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Chapter 1—Introduction 

 Recent changes in mathematics education are altering the emphasis and goals of 

mathematics curricula. These reform curricula are becoming increasingly well known. 

Their emphasis on explanation, justification, and communication of mathematical ideas 

differs from the emphasis on developing skills in quickly carrying out procedures in 

traditional mathematics curriculum. Instead of focusing on mastering procedures and 

getting a correct numerical answer, the goal of reform curricula is to help students better 

understand the mathematics they are learning. As a part of this difference, students are 

often required to give more that just a correct numerical response. They are asked to 

explain how they got their answer and why the answer is correct. 

Explanations are important 

There are many reasons why explanations are an important part of reform-

oriented mathematics classes.  The first reason is that when students give explanations, 

their understanding of mathematical concepts increases (Hiebert, et al., 1997). By 

explaining solution methods, students are communicating their mathematical ideas to 

others. When students explain, their ideas need to be clear enough that others will 

understand. In order to construct an explanation, students may need to think again about 

what they have done and evaluate it for correctness and soundness of logic. This 

clarifying process helps students’ understanding to grow and solidify. Having students 

explain themselves is beneficial to the students’ understanding.  

 Explanations are also an important part of reform-oriented mathematics classes 

because they give more evidence than a numerical answer of what a student understands. 

Seeing numerical calculations worked out by a student only shows that student’s 
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procedural fluency and gives no indication of the student’s conceptual understanding 

(National Research Council, 2001). Having students give explanations was first 

motivated by studies that showed that students who could give correct numerical answers 

did not necessarily understand the mathematical concepts and principles. They solved the 

problems using other incorrect ideas they had come up with. For example, Erlwanger 

(1973) reported that Benny could score very well on his assessments, but had incorrect 

ideas of fractions and fraction operations. Similarly, Sowder (1988) wrote about students 

who found correct answers to word problems through various methods that were based 

on incorrect conceptions of how to use given information to determine a proper 

operation.  These studies and others like them have demonstrated that a correct numerical 

answer is not a good measure of understanding. An explanation of their solution sheds 

more light on how they arrive at their answer and what they understand.  

Another reason that explanations are important is that teachers often use them as a 

form of assessment. Many teachers believe that explanations reveal their students’ 

understanding of a topic (Miller, 1992) and therefore use them to assess how much their 

students understand. However, explanations will only be an effective assessment tool 

when students know how to explain the things they have learned. Students need to know 

how to give explanations so their teachers’ assessments of their understanding will be 

accurate. Otherwise, students will not be allowed to progress in mathematics.  

A fourth reason why explanations are important is that through them students can 

participate legitimately in mathematical activity. Communicating what one understands 

through explanation and justification is an essential part of participating in mathematics 

(Hiebert, et al, 1997; NCTM, 2000). The ability to express one’s mathematical 
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understanding is often an important part of becoming a member of a mathematical 

community. When students are asked to give explanations as part of the mathematics 

curriculum, they are being prepared to become a fully participating member of a 

mathematics community.  

Explanation needs to be taught 

 These reasons show why explanations are an important part of reform 

mathematics classes. However, students may not realize the importance of 

mathematically justifying themselves if it is not pointed out to them that they need to do 

so (Smith, 1996). Even if they do realize the importance of justification, research shows 

that many students are not able to give good mathematical explanations on their own. 

Students’ ability to clearly explain thinking and justify solutions is something that has to 

be developed (Spillane & Zeuli, 1999). Due to the conventions that are specific to 

mathematics, good mathematical explanations do not necessarily come inherently to 

those who can express themselves well in other subjects or understand mathematics well. 

Teachers cannot assume that all students will naturally pick up the skills they need to 

master in order to give quality explanations because these language skills do not always 

develop naturally (Morgan, 2001). As mathematics teachers “model important 

mathematical actions,” they must also create a discourse of justification and explanation 

where students learn to reason with the ideas being taught (Smith, 1996, p. 397). Since 

some students will not be able to give good conceptual explanations on their own, they 

need to be explicitly taught how to give good explanations.  

Students need to learn how to give good explanations and there are many well-

known mathematics education researchers who are calling on teachers to instruct their 
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students in explanations. For example, Wood (1999, 2001) claims that it is the teacher’s 

responsibility to make it clear to the students what is expected in an explanation. The 

teacher’s expectation for explanations to be thorough and clear has a direct effect on how 

detailed the students’ explanations are. The National Council of Teachers of Mathematics 

has emphasized that it is the mathematics teacher’s responsibility to help students learn to 

communicate mathematically (NCTM, 2000). 

It is reasonable that mathematics teachers should be the ones that provide the 

instruction students need to give good explanations. Mathematics teachers are more 

qualified to give this instruction than any of the students’ other teachers because they 

have the mathematical knowledge that is necessary to teach explanations. Mathematics 

teachers also know more than other teachers about the mathematical discourse practices 

necessary to know what should be in an explanation and to teach students to give 

mathematical explanations (Morgan, 2001). Mathematics teachers are already giving 

mathematics instruction to their students. Therefore, it would be the most natural for 

these teachers to give instruction on how to explain the mathematical concepts the 

students are learning. Since mathematics teachers are the most qualified to provide 

students with the instruction they need to give good conceptual explanations, 

mathematics teachers have a responsibility to provide it.  

In order for teachers to instruct their students on how to give a good explanation, 

they first need to know themselves what constitutes a good explanation. This includes 

what structure it should have and what components should be included. Research has 

found that teachers find it difficult to explicitly describe what they expect students to put 

into a good explanation. They can usually use mathematical vocabulary, definitions, and 



 5

notation easily, but find it more difficult to clearly lay out how these things should be put 

together in an acceptable explanation (Morgan, 2001). If teachers are going to be able to 

instruct their students in explanations, they first need to know more themselves.  

Teachers also need to know how to evaluate the explanations that are given. It is 

reasonable to assume that if teachers are not clear what should go in an explanation, it 

will be difficult for them to explicitly determine which explanations adequately explain 

reasoning. It can be tricky to point out exactly where flaws are located and the reason for 

them, especially when each explanation has a different feel to it depending on students’ 

understanding and personality. It would be helpful to have a model for explanations that 

could be applied generally, without having to take the specific student or content of the 

class into account.   

Research on the details of explanations 

 An analysis of the literature on explanations only gives broad descriptions of the 

components of good explanations. Researchers offer many accounts of teachers leading 

class discussions where students give an answer or partial explanation and then the 

teacher asks the students to explain how they got that answer, why their answer is correct, 

or why the things they said make sense (Spillane & Zeuli, 1999; Wood, 1999; Wood, 

Cobb, &Yackel, 1991). The teachers’ comments about what has been left out implicitly 

tells the students that these are important parts of an explanation. However, there is little 

detailed analysis of the sequence of statements students make and how these statements 

function in the explanation. No one has pointed out specifically how these factor into 

composing a good conceptual explanation. Knowing how to analyze explanations with 

this amount of detail would allow teachers to know more clearly what should be in an 
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explanation. Teachers could pass along these ideas about the structure of explanations 

onto their students. This would be effective instruction on explanations.  

Currently, the descriptions of instruction on explanations are also very broad and 

general. For example, Wood (1999) describes a teacher asking her students to explain 

their reasoning when their explanations are challenged, instead of just re-explaining the 

steps they took. By questioning the students’ explanations, the teacher is letting the 

students know that something important was left out of their explanation and needs to be 

included; however, no explicit details of how to make sure they know when to include 

details are given. Spillane and Zeuli (1999) give an example of a teacher who has her 

students explain their problem solutions, even though her instruction focuses only on the 

mathematics. She has to “continuously [press]” students to give thorough and well-

justified explanations by asking how they knew what they had done was correct and how 

they knew the things they said (p. 10). Except for this encouragement to give thorough 

explanations, there did not seem to be any other instruction on explanations. This general 

instruction is insufficient to empower students to give good explanations independent of 

teachers’ constant prodding. Explicit instruction from their mathematics teachers on the 

components of good explanations can help students know how to give well-justified 

explanations. 

In the field of mathematics education, there does not appear to be a widely 

accepted and known structure for mathematical explanations. Beyond general questions 

that teachers use to urge their students to give more information, there seems to be a lack 

of vision about what teachers can explicitly teach their students about the structure and 

components of an explanation so that students can independently create satisfactory 
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explanations. Therefore it would be worthwhile to find out if there is a way to identify the 

structure of a conceptually oriented explanation that would be accepted in a reform 

mathematics class. Such a structure would be helpful to teachers and students because it 

would enable both groups to have a better understanding of what should go into a 

conceptual explanation. This would help teachers give explicit instruction on 

explanations and help students know what is expected of them so they can give 

explanations that accurately reflect what they understand.  

Conclusion 

Student explanations are a fundamental part of reform mathematics classes. 

Instruction in these classes is geared toward having students give explanations and 

explanations are prevalently used as part of instruction, homework, and assessment. 

However, little explicit instruction is given on explanations. This may be the case 

because teachers are not exactly sure what should be in them. Knowing more about the 

structure of explanations would be beneficial to teachers and researchers. The purpose of 

this study is to investigate the structure of mathematical explanations in a reform-oriented 

classroom and to identify common components and structural features. Such a study 

would not only provide teachers with information they could teach their students, but 

would also make a contribution to the research literature on mathematical explanations 

and argumentation. 
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Chapter 2—Conceptual Framework 

In order to study the structure of conceptual explanations, I looked outside of the 

field of mathematics education to a general theory of argumentation developed by 

Toulmin (1969). It has previously been applied to explanations from reform-oriented 

classrooms by mathematics education researchers because it has potential to uncover 

important characteristics of these explanations. It is a general structure of argumentation 

and recognizes specific components of arguments that would also be expected to be part 

of the explanations. In this chapter, I will first describe Toulmin’s argumentation 

framework. Second, I will discuss the contributions and shortcomings of others’ attempts 

to apply Toulmin’s framework to mathematics. Lastly, I will explain some of tools the 

students in the class where I did my research may have used to explain their reasoning.  

Toulmin’s argument structure 

 There are four main components to Toulmin’s argumentation structure. Each type 

of statement can be identified by its function—the role it plays in the argument—and its 

form. These are laid out in Table 1. The first is the claim. This is the statement for which 

the argument provides justification. Establishing the claim is the reason the argument is 

being given. It is something that is not considered obvious; hence, an argument is given 

to prove its truthfulness. The statement that provides the foundation for the claim is 

 Toulmin-Form Toulmin-Function 
Data  Fact Statement Fact that justifies the claim 
Warrants  General Principle Connect data statement to claim, establish the 

step as legitimate 

Backing Fact Statement Justify warrant, establishes authority of the 
warrant; does not need to be made explicit 

Claim Statement to be supported Conclusion that is being established 

Table 1 The Form and Function of Each Part of Toulmin's Argumentation Structure 
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called data. This statement of fact is a specific piece of information that is explicitly 

given in the argument. It is necessary to have data in the argument because without it, the 

claim is left without any support, and there is no argument at all (Toulmin, 1969). 

Toulmin portrays data as something that can be accepted without question. However, he 

acknowledges that it is possible that there could be a problem if the factuality of the data 

is doubted. Toulmin addresses this problem quickly with one sentence. He states that a 

side argument, a lemma, could be produced to establish its truthfulness, after which one 

could progress with the current argument.  

Even if the factuality of the data statement is not questioned, its applicability to 

the claim could be. One could wonder how it supports the claim, why it gives the claim 

any validity. The statement that would be given to establish applicability is called a 

warrant. The warrant is a general statement or principle that shows how the datum is 

related to the claim. It must be general, for if another specific piece of information was 

given, it would just be more data and would not establish general applicability of the 

datum to the claim. The warrants must “[certify] the soundness of all arguments of the 

appropriate type,” (Toulmin, 1969, p. 100). If the warrant is challenged, then backing can 

be produced to establish the warrant. The backing is another statement of fact that 

justifies the warrant and establishes its authority. It does not need to be made explicit, but 

could be if the warrant was challenged. This structure is laid out as Toulmin shows in his 

paper in Figure 1. These statements all fill unique roles. They make it possible to 

distinguish different types of justification, such as general principles verses specific 

information, as opposed to more justification of the same type. 
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 To better illustrate Toulmin’s components of argumentation, consider the 

following argument that Toulmin uses to demonstrate his framework. The purpose of the 

argument is to establish the claim that Harry is a British subject (see Figure 2). The 

datum that establishes this claim is the fact that Harry was born in Bermuda. However, 

one could ask what Harry being born in Bermuda has to do with Harry being a British 

subject. At this point, the warrant could be given: that a man born in Bermuda will 

generally be a British subject. This is a general principle that establishes the applicability 

of the datum that Harry was born in Bermuda to the claim that Harry is a British subject. 

Even with the applicability established, the truthfulness of the warrant could still be 

questioned. If that was the case, the actual statutes of law and other legal provisions that 

verify that those born in Bermuda will generally be British subjects could be provided as 

backing to the warrant.  

 Toulmin’s examples of arguments do not shed light on how his argument 

structure would apply to mathematical explanations. All the examples that Toulmin gives 

are just as simple as this one— all the components are given in only a few sentences. 

There is only one sentence for data, one sentence for a claim, and one sentence for a 

Figure 1 Toulmin's Argumentation Structure in general 
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warrant. The claims deal with straightforward situations like Harry’s hair not being black, 

based on the fact that someone has seen it and it is red, or that Peterson is not a Roman 

Catholic, based on the fact that he is a Swede. His theories about argumentation hold very 

well with these cases. However, mathematical explanations are not always this simple 

and straightforward. Explanations often consist of multiple arguments that build on each 

other to reach a final conclusion. Toulmin acknowledges the field dependency of what 

are considered acceptable warrants and backings, meaning that warrants and backings 

will be different depending on the situation and the background of the argument 

according to the specialty of each field (Toulmin, 1969). He does not, however, discuss 

the field dependency of knowing what is acceptable as data to back up claims, even 

though the field where an argument is being given certainly would affect the data as well. 

Figure 2 Toulmin's Structure laid out with an example 
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These differences between mathematical explanations and Toulmin’s arguments show 

that the explanations do not easily fit in his argument structure. 

Applications of Toulmin’s framework to mathematics 

 Many researchers have used Toulmin’s framework as the basis for their research. 

These researchers have applied Toulmin’s framework in different ways and their 

applications have strengths and weaknesses. However, their work fails to apply his 

framework in a way that informs the field of mathematics education about the structure of 

arguments. To show this, I first summarize Aberdein’s work, which has focused on 

applying Toulmin’s framework to formal mathematical proofs. I then examine the work 

of three different research groups who have applied Toulmin’s framework to the 

mathematical justifications and explanations given in reform-oriented classrooms. 

Aberdein (2005) attempted to show that Toulmin’s scheme of arguments could be 

applied to formal mathematical proofs. First, he recognized that in proofs there are often 

multiple arguments that build on each other to reach the final result, which Toulmin did 

not address. Claims from initial arguments are used as data in further arguments. In the 

proofs that Aberdein lays out using Toulmin’s structure, the arguments are linked 

together through these statements that are first justified as claims and then used as data to 

justify other statements. Second, in his analysis of proofs, determining which statements 

are data and determining what to put as warrants and backing in the proofs seems to be 

unproblematic. Some of the warrants and backings are missing in the original proof he 

examines in his paper, so Aberdein adds the necessary warrants and backings to complete 

the argument. The warrants and backing he includes are widely recognized as accepted 

facts and mathematical conventions. Aberdein does not address if the choice of warrants 
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and backing reflect the intentions of the original author. It seems that as long as 

acceptable warrants and backing can be determined by finding a mathematical principle 

that links data and claim together, they are acceptable. 

The differences between the social contexts in which proofs and conceptually 

oriented explanations are situated result in only one of Aberdein’s contributions being 

useful to the study of conceptually oriented explanations. The first point made above, that 

mathematical arguments build on each other to reach the final conclusion, still holds true 

in explanations. There are still multiple steps that have to be completed to reach the final 

result. However, the second point made above about warrants and backing is problematic 

in explanations. The differences between the purpose and social context of proofs and 

explanations makes determining the warrants in an explanation much more problematic 

than in a proof for two reasons. First, even if a correct, conceptual mathematical principle 

that links the datum to the claim can be produced by the reader, there is no way of 

knowing if that is the warrant actually intended by the author. It is possible that the 

author made the conclusion based on a much less conceptual principle, or even an 

incorrect principle that still resulted in the correct claim. Second, which principles can be 

used as warrants depends on the classroom it is given in. Classes have their own social 

features that determine what is part of an acceptable explanation. Thus there is not a 

global set of acceptable warrants that can be used in any explanation. This is a different 

context than the published proofs that Aberdein is analyzing, where the warrants could be 

inferred to be the logical mathematical principle that would link the datum to the claim. 

Aberdein does not account for these social features that affect how Toulmin’s framework 

can be applied to mathematical arguments.  
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Unlike Aberdein, some mathematics educators have tried to extend Toulmin’s 

framework while allowing for the social context of arguments. For example, 

Krummheuer (1995) looked at argumentation in the interaction of students who were 

negotiating the meaning of number facts and explaining their answers to problems. 

However, he dismissed the idea that statements in these interchanges could be classified 

as elements of Toulmin’s argumentation structure by recognizable features of their form. 

He claimed that the functionality of a statement depends on what role it plays in the 

interchange, how it fits in with other statements. As he analyzed a short interchange 

between two students and a researcher, he classified certain data-like specific statements 

as warrants because the students used the statements to establish the applicability of the 

data to the claim. However, they were not general principles and therefore did not fit 

Toulmin’s criteria for warrants. When Toulmin’s framework is skewed this way, the 

general principles that connect the fact statements that justify the argument are ignored. 

Fact statements alone do not build arguments unless there are general principles linking 

them together. If more facts are needed to justify an argument after it has been given, 

then the original argument needed more data to begin with. The warrant was not the 

problem. Toulmin makes the distinction between these different parts of an argument. By 

dismissing part of his criteria, Krummheuer’s application of his framework does not fully 

capture the reasoning behind an explanation.  

A second group of researchers have worked together using Toulmin’s framework 

to examine the effect of the social context on how the requirements for a well-justified 

explanation change over time. Yackel (2002) pointed out that what is acceptable is 

dependent on what constitutes public knowledge in that class. Cobb, Wood, Yackel, and 
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McNeal (1992) found that what are acceptable as data, warrants, and backing evolve in a 

classroom as concepts become taken-as-shared, meaning that they are used as if they are 

commonly understood and accepted by everyone in the class. Yackel (2001) and Stephan 

and Rasmussen (2002) found in their research that ideas have become taken-as-shared 

when warrants and/or backing are no longer given in students’ explanations and it 

appears that the ideas can stand alone with no further justification. For example, if a 

statement that previously was a claim that needed to be justified is used as a data 

statement with nothing to support it, then they would consider the ideas in that statement 

as having become taken-as-shared. Yackel (2001) said that “what constitutes data, 

warrant, and backing is not predetermined, but is negotiated by the participants as they 

interact” (p. 17).  This negotiation leads to acceptable data, warrants, and backing 

evolving over time. Although this research provides valuable insight into the process by 

which what needs to be explained changes over time, it does not provide specific 

guidelines for what constitutes a good explanation at a particular moment in time. Thus, it 

does not adequately describe the structure of good explanations, the focus of this 

research. 

Maher, Powell, Weber, and Lee (2006) are a third group of mathematics 

education researchers who have applied Toulmin’s framework to mathematical 

explanations. Their work raises two important issues related to the structure of 

explanations. First, it is unclear from their work whether warrants need to be explicitly 

included in acceptable explanations. While evaluating students’ arguments, they found 

that acceptable warrants were rarely given. However, the researchers did not take a stance 

on whether the explanations were adequate without the warrants. Instead, to determine 
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the adequacy of the arguments, they attempted to infer what general principles the 

students were relying on to link the data to their claims. Second, their findings raise 

questions about the acceptability of data statements. In one of the examples they gave, 

students argued about the acceptability of the data that one student gave in her argument. 

The argument was eventually rejected because the other students would not accept the 

statement as valid data. Although their paper raises interesting issues about warrants and 

data that need to be accounted for in an argumentation theory, the authors do not propose 

solutions to these problems. More specifically, they do not indicate when explicit 

warrants are required or which statements can be taken as data and why.  

Even though many researchers have used Toulmin’s framework, none have 

described what the structure of a good explanation is. Toulmin’s framework has been 

applied to mathematical arguments in many different ways, but none that look at the 

components of a good conceptual explanation. If Toulmin’s structure of arguments could 

be extended to describe some of the key features of an explanation, then the extended 

framework could help in distinguishing good explanations. Therefore, I will focus my 

research on the question: How can Toulmin’s structure of arguments be extended to 

describe explanations in a reform-oriented mathematics class? 

Class conventions as tools for constructing explanations 

 In the class studied, the students were given tools to use in justifying their 

explanations. These tools consisted of the concepts, definitions and terminology 

applicable to the concepts, and acceptable practices that could be used to reason with the 

concepts. I will refer to this collection of common concepts, definitions, terminology, and 

practices as class conventions. The students were provided with these tools to help them 
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to reason about quantities and operations and to solve problems.  Because these 

conventions undoubtedly influenced students’ explanations, an understanding of the tools 

and meanings they were using is important in analyzing the data. In this section, I discuss 

some of the key conventions students could use to reason, explain, and justify. 

The students in this class were studying fractions by analyzing fraction quantities 

and operations. The class conventions dealt with a conceptual understanding of fractions 

that is different than how fractions are often taught. Whole number language that is often 

used to describe fractions as one number out of another number, for instance, where 3/4 

is seen as three out of four objects, was not accepted in this class. Instead a part-whole 

interpretation of fractions was used. In a part-whole interpretation, the notation for a 

fraction corresponds to a whole that has been cut up into equal-sized pieces (Lamon, 

1999; Tzur, 2000). The number in the denominator shows how many pieces there are. If 

the pieces were not of equal size, then knowing how many there are would not give any 

information about how big they are. Though fractions are often thought of as the number 

of pieces, like the three out of four objects mentioned above (Mack, 1990), it was 

negotiated in this class that a fraction described the size of the pieces. By establishing a 

fraction as a certain amount of the whole that was made up of a number of pieces of a 

particular size, the image of how a fraction relates to a whole becomes clearer. 

These conventions were established at the beginning of the unit on fractions so 

students could build meaning with them as the course progressed. Only a few of the 

conventions that were negotiated in the class will be relevant to the results reported in 

this paper, and only those will be described in this section. The relevant conventions are 

those that deal with unit fractions, non-unit fractions, and simplifying fractions. 
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 Unit fractions. Partitioning and iterating are the two different ways students were 

taught to define a unit fraction. Using the partitioning definition, a unit fraction comes 

from dividing up the unit whole into a certain number of smaller equal sized pieces and 

taking one of those pieces. For example, if a whole is divided into five equal parts, then 

each resulting smaller pieces is one-fifth of the whole (Lamon, 1999). In contrast, the 

iterating definition of a unit fraction starts with a smaller piece that represents the unit 

fraction. The piece has to be copied a certain number of times to make the larger whole. 

The number of times it needs to be copied is what fraction of the whole it is. For 

example, a piece of size one-sixth will need to be copied six times to make the whole 

(Siebert & Gaskin, 2006; Tzur, 2000). Partitioning and iterating were the only two 

meanings of unit fractions that were accepted in this class. 

 Non-unit fractions. The acceptable way to define non-unit fractions in this class 

was based on the definition of unit fractions described above. Once iterating or 

partitioning has been used to define what the unit fraction is, combining more than one 

copy of the unit fraction can create a non-unit fraction. For example, once partitioning or 

iterating has been used to define one-sixth, five-sixths is defined by putting five of the 

one-sixth pieces together (Behr, Harel, Post, & Lesh, 1992; Siebert & Gaskin, 2006). An 

acceptable way of explaining what a non-unit fraction, for example 3/4, means from a 

partitioning perspective is to take a whole, cut it into four equal pieces. It follows that 

each piece is 1/4. If three of these 1/4 pieces are put together, then the result is 3/4. From 

an iterating point of view, if a piece is copied four times to make a whole, then that piece 

is 1/4. Again, three 1/4 pieces together make 3/4.  
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 Simplifying fractions. The ideas behind the accepted way to simplify fractions in 

this class are based on drawings of a whole being cut into equal sized pieces, with each 

piece representing the size of the unit fraction. Then the number of unit-fraction pieces in 

the fraction is shaded in. In order to simplify the fraction, the total number of pieces in 

the whole are grouped together into larger, but still equal sized pieces. If the number of 

shaded pieces can also be grouped into these larger pieces with none left over and all 

groups completely shaded, then the fraction can be simplified. For example, a fraction of 

8/10 can be simplified to 4/5.  Figure 3 shows a picture of 8/10. There are ten total pieces 

and these can be put into groups of two to form five groups. Then the eight shaded pieces 

can also be put into groups of two to form four shaded groups. The darkened lines in 

Figure 5 show the pieces in their new groups. Since the ten total pieces and the eight 

shaded pieces can be grouped into the same size new groups, 8/10 can be simplified to 

4/5. In Figure 4, 8/10 can be seen as the eight 1/10 pieces colored in. Four-fifths can be 

seen as four of the tall 1/5 pieces colored in.  

 

 

 

 

Figure 3 A drawing of 8/10 
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 With the background presented in this chapter, I will give the details of the study 

used to answer my research question in the next chapter. Studying explanations given in a 

reform-oriented mathematics class gave the opportunity to analyze how Toulmin’s 

framework could be extended to account for the characteristics of these explanations.  

 

 

Figure 4 A drawing showing how 4/5 can be seen in 8/10 
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Chapter 3—Research Methods 

 In this chapter, I describe the qualitative study I completed to answer my research 

question. After collecting mathematical explanations from pre-service secondary 

mathematics teachers, I looked for how Toulmin’s structure of arguments applied to the 

explanations the participants gave and determined how the framework needed to be 

extended to better fit the structure of these mathematical explanations. The participants in 

my study and the setting where it took place are described first, along with the reasons for 

my choices. I then explain my data collection methods and the data I collected. Finally, I 

describe how I analyzed my data and how this analysis answered my research questions.  

Participants 

I worked with Brigham Young University students who were just beginning the 

Mathematics Education major and were enrolled in MthEd 117, Critical Review of 

School Mathematics, during Fall Semester 2006. I had six participants, which provided 

enough of a variety of explanations to analyze and compare. To select the participants, I 

explained the study to the whole class  of 25 students and asked for interested volunteers. 

From those volunteers I selected six participants with varied mathematical and 

educational backgrounds based on an information sheet they filled out for their instructor. 

This was based on their prior experiences with mathematics, their description of 

mathematics and mathematical activity, and what they felt was the most important thing 

they still needed to learn before starting to teach. All the participants shared that they 

enjoyed doing mathematics. Their prior experience ranged from succeeding in math 

competitions in high school to struggling with upper level math classes. While some felt 

that mathematics was logical and challenging, others saw mathematics as using numbers 
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and symbols to solve problems based on data, while others thought that creativity in 

mathematics is just as important as precision. Before starting to teach, some of the 

participants felt they needed to know how other people learn. Other participants wanted 

experience and practice teaching those who did not already know the material and wanted 

to know different ways to explain what they already knew. In contrast, two of the 

participants felt they needed a deeper understanding of mathematics they were already 

familiar with. Only one of the two males in the class volunteered, resulting in five female 

participants and one male participant.  

Involving MthEd 117 students was advantageous to my study. All the students in 

this class had successfully completed at least two calculus classes before enrolling in this 

course. Therefore, it was reasonable to assume that they all had a strong mathematical 

background and a positive attitude toward doing mathematics. In this class the students 

were required to learn to give explanations that were acceptable in a reform-oriented 

mathematics class. They learned how to give written and verbal explanations that 

explained their reasoning from explicit instruction from their teacher. Therefore the 

students in this class had opportunities to learn to write good conceptual explanations and 

had opportunities to improve. Additionally, it was ideal to work with college students 

because they were generally more expressive and communicative as to what they are 

thinking and learning. It is likely that they put more thought into their explanations than 

younger students might have, resulting in explanations that are more clear and organized. 

Setting 

My study took place within the context of a MthEd 117 Critical Review of School 

Mathematics class. This was a mathematical content course that presents a conceptual 
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approach to the mathematics future secondary teachers will likely teach in the schools. 

This class focused on increasing students’ understanding of fractions, integers, and 

algebra. All in-class activities and homework were inquiry-based. Students spent a lot of 

their time in class working on mathematics problems and presenting their ideas and 

findings to their peers and the whole class.  

In this course, the students were expected to give detailed mathematical 

explanations both verbally and in writing. In these explanations procedural answers were 

not sufficient. The meaning of all quantities had to be explained. Students were expected 

to explain and justify all the processes they used in their explanations. If they could not 

explain and justify their procedures, they were not allowed to use them.  

This course was a good place to look at mathematical explanations. During this 

course, the students had frequent instruction on how to give good conceptual 

explanations and received feedback on their explanations from the professor, both in 

class and on their written assignments. They also were developing an increased 

understanding of the subject matter. Due to these experiences, the participants quickly 

improved in their written and verbal explanations. This gave them the opportunity to be 

able to give well-developed explanations. It was advantageous to collect well-developed 

explanations as data because this would allow for a thorough analysis of the structures of 

explanations and the components of argumentation in them. Thus it was beneficial to 

look at the explanations of students taking this course.  

The first unit in the course, which focused on fractions, was an ideal time to 

examine mathematical explanations. The students were familiar with the subject matter of 

fractions from previous math experiences. They could already correctly perform fraction 
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operations and work successfully with fraction quantities. The students’ familiarity with 

fractions assured them they could get the right answer and this helped them be 

comfortable expressing their thinking in the explanations they gave because they did not 

have to worry about being wrong when they explained themselves to their peers. During 

this unit, the class worked on developing conceptual meanings and images for fractions 

and fraction operations. As they did this, there were many opportunities for students to 

explain these concepts in depth to the teacher and to their peers. The many different 

aspects of fractions provided the students with many different concepts to explain. The 

material was difficult enough that it took two months for pre-service mathematics 

teachers to work through and explain it all. Even though the students were already 

familiar with fractions, most were open to learning more about them. They could see how 

these conceptual meanings were helping them to gain a richer understanding of fractions 

and they realized that it would help them teach fractions in the future and clear up 

students’ misunderstandings on this subject. 

Data collection 

Data collection was limited to the fraction unit, which lasted two months. During 

this time, I attended the class, observed the instruction and the interactions between the 

teacher and the students, and took field notes. Being in the class helped me know what 

the classroom norms were, what the teacher was expecting of the students, and how the 

teacher and students were developing conceptual meanings for fractions. I was able to 

refer back to my field notes to remember what concepts and issues had been addressed in 

class. My class observations allowed me to be informed for the interviews that I 

conducted for this study.  
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I interviewed each of the six students three times during the fraction unit—at the 

beginning, in the middle, and at the end. In the interviews, the students were asked to 

explain problems both in writing and verbally. All interviews were video recorded and all 

written work from the interviews was kept for analysis. The layout for all three 

interviews was the same. Before the interview, the students were requested to have 

completed a certain homework assignment. In that homework assignment, students were 

required to give written solutions and explanations for mathematical problems. In the 

interview, the student was asked to explain one of the homework problems to me 

verbally. They did not reference their written homework.  They were not asked any 

questions during their explanation. After they finished, I gave them a different problem 

that was similar to the one just discussed. I asked them to solve the problem and explain 

it to me verbally after they were sure of their solution. I then asked them questions about 

their response, eliciting some understanding that they may not have previously expressed. 

These questions often dealt with parts of the explanation that I felt were incomplete, or 

where clarification would result in a better explanation. After they responded, I asked 

them to write an explanation of this problem. At the third interview, I then asked the 

students follow-up questions about their explanations. I asked them what they thought the 

key elements of a good explanation were and what they do to ensure they include all 

those aspects in their explanations. I also asked them if they thought their experience of 

learning to give conceptual explanations in this class affected the way they explained 

themselves in other math classes.  

This layout for the interviews helped me answer my research question because I 

was interested in looking at how Toulmin’s argumentation structure fit with explanations 
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from an inquiry-based mathematics class. In inquiry-based mathematics classes, students 

often engage in both written and verbal explanations. By having the students give both 

written and verbal explanations in the interviews, I could gather data for both types of 

explanations. This allowed me to perform my analysis on both types of explanations and 

see if Toulmin’s framework applied the same way.  

The other aspects of the interviews helped assure that certain factors would not 

confound the results. Having the students explain two problems helped me know that 

their explanations were not rooted to one particular problem. This increased the 

likelihood that patterns in the explanations did not occur due to some unique 

characteristic of the problem. Switching the order of written and verbal explanations 

reduced the possibility that trends could have come up from always writing an 

explanation before giving a verbal explanation or visa versa. By questioning their verbal 

explanation on the second problem, but not on the first, I could first see what they would 

give as an explanation with no interference from me, but also see if there were things 

they understood that they did not include for some reason. 

Analysis 

Coding was used to apply Toulmin’s structure of arguments to the explanations 

collected in the data. After all the interviews, I transcribed the verbal explanations and 

typed up each written explanation to make it easier to code and analyze. All the 

explanations had pictures associated with them. However, I did not refer to these as I 

coded because I found the explanations to be descriptive enough of the pictures that I did 

not need to see them during the analysis. It was a norm of the class that students had to 

explain what they saw in their picture. Therefore most of their explanations were clear 
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enough without actually seeing the picture. I did not make any distinction between 

written and verbal explanations as I coded and analyzed them, but I knew if there were 

major differences I could spotlight them as the analysis went on.  

The initial codes used to analyze the data corresponded to the main elements of 

Toulmin’s structure of arguments—data, claim, warrant, and backing. For example, if 

there was a statement that was not supported by anything else in the explanation and it 

was used to justify another statement, then I coded it as data. Statements that had other 

statements backing them up I coded as claims. In order to make the coding process 

simpler, I put each sentence or statement on its own line and numbered the lines. After 

coding all the lines that seemed to be data, warrant, backing, or claim, I also linked the 

lines that made up an argument as shown in Table 2. For example, on the data lines, I put 

the line number of the claim it supports. On the claim lines, I put the line number(s) of 

the data that back it up. Also, key pieces of the argument were missing in some cases. 

When I first recognized they were not there, I noted that something was missing and 

moved on. In order to organize what I thought the author was trying to say, I later filled 

in the places that were missing pieces of the argument with statements that fit with my 

best guess of where the author intended the flow of the argument to go. 

Some statements did not fit into any of Toulmin’s four categories. I labeled these 

statements with a name that described what role they played in the explanation. For  

Numbered Line from Explanation Type of Statement 
1 This picture represents 9/20.  DATA 2  
2 I could get 1/10 pieces  CLAIM 1,3 
3 by combining twentieths into sets of two DATA 2 

Table 2 Example of part of an explanation broken into 
numbered lines and function linked 
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example, the statement “To get hundredths from twentieths” was labeled as an advanced 

organizer. The statements that went in this category of being advanced organizers 

seemed to be there to give direction on the general flow of the explanation and to help the 

audience know where the explanation was going. Though they help with the explanation 

as a whole, they did not play a role in the logic of the arguments themselves. Therefore, if 

they were taken out of the explanation, the arguments would not be weakened. I was not 

sure if these other types of statements would be significant to my final analysis, but 

labeled them so I could look back and see if there were any significant patterns as the 

analysis continued. I did not notice any significant patterns and did not use them as I was 

extending Toulmin’s framework because they did not seem to affect the logic of the 

actual arguments.  

With multiple arguments in an explanation, it was confusing to follow all the 

numbered lines and see the links between the statements. I laid out the statements of the 

explanation in a flow chart, with different shapes representing data, claims, warrants, and 

backing to make the organization more visually clear. I then connected each of the shapes 

with arrows corresponding to how the arguments fit together. In Figure 5, a small portion 

of a flow chart is shown. The arrows are pointing right to show that the boxes on the left 

are data that lead to the claim in the circle on the right. Other elements of the 

Figure 5 Example of data laid out in a flow chart 



 29

explanations were put in places on the flow chart that best represented their role in the 

argument. For example, when there was a warrant in the flow chart, it would be between 

the data and the claim that it links together on the line that connects the data to the claim.  

Through the analysis of how the statements in the explanation link together in 

arguments, I was able to pinpoint what aspects needed to be modified and added to 

Toulmin’s framework to extend his argument structure to apply to these explanations 

from a reform oriented mathematics class. I realized that the codes did not accurately 

portray the complexities of arguments in the explanations so I had to modify the codes 

and what some of the codes meant in order to extend Toulmin’s framework. These 

modifications allowed the coding to show how arguments build on each other to make up 

an explanation and how to determine legitimate use of Toulmin’s argument structure. A 

description of the process of how these codes were changed would be meaningless 

without a concurrent discussion of the results from extending Toulmin’s framework to 

better fit explanations from a reform oriented mathematics class. Therefore further details 

of how the codes were modified will be given in Chapter 4. 

In summary, the data collected in this study led to an interesting analysis of 

applying Toulmin’s structure of arguments to explanations from a reform oriented 

mathematics class. Through coding, I was able to find features of these explanations that 

fit Toulmin’s framework and others that were not accounted for. Analyzing the data led 

to extending the framework to account for the features of these explanations.  
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Chapter 4—Results 

 Applying Toulmin’s argument structure to explanations from an inquiry-based 

mathematics class allowed me to modify my initial codes to extend Toulmin’s 

framework. Extending Toulmin’s framework by adding some elements allows his 

argument structure to better reflect the characteristics of explanations from a reform-

oriented mathematics class. In this chapter, I will outline my findings and conclusions 

based on my data analysis. I will give a description of the data that I will refer to in this 

chapter and then I will discuss four problems that arose during my analysis. These 

problems are first, identifying and determining the legitimacy of data statements; second, 

determining the legitimacy of claim statements; third, determining classifications of 

conventions; and finally, uncovering multiple levels of backing. After identifying each 

problem I will explain how I dealt with it by extending Toulmin’s framework.  

In this chapter, a single written explanation is used to illustrate the results that 

arose from the data analysis. I have chosen to discuss only one explanation for three 

reasons. First, this explanation is representative of many of the explanations in my data 

set. Second, all of the major shortcomings in Toulmin’s framework can be illustrated 

with this explanation. Third, the analysis of these issues is complex even when the 

discussion is limited to only one explanation. Inserting excerpts from additional 

explanations would complicate the discussion of the results even further. There is no need 

to make the results more complicated by including more than one explanation when one 

explanation is adequate. 
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Description of explanation 

The explanation selected to illustrate the results was given by Sarah (name has 

been changed) during the second interview, approximately half way through the six-week 

fractions unit. This was her first written explanation from the second interview, so it is a 

rewriting of a problem she wrote out for her homework before arriving to the interview. 

The problem Sarah solved in this explanation was how to convert 9/20 to a decimal using 

a picture. When this idea was introduced in class the day before the interview, the picture 

used was a rectangle representing the whole, divided up into smaller equal pieces with 

some pieces shaded to represent the fraction to be converted to a decimal. Sarah used this 

picture to start off her problem. Her picture and explanation are shown in Figure 6. She 

first explained that she would solve the problem by looking for how many hundredths the 

fraction is equivalent to because the fraction could not be simplified to tenths. She 

explained that all the twentieths could be regrouped into groups of two, but the nine 

shaded pieces could not be put into sets of two evenly, so to convert 9/20 to a decimal, 

she had to work with hundredths. Next, to get hundredths from twentieths, she cut each 

twentieth piece into five equal pieces. She said she knew that doing this would yield 

Figure 6 Sarah’s Written Explanation and picture of converting 9/20 to a decimal 
using a picture. 
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hundredth pieces because it would take one hundred of these new smaller pieces to make 

up the whole. She then concluded that since 9/20 makes forty-five of the new smaller 

pieces, 9/20 is equivalent to 45/100, and 45/100 can be written as 0.45.  

The first step I took in applying Toulmin’s framework to this explanation was to 

determine which category of Toulmin’s argument structure each of the statements in the 

explanation fit into. I looked at the role each statement played in the argument to 

determine how Sarah used the statement in her explanation. By coding Sarah’s 

explanation this way, I realized that there were no warrants or backing in this 

explanation. The statements were either data, claims, or did not fit into one of Toulmin’s 

four categories. Table 3 shows Sarah’s explanation in a table with the numbered lines 

linked to corresponding parts of the argument. Deciding how to code the statements was 

not always easy. I encountered some difficulties in determining how to code the 

statements that fit into Toulmin’s argument structure.  

Numbered Line from Explanation Type of Statement 
1 This picture represents 9/20. DATA 2 
2 I could get 1/10 pieces CLAIM 1,3/DATA 5 
3 by combining twentieths into sets of two DATA 2 
4 but I can’t put 9 twentieths into sets of 2 twentieths DATA 5 
5 so I will have to work with hundredths instead. CLAIM 2,4 
6 To get hundredths from twentieths, ADV. ORGANIZER 
7 I cut each twentieth into 5 equal pieces. DATA 8 
8 We can see that each 1/20 part contains 5 hundredths CLAIM 7,9 
9 because it would take 100 of these smaller pieces to 
make the whole. 

DATA 8 

10 Since 9/20 makes 45 of these smaller pieces, DATA 11 
11 9/20 is equivalent to 45/100 of the whole.  CLAIM 10/DATA 13 
12 45/100 can be written in decimal form as 0.45. DATA 13  
13 So 9/20 is equivalent to 0.45 Missing CLAIM 11, 12 

Table 3 Sarah's Explanation laid out in Table Format 

Problem 1: Identifying and determining the legitimacy of data statements  

Determining whether the statements were data or claims was difficult. Some 

statements were backed up by previous data statements and thus seemed to be claims, but 
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then they were used as data to back up claims later in the explanation. As explained in 

Chapter 2, mathematical proofs and explanations often have several arguments in them 

that build on each other with a claim acting as data for further arguments, so this was not 

a surprising finding. Nevertheless, if I had chosen to label these statements as just data or 

just claim, it would not have captured the full picture of the role that statement played in 

the argument.  I decided to label these statements “claim/data.” This label gives a full 

description of these statements’ function. First they function as a claim, and then later 

they function as data. This label also helps the audience to know why a statement can be 

accepted as data. If there is a question about the legitimacy of a statement when it is used 

as data, knowing it was previously a claim will allow the audience to refer back to the 

previous argument and use that argument to determine if the statement is acceptable data. 

Extending Toulmin’s framework to allow some statements the option of being both claim 

and data took into account that mathematical explanations are composed of multiple 

arguments that build on each other to reach the end result. This extension made it easier 

to distinguish which statements fit Toulmin’s framework and their function in the 

argument, and is shown in Figure 7.  

Figure 7 Toulmin's framework with two arguments linked by a claim/data statement 
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This minor extension of Toulmin’s framework did not address all of the issues 

related to data and claim statements. A much more difficult problem was determining 

whether Sarah’s use of a data statement was legitimate or if she should have treated that 

statement as a claim to be further supported by additional data statements. According to 

Toulmin’s framework, a statement can legitimately be used as data if it can be accepted 

with no further justification. It was difficult to determine which statements could be 

accepted with no further justification because the data statements had to be in accordance 

with the terminology, definitions, and conceptual understanding that were acceptable in 

this class. These features are part of the class conventions discussed in Chapter 2.  Since 

the conventions were the acceptable ways of defining and talking about quantities, a 

statement could be accepted as data with no further justification if it was based on and 

supported by one of the class conventions.  

For example, I had to determine if the first statement in Sarah’s explanation, 

“This picture represents 9/20,” was acceptable as data. Sarah’s statement could only be 

accepted as data if labeling the quantity represented in a picture with no explanation was 

in accordance with the class conventions. The conventions of the class, however, did not 

give her the ability to just declare what a picture represents. Rather, she needed to include 

the argument that her picture represented 9/20 because the whole was broken in twenty 

equal pieces, so each one was one-twentieth, and there were nine shaded pieces. This 

argument follows the convention established in class of justifying a picture of a fraction. 

She did not give this argument, so someone—particularly the instructor—may question 

that it is a legitimate data statement. Had she included the necessary leading argument, 
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there could not be any question from anyone in the class that this could be used as a data 

statement. 

Therefore, having a class-accepted convention that supports the data is the key to 

establishing the legitimacy of the data statement. I will call a convention that is used to 

support a data statement a basis (the plural of which is bases). As long as the basis is a 

class accepted convention, then the data can be accepted. If there is not an accepted 

convention acting as a basis, then the data statement can be questioned. In these cases, 

another argument would need to be given to establish the acceptability of the data. If such 

an argument is needed, however, then the statement must be classified as a claim/data. It 

should have been a claim with other data to back it up instead of being data to be 

accepted out right. Once established as acceptable, this claim/data statement can now be 

used as data for further arguments.  

Recognizing the need for a basis to support the legitimate use of a data statement 

is an extension of Toulmin’s framework and is shown in Figure 8. He does not 

Figure 8 Toulmin's argument structure with basis 



 36

sufficiently address how the acceptability of the data is dependant on the social context in 

which the argument is being given. Being able to recognize a statement as data seems 

trivial to him, but as illustrated, it is actually quite complex. By knowing the acceptable 

conventions, it is possible to determine if a statement can be used legitimately as data.  

Problem 2: Determining the legitimacy of claim statements 

Data statements were not the only statements I needed to evaluate. I also needed 

to determine how to evaluate if the author’s use of claim statements was legitimate. There 

are two parts of Toulmin’s framework that he conveys as having a direct effect on the 

legitimacy of the claim: the data behind the claim and the warrant connecting the data to 

the claim. In order to evaluate the legitimacy of the claim, I had to consider both of these. 

I have already addressed how the data can be established as acceptable, but the 

applicability of the data to the claim is addressed by the warrant.  As discussed in Chapter 

2, warrants are general principles that link the data to the claim. I found that the general 

principles that are acceptable in this class are the class conventions. These conventions 

determine which terminology, definitions, and usages are acceptable. The conventions 

are principles that allow conclusions to be made based on certain prerequisite 

information. The data statement is the prerequisite information and the convention in the 

warrant links this information to the claim that can now be made. If the data is acceptable 

and fits the prerequisite information of a class convention that is used as a warrant, then 

the claim that follows will also be acceptable. Therefore by determining if the warrant 

was based on a class convention that fits with the data, I could determine if claims were 

legitimate. 
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Toulmin does not account for the influence of the social context on the process of 

determining if claim statements are legitimate. I extended his framework again by 

establishing that class conventions are used not only in the bases, but also in the warrants. 

By noting that the convention used as a warrant plays a crucial role in establishing the 

legitimacy of claim statements, I extended Toulmin’s theory to show how the social 

context dictates which claim statements are deemed legitimate.  

Problem 3: Determining classifications of conventions 

Unfortunately, extending Toulmin’s framework by recognizing that bases and 

warrants incorporate conventions that determine the legitimacy of data and claim 

statements was useful in theory, but hard to see in Sarah’s explanation. This was due to 

the fact that she did not give any explicit warrants or bases in her explanation. In fact, the 

vast majority of explanations that were given by students did not contain any explicit 

warrants or bases, even the explanations that received full credit and were held up as 

models to the other students. Therefore, it was not possible to rely on students’ explicit 

bases and warrants to determine whether data and claim statements were legitimate, 

because the students usually did not say which conventions they were using to support 

their data and claim statements.  

In spite of this, as I analyzed the arguments, I found that some were well justified 

and easy to follow while some were not. It seemed like there was a difference in the 

underlying warrants that were in use, even though they were not given. In the arguments 

that were well justified, it was often obvious to me which convention was used as the 

underlying warrant. Sometimes an argument was so obvious, it almost seemed like it did 

not even need to be justified. In the arguments that did not seem well justified, I could not 
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come up with a class convention that would have worked as a warrant. This difference 

that I found between the warrants in the arguments led me to investigate the different 

types of conventions to see what made the difference between arguments. I found that 

there were four classifications of conventions: explicit, implicit, unaccepted, and 

incorrect.  

 Explicit Conventions. There were some arguments in Sarah’s explanation where it 

was obvious which convention was being used as the warrant, even though the warrant 

was not stated. I noticed that all these conventions were class-accepted conventions—

those that had been addressed explicitly and taught in class. When they were taught in 

class, the teacher made it clear that these were acceptable principles to build an 

explanation on. I decided to categorize all these conventions as explicit conventions. For 

example, partitioning and iterating were two of the many conventions that were explicitly 

taught in the MthEd 117 class. From the first day in class, the teacher made it clear that 

partitioning and iterating were the two acceptable ways to define a unit fraction in this 

class. He explained the benefits of using these two part-whole oriented conventions 

instead of whole-number language. The teacher repeatedly stressed the importance of 

using these two ideas in class and in comments on homework, and insisted that one of 

these conventions be used to justify or explain all fraction values. Furthermore, students 

were penalized in homework and tests if they did not use these and other explicit 

conventions as the foundation for their arguments. 

I found that there were certain patterns of information given in the data and claims 

that made it obvious that an explicit convention was being used, even though the warrant 

was not stated. I decided to call these patterns templates. There is a template that 
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corresponds to each explicit convention. All the students have to do is put the appropriate 

data into the template, and then the claim immediately follows because of how closely 

the completed template resembles the explicit convention. When a template is used, there 

is no question which convention is being used; in fact, it would actually be redundant to 

state the warrant. As data and claims are fitted into templates based on explicit 

conventions, the legitimacy of the claim is because the template makes it obvious which 

explicit convention is being used as the warrant. 

As an example, consider the template for the iterating convention that is used in 

Sarah’s explanation. The iterating template involves a specific image of copying pieces a 

certain number of times to make the whole and determining the size of each piece based 

on the number of copies. The template has a verb that implies a copying or duplicating 

action, it describes how the piece was copied enough times to make the whole, and then it 

states the size of one piece based on the number of copies. One possible version of this 

template would be “___ copies of the piece will make a whole. Therefore, each piece is 

one-___th of the whole.” The number of copies needed to make the whole is put into the 

blanks. This yields a legitimate argument of what size the piece is. In Sarah’s 

explanation, after cutting the twentieths into five equal pieces, she claimed that each 

twentieth contained five hundredths. The data she gave for that claim is “because it 

would take 100 of these smaller pieces to make the whole.” This fulfills the prerequisite 

of iterating because the phrasing she used implies that if she were to take one of those 

new smaller pieces and iterate it one hundred times, she would get the whole. Therefore, 

she could make the claim that she knew the size of the smaller piece was one one-



 40

hundredth because of the iterating convention. She never said she was using iterating, but 

it is clear from what she did say that she was using it.  

 Implicit conventions. After I identified the well-justified arguments that involved 

templates and their accompanying explicit conventions, there still remained arguments 

that seemed well justified but for which no obvious convention was being used as a 

warrant. This helped me realize that there must be other class-accepted conventions that 

give well-justified arguments besides the explicit ones. I realized that there were implicit 

conventions in use in these arguments. I discovered that these conventions were the 

shared practices and reasonings that never had to be addressed in class because it was 

tacitly understood that they could be used even though they have not been explicitly 

addressed. Implicit conventions were used regularly in class and on assignments and they 

were never marked wrong on graded assignments or questioned by the teacher or other 

students during in-class explanations. In contrast to explicit conventions, there were no 

templates for these implicit conventions because they had not been explicitly negotiated 

in class, where the templates were established. 

The existence of implicit conventions is nor surprising, because it was impossible 

for every acceptable idea to be made explicit. Some ideas remained unspoken and served 

as a foundation for the explicit conventions to be built on. It was not problematic that 

these conventions were not discussed because they did not violate the explicit 

conventions. Neither the teacher nor the students seemed aware they were using these 

implicit conventions because they were never discussed. After all, it was only after 

analyzing many explanations that I noticed some of the implicit conventions.  
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An example of an implicit convention can be found in Sarah’s explanation. Sarah 

uses an implicit convention—specifically the convention that it is permissible to cut a 

piece into smaller, equal-sized pieces—as the basis for the data statement, “I cut each 

twentieth into 5 equal pieces” (Line 7). For several weeks, the teacher and fellow students 

had implicitly accepted that it is legitimate to cut a whole or a piece into any number of 

equal sized pieces. This practice was never explicitly condoned by the teacher or the 

students, but was nonetheless frequently used by everyone in the study.   

Unaccepted conventions. Once I had identified all the arguments that were well 

justified, I started to look at the arguments that were not as easy to follow and seemed to 

be lacking justification. It was not clear which conventions were used in the warrants of 

these arguments. There were no templates to follow, so I knew they were not using 

explicit conventions.  There was no classroom practice or common definitions that could 

have been used as a warrant, so they were not using implicit conventions. In this class, 

acceptably justified arguments used explicit and implicit conventions, and these 

arguments did not seem to use those conventions. Therefore these arguments would not 

have been considered acceptably justified in this class. Though there is no way to know 

exactly which convention they were using, I concluded that the students were using an 

unaccepted convention as the warrant in these arguments. These unaccepted conventions 

did not obviously contradict widely held mathematical beliefs because the students acted 

like they had used a legitimate convention in their underlying warrant when they used 

these conventions in their arguments. These conventions may even be accepted in other 

mathematics classes. However, an explanation using an unaccepted convention would not 
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have been acceptable in this class. In fact, the students would have been penalized for 

using these conventions on graded assignments.  

There are two types of unaccepted conventions. First, a convention may be 

unaccepted because it violates the explicit conventions negotiated in this class. Second, 

an unaccepted convention may lump together more than one acceptable or unaccepted 

convention and is therefore missing the description of some of the mathematical actions 

that were taken. It is likely that these conventions exist because of students’ mathematical 

experiences—they may have been established during the students’ previous mathematical 

experience and could have been legitimate in other mathematics classes they have taken. 

Some unaccepted conventions could have been created during this class to correspond 

with previous experiences and their unacceptability has not been realized yet.  

It is difficult to determine which unaccepted convention is being used because 

there is no template to follow.  An example from Sarah’s explanation illustrates this 

difficulty. She uses the data, “By combining twentieths into sets of two” for the claim “I 

could get 1/10 pieces.” The convention she uses in her warrant may have been something 

like “When pieces are regrouped, they can be called by a new name that comes from how 

many new pieces there are.” This argument is laid out in Figure 9a. However, this 

violates the explicit convention in the class that partitioning or iterating must be used to 

define the size of fraction parts. On the other hand, it is possible that she could have 

combined more than one explicit convention to make an unaccepted convention. For 

example, she may have lumped an accepted division convention with the partitioning 

convention. In order for these conventions to be used acceptably, she would need to add a 

claim/data statement in between, “I get ten equal sets.” This statement would be a claim, 
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backed by the statement “By combining twentieths into sets of two” as data and the 

division convention as a warrant. Then it would act as data, with the partitioning 

convention as a warrant to get the claim “I could get 1/10 pieces.” Figure 9b shows this 

argument compared to the previous argument. If Sarah had used these conventions in 

separate warrants and followed a template, then we would know what convention the 

warrant is using. However, with both conventions being used together, there is an 

unaccepted convention and no template to follow.  

Incorrect conventions. It is possible students could use a convention that is 

incorrect or use an acceptable convention incorrectly. I did not find any incorrect 

conventions in the data and this is likely due to the students’ strong mathematical 

background. It would be unlikely for an incorrect convention to be used by these 

students, but it may happen in other classes with students who are not as familiar with the 

Figure 9a Sarah's Argument in Flow Chart Form with one possible warrant: The 
rectangle on the left is the data, the octagon in the middle is the warrant, and the circle 
on the right is the claim. The arrow shows that the data leads to the claim, because of the 
warrant.  

Figure 9b Sarah’s Argument in Flow Chart Form with another possible warrant: 
The circle in the middle has been added as a claim/data statement. It would be 
the claim from the rectangle on the left, then used as data for the circle on the 
right.  There are two warrants now—one for each argument. 
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concepts they are explaining. Incorrect conventions would not be accepted in any 

mathematical discourse community and would violate a mathematical fact that is widely 

held across mathematical communities. Students would be penalized for using them and 

they could lead to incorrect claims. Using an acceptable convention incorrectly would 

yield an invalid argument because the warrant would not imply the claim from the data.   

 Classifying conventions based on how they show up in the explanations and 

whether they make up an acceptable argument is an extension of Toulmin’s framework. 

When arguments are based on explicit and implicit conventions, the argument will be 

acceptably justified. However, if an argument is based on unaccepted and incorrect 

conventions, the argument will seem questionable. Recognizing an explicit convention 

from its template makes it obvious which convention is being used as a warrant, even 

when it is not explicitly stated. Implicit conventions have never been discussed in class, 

but the way they are used and never objected to makes it clear they are acceptable. When 

unaccepted conventions are used in arguments, those arguments will lack acceptable 

justification. When incorrect conventions are used, the claims from the argument will be 

questionable because they are not based on mathematically correct justification.   

Problem 4: Backing is not always simple 

 The fourth part of Toulmin’s argument structure that I have not yet discussed in 

detail is the backing statements that confirm warrants. As I worked with the conventions 

in the warrants, I realized that the backing statements behind the warrants had varying 

levels of complexity.  The backing for some warrants would just be “because we say so.” 

For example, the backing of partitioning is just that simple. It cannot be broken down to 

any deeper concepts. When partitioning is used as a warrant, it can be used because that 
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is how it has been established in class. The convention the warrant is based off of is 

simple and therefore its backing is simple as well. I decided to call the warrants with this 

simple backing basic warrants. There are some basic warrants that are based on explicit 

conventions and some that are based on unaccepted conventions. The example of a basic 

warrant that is based on an explicit convention is partitioning, as described above. In 

contrast, an example of a basic warrant that is based on an unaccepted convention is the 

“out of” convention: it many mathematics class it is acceptable to define a fraction of 3/4 

as three out of four things and the backing for this warrant is simply “because we say so.” 

The backing for some warrants is not as simple. Some conventions are built on 

other conventions and are made up of multiple components. I will call these advanced 

warrants. The backing of advanced warrants is more complex than the backing of basic 

warrants. It would consist of another data, warrant, and claim sequence. If the warrant 

used on this next level were basic, then the advanced warrant has been broken down as 

far as it can be. This is shown in Figure 10 using the same diagram that was used in 

Figure 10 Diagram of Advanced Warrant 
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Chapter 2, with another data, warrant, backing, and claim sequence where the backing 

goes. If the warrant used on that second level is also advanced, then its backing would be 

another data, warrant, and claim sequence. This could continue until there is a basic 

warrant used. Toulmin does not acknowledge that there are warrants of differing 

complexity. However, an example of one explicit convention shows that they do exist.  

An example of an advanced warrant would be a warrant using the simplifying 

fraction convention. The warrant would be “You can simplify a fraction if and only if you 

can group the shaded parts and the non shaded parts of the fraction evenly into same 

sized groups.” The backing is more complex than “because we say so.” In fact, it would 

have to do with not knowing how to interpret the fraction if this was not the case. The 

backing could be another data, warrant, and claim sequence. It could be “If there is a 

group made up of shaded and non-shaded pieces, then you do not know how many 

groups are shaded,” where “If there is a group made up of shaded and non-shaded pieces” 

is the data and “then you do not know how many groups are shaded” is the claim. There 

is another sequence that needs to go here as well: “If in the new grouping, all shaded and 

non-shaded are grouped together, but not all the pieces in the whole are the same size, 

then you do not know what to call the new pieces.” The backing for the warrants for both 

of these sequences is “because we say so,” so there is no need to break it down any 

further. This example is illustrated in Figure 11.  

I realized that there were differences in the backing of warrants while analyzing 

Toulmin’s argument structure. His structure points out the different types of justification 

behind a claim. Rather than simply pulling back the layers of justification—looking at the 

ideas that back up the initial justification—he differentiates between data, warrants, and 
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backing. However, he does not address the complexity of backing. Though he mentions 

that what counts as legitimate backing is field dependant, he does not distinguish between 

basic and advanced warrants based on simple or more complex backing. He does not 

acknowledge that sometimes the backing is not simple and could be unpacked more 

itself. Building up advanced warrants coincides with how students work to establish 

mathematical meanings. They learn new concepts that can later be used as conventions 

for the foundation of more new ideas.  

Conclusion 

This chapter has explained the results of my study that answered my research 

question. Adding some elements that allow Toulmin’s argument structure to reflect some 

Figure 11 Diagram of Advanced Warrant with Arguments in the Backing 
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of the characteristics of explanations from a reform-oriented mathematics class extended 

his framework. Toulmin’s argument structure with all of these extensions is shown in 

Figure 12. First, there are not only data statements and claim statements, but also 

claim/data statements that have different roles in separate arguments. The basis that 

supports the data is what allows it to be accepted without further justification. Second, 

claims are legitimate when a class convention is used as the warrant and has appropriate 

data. Third, there are conventions in use in the bases and warrants, but they are not 

usually made explicit. Recognizing the different classifications of conventions extended 

Toulmin’s framework. Bases and warrants are acceptable if they use explicit and implicit 

conventions, but they will be questionable if other conventions are used. Lastly, 

recognizing that some warrants are advanced and might have more than one layer of 

backing is an extension of Toulmin’s framework.  

Figure 12 Toulmin's argument structure with all extensions shown 
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Chapter 5—Conclusion 

 The purpose of this study was to identify common components and structures of 

conceptual explanations. In the previous chapter, I extended Toulmin’s framework to 

better describe these explanations.  In this chapter, I will first discuss the contributions of 

my extensions of Toulmin’s framework. Following the contributions, I will discuss the 

limitations and implications of my study.   

Contributions 

Toulmin’s framework is too simple to account for all the aspects of explanations 

and my extensions helped to account for the complexities that were not accounted for by 

his framework. The first complexity of explanations that Toulmin does not account for is 

that mathematical arguments build on each other to reach the final conclusion. I resolved 

this complexity through extending his framework. My decision to extend the framework 

by labeling some statements as claim/data statements was consistent with the findings of 

other researchers who have noted how claims can become data for later arguments 

(Aberdein, 2005; Yackel, 2002). This decision also extends their results by giving these 

statements a name that fully describes their function in the argument. The second 

complexity that Toulmin does not account for is the varying levels of justification 

involved in backing. I dealt with this complexity by distinguishing the difference between 

basic and advanced warrants to show how the backing is not always simple. Sometimes 

the backing can be broken down to many more levels. The idea of advanced warrants is 

consistent with building up complex ideas in mathematics. By combining pieces of new 

knowledge to create more advanced justification, further arguments can be simpler 

because they rely on principles that have been grouped together.  
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Toulmin’s original framework does not account for the social influences on 

explanations so I extended it to do so in a way that holds true to his original framework. 

First, I used Toulmin’s criteria for the form and function of data, warrants, backings, and 

claims, unlike Krummheuer (1995) who dismissed the form of the statements to be 

unimportant in determining an application of Toulmin’s argument structure. My 

extension of his framework allowed me to show how social influences affect 

explanations. Second, I showed that the class conventions are the warrants that the 

arguments are based on. I showed that the legitimacy of data and claim statements is 

dependent upon the class conventions used in the bases and warrant. This means that 

acceptable warrants in Toulmin’s framework come from the classroom and that data 

statements cannot be used as data without taking the social context into account.  Also, 

recognizing that there are templates that correspond with explicit conventions makes it 

clear when arguments are well justified. These templates result from the social 

interactions in class when they are established. All of the extensions of Toulmin’s 

framework are based on conventions. Conventions result from classroom interactions and 

instruction, and therefore, explanations are dependant upon these conventions. 

Limitations 

Although I have accounted for many of the statements in the explanations by 

extending Toulmin’s framework, there were still statements that did not fit in the 

framework. Some of these statements were advanced organizers that would help the 

audience follow the direction of the explanation. There were other statements that did not 

fit into Toulmin’s categories and were not advanced organizers that still need to be 

accounted for. I did not investigate the specific features of these other statements because 
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they usually did not have a direct impact on the arguments in the explanation. My 

extensions of Toulmin’s framework enabled me to capture the essential parts of the 

logical arguments; however, these other statements still have an important role in how the 

students express what they were thinking about the mathematics. These statements may 

be unique to explanations and not to formal proofs. It is possible that another framework 

is needed besides Toulmin’s to account for all the statements in an explanation. More 

research on other frameworks for explanations would be very informative to the field.  

Another limitation of my study is that these findings are limited to this specific 

conceptually oriented mathematics class. The explanations analyzed in this study are 

from a class where students’ prior understanding is being reexamined and they are 

working with new conceptual understandings of subjects they are already familiar with. 

In classes where students are learning things for the first time, the students’ explanations 

may be different. It is more likely that they might use incorrect conventions or use correct 

conventions incorrectly because they are not familiar with the subject matter. They may 

also be less likely to use unaccepted conventions because they do not have prior 

experiences developing understanding of the subject matter that are not accepted in their 

class. Similar studies in other mathematics classes could add more understanding of the 

complexities and social aspects of argumentation in other situations.   

Implications 

 This study highlights the influence of the social context on the requirements for a 

good explanation. This influence is important to recognize because it affects how 

explanations are critiqued. Since each class has its own unique context, this context has to 

be taken into consideration when evaluating explanations. If teachers acknowledge the 



 52

context they create in their classes, they can recognize the conventions that have been 

established for students to base their explanations on. Then they can help students know 

how to give good explanations by using these conventions correctly. The findings of this 

study allow teachers to understand these ideas about conventions and explanations in 

their instruction so they can address them in their classes. 

 Teachers need to spend more time addressing bases and warrants with their 

students. Teachers need to make it explicit how conventions should be used in the bases 

and warrants. They also need to help the students realize how the bases and warrants 

affect the strength of their arguments. Teachers can help students recognize how to use an 

explicit convention by explaining how templates make their warrants obvious in their 

arguments. By teaching students about templates, there is a risk that students will learn to 

use the templates to say the right words in their explanations in order to sound like they 

understand the concepts, even if they do not. However, teachers can carefully address this 

issue to work around this risk. Regardless, students will need to know when it is 

appropriate to use the templates in their explanations. If students realize there is not a 

template to follow to make their claim, this can bring to their attention that they may be 

using an unaccepted convention. By giving students the opportunity to distinguish 

between the warrants they are using to justify their claims, they can know whether their 

explanations will be acceptable in their class.  

 Acknowledging that well justified arguments use templates of explicit 

conventions makes it easier to find the unaccepted and incorrect conventions students 

may be using. If there is not a template being used in an argument, and the warrant would 

not correspond with an accepted classroom practice or definition, then teachers and 
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students can identify that there is most likely an unaccepted or incorrect convention being 

used in the warrant. This can make it easier to identify where students may not be using 

proper justification. Even though the warrants do not need to be given explicitly, it should 

be clear to their audience what the underlying justification is. 

Conclusion 

 This study has helped in finding the structure of a good explanation by extending 

Toulmin’s framework to account for the complexities and social aspects of explanations. 

However more research is needed to continue to grasp what the general structure of an 

explanation would look like. Analyzing the explanations in a variety of mathematics 

classes with this and other frameworks will help to nail down the specifics of what 

constitutes a good explanation. This in turn will help teachers give their students explicit 

instruction on explanations.  
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