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Can Vitamin D and L-Cysteine Co-Supplementation Reduce 25(OH)-Vitamin D
Deficiency and the Mortality Associated with COVID-19 in African Americans?

Sushil K. Jain and Rajesh Parsanathan

Department of Pediatrics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA

ABSTRACT
Early reports indicate an association between the severity of the COVID-19 infection and the wide-
spread 25-hydroxy vitamin D deficiency known to exist in populations around the world. Vitamin
D deficiency is extremely common among African American (AA) communities, where the COVID-
19 infection rate is three-fold higher, and the mortality rate nearly six-fold higher, compared with
rates in predominantly white communities. COVID-19 infection primarily affects the lungs and air-
ways. Previous reports have linked 25-hydroxy vitamin D deficiency with subclinical interstitial
lung disease. AA are at risk for lower cellular glutathione (GSH) levels, and GSH deficiency epige-
netically impairs VD biosynthesis pathway genes. Compared with vitamin D alone, co-supplemen-
tation of vitamin D and L-cysteine (a GSH precursor) showed a better efficacy in improving levels
of GSH and VD-regulatory genes at the cellular/tissue level, increasing 25(OH) vitamin D levels,
and reducing inflammation biomarkers in the blood in mice studies. We propose that randomized
clinical trials are needed to examine the potential of co-supplementation with anti-inflammatory
antioxidants, vitamin D and L-cysteine in correcting the 25(OH)VD deficiency and preventing the
‘cytokine storm,’ one of the most severe consequences of infection with COVID-19, thereby pre-
venting the adverse clinical effects of COVID-19 infection in the vulnerable AA population.
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Introduction

The Centers for Disease Control and Prevention (CDC) has
reported that African Americans (AA) have the highest age-
adjusted case rate for contracting coronavirus disease
(COVID-19), a higher rate of hospitalization, and are more
likely to die compared to white Americans (Caucasians) (1,
2). Studies from different parts of the world demonstrate
how the association between 25(OH) vitamin D deficiency
(3–12) and elevated pro-inflammatory cytokine levels (cyto-
kine storm) (13–18) affects the severity and outcome in sub-
jects infected with COVID-19.

High risk of 25(OH) vitamin D deficiency in AA

Two-thirds of the US population, particularly African
Americans (AA), are at risk for inadequate or deficient lev-
els of 25-hydroxy vitamin D (25(OH)D) (5, 19, 20). This is
caused in part due to their increased skin pigmentation,
which functions not only as a natural sunscreen, but it also
significantly reduces the ability of the skin to produce vita-
min D from sun exposure. The bioavailability of 25(OH)VD
in response to ingesting VD supplements varies significantly
among individual subjects and is dependent on the status of
the VD-metabolism genes (21–24). Acquired risk factors for
vitamin D deficiency include race, higher BMI, winter

season, higher geographic latitudes, and inadequate dietary
intake (21). 25(OH)VD biosynthesis mainly occurs in the
liver by the action of VD-25hydroxylase (CYP2R1,
CYP27A1) on cholecalciferol consumed from diet or formed
during the skin exposure to Ultraviolet B from sunlight .
25(OH)VD is transported into the circulation bound to
VDBP/GC. 25(OH)VD conversion to its active metabolite
(1,25(OH)2VD) is catalyzed by CYP27B1 present in both
renal (primary site) and non-renal tissues. Catabolic inacti-
vation of 25(OH)VD and 1,25(OH)2D3 by CYP24A1 is
thought to limit 1,25(OH)2D3 signaling. The circulating and
cellular levels of 1,25(OH)2VD (calcitriol) are regulated by
cellular CYP27B1, CYP24A1, and circulating PTH concen-
trations. The biological actions of 1,25(OH)2 VD are directly
related to the status of VDR in target tissues where trans-
location of 1,25(OH)2VD/VDR to the nucleus regulates
transcription of target genes. The incidence of vitamin D
deficiency or inadequacy is on the rise because of the
increasing prevalence of metabolic syndrome disorders, such
as obesity and diabetes, as well as inadequate sensible sun
exposure. Circulating 25(OH)VD is considered a compre-
hensive and stable metabolite to diagnose 25(OH)VD
deficiencies and monitor VD consumption. According to
the clinical practice guidelines recommended by the
Endocrine Society, vitamin D deficiency was defined as
25(OH)D< 50 nmol/l and vitamin D-inadequacy as
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50� 25(OH)D< 75 nmol/l. Clinical studies have demon-
strated an association between better health outcomes and
higher blood levels of 25(OH)D (5, 19, 20, 23, 24).

Role of glutathione (GSH) in VD metabolites
biosynthesis and metabolism

Human studies from different laboratories have reported the
existence of a positive correlation between blood levels of
GSH and those of 25(OH)D in adults, children, and diabetic
patients and AA subjects (25–27). Consumption of dietary
antioxidants plays a beneficial role by increasing serum
25(OH)D (28). Preclinical studies have shown that low levels
of GSH negatively affect the vitamin D regulatory and glu-
cose-metabolism genes in the liver and muscle of high fat
diet-fed mice and diabetic rats (27, 29–31). Improved GSH
status following co-supplementation with vitamin D and L-
cysteine (a GSH precursor) demonstrated a significantly
greater increase in circulating 25(OH)VD and a significantly
greater decrease in the oxidative stress, TNF and insulin
resistance levels compared with supplementation with
vitamin D alone in a vitamin D deficient mouse model (27).
The mechanism may result from the dual action of GSH-
mediated reduction in oxidative stress and upregulation of
the vitamin D regulatory genes ((VDBP/CYP2R1/CYP27A1/
VDR), which are required for the efficient transport and
hydroxylation of vitamin D in the liver, as well as the activa-
tion of the VDR/PGC-1a/GLUT-4 pathway responsible for
the metabolic actions of 1,25(OH)2D in target tissues (27,
29, 30). Indeed, lower levels of GSH, impaired vitamin D
responsive genes, and vitamin D deficiency have been
reported in obesity and diabetes in general, and in AA sub-
jects in particular (25–27). These preclinical studies provide
strong evidence for a previously undiscovered mechanism
by which a deficiency or inadequacy in 25-hydroxy vitamin
D is linked to lower GSH levels. The combination
of vitamin D and L-cysteine has been found effective for
improving clinical outcomes in animal studies, and this
needs to be examined in human studies. This has not been
studied in the clinical setting of COVID-19.

Reduced GSH levels in AA

GSH is formed from L-cysteine (LC), glycine, and glutamate
by the enzymatic action of glutamate-cysteine ligase and
glutathione synthetase (32). LC is a rate-limiting factor in
GSH synthesis (32). GSH is a major antioxidant, and reflects
the in vivo defense against oxidative stress (32). GSH is oxi-
dized to GSSG during its antioxidative function. Glucose-6-
phosphate dehydrogenase (G6PD) catalyzes the production
of nicotinamide adenine dinucleotide phosphate reduced
form (NADPH). NADPH is needed by glutathione reductase
for the recycling of oxidized glutathione (GSSG) to GSH.
Blood levels of GSH are lower in African Americans, pre-
sumably due to lower consumption of L-cysteine and a defi-
ciency of G6PD. GSH deficiency increases oxidative stress
and oxidative modification of endogenous enzymes and pro-
teins, which can result in impaired cell function (27). A link

has been established between impaired immunity associa-
tions and reduced cellular levels of GSH (33). GSH or its
precursor L-cysteine has been used to replenish intracellular
GSH levels in anti-viral therapy (34). An imbalance in both
GSH homeostasis and oxidative stress is an essential compo-
nent of the inflammation and respiratory distress common
not only to aging, but also to a variety of diseases, such as
diabetes, chronic obstructive pulmonary disease, acute
respiratory distress syndrome, tuberculosis, neurodegenera-
tive diseases, and several viral infections, including HIV (in
humans) and SIV (in rhesus macaques) (33, 35, 36). The
incidence of G6PD is nearly 11% in AA, compared with 1%
in Caucasians (37–39). Diabetes per se results in lower GSH
levels in diabetic animals and patients (26, 40, 41). Under
stressful situations, such as diabetes, G6PD deficient cells are
unable to regenerate enough NADPH. This exacerbates GSH
deficiency and oxidative stress (42, 43), and it can
contribute to GSH and 25(OH)VD deficiencies in AA.

Role of 25(OH)D in boosting immunity and
lung functions

Vitamin D supplementation upregulates and induces innate
antimicrobial and anti-viral defense mechanisms and it
reduces the insult caused by both viral and bacterial stimuli
(44, 45). The benefits of vitamin D supplementation in low-
ering the risk of viral infection and providing protection
against acute respiratory tract infections have been reviewed
previously (46). Improvement in vitamin D status reduces
the incidence and infectivity of influenza A, retrovirus, and
dengue virus infection (45, 47). The potential mechanisms
by which vitamin D reduces the risk of viral infection and
respiratory illness include induction of the antimicrobial
peptide cathelicidin and IL-17 and suppression of the CD26
cell receptors that facilitate virus entry into the host (45,
47). Vitamin D upregulates glutamate-cysteine ligase,
increases GSH, lowers oxidative stress, and pro-
inflammatory cytokines levels and hereby can prevent built
up of so-called cytokine storm (48–50). Low levels of serum
25(OH)D have been independently associated with subclin-
ical interstitial lung disease and COPD. Alpha-1-antitrypsin
(AAT) is a protease inhibitor. The primary function of AAT
is to inhibit neutrophil elastase and prevent elastin degrad-
ation in the lungs. AAT deficiency and excess elastin deg-
radation impair the recoiling of elastin and make breathing
difficult, as observed in chronic obstructive pulmonary dis-
ease (COPD). Vitamin D deficiency has been shown to
result in significantly lower AAT expression in the lungs
and emphysema in mice exposed to cigarette smoke (35,
51). ATT synthesis by the CD4þ T cells is required in medi-
ating the immune regulatory system controlled by vitamin
D (52). Both vitamin D deficiency/insufficiency and AATD
are extensively linked to decreased lung function. A positive
correlation between low blood levels of 25(OH)D and lower
AAT levels has been observed in type 2 diabetic
patients (53).
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Justification for co-supplementation with vitamin D
and L-cysteine

VD is essential for the regulation of many vital genes (54).
Epidemiological studies demonstrate an association between
better health outcomes and higher blood levels of
25(OH)VD (55–58). Randomized controlled clinical trials
have shown that, while supraphysiological doses of VD are
needed to achieve adequate blood levels of 25(OH)VD, not
all subjects respond to them (59–62). Recent clinical trials
have also questioned the therapeutic effects of high-dose VD
supplementation (61, 63, 64). The disconnect between the
limited success of VD supplementation therapy in clinical
trials, despite the convincing association between low
25(OH)VD levels and the poor health outcomes associated
with chronic diseases, is puzzling. The co-supplementation
approach using vitamin D and L-cysteine is superior to sup-
plementation with vitamin D alone because an improvement
in cellular GSH status due to added LC will be beneficial in
several important ways. First, it will upregulate VD-metabol-
ism genes (VDBP/CYP2R1/CYP27A1/VDR), which are
required for the efficient transport and hydroxylation of
cholecalciferol, and activation of the VDR/PGC-1a/GLUT-4
pathway responsible for the metabolic actions of
1,25(OH)2VD (27). Second, both lipids and proteins are
integral constituents of the membrane bilayer and are essen-
tial in the maintenance of the structure and specialized
physiological functions of various organs in the body. These
two micronutrients are complementary: VD is lipophilic,
and LC is hydrophilic. Thus, co-supplementation with VD
and L-cysteine/GSH will be more effective in neutralizing
oxidative injury at both lipid and protein sites and provide
stronger antioxidative and anti-inflammatory protection
from the oxidative stress induced by the COVID-19 infec-
tion. Thus, combined consumption of GSH precursors and
VD, rather than solely using high-dose VD, is both novel
and a potentially effective strategy to achieve a more effi-
cient bioavailability in response to cholecalciferol alone con-
sumption. Animal studies have shown that, compared with

vitamin D alone, co-supplementation of vitamin D and L-
cysteine (a GSH precursor) in deed showed a greater benefit
in increasing both the levels of GSH and VD-regulatory
genes at the cellular/tissue level, increasing 25(OH) vitamin
D levels, and in reducing oxidative stress, TNF and inflam-
mation biomarkers in the circulation. Clinical trials are
needed to investigate whether co-supplementation of vita-
min D and L-cysteine can provide a low-cost strategy to
optimize circulating levels of 25(OH)VD and boost body’s
immunity and defense in protecting from the adverse clin-
ical effects of COVID-19 infection in our population.

Summary

An association between a high incidence of 25(OH) vitamin
D deficiency and the severity of COVID-19 infection has
been reported. Both GSH and 25(OH) vitamin D deficien-
cies and insufficiencies are prevalent in people of color,
especially African Americans (5, 25–27, 31, 65–68). GSH or
its precursor L-cysteine has been shown to stimulate and
correct levels of GSH, improve VD-regulatory genes at the
cellular/tissue level, increase 25(OH) vitamin D levels, and
reduce inflammation biomarkers in the blood. GSH defi-
ciency increases the risk of various diseases, including
impairment of the activities of Specialized immune cells and
thus the body’s ability to fight infection. As a group, African
Americans have a higher incidence of 25(OH) vitamin D
deficiency or inadequacy. We believe that combined supple-
mentation using vitamin D with the GSH precursor L-cyst-
eine could potentially correct the status of the vitamin D
metabolism genes by increasing GSH and the antioxidant
capacity. Upregulation of the intracellular glutathione redox
status and 25(OH)D may provide a new therapeutic option
for preventing inflammation and impaired immunity in
subjects exposed to COVID-19. Figure 1 illustrates that both
excess vitamin D deficiency and excess adverse clinical effects
of COVID-19 occur in African American communities. The
treatment of widespread 25(OH) vitamin D deficiency or

Figure 1. Potential of L-cysteine and vitamin D co-supplementation to reduce vitamin D deficiency and mortality associated with COVID-19 in African Americans.
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inadequacy with co-supplementation using a combination of
vitamin D and a GSH precursor (L-cysteine) has the potential
to help prevent or reduce the adverse effects of COVID-19
infection, particularly in the AA population.
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