to 
zero as possible, between 
frames [makes imaginary 
points in the air with his 
left hand] it’s point zero 

Andrew 
explains to 
Derrick and 
Kacy his 
understanding 
of why group 
2’s answers are 
close enough to 
instantaneous 
velocity to be 

-Answering 
question 
-Explaining method 
and logic 
-Explaining 
answers 
-‘Cuz  
-Justification 
-Velocity 
-Instantaneous 
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three one [.031] seconds, 
which is pretty freakin’ 
close to zero, so that’s 
pretty much whatever you 
get for velocity is going to 
be instantaneous velocity. 

called 
instantaneous  

velocity 
-As close to zero 
-Pretty close 
-Approximating 
-Precision 

9:37 Derrick Ok [Kacy nods her head]  -Listening 
-Acceptance 
-Social 
responsibility and 
interaction 

9:41 Daniel We just took that from 
frames ten to nine, did the 
equation of the distance 
minus the distance all over 
the rate of change in time 
which always point zero 
three one. [Derrick: Yeah] 
So, in your guys’ case I 
guess it’d be fifteen minus 
twelve, I think, over point 
zero three one? 

Daniel puts 
aside what he 
was measuring 
as he begins to 
speak 

-Explanation of 
how to find velocity  
-Equation 
-Distance 
-Rate of change 
-Relating to other 
group 
-Desire to 
communicate 
effectively 
-Social 
responsibility and 
interaction 

10:04 Andrew Yeah, and then that gives 
you the instant velocity 

 -Agreeing 
-Consensus 
-Instant velocity 

10:08 Derrick We did, we did five over 
point zero three one. 
[Kacy: mumbled words] 
Like five-he moves…‘Cuz 
we did speed equals uh 
distance over time, and 
since he moved five 
centimeters from frame 
nine to frame ten, that was 
distance. [Andrew: Uh, 
huh] And then we did-we 
just divided it by-- 

 -Explaining group’s 
method 
-Explaining 
answers 
-Justification 
-Formula for speed 
-Speed=d/t 
 

 
 

5-1 
 
12:01 

Daniel Soo, we’re just going to 
write-up [for in-class 
presentation]…what we 
did basically, right? 
[Justin: Yeah] Soo [pause] 

When he says 
write-up, 
Daniel means 
for their 
presentation in 

-Preparing for 
presentation 
-Desire to 
communicate 
effectively 
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wait uh second- front of the 
class 

-Asking 
confirmation 
question 
-Wait a second 
-Trying to figure 
things out 

12:15 Justin Well if we…just that 
thinking out loud-so if we 
did the graph like this 
[points to the 
displacement graph] and 
you found the slope of the 
line at ten, that would be 
the instantaneous velocity, 
right? [Kacy: Right] 

We see the 
displacement 
graph on the 
table and Justin 
points to it with 
his ruler. 

-Presenting an idea 
-Poses 
problem/suggestion 
-Thinking out loud 
-Trying to figure 
things out 
-Slope of the line 
-Instantaneous 
velocity 
-Asking confirming 
question 

12:23 Andrew Well it would, be-  -Responding to 
question 

12:25 Justin -be more precise than 
what we were doing with 
the average between the 
two points [points to two 
points on the graph]. So 
we could do that while 
someone’s writing up 
stuff, some people could 
figure that out just to see 
what happens. 

We see an even 
better shot of 
the 
displacement 
graph. 

-More precise 
-Precision 
-Average 
-Figure that out 
-Just to see what 
happens 
-Satisfying curiosity 
-Extending 
-Some people  could 
-Poses problem 

 
 

5-1 
23:25 

Daniel So to make sure that I’m 
understanding-this [hand 
drawn graph on table] is 
the speed or velocity of the 
cat-- 

We see a shot 
of the velocity 
graph done on 
paper, but you 
wouldn’t be 
able to see the 
details. 
 
It seems like 
they actually 
have a 
displacement 
graph there… 

-Make sure I’m 
understanding 
-Desire for meaning 
-Question for 
understanding 
-Velocity 

23:34 Justin [Yawns] –Uh huh, for each 
frame. 

 -Agreement 
-Consensus 
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23:35 Daniel -the velocity of the cat. So 
I could potentially draw an 
acceleration graph. Or a 
distance graph. 

 -Velocity 
-Acceleration 
-Distance 
-Potentially 
-Thinking about 
extensions 
-Extending 

24:27 Justin So are we getting grades on 
all these presentations, or 
are they just for fun? 

 -Question for 
information 
-Grades 
-Grades 
-For fun 

24:31 Derrick Probably getting grades. I 
would assume. It’s school. 

 -Response 
-Grades 
-It’s school 
-Grades 

24:33 Daniel I don’t know…I’d guess 
that it’s part of our working 
project and kind of like 
share ideas that we all 
have-to help with our 
write-ups. 

After this short 
conversation, 
there is no 
more talk 
about grades 

-Don’t know 
-Share ideas 
-Building shared 
meaning 
-Recognizing benefit 
of presentations 

 
 
 

5-2 
26:54 

Andrew ‘Kay, so what we did is we 
plotted each individual, the 
distance the cat travelled, and 
then time in the frame, so that 
we plotted each individual 
frame [points to the squares 
indicating each ordered pair] 
and we got the-in the stats-plots 
and we got that line [cubic 
regression] and- 

We see a camera 
shot of the stat 
plot on the 
calculator along 
with the graph of 
their cubic 
regression 
equation 

-What we did 
-Presenting to 
class 
-Desire to 
communicate 
effectively 
-Distance 
-Stat plot 

27:08 Kacy -the line is the equation [the 
graph of the cubic equation]- 

 -Explanation 
of line 

27:10 Andrew -And then Kacy created the 
equation. Let me get to that real 
quick…that one [points to the 
equation on the calculator 
overhead]. This equation right 
here [𝑦𝑦 = −98.4𝑥𝑥3 +
421.9𝑥𝑥2 − 69.1𝑥𝑥 + 8.7] is the 
equation that we used to graph 
the stat-point in the line, okay? 

 -Equation 
-Calculator 
-Stat plot 
-Regression 
-Okay? 



125 
 

27:25 Instructor Is that a cubic?  -Teacher 
question 
-Teacher 
influence 

27:27 Andrew Yeah, it’s a cubic  -Response to 
teacher 
question 

27:28 Unknown 
Male 

How’d you get that equation?  -How? 
-Desire to 
know 
-Student 
question 

27:29 Andrew So it-we also had to use several 
other different uh-we tried 
different other graphs that 
didn’t work quite so hot [scrolls 
through to show other equations 
on the calculator]. 

Andrew said this 
right after the 
question was 
asked, so he is 
not responding 
to the question. 

-Different 
graphs 
-Explanation 
of previous 
work 

27:40 Unknown 
Male 

Where’d you get them from?  -Reiterated 
question 

27:41 Kacy So the equation basically like, 
what we did on Wednesday 
when we did the, what was it, 
the exponential regressions? 
Instead of doing that one, 
you’d-we used the 
cubic…regression 

Now we see a 
whole bunch of 
different lines on 
the calculator, 
representing all 
the different 
regressions the 
group tried. 

-Response to 
student 
question 
-Exponential 
regression 
-Reference to 
shared 
classroom 
knowledge 
-Desire to 
communicate 
effectively 
-Building 
shared 
knowledge 
-Relating to 
prior 
knowledge 
-Cubic 
regression 

27:55 Andrew Yeah, so the cubic matched the 
line. Like…It was closest to “r”, 
it wa-what was it, it was 
ninety..? 

 -Agreement 
-Continuing 
explanation 
-“R” 
-Question for 
information 
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28:01 Justin Point nine nine [actually 
.99614]? 

 -Response 

28:02 Andrew Point nine nine nine, so then as 
you get closer to one, the better 
the graph matches the-y’know-
the points on the plot. 

 -Explanation 
of r-value 

28:10 Kacy Then with that, we were just 
able to take the derivative by 
doing the Calculate button on 
the tenth and twentieth frame to 
get one hundred and forty-three 
point three six two centimeters 
per second, and three hundred 
and twenty-five point five three 
one centimeters per second. 
Then, someone did a handy 
little conversion to do it miles 
per hour. So it’s just easier to 
look at that way, to see the 
difference. ‘cuz it’s three point 
two [miles per hour] and seven 
point two eight [miles per 
hour]. Any questions? 

The group puts 
the overhead 
back up that 
shows the 
answers they got 
when using the 
calculator. 

-Derivative 
-Calculate 
button 
-Statement of 
answers 
-Conversion 
-Easier 
-Any 
questions? 
-Ready to 
answer 
questions 
-Desire to 
communicate 
ideas 
effectively 

28:48 Justin Yeah, any questions? Did 
everybody understand that? 

 -Did 
everybody 
understand? 
-Desire to 
communicate 
ideas 
effectively 

 
 

5-2 
31:21 

Andrew Make sure we’re all on the 
same page. 

Note: Derrick 
does not talk 
during this 
whole 
conversation 

-Same page 
-Building consensus 
-Consensus 
-Building shared 
meaning 

31:26 Daniel How do you do the, like 
“r”… 

 -How? 
-Procedure question 

31:29 Andrew That’s something like, I 
learned in my statistics 
class, [Daniel: ‘k] ‘cuz we 
use a lot of stat plots and 
all that stuff, and you have 
to find a line that uh, fits 
all the statistic plots when 

 -Something I learned  
-Statistics 
-Desire to make 
connections 
-Drawing on other 
classes 
-Stat plots 



127 
 

you’re trying to find like 
y’know like define like 
trends or whatever [Daniel: 
Yeah] And so like “r” is 
just, can’t remember how 
to find “r”, I can’t 
remember. 

-trends 
-“r” 
-Can’t remember 
-How to find 

31:47 Daniel Wait-how did you find “r”?  -How? 
-Student posed 
problem 
-Procedure question 

31:49 Andrew Um, when you actually 
define the line, it’ll give 
you like-do that’s- 

 -Responds to 
question 
-Attempt to explain 

31:52 Kacy -‘cuz I never really…I just 
knew that closer to one 
[Daniel and Justin: Yeah] 
is better and I never, well I 
knew there was… 

 -Never really 
-Stating what she 
does know 
-Statement of 
understanding 
 

31:59 Andrew ‘Cuz if you take Stats 
[Justin: Yeah], you’ll –
they’ll talk about it. 

 -Stats 
-Attributing 
possession  of 
information to others 

32:01 Justin ‘Cuz when you’re in Stats, 
you’ll have points that are 
like all over the place, you 
know, and so it just makes 
the line that goes through 
the middle, judging on how 
close those are. 

A pretty good 
camera shot of 
Justin leaning 
over 
explaining 
something to 
Daniel while 
everyone else 
is looking on 

-Stats 
-Points all over 
-Line that goes 
through the middle 

32:10 Andrew ‘Cuz they try and define 
trends, not each individual 
point, and so they try to get 
a line that’ll define the 
trend best. And I can’t 
remember if like- it’s the 
distance between the points 
or something. I can’t 
remember how to find “r”, 
but- [Daniel: ‘k] and that’s 
how they figure out that the 
line fits the points best. 

 -They 
-Trends 
-Can’t remember 
-Attempt to describe 
r 
-Line fits the points 
best 
-Desire to know 
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5-2 
39:07 

Andrew But you can still define 
the one forty-five as 
instantaneous ‘cuz you 
have to get it as close to 
zero as possible. But you 
can technically describe 
it as instantaneous even 
though it’s point zero 
three one seconds 
difference. 

Note: Derrick 
still does not 
make any 
noise. The 
camera is not 
focused on 
him, so we 
don’t know 
what he is 
doing.  

-Instantaneous 
-As close as possible 
-Technically 
-Precision 
 

39:19 Justin And then it just all 
depends on what you’re 
talking about too. I 
mean-with the cat, you 
know, that’s pretty dang 
close to instantaneous, if 
you’re talking like lasers 
or something like that 
[Kacy: Giggles], where 
you’re measuring in 
point, point tenth decimal 
stuff, you know, then it’s 
like-[Andrew: Microns] 
er Microns, and stuff like 
that. So it just all depends 
on what you’re doing. 

Justin talks 
with his hand 

-Continuing and 
building on the 
conversation 
-Persistence 
-Emulating other’s 
use of agency 
-Depends 
-Pretty close 
-Precision 
-Instantaneous 
-Lasers 
-Desire to make 
connections 
-Looking at situation 
in context 
-Keeping context in 
mind 

39:36 Daniel So, the instantaneous 
derivative, we just used 
our graph to find out that 
at point ten. 

 -Instantaneous 
-Derivative 
-Graph 
-Explanation of what 
they did 

39:42 Andrew So yeah, we, we found 
out that it [velocity at 
frame 10] was one forty-
three from the graph 
would be the slope of the 
line. 

 -Consensus 
-Slope 
-State answer 
-Relating slope to 
velocity 

39:47 Justin So at that point [makes 
an imaginary point with 
his right hand] when time 
equals zero, that’s the 
instantaneous velocity 
when time equals zero. 
‘Cuz like with these, time 

Andrew and 
Daniel don’t 
just cut off 
Justin’s 
explanation. 
They just get 
on a slight 

-Continuing 
explanation 
-Explanations 
-Instantaneous 
velocity 
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is equal to-  tangent.  
40:25 Justin But does that all make 

sense, like our results 
make sense to 
everybody? [All: yeah] 

Speaks with 
concern 

-Make sense (to 
everybody)? 
-Building shared 
meaning 
-Desire to 
communicate 
effectively 
-Agreement 
-Consensus 

 
 

6-2 
 
44:24 

Derrick Wait, to find number 24, 
don’t you just do 24 
minus 23? Err, like the 
frame 24 minus 23? 

Andrew stops 
talking to 
Daniel and 
they listen to 
Derrick’s 
question 

-Wait 
-Procedural question 
-Comparing 
answers 

44:33 Daniel Yeah.  -Consensus 
44:33 Kacy That would find 23. Looks up into 

the air as if she 
is thinking 

-Disagreement 
-
Inconsistency/Group 
conflict 

44:34 Daniel Wait.  -Wait 
44:35 Kacy Wait.  -Wait 

-Confusion 
44:36 Derrick No, to find number 2, to 

find frame number 2 you 
do 2 minus 1, so the only 
one that’s going to be 
zero is number 1. 

 -Disagreement 
-Explanation of how 
to find velocity 
-Resolving 
inconsistency 

44:43 Kacy Oh yeah.  -Agreement 
-Resolution of 
confusion 

44:43 Derrick You can find out number 
24, but, cuz I went 
through and did them all. 

 -Did them all 
-Self-investment 

44:48 Andrew Oh, you already did 
everything? 

 -Surprise 
-Displaying emotion 
-Already 

44:49 Derrick Yeah.   
44:50 Andrew While I was sitting here 

like yacking on, like you 
got actual work done? 

Andrew was 
not completely 
off task. He 
was talking to 
Daniel about 

-Sitting here 
-Actual work 
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getting a USB 
port to transfer 
information 
between 
calculators 

44:53 Derrick I was just, letting you 
figure things out, I guess. 

 -Figure things out 
-Giving others 
opportunity 

44:57 Andrew Ok. So I guess it’s my 
turn to do some work. 
[Laughs] K, so wait, I 
wanna actually, you know 
try something myself, so. 
Let’s go distance. 

Andrew begins 
to write on his 
paper. Derrick 
kind of sits 
doing nothing 
for a while. 

-Want to try 
something 
-Laughing 
-Displaying emotion 
-Try something 
myself  
-Self-investment 
-Distance 
-Doing work 

45:21 Daniel Woah, what did you 
[Derrick] get for frame 
11? Err, for velocity. 

 -Surprise at own 
answer 
-Question to 
compare 
-Comparing work 
-Velocity 

45:33 Derrick 10.  -Answer 
45:34 Daniel You got 10?  -Surprise 

-Inconsistency 
45:36 Derrick Yeah.   
45:36 
 

Kacy What were you dividing it 
by? 

 -Question to 
compare 

45:38 Daniel I got 64.  -State answer 
-Inconsistency in 
answers 

45:38 Kacy Well you sh, you have to 
divide it by .031 which 
are the seconds. 

 -Explanation of how 
to find velocity 
-Resolving 
inconsistency 

45:43 Derrick Oh, you divided all these 
numbers by .031? 

 -Question to clarify 
procedure 

45:45 Kacy Yeah.  -Response 
45:46 Derrick So when you, so you’re 

like figuring out the 
change in y and then 
you’re dividing them by 
.031. 

Derrick seems 
to be sincerely 
wondering. 

-Repeat the question 
 

45:50 Daniel That can’t be right 
[referring to his own 

 -Can’t be right 
-Cognitive conflict 
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work]. 
45:54 Derrick It’s not right, I’m not 

right at least. 
 -Not right 

-Inconsistencies 
45:56 Daniel I did something really 

weird ‘cuz in my velocity 
in frame 10 he’s at 64 
[cm/s] and [frame] 11 
he’s 322 [cm/s] and in 
12th  [frame] he’s 32 
[cm/s]. 

 
 
 
 
He looks up 
and smiles 
after he 
finishes 
talking 

-Did something 
weird 
-Velocity 
-Answers different 
than expected 
-Cognitive conflict 

46:07 Andrew You did something wrong 
[nodding his head, but 
still focusing on his own 
work]. 

 -Wrong 

46:09 Derrick That sounds right, 
because like when you, 
when you calculate the 
distance, like in frame 10 
he only moves 2 [cm] and 
in frame 11 he moves 10 
[cm]. 

 -Sounds right 
-Affirmation of 
another student’s 
work 
-Social 
responsibility 
-Distance 
-Resolving 
inconsistencies 

46:16 Daniel Oh. Well, I don’t know.  -Don’t know 
46:17 Derrick So, it’s just the way, like 

how the cat’s not running 
at a constant speed, he’s 
like, his body’s like… 

 -Speed 
-Explanation of 
answers 
-Relating to context 
of cat 

46:24 Daniel Has rest periods [rising 
intonation]? 

 -Question 
-Relating to other 
experiences 

46:26 Derrick Yeah, ‘cuz like…  -Response 
-Agreement 

46:28 Andrew Well, ‘cuz like when he, 
when he takes a step, he 
like, his body contracts 
and he pauses [puts his 
arms out in front of him 
and pretends to pause], 
and then he leaps again 
[lifts his hands up as if to 
jump like a cat]. 

 -‘Cuz like 
-Further explanation 
-Pauses/leaps 
-Talking about 
context 
-Imagining 

46:34 Derrick Yeah, that’s [the cat  -Make it weird 
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pausing then leaping] 
gonna make it weird. 

46:36 Daniel Oh, I got a negative.  -Got a negative 
46:37 Derrick So why are you [asking 

Kacy] dividing them by 
.3, ‘cuz the change in y is 
gonna be… 

 -Asking why 
-Reiterating 
question 
-Question for 
understanding 

46:41 Daniel No, that’s right, velocity 
can be negative [talking 
to himself]. 

 -Velocity  
-Negative 

 
 
 

6-2 
50:02 

Derrick This class seems to go by 
pretty fast. 

As they talk, 
everyone 
continues to 
work on what 
they were 
doing. 

-Seems to go by 
fast 
-Self-investment in 
focused effort 
-General statement 
-Not boring 

50:05 Daniel Yeah.  -Consensus 
50:06 Derrick That’s a good thing.  -Good thing 

-Value judgment 
-Stating feeling 

50:07 Kacy It is.  -Consensus 
50:08 Daniel Cuz we’re like learning 

and like, 
it’s…entertaining I 
guess? 

Intonation rises 
at the end of 
the sentence. 

-Learning 
-Entertaining 
-Enjoyment in 
learning 

50:15 Derrick Yeah, we’re not just 
sitting here taking notes; 
we’re actually like doing 
stuff, [mumbled: 
sometimes] 

 -Not passive 
learners 
-Actually doing 
stuff 
-Active learning 

 
 
 

8-1 Kacy Did any of you guys run 
the thing [run down the 
hallway to model the 
movement of the cat] on 
Wednesday? [Others: No, I 
did] ‘Cause if you think 
about that it makes 
acceleration seem…er 
makes acceleration make 

Camera is still 
at another table 
when we first 
hear Kacy say 
this. 
 
 
 
 

-Running down hall 
-Modeling  
-Acceleration 
-Comparing  
experience in model 
to task 
-Relating to other 
experiences 
-Make more sense 
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more sense. [Andrew: 
Yeah, that’s true] ‘Cause 
you’re going and then you 
have to like pull yourself 
[pulls her head back] back 
kind of. [Andrew: Negative 
g-force] 

Now the 
camera is on 
our table 

-‘Cause,  
-Justification 
 

45:06 Daniel It’s weird though because 
the cat wouldn’t be worried 
about that, though. You 
know, he’d just be worried 
about running fast. 

 -Weird 
-Look at cat’s 
perspective 
-Context 
 

45:12 Andrew He wasn’t even worried 
about running fast, he was 
just going. 

 -Just going 
-Continuing 
discussion 

45:15 Daniel  Oh yeah, but I mean like he 
wouldn’t be like, “okay, 
now I’m going to stop and 
pull back, ‘cause like…” 

 -I mean 
-Relating to other 
experiences 
-‘cause like 

45:18 Andrew Well, I mean when you’re 
doing a general walk 
yourself you’re not really 
even paying attention 
yourself about your 
velocity or your [garbled] 
and acceleration [Daniel: 
True] You’re just going. 

 -I mean 
-Not paying 
attention, just going 
-Relating to other 
experiences 
-Velocity  
-Acceleration 

45:28 Derrick I think about it.  -Joking 
45:32 Kacy [Laughing] Just doing little 

walking experiments. 
 -Social interaction 

-Laughing 
-Experiments 

45:33 Andrew When you’re running 
track. You have a negative 
acceleration every time you 
take a hurdle. [Students 
start working on their own 
again] 

 -Running track 
-Relate to other 
experiences 
-Imagining 
-Negative 
acceleration 

 
 

9-2 
01:44 
 

Derrick I’m trying to think of how 
you figure it out [finding 
the slope of the tangent line 
without a calculator]. 

 -Trying to think 
-How to figure it 
out 
-Slope 
-Tangent line 
-Without calculator 
-Poses problem 
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01:54 Daniel Well what if we just took 
two lines, what if we just 
took from frame nine to ten 
and from frame ten to 
eleven and found the linear 
slope with that. [Andrew: 
The two different lines?] 
Yeah. That might… 

 -Well what if 
-Linear slope 
-Brainstorming 
-That might… 
-Responding to 
student posed 
problem 

02:11 Andrew Can you compare, like take 
the slope, like do the rate 
of change from one slope 
to another slope to find the 
slope for ten? 

 -Can you…? 
-Presents idea 
-Rate of change 
-Slope 
-Comparing two 
slopes 

02:17 Daniel Wait a second! If we have 
those two lines then we 
could take the arctangent 
thingamabobber or 
something like that and 
find the angle. 

Spoken quickly -Wait a second 
-Excitement 
-Arctangent 
-Relating to 
previous knowledge 

02:24 Andrew Do you know how to do 
that [take arctan]? 

 -Do you know how 
-Desire to know 

2:25 Daniel I don’t but I can draw it 
and maybe fake it. I can 
fake it and maybe it will 
lead somewhere. 

 -Fake it 
-Risk taking 
-Trying an idea 
-Lead somewhere 

02:48 Daniel So do you know how to 
take that? [Kacy: Do 
what?] Okay, this is my 
idea. So we have this point, 
this point, and this point 
[draws three points]. Okay, 
so we can draw a linear 
line and we could figure 
this out by hand. Two 
linear lines [draws two 
lines intersecting at an 
obtuse angle]. And then we 
go from here. If we took 
these two lines…I don’t 
know. Take the tangent of 
here. The arctangent or 
something? That 
angle…[Draws an arc 
between to the two lines] 

 
 

-Do you know 
how? 
-This is my idea 
-Shows idea 
-Tangent 
-Arctangent 
-Arctangent or 
something 

03:29 Andrew So would the arctangent be  -Clarifying question 
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like a line from there? 
03:33 Daniel It would be like this. I 

don’t know what I’m 
doing. There’s something 
like- 

 -Explanation 
-Don’t know what 
I’m doing 
-Something like 

03:41 Kacy -Oh! You’re right! There’s 
something [Daniel: there’s 
something like that] Like a 
triangle thingy. 

 -Excitement 
-Triangle thingy 
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