
ESSAYS ON HEALTH AND DEVELOPMENT ECONOMICS

by

REBEKAH J. SELBY

A DISSERTATION

Presented to the Department of Economics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2017



DISSERTATION APPROVAL PAGE

Student: Rebekah J. Selby

Title: Essays on Health and Development Economics

This dissertation has been accepted and approved in partial fulfillment of the requirements
for the Doctor of Philosophy degree in the Department of Economics by:

Benjamin Hansen Chair
Alfredo Burlando Core Member
Van Kolpin Core Member
Ryan Light Institutional Representative

and

Scott L. Pratt Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate School.

Degree awarded June 2017

ii



c© 2017 Rebekah J. Selby

iii



DISSERTATION ABSTRACT

Rebekah J. Selby

Doctor of Philosophy

Department of Economics

June 2017

Title: Essays on Health and Development Economics

This dissertation explores the impact of policy and economic conditions on

the current economic crises of crime, substance abuse, and financial exclusion faced

domestically and abroad. Although these issues span the income distribution,

impoverished regions are disproportionately affected by the highest rates of risky behaviors

such as drug abuse and crime. The ability for public policy makers to affect large

populations of at-risk individuals can be difficult; oftentimes, these groups operate outside

of the public sphere and large-scale interventions can miss the mark.

In my first substantive chapter, I investigate the efficacy of state-wide insurance

reform aimed at reducing drug dependency by requiring insurance providers to cover

rehabilitation and detoxification. Utilizing state-level panel data in a generalized

differences-in-differences framework, I find that states which enact laws expanding

insurance coverage are successful at encouraging treatments for some types of conditions

but are limited in their ability to reach individuals struggling with opiate addiction and,

correspondingly, have little impact on deterring accidental overdose deaths.

In my second substantive chapter, I question the assumptions made in previous

empirical work regarding the relationship between economic conditions and crime.

Existing literature finds that property crime rates are positively correlated with the

unemployment rate. In this paper, I investigate whether this relationship is evolving over
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time and find that the relationship between property crime rates and unemployment has

diminished toward zero. Moreover, I find evidence that there is a non-zero relationship

between unemployment and violent crimes during certain periods in time.

In my last substantive chapter, we develop a theoretical model illustrating the

basic trade-offs in the functioning of financial institutions (Village and Savings Loan

Associations) designed to provide financial inclusion to under-served populations in

developing countries. We develop a theoretical model which suggests that these groups

lack a mechanism to ensure equilibrium in the supply and demand for funds. We test the

predictions of this model using experimental data from newly formed groups in Uganda

and find that groups operate with excess demand for loans but are often able to generate a

high return on savings.

This dissertation includes previously unpublished co-authored material.
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CHAPTER I

INTRODUCTION

Public policy geared towards improving welfare of at-risk populations in both

developing and developed countries is both necessary and challenging. In the United

States, the opioid drug empidemic has claimed the lives of over 33,000 individuals in 2015

and the drug overdose death rate has been rising at an alarming rate over the last several

decades. Crime also continues to be an issue, particularly in impoverished regions in the

country. In developing countries, poorer rural regions often struggle to meet basic needs

and are particularly sensitive to environmental shocks such as droughts or floods.

Policy makers have long sought out large-scale policies or reforms to help improve

the outcomes for these vulnerable populations. However, because many of these

groups operate outside of the public sphere, large scale interventions may be limited in

effectiveness; thus, a rigorous analysis of the impact of interventions is warranted. In this

dissertation, I investigate the impact of state health care reform on drug abuse, revisit and

question the established relationship between unemployment and crime, and explore the

functioning of savings groups established by non-governmental organizations in Uganda.

One of the most pressing concerns in the United States has been the identification

of interventions that can successfully mitigate the continuous rise in opiate-related

fatalities. In Chapter II, I estimate the impact of state legislative insurance mandates

which increase coverage for rehabilitation and detoxification services for the treatment

of addictive disorders. Using text from state legislative acts, I exploit the variation in

timing of enactment of laws across states in a generalized differences-in-difference model

to identify the causal impact on admissions into treatment and accidental drug overdose

deaths. I find that laws encourage admission into substance abuse treatment, primarily
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for alcohol and marijuana, but that they are less successful at attracting admissions into

programs to treat opiate addiction. Correspondingly, I find limited evidence that laws

have a significant impact on the accidental drug overdose rate.

In Chapter III, I provide an empirically rigorous exercise to challenge assumptions

regarding the time-stability of the impact of economic conditions on crime rates. Previous

literature has consistently identified a positive relationship between unemployment and

property crime and little to no impact on violent crime rates. The empirical work assumes

that parameters are consistent over time and thus exogenous to external factors. This

assumption, though convenient, is likely invalid because the individual’s choice to commit

crime is dependent on factors that affect the return to crime and the probability of

apprehension (Becker, 1968). In this paper, I explore whether the relationship between

unemployment and crime has changed over time and I find evidence that, for property

crimes, the parameter has diminished toward zero during recent years. I also find evidence

of non-zero impacts of economic conditions on violent crimes during some periods in time.

This highlights the need for further research on the topic and suggests that policy makers

should take caution in the assumption that economic downturns will drive up crime rates.

Chapter IV is coauthored with Alfredo Burlando (University of Oregon) and

Andrea Canidio (INSEAD). In this paper, we examine the pressing concern in developing

countries to increase financial inclusion for under-served communities. Non-governmental

organizations (NGOs) helped to guide the formation of local groups called Village Savings

and Loan Associates (or savings groups) which provide small-scale banking for vulnerable

populations. Savings groups operate in many ways as micro-credit unions where involved

members save funds in a group pot and funds are distributed out in the form of short-

term loans which are repaid with interest. In this paper, we develop a theoretical model

of the functioning within these groups and and a primary conclusion is that groups lack a
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mechanism to ensure the supply and demand for funds are equal. We test the predictions

from this model using administrative data from newly formed Ugandan savings groups

and find that groups are typically rationing available funds yet are able to generate a high

return to savings. This is indicative that these groups are providing a valuable resource

to the communities but that there exist welfare-improving changes to policies on group

formation and operation.

Taken together, this dissertation highlights three important items. Firstly, policy

interventions, such as large scale insurance reform, may have measurable benefits

on reducing risky behavior but may miss the most at-risk groups by design. These

policies are a type of “one-size-fits-all” intervention, which may be inappropriate given

the socioeconomic and demographic heterogeneity between individuals in the target

population. Secondly, policy implications arising from literature connecting increased

crime rates to changes in unemployment may be off target as the relationship between

these measures is likely endogenous to other factors. Lastly, financial inclusion of poor

populations in developing countries is improved by the establishment of savings groups.

Groups are able to generate a high rate of return to savings and can obtain funds during

periods of need; however, there is evidence of sub-optimal group behavior. In all three

cases, there is reason to believe that problematic economic outcomes can be improved

through policy but that careful consideration of the limitations will help to make programs

more successful in the future.
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CHAPTER II

THE IMPACT OF SUBSTANCE ABUSE INSURANCE MANDATES

Introduction

Drug-related mortality has been consistently increasing in the United States over the

last several decades. In 1999, there were fewer than five accidental overdose deaths per

100,000 population and, by 2015, this number surpassed thirteen per 100,000 population.

A major component to this rise has been increased usage of opioids (such as prescription

pain medication) and opiates (such as heroin) and in more recent years the availability of

highly potent pain management drugs like Fentanyl.

Many strategies exist to reduce this mortality rate. At the most basic, drug related

deaths can be reduced by preventing drug use and access, improving the health and safety

of drug users, or by treating addiction through rehabilitation, detoxification, and therapy.

Prevention policies, such as Prescription Drug Monitoring Programs, can reduce drug use

by increasing scarcity of drugs.1 However, these policies may have a limited effect for

individuals with severe dependency to substances (and thus on the margin for overdose)

as abrupt changes to use can be life-threatening. Facilities devoted to the treatment

of addiction, such as rehabilitation and detoxification, can provide a safe environment

for reducing drug use and provide addicts with a skill set for continued sobriety after

treatment concludes.

Since as early as 1975, states have been enacting laws which require insurance

providers to include or increase benefits for substance abuse treatment (SAT). These

laws are designed to expand coverage for addiction by decreasing the out-of-pocket cost

1Prescription Drug Monitoring Programs aim to reduce access to drugs by creating a centralized
information system of drug prescription histories to be used by medical professionals.
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to individuals requiring treatment thus encouraging individuals enter into treatment.

SAT can be prohibitively expensive, with basic services starting at around $1,000, many

individuals without insurance coverage for treatment who develop an addiction would

opt out of treatment. These high costs increase the probability of continued drug use and

overdose death and other complications of heavy drug use.2

In this paper, I examine the effectiveness of state health mandates requiring SAT

benefits to be included in insurance policies. Using panel-data empirical methods, I

estimate the impact of these mandates on SAT admission rates into detoxification and

rehabilitation programs. I also estimate the effect of these policies on accidental drug

mortality rates. I further investigate the heterogeneous impacts of law implementation on

admission rates by primary drug concern, source of referral for treatment, and treatment

setting.

I find that states which enact legislation experience an increase in admissions

into SAT programs of 13 to 25 percent. The increase is driven surprisingly by alcohol,

amphetamines3 and marijuana treatments; I find no evidence of increases in admissions

for hallucinogens, opiates4 or sedatives and tranquilizers. Rates of admission do not vary

by referral source, suggesting that mandates are both providing benefits for the person

on margin of receiving treatment as well as individuals with an unrealized demand for

services.5 Moreover, admissions into both inpatient and outpatient settings, as well as

2Common conditions include aortic stiffening, arrhythmia, coronary heart disease, brain hemorrhages,
Hepatitis, HIV, and infection.

3Primarily methamphetamine (“meth”).

4“Opiates” in this paper are defined as opioids (such as prescription pain medication like OxyContin,
methadone, and other synthetics) or opiates, (such as opium, heroin, morphine, and other natural
opium derivatives). The remainder of the paper will aggregate opiates and opioids into the term opiates,
acknowledging heterogeneity within this count.

5This can include, but is not limited to, individuals who receive sentences for DUI/DWI, use
substances but do not currently have or recognize a dependency, and individuals who may develop an
addiction following long-term use of prescription medication due to a medical condition.
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rehabilitation and detoxification, increase at a similar rate following the legislation. This

is indicative that the laws are not exclusively encouraging individuals to seek higher cost

services, such as inpatient therapy, but rather that individuals are seeking treatment based

on their needs.

Lastly, I examine the effect that laws increasing SAT benefits have on accidental

drug overdose death (OD) rates. I find limited evidence that drug-induced mortality

decreased in states which enacted mandates. This is consistent with the finding that

admissions into treatment for opiate addictions did not increase significantly following

the enactment of the mandates. However, when controlling for state insurance mandates

increasing coverage for treatment of mental illness (excluding addictive disorders), I find

that the accidental drug OD rate decreased by about 14 percent in states with either type

of law enacted. This suggests that treatment from practitioners, in general, can help to

reduce overdose deaths.

This paper contributes to the literature investigating the impact of policies on

accidental drug mortality. Papers examining prevention programs have largely focused

on Prescription Drug Monitoring Programs (PDMP). The effectiveness of these policies

are mixed. Paulozzi et al. (2011) find that PDMPs do not significantly decrease drug

overdose or consumption of opiates, whereas Reifler et al. (2012) shows that PDMPs

were associated with a significant decrease in accidental drug poisoning reported to

the Poison Control Center and an increase in substance abuse treatment admissions.

There is also a small literature investigating the impact of education and effectiveness

of rescue medication (primarily naloxone). In particular, Walley et al. (2013) finds that

a Massachussetts overdose education and nasal naloxone distribution program, which

educated opiate users of ways to identify overdose and how to administer the rescue

medicine, decreases opioid-driven death rates. Lastly, there are few economic papers
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investigating the impact of SAT on drug mortality. Swensen (2015) finds that increases

in SAT facilities significantly decreases the drug overdose death rate by increasing access

to care. In my paper, I provide the complementary demand-side analysis investigating the

impact of a policy designed to encourage treatment uptake.

There is also a small literature which examines the impact of state insurance

legislation on substance abuse and other risky behavior. Lang (2013) investigates

the impact of mental health insurance laws on suicide rates and finds that suicides

significantly decline following enactment. Fernandez and Lang (2015) find that the

decrease in suicide rate corresponds to a decrease in available organs for donation.

Dave and Mukerjee (2011) examines the impact of mental health insurance mandates

on uptake of rehabiliation and detoxification services and find evidence the laws have

a positive impact on treatment. Lastly, Klick and Stratmann (2006) find that states

which pass mental health laws that explicitly include substance abuse disorders see

increases in alcohol consumption. In contrast, I identify laws which affects substance abuse

insurance coverage directly, regardless of whether it has an impact on other mental health

conditions. In addition, I investigate the extent of the impact on admissions on accidental

overdose. Lastly, my heterogeneity analysis provides new insights on the mechanisms

behind the mandates.

This rest of this paper is structured as follows. First, I discuss the background

of substance abuse treatment and overdose in the United States, provide a detailed

explanation of laws in this analysis, and further discuss related literature on the impact

of insurance laws. I then describe the empirical models used in this paper and discuss

the data used in this paper. Following this, I report the results of this investigation and

conclude.
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Background

Drug Use and Treatment in the United States

Accidental drug deaths make up the majority of drug-related mortality in the United

States.6 Intentional drug deaths (i.e. drug deaths from suicide or homicide) and deaths

where the intent is unknown make up the residual. Figure 1 illustrates the trends in

accidental, suicidal, and unknown intent drug death rates between 1999 and 2015. While

there has been little observable change in drug-related suicide over this period, there

has been large increases in the accidental drug death rate with 11,155 deaths occurring

in 1999 to well over 44,126 in 2015. This corresponds to less than four accidental drug

deaths per 100,000 population to more than thirteen per 100,000, respectively.7. This

three-fold increase is primarily driven by increases in narcotic deaths and deaths where

the drug is unspecified.8 On average there were 3.9 deaths per 100,000 population with

underling cause of death was due to an unspecified drug. Of these, these 2.4 deaths had

narcotics found during autopsy.9 The trends in death rates to non-narcotic other drugs10

experienced little change over this time period (see Figure 2).

6Drug-related mortality includes deaths where the cause of death was deemed to be “poisoning by and
exposure to noxious substances” (World Health Organization (1992)). For the purposes of this paper, I
exclude deaths due to alcohol, organic solvents, halogenated hydrocarbons, other gases and vapors, and
pesticides.

7Data accessed from CDC Wonder at http://wonder.cdc.gov on 05/19/2016. International
Classification of Diseases Codes 9th Revision (ICD-9) include E850-E858 for years 1990-1998, and ICD-
10 codes X40-X44 for years 1999-2014.

8ICD-10 codes for narcotics and unspecified other drugs is “X42” and “X44”, respectively.

9Multiple cause of death data includes up to twenty causes of death. The presences of narcotics is
coded as “T40” in these sections.

10These include nonopioid analgesics, antipyretics antirheumatics, antiepileptic, sedative-hypnotic,
antiparkinsonism, psychotropic drugs, and other drugs acting on the autonomic nervous system (ICD-10
codes “X40,” “X41”, “X43”).
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FIGURE 1. Drug Deaths by External Cause

FIGURE 2. Accidental Drug Death Rates by ICD Code
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Figures 3 and 4a-4h illustrate the change SAT admission rates (admissions per

100,000 population) for general admissions and by primary drug concern, respectively,

between 1990 and 2009. There is no clear upward trend in treatment admission rates, on

average, with yearly variation around the mean 650 admissions per 100,000 population.

Admissions reporting alcohol or cocaine as their primary concern have been declining

since 1992. For alcohol, treatments decreased from a high of over 350 to as low as 250

per 100,000 population. On the contrary, admissions reporting marijuana, opiates, or

sedatives and tranquilizers have been generally increasing over the period. The rise

in opiate and sedative admissions has been about two-fold and increase in marijuana

treatment admissions has been nearly three-fold.11 Treatment rates for hallucinogens and

other drugs12 did not increase or decrease systematically over the period.

FIGURE 3. Treatments per 100,000 Population

11Marijuana categorized as a Schedule I controlled substance and during this time period was illegal
under all state and federal law for recreational use. During this time, several states had passed legislation
to allow for medicinal marijuana use, but it remains illegal under federal law as of the date of this paper.

12Includes inhalants and over-the-counter medication.
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FIGURE 4. Treatment Admission Incidence Rates by Primary Drug Concern

(a) Alcohol (b) Marijuana

(c) Opiates (d) Cocaine

(e) Amphetamines (f) Sedatives

(g) Hallucinogens (h) Other Drugs
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SAT Insurance Mandates

Over the course of thirty years, states have enacted legislation requiring insurance

providers to increase coverage for treatment of substance abuse disorders. Table 1 includes

the enactment date and scope of law (discussed in the next subsection) for each state. By

2007, forty-two states had enacted a substance abuse insurance mandate and the majority

of laws were passed between 1990 and 2002. The laws were most often targeted at large

group health plans and often made exemptions for small group health plans.13 Typically,

mandates includes language which explicitly requires insurers to provide or offer coverage

for SAT, details the level of benefits that must be covered, discusses whether treatment for

other mental illness is subject to the law, and the effective implementation date of a law.

The following subsections discuss heterogeneity in substance abuse insurance

mandates as well as laws passed at the federal level.

Scope of Benefits Insurances laws can vary on the generosity and scope of mandated

benefits from state to state. For example, mandates may include explicit language

requiring that all new plans provide benefits if they had not done so before. Additionally,

the mandates may differ on the level of the benefits that must be provided when offered.

“Parity” laws are among the most generous, and require all new plans to include benefits

for SAT and that these benefits must be “no more restrictive” than for physical health.

“Minimum Mandated Benefit” (MMB) laws are slightly less generous; they require the

inclusion of SAT benefits in plans but allow lower coverage than benefits for physical

conditions. Lastly, “Mandated if Offered” (MIO) laws do not have explicit language

requiring benefits for treatment. However, plans including SAT benefits must meet some

minimum benefit level. While investigating the scope of benefits is not the primary focus

13The justification here is to avoid increasing premiums. Providers were also exempt if they could show
that the inclusion of benefits would increase premiums more than a minimum threshold.
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TABLE 1. State Substance Abuse Legislation

of my paper, I investigate whether the results of the analysis are robust to breakdown by

type of law.

Health Legislation State legislatures often address substance abuse treatment

insurance coverage as a part of a comprehensive bill where addictive disorders are

categorized as a mental illness. However, several states enacted mental health laws which

explicitly excluded substance abuse disorders and other states which enacted SAT laws

without affecting other benefits. In addition, occasionally states amend an existing mental

health bill to include substance abuse disorders years after the original enactment date.

13



For the majority of this paper, I focus on laws which affect SAT benefits regardless

of whether it was packaged as part of a mental health law or passed alone. However,

there exists the possibility of spillovers from increasing mental health treatment onto

substance abuse treatment (such as referrals). Laws which increase benefits for mental

health treatment - excluding SAT - are also occasionally passed around the same time as

other laws which do increase SAT. To check for this potential endogeneity, I include other

mental health mandates in some specifications.

Federal Mandates Congress passed the Mental Health Parity and Addiction Equity

Act (MHPAEA) of 2008 which mandates that insurers provide benefits for SAT, as well

as other mental illness treatment, at parity with physical health in all plans which already

included benefits; however, this law did not require plans to offer or include benefits (a

MIO law). 14 In this paper, I focus on the impact of laws enacted at the state level before

the implementation of the MHPAEA.

Literature on Health Reform Policy

Previous literature has focused largely on the impact of legislation affecting coverage

for mental illness on treatments for mental disorders and suicide. A small set of papers

focus on substance abuse or substance abuse treatment, but do so through the lens of

mental health.

There has been mixed evidence in previous literature on the effectiveness of

insurance mandates in encouraging treatments for mental illness. Harris et al. (2006) used

quasi-experimental techniques to estimate the impact of mental health insurance reform

14Later, the Patient Protection and Affordable Care Act (ACA) in 2010 extended on the MHPAEA
by mandating all plans - including individual, HMO, and Medicaid/Medicare - to provide benefits in all
plans and that discrimination based on preexisting conditions could not be allowed. The ACA forced all
state laws to switch from MIO or MMB to full parity as well as provided insurance to over twenty million
previously uninsured individuals.
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on mental health care utilization and found that mental health parity laws significantly

increase the probability of receiving treatment. Barry and Busch (2008b) find that mental

health parity laws are effective at increasing services for mental illness for people with

severe conditions and those who are of lower socioeconomic status. In their related paper,

Barry and Busch (2008a) find no evidence that these policies increased treatment rates for

children. Lastly, Bilaver and Jordan (2013) finds limited evidence for the effectiveness of

these laws on treatment for Autism Spectrum Disorder.

There have been several papers investigating the role of mental health insurance

laws on suicidal behavior. Suicide is strongly associated with severe mental illness and

increasing mental health insurance coverage can increase the likelihood of receiving

treatment before it manifests into suicidal behavior. Klick and Markowitz (2006) used

ordinary least squares and two-stage least square over a long panel of state suicide data

and found no evidence that a mental health parity law decreases the suicide rate. In

contrast, Lang (2013) and Fernandez and Lang (2015) find that parity laws are both

effective at reducing suicide rates but that there is a spillover onto availability of available

organs for donation.

To date, there is no paper which exclusively focuses on mandates pertaining to

substance abuse treatment. However, there are a few papers which examine differential

impacts of mental health insurance mandates which include or exclude substance abuse

disorders. Dave and Mukerjee (2011) create three categories for insurance mandates:

the first is a broad spectrum mental illness law which includes substance abuse and

has little to no exceptions, the second is a limited law which has limitations on certain

coverages, and the third being a weak law which allows exceptions for substance abuse.

In this study, they use a Poisson panel regression model and find that broad spectrum

parity laws are effective at increasing substance abuse admissions. Klick and Stratmann
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(2006) categorize mental health insurance laws as explicitly including substance abuse,

not explicitly excluding substance abuse, and explicitly excluding substance abuse and

find that beer consumption increases if the law was a parity law that included alcohol

dependency benefits.

Empirical Methodology

Substance abuse insurance laws may affect demand for services by covering

previously uninsured individuals or by increasing the amount of services beneficiaries

undertake (extensive and intensive margin, respectively). However, if the laws increase

premiums15 then we may see fewer treatments following the laws. Further, treatment may

influence current and future drug use and alter the probability of dying due to accidental

overdose. However, there may be the reverse effect if individuals experience rational

addiction,16 or if SAT is increasing access to addictive substances.17

In order to identify the effect of insurance mandates on the SAT admission and

OD incidence rates, I exploit the timing of laws in different states. I define the vector of

indicator variables ~Lst for SAT insurance mandates laws, each taking on the value of one

in state s for all years on or after the effective year of the law and zero in previous years. I

then estimate the following log-linear model:

log(Yst) = β0 + βLst + ΓXst + δs + αt + Ωs ∗ t+ ust (2.1)

15The concern here is that as more at risk people are added to the insurance risk pool, insurance
premiums inflate. When this drives healthy people out of the risk pool, this is called a “death spiral”.
This is unlikely in these laws because of exemptions if it can be shown that premiums are likely to increase
substantially.

16That is, by reducing the cost of consuming drugs (i.e. the cost of treating addiction in the future)
individuals will increase their consumption in the present.

17Prescription methadone, in particular, is a highly abused substance and is made available through
treatment for opiate addiction.
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where Yst is the incidence rate of SAT admissions or OD in state s at time t,

Xst includes the unemployment rate, Medicaid and Medicare expenditures per capita,

household income per capita, and demographic characteristics, δ and α are state and year

fixed effects, Ωs is a vector of state specific time trends (included in some specifications),

and εst is an independent and identically distributed mean error term.

Interpretation of Estimates The null hypothesis is that β = 0, or that there is no

observable difference in SAT admission or OD rate in states following the enactment of a

law relative to having no law in place. Rejection of the null would imply that states which

switch from no law to having a law in place have a geometric average incidence rate which

is 100∗(eβ−1) percent different than the geometric average with no law enacted. For small

β, the estimated coefficient is similar in magnitude to this percent.

Identification There assumptions needed to identify causal effects in this model are

that states that enact laws have common trends in SAT and OD rates with states that

do not in absence of legislation and that state legislators are not endogenously enacting

mandates in response to generally worsening conditions in SAT or OD.

States certainly have heterogeneous trends in both measures due to differences

in other laws, preferences, and access to substances. However, the inclusion of state

fixed effects and state specific time trends help to correct for this issue. The matter of

endogenous enactment of laws is thus the primary concern and is reasonable considering

the motivations leading to propositions of SAT insurance reform. To check for this, I

perform an event-study which examines trends pre- and post-enactment. Trends prior

to enactment which show SAT rates decreasing or OD rates increases just prior to

the enactment date would create a concern that law makers are responding to these

conditions.
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Data Description

SAT admission statistics come from the Treatment Episode Data Set for Admissions

(TEDS-A).18 The TEDS system collects administrative data on each admission into

facilities and is comprised of mainly providers that receive public funds (e.g. Federal Block

Grant) to provide substance abuse treatment. There are also some institutions that do not

receive these funds that submit their data as well. This data is available from 1992 to 2012

and the survey questions is consistent across the years.19 One primary data limitation

is the inability to distinguish between unique individuals rather than admissions. In

the same survey year, a single individual may be reported more than once if they were

admitted into a treatment program on more than one occasion. Thus, the calculated

incidence rate in this paper will be capturing service utilization rather than the percentage

of the population receiving treatment.

Data for drug-related overdose deaths comes from the Multiple Cause of Death

(MCD) files from the CDC’s National Center for Health Statistics. Spanning back to

1968, the MCD provides individual level data on the manner and place of death, the

decedent’s demographic and socioeconomic characteristics, and an array of information

about co-occurring conditions and toxicology results. I focus on deaths that are deemed

to be accidental and due to poisoning from drugs (excluding alcohol). For years 1990 to

1998, these are coded using the International Classification of Diseases, Version 9 (ICD-9)

as E850-E858. For years 1999 and forward, cause of death are coded as X40-X44 (ICD-10).

In order to construct incidence rates, I utilize state-level population data from the

Surveillance, Epidemiology, and End Results Program (SEER) funded by the National

18Obtained from Substance Abuse and Mental Health Services Administration (2014).

19While mostly balanced, there are some states in some years that are not included in TEDS-A (about
three percent of observations) due to reporting issues.
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Cancer Institute. The SEER data set provides a modification of the Census Bureau’s

intercensal estimates and the county population estimates produced by the the Census

Bureau’s Population Estimates Program and also accounts for population changes

following Hurricane Katrina and Rita. State-level population is also decomposed by race

and single year ages. This data is also used to create state level demographic indicators,

such as percent of the population that is white, black, and in various age groups.

In addition to demographic characteristics, my analysis uses the Bureau of Labor

Statistics Local Area Unemployment Statistics estimate of the state level unemployment

rate, the Bureau of Economic Analysis estimate per capita income, and Medicaid and

Medicare health expenditures per capita (calculated using data from the Center for

Medicaid and Medicare Services and SEER population data).20 The unemployment rate

and income per capita are utilized to control for economic conditions that may influence

drug use. Medicaid and Medicare expenditures controls from contemporaneous welfare

systems that may affect health costs of individuals in these markets.

Summary Statistics

Table 2 reports summary statistics for the data used in this analysis between 1992

and 2008. There were on average 640 admissions per 100,000 population into substance

abuse treatment between 1992 and 2009. The top reported concerns at admission were

for alcohol, opiates21, cocaine, and marijuana. Approximately 62 percent of admissions

were into an outpatient program and 76 percent were into rehabilitation programs.

Over two-thirds of all admissions into treatment were from self-referrals and referrals

20This number does not reflect expenditures per enrollee. Rather it reflects the size of the health welfare
system in the state.

21“Opiates” include heroin, non-prescription methadone, and other opiates and synthetics.
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from the courts and criminal justice system22 with 213.3 and 218.6 admissions per

100,000 population, respectively. Second to these are referrals from other health care

providers23 and community referrals24 (116.6 and 72.1 admissions per 100,000 population,

respectively). Lastly, there was an average of about 5.4 accidental ODs per 100,000

population.

Control variables include state unemployment rates, per capita real income,

real Medicaid and Medicare expenditures per capita, and state demographics. The

unemployment rate averaged about 5.4 percent and income per capita was about $36,880

in 2009 dollars. States had an average annual $1,730 and $2,140 per capita expenditures

on Medicaid and Medicare, respectively. About fifty-one percent of the population was

female, seventy percent white (non-Hispanic), thirteen percent black, fourteen percent

were between the ages of fifteen and twenty-four, fourteen percent between the ages of

twenty-five and thirty-four, thirty percent between the ages of thirty-five and fifty-four,

and thirty-percent older than age fifty-four.

Results

SAT Admissions

Table 3 reports the main results for the impact of substance abuse insurance

legislation on the SAT incidence rate. Columns (1) and (2) include estimates for univariate

and multivariate OLS with controls for socioeconomic and demographic conditions,

respectively. While insignificant, the coefficient on the dummy variable for the SAT

22Court referrals include DUI/DWI, deferred prosecution requirements, pretrial release, or before/after
judicial adjudication.

23Includes alcohol/drug abuse care providers, mental health providers, physical health providers,
hospital, and other licensed health care specialists.

24Includes schools, employers, and other community referrals such as shelters, unemployment assistance,
defense attorneys, and self-help groups like Alcoholics/Narcotics Anonymous.
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TABLE 2. Summary Statistics for Substance Abuse Treatment, Overdose Rates, and
Controls
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insurance mandate is positive for both specifications. Columns (3) includes the estimates

including state and year fixed effects. The exponentiated coefficient suggests that states

which enact SAT mandates have admission incidence rates 13 percent higher than in states

where there is no law in effect and is significant at the 95 percent level of confidence.

Column (4) includes the estimate when including state-specific time trends along with

fixed effects. The magnitude on the coefficient is higher than under the fixed effects

specification at 0.23 but is not statistically different than the fixed effects coefficient at

conventional significance levels. Due to the heterogeneity in SAT rates from state-to-state

in both average and trends, Columns (4) is the preferred specification.

The primary conclusion is that states which enact laws mandating insurance

coverage for SAT see substantial increases in treatment. This is indicative that the

affected population (employed and capable of maintaining health insurance coverage) has

an unmet demand for SAT in absence of legislation. However, this analysis does not reflect

the severity of conditions being treated or give any indication of whether individuals are

on the margin of receiving treatment. In a later section, I explore this by repeating this

analysis for admissions across drug concern, source of referral, and setting for admission.

Overdose Deaths

In this section, I report and detail the empirical findings on the impact of SAT

insurance mandates on overdose death incidence rates as shown in Table 4.

Columns (1) through (4) reflect identical specifications as Table 3. Column (1)

reports a significant positive estimate on the dummy variable for SAT insurance mandate;

however, this is capturing a substantial amount of the overall upward trend in the OD rate

which would be controlled for using time fixed effects and state-specific trends. Column

(2) shows a small and insignificant decrease in accidental OD rate of about 7 percent
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TABLE 3. Substance Abuse Laws and Admissions into Treatment
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when controlling only for state economic conditions and demographics, suggesting that the

effects are not robust to the inclusion of additional controls. Columns (3) and (4) provide

fixed effects estimates and are both estimate the impact to be about a 11 percent decrease

(again insignificant at conventional levels).25

The results suggest that states which enact laws see increases in treatment but

that it is insufficient to significantly affect overdose. However, the consistently negative

estimate may be suggestive that there is an empirical specification issue that is adding

noise to the impact. In a later section, I include specifications in a robustness exercise

which include a possible omitted variable of laws which affect treatment for other mental

health conditions. These laws are often passed separately from SAT insurance mandates

but can encourage treatment through referrals by mental health providers and a general

increase in individuals concern for their health.

Heterogeneous Impacts on SAT

We should expect there to be be substantial heterogeneity in the treatment effect;

for instance, treatment for alcoholism can be substantially different than for opiates;

likewise treatment in an intensive inpatient setting is going to be substantially different

than treatment in an ambulatory outpatient therapy program. Depending on the needs of

the affected population, the enactment of SAT insurance mandates may affect admissions

heterogeneously.

I report the analysis of the impact of SAT insurance mandates on admissions by

drug reported as the primary concern, source of referral into treatment, and setting for

admission in Tables 5 to 9. Specifications in odd numbered columns are equivalent to

Column (3) of Table 3 and even numbers are analogous to Column (4).

25The p-value of Column (4) is 0.154.
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TABLE 4. Substance Abuse Laws and Accidental Drug Overdose Deaths
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By Primary Drug Concern

Admission rates for alcohol treatment are significantly higher in states which enact

SAT insurance mandates. States which enact laws see 16 to 20 percent more alcoholism

treatment admissions than no-law states. Likewise, admissions reporting marijuana

increased by 20 to 29 percent while amphetamines26 increased about 25 to 38 percent

after a law is enacted. The effect on admission rates for tranquilizers27 is not robust to

the inclusion of state time trends, though the estimated coefficient is similar in magnitude

(See Column (14)). Lastly, there was an increase in SAT for “other drugs,” which includes

over-the-counter-substances and inhalants, following the enactment of the law (when

accounting for state trends). Overall, the laws are primarily driving increases in commonly

treated substance abuse disorders, but not having a strong effect on addictions that are

the driving force behind the rise in drug related mortality.

In contrast, there is no evidence that state laws have a significant impact on rates

of admission reporting cocaine, opiates, or hallucinogens. The estimated coefficients are

both small and insignificant at conventional levels. The lack of impact on opiates SAT

admissions, in particular, is consistent with insignificant findings regarding the accidental

OD rate. Deaths due to alcohol poisoning are not included in the OD rate and there

are no recorded deaths where cannabis was the only contributing substance,28 so the

significant impact on treatments for abuse of these substances would not be expected to

have a direct spillover impact on drug related mortality.

26Primarily methamphetamine (meth), but also includes other amphetamines such as MDMA and
phenmetrazine as well as other stimulants such as methylphenidate.

27In this case, “tranquilizers” are actually an aggregate of benzodiazepines and non-benzodiazepine
tranquilizers as well as barbiturates and non-barbiturate sedatives and hypnotics.

28A very small number of ODs have poisoning due to cannabis derivatives as a multiple cause of death
(code T40.7).
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TABLE 5. Impact of Laws on SAT by Primary Concern at Admission
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By Referral Source

Treatment effects are likely to be heterogeneous by admission referral source. In

Table 6, I investigate the impact of implementation of SAT insurance mandates on

admissions into treatment programs by referral source. “Self” admissions reflect all

admissions that are made on behalf of the addict themselves. Admissions under the

category “Care” include all admissions coming from other SAT programs, mental health

practitioners, and all other medically licensed professionals. “Community” referrals include

all admissions from schools, employers, defense attorneys, welfare assistance, and self-

help groups like Alcoholics/Narcotics Anonymous. Treatment admissions from “Criminal

Justice” referrals include those from any judge, probation officer, prosecutor, or any other

person affiliated with the judicial system.

TABLE 6. Impact of Laws on SAT by Source of Referral at Admission
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In this case, there is an observable difference across specifications including state-

specific time trends rather than fixed-effects alone for many referral sources. Excluding

these trends, there is only a significant increase in admissions coming from community

referrals of about 16 percent. When accounting for time trends, there is an increase in

admissions across all categories of referral sources ranging from 19 to 25 percent.

I further break down admissions by referral setting across primary substance

reported in Tables 7 and 8. Column specifications are analogous to Column (4) of Table

3. Self, substance abuse care, and criminal justice system referral admission rates were

significantly higher for alcohol, marijuana, amphetamines, and tranquilizers. Referral rates

from other community sources were significantly higher for marijuana conditions. There

is also evidence that treatments from schools reporting methamphetamine significantly

increased following passage of the law. Lastly, additional referrals for other drug

conditions were primarily from employers and the criminal justice system. As expected,

there is no evidence of significant increases for admissions into treatment for cocaine,

opiates, or hallucinogens from any of the source of referral.

The significant effects across self admissions, other SAT referrals, community

referrals, and court system referrals for alcohol, marijuana, and methamphetamine

treatments suggest that more than just the marginal person demanding treatment are

responding to these mandates. Individuals being referred to treatment from other SAT

programs suggest that individuals are receiving treatment on the intensive margin because

institutions recognize that individuals can now afford more treatment than previously.

Lastly, the responsiveness of treatment coming from court system reveals that the

insurance coverage is providing coverage for unexpected demand for services such as

DUI/DWI and other mandated treatment.
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TABLE 7. Impact of Laws on SAT by Referral and Drug Concerns - Part A

By Admission Setting

Detoxification and rehabilitation services vary substantially on costs, location, and

types of services provided. For example, many inpatient rehabilitation services include

detoxification as well as therapy and provide health care assistance for individuals with
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TABLE 8. Impact of Laws on SAT by Referral and Drug Concerns - Part B

medical complications arising from withdrawal. Increasing insurance may be substantial

enough to cover some levels of treatment but may not be sufficient to cover intensive and

costly sessions. In contrast, increased insurance may allow people who previously would

benefit from intensive therapy but settled for the cheaper less intensive options to switch.
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Table 9 reports the estimates of this analysis investigating the heterogeneous impacts

by admission setting. I find that states which enact laws have significantly higher rates

of admission (between 19 and 32 percent) across all types of treatment when accounting

for state-specific time trends. When considering fixed-effects only, I find that states which

enact laws have about 19 percent more outpatient treatments than states which do not.

TABLE 9. Impact of Laws on SAT by Setting at Admission

I extend on this analysis in Tables 10 and 11 by investigating the impact for

inpatient and outpatient treatment across reported substances. The results are consistent

with previous analysis with the only observable impacts occurring for alcohol, marijuana,

and amphetamines. The impact for outpatient treatment for marijuana is significant at

the 95 percent level of confidence across both specifications and suggestions outpatient

treatment was higher by 17 to 25 percent in states with laws. Similarly, outpatient

treatment rates for amphetamines increased by 28 to 47 percent. For outpatient treatment

of alcohol and tranquilizers, the fixed effects specification suggests a weakly significant

coefficient of 0.14 and 0.22, respectively, but the significance disappears when controlling

for trends. There is no evidence of an impact on outpatient treatment for cocaine, opiates,
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hallucinogens, or other drugs. Likewise, there is no indication of significant increases in

inpatient treatment across any of the substances.

TABLE 10. Impact of Laws on Outpatient SAT by Drug Concern

TABLE 11. Impact of Laws on Inpatient SAT by Drug Concern
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Other Results

In this section, I explore the robustness of the results on SAT and OD rates to scope

of laws and inclusion of mental health mandates. The results from this analysis can be

found in Table 12. Columns (1a) and (2a) are identical to columns (3) and (4) of Table 3,

respectively. Columns (1b) and (2b) are the same as columns (3) and (4) of Table 4. In

Table 13, I also investigate sensitivity to enactment date as well definition of death rate.

Definition of SAT Laws

Substance abuse insurance mandates vary on two primary levels: whether the

language in the law requires benefits to be included in all plans and the level of benefits

that must be provided. In this section, I separate the laws into three categories.29 The

first, called “Parity” laws, are mandates which both require all plans to include or offer

benefits in their plans for SAT and that these benefits must be “no more restrictive” than

for physical health. The second category captures all other laws requiring benefits to be

included or offered, but that these laws require some minimum level of benefits that differs

from physical health (called “Minimum Mandated Benefits (MMB)”). The final category

“Mandated if Offered (MIO)” include all laws which mandate a certain level of benefits

but do not have requirements to include benefits in the plans. The results are included in

columns (3a), (3b), (4a), and (4b).

States which enact Parity or MIO laws experience significant increases in SAT

admission rates relative to having no law in effect (28 and 21 percent, respectively with

trends). There is no evidence that MMB laws signficantly increase SAT rates. For

accidental OD rates, there is no statistical evidence of an impact from substance abuse

insurance laws when accounting for state trends. With state and year fixed effects, states

29These definitions are adopted from Lang (2013).
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which enact parity laws experience a decrease in accidental OD rates of about 25 percent

(significant at 95 percent confidence).

In addition to legislation affecting insurance benefits for the treatment of addiction,

many states enacted legislation which directly increased benefits for mental illness

treatment. In several cases, these mental health laws also increased benefits for SAT

by defining addictive disorders as a type of mental illness or had a subsection which

affected substance abuse conditions. Other states passed laws affecting mental illness

excluding. These laws could also indirectly affect demand for SAT by treating co-morbid

conditions which are correlated with substance abuse disorders. Additionally, mental

health practitioners may refer people into SAT more frequently as the utilization of mental

health services increases following the enactment of the mental health laws.

Columns (5a) and (6a) report the estimates of the impact of substance abuse

insurance mandates on SAT and (5b) and (6b) for OD rates when controlling for “mental

health only” (MH) laws. For SAT rates, I find that the inclusion of MH mandates do

not significantly alter the estimated impact from substance abuse insurance. Likewise,

there does not appear to be a significant impact on SAT rate from MH laws. The linear

combination of these impacts (including their interaction) suggests that states which enact

both laws see a 34 percent increase in SAT treatment admission rates (significant at the

99 percent level of confidence). However, this is not statistically different than having a

substance abuse insurance law alone.

When accounting for mental health only laws, the impact from SAT insurance

mandates on overdose death rates becomes significant at the 90 percent level of confidence.

Moreover, the independent impact from MH laws are similar in magnitude. The linear

combination of the coefficients and the interaction indicates that states which enact both

laws are no better off in terms of impact on OD rates than states which enact one or the

35



TABLE 12. Robustness Checks: Scope of Law and Mental Health Laws
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other. This suggests that either type of mandate reduces accidental OD rates and that

the commonalities in both types of laws (namely increasing benefits for treatment by

professionals) may be the transmission method between legislation and reduced probability

of death.

Placebo Tests

To check whether the impact of laws was simply an artifact of time incorrect

specification of treatment, I perform an enactment date sensitivity analysis. Another

concern is that the enactment of the insurance mandate is correlated with overall

improvements to access to health care. To check for this, I regress the death rate due to

acute digestive disorders on the insurance laws. Table 13 reports the results from this

exercise.

To test sensitivity to enactment date, consider a “placebo” law enacted five years

prior to the actual enactment date. In the table, the dummy variable identifying this law

is labeled“Subs. Abuse Insurance Law Placebo.” I regress log SAT admission and OD

rates on this placebo law, controls, fixed effects, and state trends in Columns (1) and (2),

respectively. I find no evidence that either SAT or OD rates significantly change due to

this placebo law.

To test whether laws are representing overall improvements in health care, I regress

the log of the number of deaths due to digestive system conditions, primarily hernias and

appendicitis, on the enactment of the insurance law in Column (3). These conditions are

common, acute, and treatable by medical intervention; if access to health care is generally

increasing, we would anticipate that the number of deaths due to these conditions would

decrease. I do not find evidence that deaths due to these conditions significantly changed

following the enactment of the law.
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TABLE 13. Robustness Checks: Placebo Tests

Event Study

The estimates presented so far represent the causal effect of insurance mandates on

outcomes, provided that the following holds: law makers are not responding to generally

worsening conditions in substance abuse morbidity and mortality by enacting legislation to

correct the issue. This potential source of endogeneity may cause positive bias in the effect

of laws on SAT and negative bias in the effect of laws on overdose deaths.

To investigate whether this occurring, I implement an event study which creates a

dummy variable for years before and after the passage of substance abuse laws. The year

that the law becomes effective is coded as year zero and I create dummies for each year

before and after this enactment year (Dj
st,−5 ≤ j ≤ 5). The dummy variable for j = −5 is

one if the year is less than or equal to five years before enactment and the dummy variable

for j = 5 is one if the year is more than or equal to five years after enactment. I regress
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log SAT admission rates and log OD rates on these dummies, state and year fixed effects,

and a set of controls (omitted category is the enactment year where j = 0).

log(SAst) = β0 +
5∑

j=−5

(βjD
j
st) + ΓXst + δs + αt + ust

The coefficient βj captures the log difference in the incidence rate of admissions or

deaths j years after the enactment year relative to the year of enactment. In the case of

admission rates, if there is a general decrease in βj as time moves from j = −5 toward

j = 0, then there is concern that policy makers may be responding to generally worsening

conditions in substance abuse treatment by enacting the law. For accidental drug deaths,

if βj is increasing over this time, then law makers may be responding to heightened death

rates by enacting the policy. If βj is increasing (for SAT rates) or decreasing (for OD

rates) prior to enactment, then it is difficult to determine if the coefficient is just picking

up a trend in SAT and OD rather than the true causal effect.

This event study also permits us to examine the medium to long-run effect of these

laws. For j ≥ 1, the coefficient βj reports how persistent the effect from the law has been.

If the law is enacted and the effect continues, then these coefficients should be consistent

and statistically different than zero. However, if an effect is temporary, then we could

anticipate that the coefficients return toward zero.

Tables 14 report the estimates for the event studies for log admission and overdose

rates, respectively. On the left hand side of each table, I report the estimate for βj when

j ≤ −1 and on the right hand side I report the estimates for j ≥ 1. There is no evidence

that the log SAT rate prior to enactment is not statistically different than the year of

enactment. However, the years prior to enactment had OD rates that were significantly

higher than the year of enactment. Additionally, there was a downward trend prior to
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enactment of the law. This suggests that the interpretation of the impact of insurance

mandates on OD rates should be taken with caution.

TABLE 14. Event Study for Enactment of Laws on SAT and OD Rates

This table also indicates that the effect on SAT admissions was persistent and

perhaps may have been slightly delayed, with the largest increases in admissions coming

two or more years after the law was passed. After five years, the SAT treatment effect is

no longer distinguishable from the year of enactment.

Conclusion

Over the last several decades, many states have been enacting health care reforms

to increase coverage for substance abuse in insurance plans. The intent of these laws

were to reduce dependency on addictive substances and increase overall social welfare.

In this paper, I examine the impact of these policies on measures of effectiveness, namely

substance abuse treatment (SAT) admissions and accidental overdose deaths (OD).

I find that the policies have a significant impact on SAT admission rates, but that

there is substantial heterogeneity across admission types by drug reported as primary
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concern. In particular, laws increasing benefits for substance abuse treatment appear to

primarily increase admissions for alcohol, marijuana, and amphetamines. Admissions

for opiates, hallucinogens, and other drugs do not appear to change in response to

mandates. New admissions are being referred into treatment from other SAT programs

and the criminal justice system in addition to self-referrals, indicating an increase both

on the intensive margin for treatment as well as for individuals not actively considering

treatment. For marijuana treatment admissions, there are also additional treatments from

other community referrals such as self-help groups and welfare assistance. Lastly, I find

that there are significant increases to both inpatient and outpatient treatment.

I also investigate the impact of these laws on accidental OD rates. States which

enact laws do not appear to have significant decreases in OD rates which is consistent with

the findings for SAT where opiate and cocaine admissions did not appear to significantly

change in response to legislation. When controlling for other mental health laws, there is a

marginally significant decline in OD rates in states which enact a law. If this effect exists,

it would be indicative that professional treatment, in general, is a mechanism for deterring

overdose deaths.

I also find that the effect on treatment admissions took several years to reach highest

impact. This is expected as it may take time for individuals to understand their benefits,

allows old plans to expire and new plans to take place.

This paper adds to the existing literature on substance abuse, insurance markets,

and health care policies in three ways. First, I precisely define the treatment through

careful analysis of state legislation, identifying laws which directly address substance

abuse; past literature focused on mental health laws which may or may not include

substance abuse coverage. Secondly, I find that substance abuse insurance mandates are

effective at increasing treatment, but that this is primarily for alcohol, marijuana, and
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amphetamines. Thirdly, I find evidence that laws are effective at increasing admissions

from other SAT programs, the criminal justice system, and community groups which is

indicative that the laws are increasing admissions for people who would not actively seek

treatment on their own.

Future literature on this topic could include an in depth investigation on states

which pass multiple substance abuse laws. Additionally, this paper indicates that mental

health laws significantly decreased OD rates and future papers would further explore

this result. Lastly, the these laws do not show a significant effect on opiate or cocaine

treatment rates. Next steps would be to seek to identify whether other health care policies

which affect other populations (such as Medicaid or Medicare) are effective at inducing

individuals into treatment programs for these drug concerns.

In this chapter, I explore the impact of a large-scale public policy on substance

abuse, a risky behavior that has become a wide spread health crisis in the United States.

Another major concern in the United States has been high amounts of criminal activity,

particularly during the early part of the 1990s. Many papers have drawn connections

between poor economic conditions and criminal behavior. In my next chapter, I revisit

this problem and question the assumptions made about the time-stability of this

relationship.
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CHAPTER III

THE EVOLVING CYCLICALITY OF ECONOMIC CONDITIONS AND CRIME

Introduction

Crime in the United States has been a consistent concern for policy makers and

academics. In the early 1990s, crime reached a peak rate with nearly 5,500 property

crimes and 500 violent crimes being reported per 100,000 population. This rate has

declined steadily over time but continues to be high in some areas, particularly in urban

and poorer regions. Understanding the determinants of the crime trends has been of

continued interest to economists, and an influential literature on the specific effects of

macroeconomic conditions has emerged.

Academic literature investigating the effect of economic conditions on crime have

drawn the consistent conclusion that periods of high unemployment and low wages lead

to increases in the property crime rate (Raphael and Winter-Ebmer (2001), Gould et al.

(2002), Mocan and Rees (1999), Mocan and Bali (2010)). Each of these papers address

some variation of the following empirical model, estimated using panel data at the state or

county level.

Crime Ratest = β0 + β1Unemployment Ratest + εst

An assumption in this model is that the parameter β1 is exogenous to external factors.

However, there are reasons to suspect that this may not necessarily be the case. The

parameter β1 is understood to reflect the average person’s choice to commit crimes in

response to changes in unemployment.1 In his seminal paper, Becker (2000) predicts

that the choice to commit crime depends on the return to crime and the probability

1It may also capture changes in overall enforecement during periods of high unemployment.
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of apprehension. In areas with high unemployment, the return to committing crime

may be higher due to lack of legal sector income. At the same time, in areas with

high unemployment the probability of apprehension may be higher due to more people

spending time at home watching their valuables.

The literature has found little evidence that economic conditions are associated with

violent crime. Indeed, the relationship is a priori ambiguous. Poor economic conditions

may affect crime rates by changing the number and type of interactions people make on

a daily basis. For example, increased unemployment may reduce a person’s exposure to

other individuals and therefore decrease their likelihood of committing a violent crime.

Moreover, job loss reduces the amount of money that can be spent drinking at bars or

attending sporting events where violent crimes are common (Madensen and Eck (2008);

Scott and Dedel (2006)). Additionally, if unemployment is more severe for men than

women, the relative wage gap between men and women decreases which corresponds to

heightened bargaining power of females in the relationship and reduced domestic violence

(Aizer (2010)). In contrast, increased joblessness heightens stress levels which can lead

to increased propensity toward criminal acts (Linn et al. (1985); Agnew (1992); Eitle

and Turner (2003)). Moreover, individuals are spending more time around family and

experiencing financial stress, thereby increasing the number of opportunities for domestic

violence to occur.

Over time, the probability of apprehension for property crimes has also increased

as protection methods to secure valuables, such as tracking devices and home theft

monitoring, has improved. This would lead to the typical person to be less likely to

commit theft in response to the economic stresses of unemployment. Moreover, when
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economic conditions are poor, macroeconomic violent crime rates will depend on the traits

of the unemployed and thus may be time variant.2

In this paper, I relax the assumption that the relationship between crime rates

and economic conditions is constant across time. I utilize state panel data on arrests

for crime in an ordinary least squares estimation model. In the first exercise, I take

equal sized subsets of data over time and individual estimate the relationship between

unemployment and crime rates. I find that this relationship for property crimes has

diminished towards zero. Secondly, I allow for time heterogeneity in the parameter by

interacting unemployment with a series of yearly dummy variables. Again, I find that

for many property crimes the estimate appears to be falling throughout time and that

the impact appears to mostly disappear by the most recent decade. I also find that the

impact of unemployment on violent crimes is occasionally significant and non-zero for

some periods in the sample.

I also explore heterogeneity in the impact of unemployment on crime rates across

age groups. I find that those most affected by aggregate economic conditions are 25 to

44 years old. However, when allowing for parameters to vary over time, it becomes clear

that all age groups are sensitive to unemployment at some period in time and that the

relationship evolves over time.

This paper contributes to the small literature on the time-variance of the response of

crime to business cycles. Gould et al. (2002) suggest that unemployment plays a lesser role

in explaining crime over the last few decades and little to no part in the long-run change

in crime. Instead, they find that wages are a better determinant for long-run changes in

crime. Mocan and Bali (2010) examine whether there are asymmetric responses to crime

2For example, if the unemployed population is poorer on average, then unemployment may lead to
substantially higher stress than if the unemployed population is less poor. Likewise, if the unemployed
population is largely comprised of adult men, then we may expect fewer violent crimes on average.
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across expansions and recessions by looking at how crime responds to unemployment

when the labor market is worsening and when it is improving (one-year differences). They

find that recovery times affect criminality significantly more compared to recessionary

periods and that unemployment is positively related to crime across both recessions and

expansions. Both of these papers, however, assume relationship between unemployment

and crime is constant over time.

The remainder of this paper is structured as follows. I begin by describing the

research design framework and describe the data used in this analysis. I then report my

findings across various specifications, discuss heterogeneous trends in parameters, and

conclude.

Empirical Methodology

I utilize a slightly modified version of the empirical model used by Mocan and Bali

(2010).3 The following estimating equation is the base specification.

Cst = β0 + β1tUst +XstΩ + δt + αs + Γst + ust (3.1)

Here, crime rates C in state s during year t are a function of the unemployment rate U , a

vector of covariates X, and subject to state and year fixed effects (α and δ, respectively)

as well as state-specific time trends in crime (Γ). The covariates included in X include

demographic structure of the region (percent white, black, and Hispanic), age distribution,

urbanization, alcohol consumption, and total inmates per capita. Each state also has a

distinct mean level of crime and a unique change in mean crime across time which may

be due to various factors such as law history, police budgets, and demographic trends.

3In this paper, their goal was to examine whether β1 differs across expansions and recessions. Equation
(1) is a generalized version of the empirical model they presented.
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The inclusion of state and time fixed effects along with state-specific time trends and

covariates will control for these movements in crime and allow β̂1t to capture the marginal

change in crime due to a percentage point increase in unemployment. The inclusion of the

t subscript on the parameter allows for time-variance in this generalized empirical model.

To begin, I assume that β1t = β1 for all t (i.e. that unemployment has a time-

invariant effect on crime) and examine how this effect changes over various subsamples

of the data. Next, I allow for a basic level of time-variance by allowing β1t to vary across

decades through the inclusion of dummy variable interactions.

Estimated Confidence Interval Plots

One way to examine whether there has been changes in the way that unemployment

affects crime is through the use of estimated confidence interval plots. To do this, I assume

that the parameter is time-invariant (β1t = β1 ∀t) and then estimate Equation (3.1) over a

selection of smaller, equally-sized subsamples of the data. I then take the set of parameter

and standard error estimates and plot them across time.

For the purpose of this paper, I focus on subsamples of ten to fifteen year lengths.

To illustrate, the selection of subsamples with a window size of fifteen years would have

years 1981 to 1996 in the first sample, 1982 to 1997 in the second, and so on. This totals

fifteen small subsamples spanning the entirety of the data set.

I then regress the following time-invariant version of Equation (3.1) for each

subsample i ∈ [1, . . . , n].

Cst = β0 + β1Ust +XstΩ + δt + αs + Γst + ust (3.2)

I obtain a vector of parameter estimates (β̂1
1 , β̂

2
1 , . . . , β̂

n
1 , where n is the number of

subsamples) and associated standard errors and I plot 95 percent confidence intervals
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across the time span. Evidence of a change in parameter can be seen through analysis

of the overlap of the confidence intervals and whether the confidence intervals include the

full-sample estimate or zero. However, this sort of analysis has inherent difficulties because

it relies heavily on the selected window size. For small windows, the model suffers from

low power due to sample size restriction. For larger subsamples, the estimates converge

toward the average estimate for the full sample.4 5 In order to compensate for these

possible limitations, I repeat this analysis using narrow (ten years) and wider (fifteen

years) selections.

Time-Varying Parameters

The estimated confidence interval methodology assumes that the parameter is time-

invariant but looks at small spans of time separately. Unfortunately, this loses the ability

to utilize the full power of the entire sample. An alternative is to use the full sample

and allow the parameter to be time-variant by interacting the unemployment rate with

a dummy variable for the year of interest. That is, I estimate

Cst = β0 + β1Ust +
2010∑
y=1982

(βyDyUst) +XstΩ + δt + αs + Γst + ust (3.3)

where Dy equals one if the year is equal to y and zero otherwise. The effect during the

first year (1981) is going to be captured by β1 and the deviance from this base year is βy

for y ≥ 1982. Thus, the effect of unemployment on crime for years after 1981 is the linear

combination

4This problem is a special case of the trade-off between variance (power) and bias resulting from
selecting data window sizes. The issue has been often noted in empirical literature.

5Ideally, the optimal window size would only include a single year, but this is not feasible given data
constraints.
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β1 + βy

A significant estimate for any given βy indicates that there is sufficient evidence that

the parameter is different from that estimated in the 1981. A test of the null that the

linear combination β1 +βy is equal to zero determines if there is remains a significant effect

in year y.

I expand this analysis to look at the heterogeneous effects of unemployment

(currently decade level time variation) on crime across different age groups. That is, I

regress the crime rate of each age group j ∈ {15− 24, 25− 34, 35− 44,≥ 45} in state s

and year t on the same set of regressors found in Equation 3.3.6

By allowing dummy variables for each year, I can take advantage of the power of

the full sample and allow time-variance in the parameter without imposing any rigid

functional form on how it might be changing. If the parameter is changing in the same

way as the average, the results will be similar as the estimated confidence interval plots.

However, if there are certain years that demonstrate uniquely different trends, this

methodology would be preferable because estimated confidence intervals will smooth over

these outliers.

Data Description

Data Sources

I utilize crime data obtained through the Federal Bureau of Investigation’s Uniform

Crime Reporting System (UCR). The UCR Program collects data from 18,500 law

enforcement agencies throughout the country on the number of offenses and arrests

6That is, crime rate Cst = Cj
st.
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made across a broad range of crime categories. State-level annualized data is publicly

available through the FBI website. More detailed data, including offenses by age, gender,

and ethnicity at the county level, has been made available through the Inter-University

Consortium for Political and Social Research’s (ICPSR) National Archive of Criminal

Justice Data (NACJD). Details on definitions of each of the crime variables as defined

by the UCR Program and list of imputations and modifications made to the data are

available upon request.

I utilize state unemployment rates as a proxy for aggregate economic conditions in

any given year. This data is obtained through the Bureau of Labor Statistics Local Area

Unemployment Statistics (LAUS) database.

I control for alcohol consumption, demographic decomposition, urbanization, and

prison inmate population.7 Data on alcohol consumption was obtained from LaVallee and

Yi (2011) who found estimates of statewide consumption of beer, wine, and spirits between

1977-2012. Prisoner population information was obtained through the National Prisoner

Statistics program, made available by the ICPSR. Demographic information was obtained

through the widely used Surveillance, Epidemiology, and End Results (SEER) database,

which creates annual estimates of population by age, gender, race, and ethnicity. Annual

data on the percent of population living in urban areas was obtained from the U.S. Census

Bureau Decennial Census Data.8

7These are comparable to the controls used in Mocan and Bali (2010).

8I create annualized urbanization data using a single exponential smoothing algorithm on the decennial
values.
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Summary Statistics

In this paper, “crime rates” are defined as the number of arrests made per 100,000

population in the a given state. Property crimes include larceny,9 motor vehicle theft,

and burglary.10 Violent crimes include murder,11 forceful rape, aggravated assault,12 and

robbery.13 Because robbery is very similar to larceny, I examine it separately and exclude

it in my aggregate violent crime definition. Table 15 reports the summary statistics for

this study. On average, there were 4,170 reported arrests per 100,000 population for

property related crimes. Sixty-five percent of these property crimes are larcenies, twenty-

four percent are due to burglaries, and the remaining are due to motor vehicle theft.

Across the sample, there was an average of 379 violent crimes per 100,000 population (337

aggravated assaults, 35 rapes, and 7 homicides).

There has substantial changes in these rates across time. As shown in Figure 5, the

violent crime rate increases between 1970 and 1990, with only a modest decline following

the 1980 to 1981 recession. The violent crime rate declines steadily thereafter. Property

crime rates, on the other hand, have been more volatile. Between 1970 to 1980, property

crime tended to increase and peaked at around 5250 crimes per 100,000 population.

Between 1980-1985, property crimes declined but then increased again to a secondary peak

just over 5,000 crimes in 1990 after which they began a steady decline.

The unemployment rate is often considered a good proxy of economic conditions in

a year. Unemployment declines during expansions (usually with a small lag), and rises

9Theft of another person’s assets or property which involves carrying away of personal property
without permission of owner without intent to return property.

10Theft which involves physical entrance into a building illegally.

11Murder in this paper will include manslaughter charges as well.

12Assault with the intention of cause serious bodily injury.

13Larceny which includes force or intimidation.
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TABLE 15. Summary Statistics: Unemployment and Crime

during recessions. The average unemployment rate across this time span was about 6.25

percent. The largest peaks in unemployment follow the 1980-1981 recessions and the 2007-

2007 Great Recession. Other covariates with crime were also included in this analysis.

First, I included the age, race, and ethnicity composition. Across this time period,

teens(15-19) and young adults (20-24) made up an average 14.5 percent of the population.

Property crimes, in particular, may very well be sensitive to the number of young people

in the population.14 About 72 percent of the population was white/non-hispanic origin, 13

percent black, and 4.7 percent indicated they were of either American Indian/Alaskan

14Freeman (1999) and Mocan and Bali (2010) both find age to be a significant controlling factor in
similar analysis.
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FIGURE 5. Property and Violent Crime Rates in the United States (1960-2010)
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Native or Asian/Pacific Islander decent. The large majority of the population was in

urbanized areas (77 percent). Other covariates included in the analysis were for alcohol

consumption and prison incarceration rates. The amount of alcohol consumed per capita15

is about 1.3 gallons of beer, 0.3 gallons of wine, and 0.7 gallons of hard alcohol every year.

The number of prison inmates comes from the National Prisoner Statistics survey. On

average each state had about 321 inmates per 100,000 population.

Results

Base Specification

Tables 16 and 17 report the time-invariant results of Equation (3.1). Odd numbered

columns include state and year fixed effects and even numbered columns add in state-

specific trends. Similar to the previous literature, I find a strong positive relationship

between unemployment and property crimes where a one percentage point increase in

unemployment translates to an additional 94.2 to 112.8 property crimes per 100,000

population. Decomposing the effect across types of property crimes, we find this large

number comes from mostly larcenies and burglaries (56.1 and 33.0 additional crimes per

100,000 population, respectively). Motor vehicle thefts see a small increase of about 12.0

additional arrests per 100,000 population, but this is not robust to the inclusion of state

trends. Among violent crimes, only robberies respond to changes in unemployment. For

a one percent increase in unemployment, there is an increase of 6.5 robberies per 100,000

population.

15For population aged 14 and older.
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TABLE 16. Impact of Unemployment on Property Crime Rates

Estimated Confidence Intervals

Figures 6 and 7 show the estimated confidence interval (ECI) plots for a window size

of fifteen years. The red dashed line is the estimated average effect from Tables 16 and

17. For property crimes, there is a clear downward trend in the parameter estimate. For

samples excluding the years 2000 and onward, the parameter estimate was significantly

larger than the estimated parameter in the base model. For samples containing 1985 to
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TABLE 17. Impact of Unemployment on Violent Crime Rates

2007, there was no significant difference between the estimated coefficient of the sub-

sample and the full sample. By the last 15 year window, however, the effect was not

different than zero and significantly different than the full sample estimate at a 90 percent

level of confidence. A similar exercise for violent crime rates show that the estimated

impact hovered around zero and was not different than the full sample estimate.

For the smaller ten-year window size (Figures 8 and 9), the decrease across time

for the property crime rates becomes much more pronounced. Furthermore, for windows

containing only data post-1996, there is sufficient evidence to reject the null that the

56



parameter is equal to the average one estimated by the full sample16. The estimates for

violent crime are not distinguishable from zero (or the estimated average) across the span

of sub-samples.

FIGURE 6. ECI Plot: Unemployment on Property Crime Rate (15 Year Window)

Time-Varying Parameters

From the previous analysis, I find evidence that the effect of unemployment on

property crime appears to be diminishing over time regardless of window size selection.

Moreover, hypothesis testing on the estimated parameters fails to reject zero for the

majority of the most recent data. By shortening the window size, the downward trend

becomes more apparent. This is suggestive that there is substantial yearly variation in the

impact of unemployment and crime which cannot be picked up using estimated confidence

16Again, these results are consistent when weighted by mean crime rates.

57



FIGURE 7. ECI Plot: Unemployment on Violent Crime Rate (15 Year Window)

FIGURE 8. ECI Plot: Unemployment on Property Crime Rate (10 Year Window)

58



FIGURE 9. ECI Plot: Unemployment on Violent Crime Rate (10 Year Window)

interval plots. In this section, I report the results of the estimation where I allow the

impact to vary annually by using dummy variable interactions with unemployment.

I plot the estimated effect of unemployment on crime between 1981-2010 in Tables

10a to 10i. The annual impact of unemployment on property crimes was significantly

different than zero for years prior to 1996, after which the estimated impact fluctuates

around zero. However, there is heterogeneity in the trends in parameter estimates for

the component crimes. The parameter for larceny crimes declined until about 2000,

rebounded temporarily during the next seven years. Arrest rates for motor vehicle thefts

were positively correlated with unemployment until 1995, but then shifted to a negative

correlation for the years after. The parameter on burglaries gradually diminished over the

course of the sample with insignificant estimates in the years following 1996.

Robbery crime rates appear to have been positively related to unemployment and

constant until 1996, after which the effect drastically declined and became insignificant.
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FIGURE 10. Annual Impact of Unemployment on Crime Rates

(a) Property (b) Larceny (c) MV Theft

(d) Burglary (e) Robbery (f) Violent

(g) Rape (h) Assault (i) Murder

The effect for other violent crimes was positive briefly during the early 1990s and then

dropped below zero, though the effects are rarely significant. However, this trend can be

attributed primarily to the effect coming from aggravated assaults. The estimate for rapes

crimes appears to have a downward trend as well, with a significant negative impact by

2008. Lastly, the murder crime rate was unrelated to crime until the 1990s where the was

a brief period when unemployment was positively correlated with murder. By the 2000s,

murder was negatively correlated with unemployment.
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Overall, there is evidence that the relationship between unemployment and crime is

not static. A dramatic change occurs in 1996 for many property crime rates. Moreover,

there is evidence that during some periods in time, unemployment has a non-zero

relationship with violent crime rates.

Age Decomposition

In this section, I investigate heterogeneity in time-varying parameters for different

age groups. More specifically, I estimate Equations 3.2 and 3.3 with crime rates for specific

age groups or census divisions as the dependent variables. The purpose of decomposing by

age group is two-fold. Firstly, it highlights whether age-specific crime rates are sensitive

to macroeconomic changes in unemployment. Secondly, allowing time-varying parameters

within age groups will indicate whether there are specific generations driving the results

seen in the aggregate.

For this analysis, I construct the following age-specific crime rates:

Ran
st

Can
st

P a
st(100, 000s)

which is the number of arrests of persons from age group a for crime n in state

s during year t per 100,000 population of age group a in state s during year t. I then

estimate Equation 3.2 with the age-specific crime rates as the dependent variable. The

results from this analysis are included in Table 18.

Columns (1) through (9) include regression estimates for the impact of

macroeconomic unemployment on arrest rates of minors for property and violent

crimes. None of the estimated coefficients are large in size or statistically significant at

conventional levels. Columns (10) through (18) include the estimates for the impact of

unemployment on arrests for crimes committed by young adults (18 to 24 years old). A
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TABLE 18. Impact of Unemployment on Crime By Age Group
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one percent increase in the unemployment rate is associated with a higher level of burglary

of about 8.8 arrests per 100,000 18-24 years olds. The impact on arrest rates for other

crimes in this age group are insignificant at conventional levels.

The impact of unemployment on crime rates for adults aged 25 to 44 years can be

found in Columns (19) to (36). Higher unemployment is associated with higher arrest

rates for larceny and burglary for this group. For ages 25 to 34, arrests for larceny and

burglary increased by 13.9 and 4.3 per 100,000 population, respectively, for a one percent

increase in the unemployment rate. The estimated coefficients for 35-44 year olds were of

similar magnitude at 10.9 and 2.1, though the average arrest rate in this age group was

only about half of that for 25-34 year olds. Additionally, this age group experienced a

significant decrease in murder rates during periods of higher unemployment of about -0.26

fewer murder arrests per 100,000 population.

Lastly, the impact of unemployment on arrest rates for 45 and older ages are found

in columns (37) to (54). The murder arrest rate for 45-54 year olds significantly decreased

during periods of higher unemployment. Otherwise, there was no significant response to

high unemployment for this age group.

I then allow parameter estimates to vary across time for each age group a and crime

type n. I estimate Equation 3.3 and graph the linear combination of coefficients β1981 + βt

for t ∈ (1982, 2010) with a 95 percent confidence interval. These graphs can be found in

Figures 11 to 19.

Arrests for larceny crime increased during periods of high unemployment for age

groups 25 to 44 when the parameter was assumed to be constant. However, when allowing

the parameter to change over time, there are a few noticeable differences. For all age

groups, there was a significant increase in the parameter estimate in 1997 which eventually

diminished over the next decade. The increase was less noticeable for ages 25-34 which
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FIGURE 11. Annual Impact of Unemployment on Property Crimes By Age Group

(a) Ages 0-17 (b) Ages 18-24

(c) Ages 25-34 (d) Ages 35-44

(e) Ages 45-54 (f) Ages 55+
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FIGURE 12. Annual Impact of Unemployment on Larceny By Age Group

(a) Ages 0-17 (b) Ages 18-24

(c) Ages 25-34 (d) Ages 35-44

(e) Ages 45-54 (f) Ages 55+
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FIGURE 13. Annual Impact of Unemployment on MV Theft By Age Group

(a) Ages 0-17 (b) Ages 18-24

(c) Ages 25-34 (d) Ages 35-44

(e) Ages 45-54 (f) Ages 55+
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FIGURE 14. Annual Impact of Unemployment on Burglary By Age Group

(a) Ages 0-17 (b) Ages 18-24

(c) Ages 25-34 (d) Ages 35-44

(e) Ages 45-54 (f) Ages 55+
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FIGURE 15. Annual Impact of Unemployment on Robbery By Age Group

(a) Ages 0-17 (b) Ages 18-24

(c) Ages 25-34 (d) Ages 35-44

(e) Ages 45-54 (f) Ages 55+
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FIGURE 16. Annual Impact of Unemployment on Violent Crime by Age Group

(a) Ages 0-17 (b) Ages 18-24

(c) Ages 25-34 (d) Ages 35-44

(e) Ages 45-54 (f) Ages 55+
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FIGURE 17. Annual Impact of Unemployment on Rape By Age Group

(a) Ages 0-17 (b) Ages 18-24

(c) Ages 25-34 (d) Ages 35-44

(e) Ages 45-54 (f) Ages 55+
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FIGURE 18. Annual Impact of Unemployment on Assault By Age Group

(a) Ages 0-17 (b) Ages 18-24

(c) Ages 25-34 (d) Ages 35-44

(e) Ages 45-54 (f) Ages 55+
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FIGURE 19. Annual Impact of Unemployment on Murder By Age Group

(a) Ages 0-17 (b) Ages 18-24

(c) Ages 25-34 (d) Ages 35-44

(e) Ages 45-54 (f) Ages 55+
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had estimates hovering around the constant-parameter. By the late 2000s, the estimated

coefficient between unemployment and crime was not statistically different than zero for

any age group.

For motor vehicle theft arrests, there was little difference in trends in age group

parameters over time though there was substantial magnitude difference. During the

1980s and year 1990s, there is no evidence that any age group significantly responded to

unemployment by stealing cars. However, in the late 1990s, individuals aged 18-54 were

more likely to steal motor vehicles during periods of low unemployment. By the early

2000s, this trend had disappeared and during the Great Recession, each age group was

more likely to steal cars (a reversal of signs). By 2010, all trends had reverted to zero.

Burglary arrest rates for ages 18-44 were significantly and positively related with

unemployment within the constant parameter model. There is limited evidence that

this parameter has greatly changed over the time sample. However, when allowing the

parameter to be time varying, it becomes clear that during the late 1980s and 1990s that

higher unemployment was also associated with higher rates of burglary among minors.

Additionally, burglary arrests increased during the Great Recession for age groups 45-54.

There was no age group that experiences a significant increase in arrests for

robbery in the constant parameter model. However, for minors, there was a significant

positive relationship during the 1980s which diminished during the 1990s. For the oldest

population, there was the reverse relationship with a negative coefficient during the

1980s which increased over time. By the Great Recession, arrest rates for robberies

committed by individuals over the age 55 were significantly higher during periods of high

unemployment.

As with robberies, there was no age group which significantly responded to

unemployment by committing more rape crimes in the constant parameter model. While
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the parameter hovers around zero a good portion of the sample, for years 2000 and onward

there appears to be a frequently significant positive relationship for minors and individuals

aged 18-34.

For each age group, the impact of unemployment on aggravated assault crime rates

was insignificant and around zero during the 1990s; however, there was a drop in the

parameter estimate to a negative value for ages 25 and older in the years following. The

standard errors on the estimate are noisy but the parameter follows a consistent trend

during these years.

Lastly, I find that the significant and negative estimate on the effect of

unemployment on murder crime rates for 35-54 year olds to actually be a remnant of

a strong negative relationship during the 1980s. By the 1990s there was no significant

relationship between unemployment and murder rates for any age groups.

Conclusion

Previous literature has often used long time series panel data to identify a

relationship between unemployment and crime. This process neglects potential changes

in the relationship of interest and effectively produces an average estimate. Consequently,

this can identify a significant effect even if it has faded over time. If the parameter has

indeed diminished, then the policy implications suggested by the time-invariant analysis

are no longer applicable.

In this paper, I show that the responsiveness to unemployment has indeed changed

over time. Repeating time-invariant regression procedures across small time samples

suggests that this relationship has weakened for property crimes. I also allow for the

parameter to vary over time using dummy variable methods and verify that the impact of

unemployment on property crimes has diminished. In 1997, there was a notable decrease
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in the parameter estimate for the impact of unemployment on motor vehicle thefts and

robberies. For burglary and larceny, the parameter diminished gradually. I also find

evidence of non-zero impacts on violent crimes which has changed over the years. For

murder and aggravated assault, in particular, arrest rates decreased during recessionary

periods throughout the 2000s. The average effect is zero, which was the effect found in

previous literature.

I further investigate heterogeneity in the effect of unemployment on crime by

decomposing the effect by age group. Aggregate unemployment, as a measure for general

economic conditions, are likely to impact certain age groups differently as incentives

to commit crimes evolve throughout a person’s life. I find that unemployment is most

likely to affect crime rates for individuals aged 25 to 44. However, when the parameters

are allowed to vary, I find that some groups which do not have a significant response to

economic conditions in terms of crime, such as minors, experience periods in time where

the relationship is non-zero.

I also investigate the heterogeneous impact of unemployment on crime rates across

census regions. This potentially increases the precision of the estimated coefficient by

artificially creating regions that more closely resemble one another in terms of norms and

attitudes in regards to crime.17 I find that Southern states only experienced increases in

larceny during periods of high unemployment, where other regions experienced changes in

other property and violent crime rates. When allowing the parameters to vary over time,

there exists heterogeneous trend in the parameter across the region as well.

Taken together, the findings suggest that the relationship between unemployment

and crime rates is not as clear and predictable as previously thought. External factors

appear to be influencing this relationship and there is indication that during recent

17At the expense of loss of precision due to lower sample size.
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years high unemployment is either not related or negatively related to property and

violent crimes. This has direct implications for predictions from policies which affects

unemployment, such as mass layoffs and prison releases. Moreover, it leads to the need

to identify the source or sources of endogeneity which are affecting the parameter estimate.

In doing so, the mechanism by which unemployment is affecting crime would likely become

clearer.

Future research on this topic would seek to identify the source of of variation in this

parameter. Papers addressing this topic should be cautious in examining the impact of

economic conditions on different age groups, as the incentive to commit crime during

recessionary periods greatly varies as a person ages.

In this chapter, I reopened the question of the impact of economic conditions

on crime. Like substance abuse, crime rates disproportionately affect poorer regions

in the United States. In developing countries, similar issues are at least as prevalent.

Additionally, these regions struggle with satisfying day-to-day needs which is exacerbated

by regional conflict, weather, and disease. Non-governmental agencies have been

establishing financial groups in these regions to help individuals save and borrow funds

to improve on these outcomes. In my next chapter, my coauthors and I develop a theory

and explore the functioning of one type of financial group which has become increasingly

popular and successful in developing countries around the world.
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CHAPTER IV

THE ECONOMICS OF SAVINGS GROUPS

The theoretical model described in this chapter was developed by Andrea Canidio

and Alfredo Burlando. These coauthors also contributed substantially to this work by

developing and collecting experimental data from Ugandan savings groups and writing

large sections of the paper. I performed the bulk of the data cleaning, was responsible

for the development of empirical methods and analysis, wrote the sections on group

functioning, comparison to other financial institutions, creating tables and figures for

summary statistics and group behavior over time, and wrote the section on evidence for

group behavior including all regression analysis and graphic production. All coauthors,

myself included, collaboratively worked on the editing of this paper.

Introduction

Savings groups (SGs) are currently bringing financial inclusion to over 10 million

poor households worldwide,1 yet several important aspects of their functioning remain

unclear. SGs are composed of twenty to thirty members who meet weekly, save with

and borrow from the group over an operating cycle (usually lasting one year). At the

beginning of the cycle, the group agrees on a set of rules which include the interest rate

charged on disbursed loans. At the end of the cycle, the funds accumulated from savings

and loan repayments are redistributed to group participants in proportion to how much

each person saved, and the group may choose to start a new cycle.

1According to 2014 figures from the SEEP network, www.seepnetwork.org/filebin/docs/SG_Member_
Numbers_Worldwide.pdf. This number considers only members of SGs formed and trained by large
international NGOs, and does not include SGs formed by smaller organizations and independent agents, or
spontaneously replicated groups.
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Despite sharing some similarities with ROSCAS, credit unions, and microfinance,

SGs have unique features distinguishing them from other group-based financial

institutions. Savings groups participants, for instance, can utilize the funds available

to smooth consumption, whereas ROSCA members are restricted to receiving a certain

amount of funds at a specific date. In addition, for many of their members SGs are the

only source of interest-bearing savings account and the only formal line of credit. Because

SGs are designed to operate without the support of a financial institution, they can reach

a population not reached by traditional microfinance interventions. Savings groups thus

serve as a savings and lending institution that operates in the space between ROSCAs and

microfinance, and require a separate understanding from either.

In this paper, we carefully describe the functioning of SGs, discuss the different

types of SGs currently existing, and argue that SGs differ from other types of financial

groups such as ROSCAs and credit unions. We then develop a theoretical model of an

SG, which we use to highlight its most salient feature: the lack of a mechanism to ensure

that the supply of funds equal its demand. Consequently lending may be rationed, in

the sense that not all members wishing to borrow at a given interest rate may be able

to do so. Importantly, when funds are scarce, there is no presumption that all members of

the groups are affected equally: some members of the group may be able to fully satisfy

their demand for loans while others are rationed out. If follows that groups may agree on

rules that generate scarcity for a significant part of the cycle, provided that the “median”

member is able to satisfy her demand for funds with these rules.

The possibility of scarcity gives rise to an externality problem, in that a member’s

borrowing and savings decisions affect other group participants. For example, an

additional unit of savings contributed to the group in periods in which funds are scarce

generates a positive externality, because this additional unit can be used to meet the
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demand for loans of others. However, an additional unit saved in periods in which funds

are already abundant generates a negative externality, because this unit of savings is

not lent out and only decreases the return on savings for all members. Thus, shocks

affecting the borrowing and saving decisions of members can hurt or benefit the overall

group. Interestingly, shifting savings from later periods to earlier periods always generates

a positive externality on the other members of the group. This happens because early

savings can be lent out during the first part of the cycle, and these loans generate

resources that can be lent out again in subsequent periods.

In the last part of the paper, we use data from newly formed Ugandan savings

groups to show evidence of fund scarcity. Our analysis of the weekly activity records

indicates that loans are rationed for the first 80% of the cycle. Therefore our paper points

to the importance of encouraging early savings. Theoretically, saving early rather than

later has an unambiguous positive effect on the group; empirically, we find that the first

part of the cycle is when finds are more likely to be scarce.

The remainder of the paper is organized as follows. The next section provides some

background information on savings groups. Following this, we report some stylized facts

about savings groups from our sample of Ugandan groups. We then develop a model of SG

functioning and then provide evidence that savings groups operate under long periods of

scarcity. The last section concludes with a discussion of the policy relevance of our results.

Background Information on Savings Groups

History and Existing Literature

The first savings groups were created in the early 1990s in Niger by CARE

International and were called ”Village Savings and Loan Associations” (VSLAs). Shortly

after, several NGOs began promoting savings groups inspired by the VSLA model. The
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most popular alternative models are Savings and Internal Lending Communities (SILC)

promoted by Catholic Relief Services and Oxfam’s Saving for Change (SfC) groups.

Despite the different names, all these savings groups operate under similar rules (see

Table 19 for a comparison of the various models). Therefore, while the description of the

functioning of savings groups in this paper most closely resembles VSLAs, we believe that

our empirical and theoretical results apply to the most common types of SGs.

TABLE 19. Comparison of Different Types of Savings Groups
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Overtime, millions of members have joined these savings groups. Allen and Panetta

(2010) reports data from groups formed by CARE International, Catholic Relief Services,

and Oxfam, which together serve 1.86 million members. These groups are composed by a

majority of women (between 70 and 80%), and are fairly stable (the retention rate across

cycles is above 90%). Their members save between $12 and $27 on average (between 2.3

and 8.5 percent of national income per capita).

The development literature suggested that savings groups are an effective tool for

local development (see Ashe and Neilan, 2003). Randomized evaluations of savings groups

have shown that savings groups do indeed cause an increase in savings and borrowing,

and improve food security, livestock holding and overall consumption smoothing at

least in the short-run (Ksoll et al., 2015, Beaman et al., 2014, Gash and Odell, 2013,

Banerjee et al. (2015)). A more recent strand of the literature focuses on the mechanisms

internal to savings groups. Greaney et al. (2016) study the process of group formation,

and compare the performance of groups formed and trained for free by NGO officers

against the performance of groups formed by private trainers who charge fees. Cassidy and

Fafchamps (2015) study the allocation of capital within groups, and find evidence that,

due to the endogenous membership process, capital moves from those who demand savings

to those who demand credit. Burlando and Canidio (2015) randomly assign members to

groups with varying composition, and find that groups that are wealthier are better able

to generate loanable funds, which are then lent to their poorest members.

Functioning

Group Formation Groups are typically formed through a guided process led by a

trainer, or field officer. The trainer gathers a critical number of possible participants in a

community, and then proceeds to explain the basic functioning of a SG. The community
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members who are interested in forming a SG undergo a training period, at the end of

which a membership list is drawn and group operation starts. A group can have anywhere

between 15 and 40 participants.

In many cases, trainers are employed by NGOs or by community-based organizations

that specialize in financial intermediation. It is quite common to find that experienced

savings groups members become trainers themselves, and start forming new groups in

nearby communities.

Rule and Leadership Selection Operations of the group are governed by a

constitution, which is typically adopted during the first meeting after the training period.

This document specifies a number of rules, such as the length of the savings cycle, the

interest rate charged on loans, the permissible savings amounts, the size and possible

uses of an insurance fund. In addition, groups often adopt an extensive set of policies and

procedures that govern how meetings are run, how collective decisions are taken or voted

on, attendance policies, and a set of fines and fees sanctioning violators of rules.

The group also selects a number of group officials or representatives, which may

include a chairperson and a treasurer.These officials ensure that accounts are kept

correctly and group meetings proceed in an orderly fashion and according to the rules.

Savings At the beginning of each weekly meeting, each member saves with the group

by purchasing shares. The share is a permissible and indivisible savings amount, and a

member can typically purchase between zero and five shares per meeting. As such, the

share value implicitly imposes an upper bound to the amount an individual can save

within the group. Savings deposits are recorded in a group ledger and in an individual

savings booklet. All cash deposits are pooled and kept in a metal safe box, which is
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opened only when the group is in session. Members are not allowed to withdraw their

savings during the cycle.

Borrowing Funds that are accumulated in the safe box are made available to members

of the group as interest bearing loans. Individual loans are extended to group members

subject to three constraints: the group must agree on the stated purpose of the loan; loan

sizes are restricted to three times the amount saved by the borrower until that point; and

total loan disbursements should not exceed the amount available in the safe box. Within

these conditions, multiple borrowers can obtain loans of varying sizes at the same time.

Loans must be repaid within three months, and the interest on the principal compounds

monthly. Once the loan is paid back, the borrower is eligible to borrow again. Borrowing

starts three months after the beginning of the cycle. Three months before the end of the

cycle, loan disbursements ends and all outstanding loans are repaid.

Insurance In addition to loan intermediation, most savings groups provide insurance

as an additional financial service. Each member makes a required and fixed weekly

contribution to an insurance pool. Typically, this contribution is small relative to savings.2

Funds from the insurance pool are kept separate from the savings, and can be lent out to

members in case of an emergency, such as funerals or severe illness. Standard repayment

procedures are implemented, although no interest is collected on the emergency loan.

Accounting While individual members maintain their own passbooks, the group

assigns a record keeper who maintains a log of individual savings, group cash in (savings,

repayments, and fines), and loans serviced. The record keeper utilizes a savings ledger to

record the total amount saved by each member in any given meeting. Also included in this

2In the savings groups we study, the value of the weekly insurance contribution is between one fourth
of a share and one share.
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ledger is a total savings balance amount. A cash-book is then updated with group-level

balances at the end of the meeting (including carryover balances from previous meetings).

All of these records are hand written and the record keeper is responsible for accurate

calculations and reporting. This technique, however, does allow for human error (see

Appendix A for a description of how we correct for these issues for the data used in this

paper).

Share Out A unique feature of savings groups is their ability to provide positive

returns on accumulated savings, which are realized at the end of the cycle in the process

generally known as share-out. During share-out, the content of the safe box is emptied

and divided among the members of the group in a way that is proportional to the amount

each person saved. Hence, each member receives back everything he or she saved with

the group, plus a fraction of the interest rate payments on loans. This fraction is equal to

the amount saved by this person relative to total savings. More formally, if during weekly

meeting t member i saves si,t, at share out she receives (1 + R)
∑

t si,t, where R is the

returns on savings,

R = r

∑
i

∑
t bi,t∑

i

∑
t si,t

,

r is the interest rate on loans and bi is the cumulative amount borrowed by participant i.

Comparison to Other Financial Institutions

It should be readily apparent that savings groups share many features with financial

institutions common in developing and developed countries alike.

SACCOs Savings groups are most similar to credit unions (commonly known as

Savings and Credit Cooperative Societies or SACCOS in sub-Saharan Africa), in that

84



they facilitate formal lending among the membership. However, savings groups are

significantly less flexible than credit unions. Savings groups operate on short-term cycles,

which prevents a sizable accumulation of capital; members are not allowed to withdraw

savings during the cycle; interest rates are fixed and predetermined for all loans during the

cycle; and the membership is quite small. Given these limitations, it is perhaps surprising

that participation in SACCOS in Sub-Saharan Africa has been much more limited than

participation in savings groups. For instance, in Uganda SACCOS participation is 3% of

the population while membership in informal savings groups is 61% (FinScope (2010)).

Reasons for differences in popularity require further research, although we speculate that

the active participation of all members of a SG to its management is responsible for the

popularity of SGs relative to SACCOS (where decisions are delegated to professional

managers).

ROSCAs Other than credit unions, savings groups are often compared (and confused)

with ROSCAs and self help groups. Like ROSCAs, savings groups pool savings from the

membership on a weekly or monthly basis, and make those savings available to the group.

A key difference with ROSCAs is the availability of a storage technology (a metal safe)

and an accounting technology (book-keeping). Thus savings groups are much more flexible

in the accumulation and use of their funds over time: group members are not required to

save the same amount every period, multiple borrowers can borrow at the same time, and

loan sizes can vary.

Self-Help Groups Self-help groups developed in India independently from Savings

Groups. Similarly to savings groups, they collect savings from its members and distribute

loans. However, they do not follow the rules of functioning of SG. In particular, they do
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not liquidate at the end of a cycle. Rather, the group distributes profits or dividends over

time, and membership is allowed to vary.3

Some Stylized Facts

We now turn to the empirical analysis of the functioning of 110 newly-formed

Ugandan savings groups.4 This analyses is conducted using three primary sources of data.

First, we collect audit records at shareout on all groups. These records contain: group-level

characteristics; the cumulative amounts saved, borrowed, and repaid by each member; if

the borrower was in arrears; and whether the member dropped out of the group during

the evaluation period. This data set is the most comprehensive (includes information

on all 110 groups). We then acquired savings ledgers recording the amount deposited by

each member during each meeting and cash-books recording weekly cash inflows, outflows

and balances from the same groups. These data sources turned out to be difficult to use

(see Appendix 24 for more details), and we ended up with complete savings ledgers for 43

groups and complete cash books for 22 groups.5

We start by describing the end-of-cycle group savings and borrowing using the audit

records for all 110 groups and how these figures compare to the Savix dataset (which is a

repository of data from savings groups from all over the world). We then explore how the

3For more details see Allen and Panetta (2010), Ashe (2009), Vanmeenen (2010). Note that the
distinction between self-help groups and savings groups described here is gaining popularity but is
not universally adopted. For example, Greaney et al. (2016) study SILCs (which, according to our
classification are savings groups) but call these groups “self-help groups”. Blattman et al. (2015) also
follow the same terminology when referring to VSLAs.

4These groups were formed in 2013 and were geographically dispersed throughout Uganda. See
Burlando and Canidio (2015) for detailed information on these groups and on the data collection protocol.

5Groups also maintain loan ledgers, which keep record of all lending transactions and repayment
histories. While we found that savings and cash ledgers are very standardized and were easily imported
in an electronic database, loan ledgers were impossible to work with–we found that each group had their
own recording standard for loans, and the records are often hopelessly confusing. For this reason, we have
no individual level information on loans.
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share price affects individual savings using the ledger data for the 43 groups. Lastly, we

describe the evolution of funds over the course of a cycle using the cash-book data.

Savings Group savings and borrowing behavior is reported in Table 20.6 Average

cumulative savings is about $976 per group ($37 per member). The typical group and

member savings for all CARE International savings groups (again from SEEP data) are

also reported in this Table. It is clear that the audited groups saved only slightly less on

average than other groups in Uganda.

TABLE 20. Summary Statistics from Audits of Ugandan Savings Groups and SAVIX

The amount of savings a member can accumulate is regulated by the share price.

In our study groups, share values are quite low. All groups chose share values of 500,

1,000 or 2,000 UGX (approximately 19, 38 and 75 US cents in 2013 at the time). The

implied ceiling of weekly savings is 93 cents, 1.88 dollars, and 3.75 dollars respectively.

These small differences could amount to large differences in overall savings: Over a period

6All estimates are reported in USD$ using the conversion of 1 USD: 2,660 UGX.
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corresponding to the median length of the cycle (47 meetings), a person who saves the

maximum allowed would have been able to accumulate US$133 less in a group with a

share value of 500 UGX than in a group with a share value of 2,000 UGX ($44 versus

$176).

Table 21 reports group statistics at shareout by share price. It is clear that outcomes

vary significantly with this price. Average savings at the end of the cycle was USD$28

(64% of the maximal limit) among 500 UGX groups, USD$38 (39% of the limit) among

1,000 UGX groups, and USD$62 (43% of the limit) among the 2,000 UGX groups.

We study in greater detail the constraints imposed by the share price by looking at

person-meeting records from the 43 savings ledgers. In Table 22, we report the frequency

that a particular number of shares was purchased in groups with a particular share price.

The table reveals some interesting patterns. First, savings transactions often do not

happen: members choose to save nothing 24% of the time in groups with “expensive”

shares (2,000 UGX share value). The proportion is only slightly lower for groups with

500 UGX share value (21%), suggesting that the main difficulty facing participants is

coming up with any savings for the meeting (or coming to the meeting itself), rather than

meeting the minimum savings threshold. Secondly, the upper limit on savings imposes a

real constraint on savings. This can be seen by the proportion of transactions that involve

the purchase of 5 shares. In our sample, 48% of transactions in 500 UGX groups, 30% in

1,000 UGX groups, and to 23.5% for 2,000 UGX groups fall into this category. Finally, the

table indicates that the distribution of savings is bimodal throughout. In 500 UGX groups,

most transactions are either zero or 5 shares; at the other extreme, in 2,000 UGX groups

transactions are either at zero or one share, or 5 shares.

Borrowing Table 20 also includes information on group borrowing. On average

members took out about 2.6 loans totaling approximately USD$56 over the course of the
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TABLE 21. Summary Statistics from Audits of Ugandan Savings Groups (By Share
Value)

cycle (an average of $1,480 per group). Clearly this is substantially more than savings

per member and is the result of frequent repayment of these interest-bearing loans. By

the end of the cycle, individuals saw an average rate of return on savings of about 12.83%

and a ratio of cumulative loans to cumulative savings of about 1.5.7 Finally, we note that

7Among a subsample of 780 study participants, the single most common use (44% of loans and 39% of
share out) is the payment of school fees. In addition, 35% of loans and 40% of share out amounts are used
for some type of productive investment, including starting a new business, purchasing of farm inputs such
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TABLE 22. Tabulation of Weekly Share Purchases of Individual Borrowers (44 groups)

Share purchase Freq. Percent Freq. Percent Freq. Percent

none 3,294 21.51 8,422 23.94 1,275 24.23
1 share 374 2.44 4,474 12.72 1,422 27.02
2 shares 2,188 14.28 6,119 17.39 417 7.92
3 shares 529 3.45 2,823 8.02 286 5.44
4 shares 1,610 10.51 1,717 4.88 153 2.91
5 shares 7,315 47.76 10,488 29.81 1,237 23.51
Other amount 7 0.05 1,143 3.25 472 8.97

Total 15,317 100 35,186 100 5,262 100

Share price =500 Share price=1,000 Share price=2,000

defaults on loans are rare: only 3% of members were reported not having paid the whole

loan by shareout.

As with savings, borrowing behavior and savings returns depend on the share price

chosen by groups. As seen in Table 21, lower share prices tended to have slightly smaller

but more frequent loans per member, lower total group borrowing. However, we see that

the smallest share price (500 UGX) experienced the highest loans-to-savings ratio and

return on savings which is suggestive that these groups are lending a larger portion of

their available funds throughout the cycle.

Balances Over Time We finally provide a dynamic view of group operations by

making use of the cashbook data. Figure 20 plots the evolution of cash balances, per-

period savings and loans disbursed in a sample of 22 Ugandan savings groups. Saving

contributions remain quite stable over the duration of the cycle, whereas loans grow over

time and peak towards the end of the cycle. On average, balances remain close to zero for

as livestock and land, or other business investment. Loans are somewhat more likely than share out to
be used for emergencies, such as a health incident or unemployment (22% versus 16%.). Conversely, and
quite predictably, households are almost twice as likely to consume their share out (29%) than their loans
(16%). See Burlando and Canidio (2015) for further details.
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FIGURE 20. Saving, borrowing, and cash-in-box over the cycle.Data from 22 savings
groups with complete records of all financial transactions. Length of the cycle normalized to twenty
quantiles (x axis). Left axis is the scale for flow variables (savings and loans per meeting); right axis is
scale for stock variables (carryover balance), which we refer as ”cash in the box”.

almost half of the cycle, suggesting that groups are unable to generate sufficient funds to

meet the demand for loans of their members. We formally test for the presence of funds

scarcity using these data in a later section.

A Model of Savings Groups

In this section we present a theoretical model of SG. Our goal is to discuss how

SG rules determine the individual incentive to save and borrow, and to show that funds

may be in excess or fall short of the demand for loans. We abstract away from other
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potential sources of inefficiencies such as moral hazard, adverse selection, behavioral

biases, voluntary or involuntary defaults (which, as we previously discussed, are a rare

occurrence in our data).

Consider a group composed of n individuals. The timing of the game is the

following:

– In period 0, the group meets and agrees on the interest rate that will be charged

on loans r and on the maximum savings per period s. As previously discussed, the

maximum savings per period is implicitly determined by the share value chosen by

the group. Here, we abstract away from the fact that savings are allowed only in

multiples of the share values. As a consequence the only role of the share value is

determining s.

– In periods 1 to k > 1 each member i:

∗ first receives wi,t, which is a per-period wage (i.e. non-investment income

generated outside of the group),

∗ then saves si,t with the group,

∗ then borrows bi,t from the group,

∗ then invest yi,t in an outside project,

∗ then earns fi,t(yi,t) from the funds invested outside of the group, where fi,t() is

continuous and strictly concave.8

∗ repays (1 + r)bi,t to the group, saves ai,t ≥ 0 outside of the group, and consumes

the rest.

8The assumption of concavity allows us to show the existence of the equilibrium of the game. The
reason is that, if fi,t() is locally convex, then optimal savings and borrowing may be a non-convex
correspondence, which prevents us from invoking standard fixed point theorems,
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Given this sequence of events, a single period of our model is better interpreted as 3

months, which is the duration of each loan.

– In period k + 1, the money collected by the group is redistributed to members in

proportion to the amount saved by each.

Both fi,t(yi,t) and wi,t are deterministic. Finally, by assuming that the return on the

outside project fi,t(yi,t) is independent on the group composition, we are effectively

ignoring other relevant channels through which the group may impact the return on

investment, such as learning from peers, changes in the social network structure, and

aspirations.

Independently on the rules agreed upon in period 1, no member is allowed to borrow

more than 3 times the total amount saved with the group up until that period, and

therefore

bi,t ≤ 3
t∑

x=1

si,x for t ∈ {1, .., k}, (4.1)

which we call the leverage constraint. In addition, the agent can save with the group up to

s, so that:

si,t ≤ min{wi,t + ai,t−1, s}, (4.2)

where we assume ai,0 = 0, so that the resources available for saving are wi,1 in period 1,

wi,1 + ai,1 in period 2, and so on.9 Note that the timing described above implies

yi,t ≤ bi,t + wi,t − si,2 + a1,t−1 for t ∈ {1, .., k}. (4.3)

In other words, the resources available for investment are equal to own funds (either

earned during that period wi,t or carried from the previous period a1,t−1) minus the

9We implicitly assume that the resources saved outside of the group do not generate any return.
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savings with the group, plus borrowing with the group. Finally, consumption at the end

of each period is:

ci,t = fi,t(yi,t)− yi,t − rbi,t + wi,t + ai,t−1 − ai,t − si,t ≥ 0, (4.4)

which is the agent’s budget constraint.

Individual Maximization Problem At the beginning of each period of operation

of the group, a member i decides how much to save and borrow with the group by

maximizing her utility, taking as given the assets accumulated outside of the group ai,t,

and the savings previously accumulated with the group
∑t−1

x=1 si,x. This problem can be

expressed in recursive form:

Vi,t

(
ai,t,

t−1∑
x=1

si,x

)
= max

bi,t,si,t,yi,t,ai,t

{
ui(ci,t) + βiVi,t+1

(
ai,t+1,

t∑
x=1

si,x

)}

s.t.


bi,t ≤ C̃i,t aggregate resource constraint

equations 4.1 to 4.4

with the utility at share out:

Vi,k+1

(
ai,k,

k∑
x=1

si,x

)
=

(
k−1∑
x=1

si,x + si,k

)
(1 +R) + ai,k.

where βi ∈ (0, 1) is agent i discount factor, and ui(.) is agent i utility from consumption,

strictly increasing and strictly concave. Note that in the above specification implies that

the agent’s utility function is linear in the money received at share out.10

10All results derived are robust to a utility function that is curved in money, provided that the
curvature is not too strong.
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The term C̃i,t is the cash available to member i of the group at the beginning of each

period, defined as

C̃i,t = St +
t−1∑
x=1

(Sx −Bx) + (1 + r)
t−1∑
x=1

Bx −
∑
j 6=i

bj,t (4.5)

where Bx =
∑

i bi,x and Sx =
∑

i si,x are aggregate borrowing and savings in period

x. In other words, the cash available for borrowing to agent i in period t is given by the

sum of all excess savings (aggregate savings minus aggregate borrowings) plus the loans

repayments collected by the groups from period 1 to t, minus period-t loans given to all

other members. The term R is the implicit return on savings, defined as

R =
r ·
∑k

t=1Bt∑k
t=1 St

We conclude the description of the model by introducing our main assumption:

Assumption 1. The return on savings at the end of the cycle R and the funds available

to each member of the group in each period C̃i,t are taken as given by the group members

but are determined in equilibrium.

In other words, the group members fail to anticipate that by increasing the amount

saved (or borrowed) they will affect the return on savings and the availability of funds

for the entire group. As a consequence, we can treat the return on savings and the funds

available to the group in each period as equilibrium quantities.11

11Given that the group is large, the incentives to influence the return on savings by setting a specific
si or bi are likely to be negligible. Note also that all our results are robust to assuming that the aggregate
resource constraint is bi,t ≤ αisi,t+C̃i,t, and C̃i,t = St+

∑t−1
x=1 (Sx −Bx)+(1+r)

∑t−1
x=1Bx−

∑
j 6=i bj,t+(1−

α)si,t, where αi is the amount of an agent’s own savings that this agent expects to be able to borrow back
from the group. The parameter αi should depend on the rationing mechanism employed by the group
(discussed in a later section on rationing).
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Individual Saving and Borrowing Decision

Call si,t(r, R, C̃i,t) the optimal savings and bi,t(r, R, C̃i,t) optimal borrowings of agent

i in period t.

Lemma 1. si,t(r, R, C̃i,t) and bi,t(r, R, C̃i,t) are upper hemicontinuous in r, R and C̃i,t.

In addition, si,t(r, R, C̃i,t) is weakly increasing in R. If the aggregate resource constraint

is binding, si,t(r, R, C̃i,t) and bi,t(r, R, C̃i,t) are weakly increasing in C̃i,t. If the aggregate

resource constraint is not binding, si,t(r, R, C̃i,t) and bi,t(r, R, C̃i,t) are independent on C̃i,t.

We complement the above lemma with a remark that follows from inspecting the

individual maximization problem:

Remark 1. The cost of borrowing is decreasing in R. Conditional on being a borrower,

bi,t(r, R, C̃i,t) is weakly increasing in R. However for R sufficiently large, the agent may set

bi,t(r, R, C̃i,t) = 0 and only save.

Because of the leverage constraint (Equation 4.1), a member who wishes to borrow

must first save. Hence, as the return on these savings increases, the cost of borrowing

decreases. This reduction on the cost of borrowing weakly increases the amount saved

(by Lemma 1) and the amount that can be borrowed (by Equation 4.1). This is achieved

by reducing the fraction of a project that is self financed, and increasing the scale of the

investment. However, if R increases sufficiently, then the agent may switch from being

a net borrower to being a net saver. This possible “jump” from borrower to saver is

the reason why the amount borrowed and saved may be discontinuous in R. In case of

discontinuity, si,t(r, R, C̃i,t) and bi,t(r, R, C̃i,t) are nonetheless upper hemicontinuous: if

two borrowing (savings) levels solve the utility maximization problem, then any convex

combination of the two also solves the utility maximization problem. In other words, the

savings and borrowing correspondences have no “holes”.
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Figure 21 illustrates a possible si,t(r, R, C̃i,t) and a possible bi,t(r, R, C̃i,t) for the same

agent in two situation: one in which the aggregate resource constraint is never binding

(left panel), the other when it sometimes is (right panel). For low and high R, the two

panels are identical because borrowing is either too low or zero, so that the upper bound

C̃i,t is not reached. For intermediate R’s instead, the two panels are different. Relative to

the left panel, in the right panel borrowing is constrained by C̃i,t and, as a consequence,

savings is also depressed.

We conclude by pointing out two additional results. First, note that the scarcity of

funds may not impact all group members equally. It may be the case that the aggregate

resource constraint is binding, but some members can fully meet their demand for loans

while the burden of rationing falls disproportionately on others. We say that a member

FIGURE 21. Individual savings and borrowing choices: In Panel (a), the aggregate resource
constraint is never binding. In Panel (b), the aggregate resource constraint may be binding. In both
cases, demand bi and supply si are initially increasing with the return on savings R, although savings si,t
is capped at s̄. Below R1 and R′1 savings and borrowings are positive. Above R1 and R′1 the borrower
switches to savings only. In addition, in Panel (b), the amount that can be borrowed has an upper bound
C̃i. The constraint shifts the savings curve downward whenever it is binding, and savings and borrowing
choices are now lower than when in the left panel. While the savings decision at high levels of savings
is not affected by the constraint, whenever the constraint is binding the borrower may switch to zero
borrowings at lower values of R. Hence R1 ≥ R′1.
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is rationed out in period t if her demand for loans is strictly increasing in C̃i,t. Second,

given the generality of the individual maximization problem, we do not link individual

characteristics of each group member to a precise borrowing and savings behavior. In

what follows, we characterize each member of the group directly by her si,t(r, R, C̃i,t) and

bi,t(r, R, C̃i,t), under the restriction that these functions satisfy Lemma 1 and Remark 1.

Rationing Mechanism

Before solving for the equilibrium of the model, we need to discuss how C̃i,s is

determined. We assume that in each period, after the savings decisions are made, each

member of the group announces her demand for loans, and the group determines each

C̃i,t according to a rationing mechanism. We also assume that the rationing mechanism

adopted by the group is:

– Resource monotonic: for given r, s and R, increasing the funds available to the

group weakly increases the amount borrowed by each member,

– Pareto efficient: the allocation of funds induced by the mechanism is never Pareto

dominated by another feasible allocation,

– Strategy-proof: no member has an incentive to misreport her demand for funds.

A large literature has investigated allocation mechanisms in the context of single

peaked preferences. One mechanism often highlighted is the so-called uniform rule. This

rule amounts to imposing an upper bound on the level of borrowing achievable by each

member. If any member borrows less than the upper bound announced (because her

peak is below the upper bound), the remaining resources are distributed among the

other members using again the same mechanism. Kıbrıs (2003) considers an allocation

problem with single peaked preferences and free disposal (i.e. not all resources need to
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be allocated), and shows that the uniform rule is the only strategy-proof mechanism that

satisfies efficiency, no-envy, and is resource monotonic.12 In our context, preferences are

single peaked over bi,t (and the results in Kıbrıs, 2003, apply) because the return on the

outside investment fi,t(yi,t) is strictly concave for all i and t.13

Note, however, that the uniform rule has very appealing properties for given savings

contributions. It is unclear whether the uniform rule maintains its properties once we take

into consideration that savings depend on the rationing rule. More theoretical work is

needed to characterize the set of optimal rationing mechanisms in savings groups. For

this reason, in what follows we simply assume that the rationing mechanism is resource

monotonic, efficient and strategy-proof for given savings contribution. Hence, for the most

part we will abstract away from the specific rationing mechanism employed by the group.

An exception will be discussed in a later section, where we solve for the period-0 choice of

r and s, because the “median” member of the group will depend on the rationing rule in

use.

Equilibrium

Despite being taken as given by the group’s members, R and C̃i,t are determined in

equilibrium. In particular, the equilibrium R ≡ R? solves:

R?

k∑
t=1

St(R
?) = r

k∑
t=1

Bt(R
?) (4.6)

12A rationing rule satisfies no-envy if for every announcement profile, the allocation implemented by the
mechanism is such that no group member wants to swap what she received with what some other group
member received. For a review of this literature and the formal definition of these properties, see Thomson
(2014).

13A second widely studied mechanism is serial dictatorship, in which members take turns in choosing
their optimal borrowing amount until no funds are left. In Appendix B we argue that this rationing rule
may be resource monotonic, Pareto efficient and strategy-proof in situations in which the uniform rule fails
to satisfy these properties.
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where St(R) and Bt(R) are the aggregate demand and supply of funds in period t.

Note that, whereas the individual demand and supply of funds depend both on R

and on C̃i,t, the expressions for the aggregate demand and supply for funds only depend

on R (we omit the dependency on r). The reason is that, in the individual maximization

problem, C̃i,t matters only if the aggregate resource constraint is binding. Furthermore,

because the rationing mechanism is Pareto optimal, the aggregate resource constraint is

either binding for everybody or not binding for anybody. Therefore, in the aggregate we

can simply distinguish between R for which the aggregate resource constraint is binding

and R for which the aggregate resource constraint is not binding during a given period.

Whenever the aggregate resource constraint is not binding, aggregate borrowing depends

on aggregate savings only through the equilibrium R?. Instead, in periods in which the

aggregate resource constraint is binding, aggregate borrowing depends on aggregate

savings directly. In particular, when the resource constraint is binding in a given period,

bi,t = C̃i,t ∀i, and by Equation 4.5:

Bt(R) = r
t−1∑
x=1

Bx(R) +
t∑

x=1

Sx(R). (4.7)

Hence, in periods in which funds are scarce, aggregate savings and aggregate borrowings

are perfectly correlated. This observation will play a central role in the next section, where

we empirically address the issue of funds scarcity.

Figure 22 provides an illustration of the equilibrium, for the case in which the

aggregate borrowing and savings are continuous functions and the group is active in only

one period (i.e., k = 1). The left graph presents the case where the resource constraint in

binding, and the right graph the case where it is not binding. In each case, the top panel

provides a description of the behavior of the supply curve S(R) and demand curve B(R)
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FIGURE 22. Two examples of a unique equilibrium when k = 1. In both cases
the equilibrium R? is determined in the bottom panel by the intersection of RS(B) and
rB(R).

(a) No rationing in equilibrium. The
equilibrium occurs at point A. As shown by
points B and C S(R∗) > B(R∗). It follows that
R∗ < r.
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(b) Rationing in equilibrium. For R < R̃,
funds are rationed and supply of funds is
equal to demand: S(R) = B(R). Because the
equilibrium (point A) occurs on the rationing
area, S(R∗) = B(R∗) and R∗ = r.
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with respect to the realized rate R. The bottom panel describes the behavior of the two

curves RS(R) and rB(R).

Distinguishing between periods in which the aggregate resource constraint is

binding or not will be relevant when performing our comparative statics analyses. For

example, assume that a member of the group drops out and is replaced by another

person with a higher propensity to save in every period and at every R.14 If the resource

constraint is never binding, we can solve for the new equilibrium simply by shifting

14If the rules of the group are chosen by majority voting, then changing the composition of the group
does not affect the rules adopted by the group as long as the median member of the group does not
change. Hence, we can analyze changes in the demand and supply of funds due to a change in the group’s
composition keeping the rules adopted by the group constant.
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upward
∑n

t=1 St(R
?). If instead the aggregate resource constraint is binding in some

periods, then aggregate borrowing in these periods will also respond to an increase in

overall funds available to the group.

We now provide an important result of our framework: that an equilibrium R∗

always exists. We also derive a sufficient condition for an unique equilibrium, which we

will use in comparative statics.

Proposition 1. An equilibrium R? always exists. If βi is sufficiently small for all i, then

the equilibrium is unique. Assuming that at the unique R? both
∑

t St(R) and
∑

tBt(R)

are functions, then the LHS of equation 4.6 crosses the RHS of equation 4.6 from below.

Note that βi determines the sensitivity of the borrowing decision to the return on

savings. If this sensitivity is low the cost of borrowing is determined mostly by r and

not by R. Hence, as βi decreases, the elasticity of aggregate borrowing with respect to

R decreases, and multiple equilibria disappear. In what follows, we always assume that R?

is unique for all r and s.

Comparative Statics

Using proposition 1 and assuming that the equilibrium is unique, we next analyze

the effect of changes in the demand or the supply of funds in these groups.

Increase in Aggregate Savings Suppose that the aggregate savings increases in all

periods. This could be the case if a member of the group who only saves drops out of the

group and is replaced by another agent who also only saves but has a larger propensity to

save at every r, R and C̃i,t. Clearly, if the resource constraint is never binding, then, for

given R, the increase in aggregate savings has no effect on aggregate borrowing. Hence,
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the behavioral responses of the group members is driven by the fact that, by proposition 1,

when
∑

t St(R) shifts upward R? decreases.

Corollary 1. Suppose that the aggregate resource constraint is never binding.

Furthermore, suppose that there is a change in the behavior of one of the group members,

leading to an upward shift in St(R) (for some t). As a consequence, R? decreases and

everybody else in the group is worse off.

If instead the aggregate resource constraints is always binding, adding resources

to the group has also a direct effect on the borrowing levels that are possible within the

group.

Corollary 2. Suppose that the aggregate resource constraint is always binding.

Furthermore, suppose that there is a change in the behavior of one of the group members,

leading to an upward shift in St(R) by the same factor in every period t. Each member’s

borrowing (weakly) increases and everybody else in the group is (weakly) better off.

The above corollary considers only shifts in aggregate savings by the same factor in

every period. We discuss later the fact that the time-profile of savings has an impact on

the availability of funds for the group members. In particular, we will argue that shifting

savings from later periods to earlier periods is always welfare improving to the group;

while the opposite is welfare decreasing (see Remark 2). Hence, the above corollary is true

also when early savings increases more than later savings (in percentage terms), but may

not hold if later savings increase less than early savings.

The two corollaries illustrate one of the main results of the model: that exogenously

increasing the funds available to the group (for example, by replacing one of the members

of the group) will impose an externality on other participants. The key determinant of

the sign of this externality is whether the group is resource constrained. Quite intuitively,
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FIGURE 23. Exogenous shift in aggregate savings: In both cases, the initial
equilibrium is determined by point A. Increasing savings to S ′(R) shifts the borrowing
curve to B′(R) (dotted line) for values of R < R̃ (i.e. when there is rationing).

(a) Initially non-binding resource
constraint. R∗ drops to R

′∗. Savings increase
from C to C’, and loans increase from B to B’.
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(b) Initially binding resource constraint.
The new equilibrium remains rationed, R is
unchanged and loans increase to B’.
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when the resources within the group are scarce, adding more resources is beneficial to the

others. More interestingly, when the group is not resources constrained, adding resources

to the group hurts the group by decreasing the return on savings. These effects are

demonstrated graphically in figure 23, which show the effect of a shift in the aggregate

savings function assuming that k = 1, and that both S(R) and B(R) are continuous

functions. The figure shows that loanable funds increase without affecting returns if

borrowing remains rationed, but returns fall when funds are not rationed.

When the resource constraint is binding only in some periods, the overall welfare

effect of adding resources to the group is ambiguous. All members are made worse off by

the addition of extra funds because they decrease R?. However, net borrowers who are

rationed out benefit from the availability of extra funds.
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Increase in Aggregate Borrowing We can similarly analyze what happen when

the group composition changes in a way that shifts Bt(R) up in every period, leaving

unchanged the aggregate supply of funds St(R). This would be the case if, for example,

a net saver is replaced with a net borrower who saves the same amount in every period,

but uses these savings to actually borrow funds from the group.

If the aggregate resource constraint is never binding, by proposition 1, the effect of

an increase in aggregate borrowing is an increase in R?, leading to the following corollaries

(which we illustrate in Figure 24 for the case k = 1).

Corollary 3. If the aggregate resource constraint is never binding, then an increase in∑
tBt(R) leads to an increase in R?, higher individual savings and borrowing. Everybody

in the group is better off.

If instead the aggregate resource constraint is always binding, then the impact of an

increase in aggregate borrowings depends on how the funds are rationed among borrowers.

For example, if the new demand for funds goes completely unmet, then the existing

member of the group are indifferent to the increase in the demand for funds. If instead

the addition of a borrower decreases the amount of funds available to the other borrowers,

then the existing borrowers are made worse off by the increase in the demand for funds.

Corollary 4. If the resource constraint is always binding, an increase in the demand for

loans has no effect on R?, but may make rationing worse for some group members. As a

consequence, everybody in the group is weakly worse off.

Similarly, if the resource constraint is binding in some periods but not the others,

the welfare effect of increasing the demand for funds is ambiguous. On the one hand, R?

increases and everybody benefits. On the other hand, net borrowers may be hurt by the

fact that rationing is now worse.
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FIGURE 24. Shift in the demand for loans: In both cases, the initial equilibrium is
determined by point A. Increasing demand for loans shifts the borrowing curve to B′(R)
(dotted line) for values of R > R̃ (i.e. when there is no scarcity).

(a) Initially non-binding resource
constraint. The new equilibrium is the
intersection point A’. R∗ increases to R

′∗.
Realized savings increase from C to C’, and
realized loans increase from B to B’.
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(b) Initially binding resource constraint.
The group remains rationed. R, realized savings
and realized loans are unchanged.
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Overall, increasing aggregate borrowing and increasing savings have opposite effects

on the group. When the aggregate resource constraint is binding, increasing savings makes

the group better off while increasing borrowing makes the group (weakly) worse off. When

the aggregate resource constraint is not binding, increasing savings makes the group worse

off, while increasing borrowing makes the group better off.

Supply of Funds Over Time There is an additional dimension that is relevant in

determining the efficiency of the group: the timing of saving. Suppose that cumulative

aggregate savings are constant, but the group can substitute one or more members, so

that the timing of savings changes. In particular, assume that the reallocation leads to
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saving earlier. It is quite immediate to see that if the aggregate resource constraint is

never binding, this reallocation of savings has no impact on the return on savings and

no impact on the group members’ welfare.

Instead, suppose that the aggregate resource constraints is binding in a given period

t < k − 1, and savings are reallocated from period t+ 1 to period t. If the period-t demand

for loans is rationed, then this reallocation increases the loans given out in period t. In

addition, all these loans will be repaid at the end of period t. So, for every dollar that is

reallocated from period t + 1 to period t, 1 + r dollars become available in period t + 1.

Hence, if the resource constraint is binding also in period t + 1, this reallocation eases

rationing in period t+ 1 as well.

Remark 2. Suppose the resource constraint is binding in period t¡k-1. Suppose that St(R)

increases and St+1(R) decreases by the same amount. It follows that R? increases, and all

agents increase their level of borrowing and savings. All agents are better off. If instead

the resource constraint in period t is not binding, reallocating funds from one period to the

other has no impact on R? and no impact on the group members’ welfare.

Hence, contrary to changing the level of savings, changing the timing of savings has a

unambiguous welfare effect.

Period 0: Setting the Rules

So far, we have treated the price of a loan r and the maximum savings s̄ as given.

In reality, these values are chosen by the group at the beginning of the cycle, possibly

through voting. Might an optimal selection of these values eliminate the mismatch of

demand and supply?

In short, the answer is “no”. In Appendix B we argue that the payoff at share out

is far in the future relative to the moment in which the choice of r and s are made, and
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hence plays a small role in deciding over r and s. If we consider the limit case in which

this payoff is completely disregarded by the the group members, then we can analyze

the group’s choice over r and s as a voting game and a Condorcet winner exists. The

important observation is that, in general, when funds are scarce, some members may still

be able to satisfy their demand for loans. Hence, the groups will choose rules that induce

scarcity of funds, provided that the “median” member of the group is able to satisfy its

demand for funds at these rules.

Evidence

The main takeaway from the theoretical model is that, in any given period, the

demand for loans may not match its supply, and therefore groups are either operating

under rationing or generating low return on savings. Whether and to what degree groups

operate under scarcity or excess funds is thus an important issue, which we explore in this

section.

Here, we use information from the cashbooks of 22 savings groups. For each

meeting, the records include loan repayments, deposits and collected fines as inflows, loan

disbursement as outflows, and a running balance of the cash remaining in the box (See

appendix A for further discussion of the data). We begin by studying the amount of funds

available in savings groups at the end of each meeting. Figure 25 shows the proportion

of meetings in any meeting quantile that ended with a low balance. 20 to 35 percent

of groups had less than 15,000 UGX ($5.60) available at the end of the day during the

first half of the cycle. This proportion drops to less than 10 percent during the rest of the

cycle. The graph is suggestive that groups may be operating under scarcity. However, it is

possible that groups largely satisfy loan demand even if occasionally the box is empty. It
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FIGURE 25. Fraction of Groups with Low Balances by Meeting Quantile

is also possible that groups that have cash on hand may still be rationing loans if potential

borrowers need loan amounts that surpass the group balance.

An alternative strategy is to use the variation of inflows and outflows within the

group in a regression setting. As we argue in the theoretical section, if groups are indeed

resource constrained at any given meeting, the relationship between cash brought in

(savings, repayments, and fines) and the amount lent out is close to one-to-one (see

equation 4.7). That is, every dollar put in the box at the beginning of the meeting is

lent out in the same meeting. This number can easily surpass one in magnitude if there

are residual resources from previous meetings that are lent out. Groups are not resource

constrained, on the other hand, if the amount of loans disbursed does not depend on the

cash put into the box that day.
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In order to identify whether groups are resource constrained across a lending

cycle, we regress loans made at a particular meeting t in group g on the cash added

to the box controlling for the cost of borrowing (captured by a group fixed effect). To

allow for the relationship to change across time, we interact this cash-in measure with a

series of dummy variables for the quantile of the meeting.15 Equation (4.8) is our base

specification:

Lgt = β0 + β1CashIngt +

Q∑
q=2

(βqCashIngt ∗Dq
t ) +

Q∑
q=1

Dq
t + αg + ugt, (4.8)

where Lgt are loans disbursed in group g during meeting t, CashIngt are savings, fines,

and loan repayments collected during that meeting, Dq is a dummy variable that takes on

a value of one if the meeting falls in quantile q and zero otherwise, α captures group fixed

effects (which controls for groups’ characteristics and group’s rules, including the cost of

borrowing), and ugt is an error term.

By including dummy variables in this way, we can interpret β1 to be the fraction of

cash brought in that was distributed out in loans during the first five percent of meetings,

and β1 + βq for (q = 2, ..., Q) is the fraction of cash inflows that is lent out in each

subsequent quantile. Periods where β1 + βq = 1 correspond to periods where all cash

inflows are lent out, which suggests that loans are being rationed and limited by the

availability of funds. Periods where lending is not constrained should be characterized

by saving and borrowing being uncorrelated: β1 + βq = 0.

Figure 26 reports the parameter estimates (β1 + βq) across twenty meeting quantiles.

Initially, the group does not lend out all the cash brought in, possibly because each

15Meeting quantiles were used because groups varied in the total number of meetings held. Twenty
quantiles were chosen, so the first quantile corresponds to the first 5% , the second quantile corresponds to
the second 5%, and so on.
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FIGURE 26. Estimate of βq Over the Cycle

member needs to save with the group before being able to borrow. By the second quantile

of meeting (10%) they appear to be lending at a nearly one-to-one rate with cash coming

in, and that rate remains high for the first half of the cycle. Occasionally this estimate

exceeds one, suggesting that residual balances may be compiling early in the cycle. Twice

during the cycle, groups appear to loan only a fraction of the cash brought in during those

meetings (at 30 and 50 percent of meetings). This may indicate a desire to accumulate

funds for future lending of large loans. By three quarters of the meetings completed,

groups are beginning to lend less (many stop lending all together) and cash brought in

no longer affects lending decisions. Lending is shut down at the end of the cycle to allow

repayment, and loans and cash in become uncorrelated.

Regression estimates for this figure can be found in Table 23. The first column

of this table reports the OLS estimate for the average fraction of cash brought in that

is distributed as loans across the cycle (controlling for group level difference in lending

behavior). Because at the end of the cycle groups end lending altogether, this estimate is
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averaging over a series of zeros and we can anticipate that it may be biased downward. To

accomodate for changes across the cycle, we interact the flow of cash in during a meeting

with a dummy variable for the percentage of meetings that has passed.

Column (2) presents these results and are the basis for Figure 26. The first five

percent of meetings are held as the base, so the parameter estimate for “Meeting Cash

In” is the fraction of cash during the first five percent of meetings that was lent out. The

following estimates report the difference in lending behavior from those first meetings. We

find that during the first half of meetings, the fraction of cash brought in that is lent out

increases compared to the first five percent of meetings. One exception to this is at the

30% meeting quantile where there appears to be a pause in the relationship.

This fluctuation between resource constraints and brief moments where groups have

excess cash may be indicative of periods of savings, potentially for large loan amounts in

subsequent meetings. As shown in Figure 1, loans do grow more frequent during the latter

part of the cycle, so this sort of time rationing is plausible.

Robustness One potential concern that arises from this specification is that there may

be an omitted variable influencing contemporaneous cash brought in during a meeting

(savings, repayments and fines) and loans disbursed during that meeting. In particular,

repayments on past loans are going to depend on the stock of outstanding loans in a

particular period. Because each member can have only one outstanding loan at the time,

groups with a larger stock of outstanding loans may have a higher cash-in and a lower

demand for loans. Column (3) of Table 23 includes an interaction term for outstanding

balance with the meeting quantile but the results do not appear to be sensitive to his

change (the magnitudes and linear combinations are robust).

Seasonality may also affect how groups decide to loan out cash. This is a concern

if the majority of the groups have meetings in roughly the same time of the year, and
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TABLE 23. Lending of Available Resources Over the Cycle
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if groups face increased demand for loans at similar times (perhaps tied to agricultural

planting and harvesting needs). In this setting, groups started the cycle at different

periods of time. Moreover, to account for potential seasonality, we include dummy

variables for month of meeting and report the estimated in Column (4). In general, the

results from estimating Equation (4.8) do not change drastically with this adjustment.

Conclusion

In this paper we provided a theoretical framework for the analysis of supply and

demand for loans within savings groups. The main result from the theory is that there

is no mechanism to ensure that demand and supply of funds are in equilibrium, and

that consequently groups either face excess supply of funds or rationing of loans. In this

context, shocks to individual demand or supply curves create a spillover effect: they affect

the availability of funds to rationed borrowers, or the return of savings.

**** We use the model to perform some comparative statics analyses. Most notably,

we find that shifting savings from late to early in the cycle is always Pareto improving,

because it eases scarcity in periods when the demand for loans exceeds the supply for

loans without reducing the return on savings. Furthermore our empirical analysis shows

that groups face binding resource constraints in the first part of the operating cycle.

Hence, overall, the paper points at the importance of encouraging early savings.

From a policy perspective, encouraging early savings may be achieved by adjusting

the rules of operation of savings groups. For example, decreasing the number of shares

that can be purchased (starting from a relatively large number) could successfully shift

savings from later periods to early periods. Alternatively, early savings could earn a higher

return than later savings. For example, shares could be sold at a discount during the

initial period of operation of the group, under the condition that each share receives the
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same payout at share-out. Finally, programs that temporarily fund savings groups early in

a cycle through a microfinance loan may also encourage early lending without necessarily

hurting savings returns.
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CHAPTER V

CONCLUSION

This dissertation examines three major economic issues facing developed and

developing countries today: substance abuse, criminality, and financial inclusion. I present

two papers which explore the impact of a novel policy and question the assumptions

made about determinants of risky behavior in the United States. I also include one paper

focusing on policies designed to improve welfare of individuals in developing nations.

Chapter II contributes to our understanding of the impact of state-wide health

insurance reform on substance abuse and overdose. Legislators began passing laws

requiring insurers to cover rehabilitation and detoxification treatments in insurance plans

as a way to mitigate the growing concern over substance abuse in the United States. I

show that these laws have a measurable impact on the uptake of services but that they are

limited in the ability to reach groups struggling with certain types of addiction, notably

addiction to opiates. Moreover, I illustrate that coverage of substance abuse treatment

is not necessarily having a significant impact on the overdose death rate. This has

several major implications. First, in absence of legislation expanding insurance to risky

populations, populations most at risk for overdose are less affected by the law. Secondly,

did have large amounts of uptake suggesting affected populations have unmet demand for

services.

In Chapter III, provides several factors to our understanding of the determinants

of criminality. Previous literature has found a consistent positive relationship between

unemployment and property crime rates and no relationship with violent crime rates.

Appealing to the seminal paper by Becker (2000), I provide reason to suspect time-

variation in these relationships and explore whether this has occurred using estimated
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confidence intervals and dummy variable techniques. The results suggest that crime rates

are no longer positively correlated with unemployment in recent years. Additionally, there

is evidence that some measures of violent crime are negatively related to unemployment

rate during the last decade. This upends our current understanding of this determinant of

crime and creates a need for further investigation on the subject.

In my last substantive chapter, I present a coauthored investigation where we

contribute novel theory on the functioning of savings groups, an increasingly popular type

of informal financial institution. A main conclusion from this theory is that groups are

likely to operate under scarcity of funds or have surplus of savings that are not distributed

as loans. Using administrative data from a set of newly formed Ugandan savings groups,

we text these predictions and find that groups are typically rationing available funds,

which indicates that there are welfare improving changes to group formation and operation

that can be made. However, we also find that despite rationing, savings groups are able to

generate high returns to savings.

The results from the papers included in this dissertation fit within a general research

agenda focusing on policies design to improve the welfare of at risk populations domestic

and abroad. Risky behaviors such as drug abuse, suicide, and crime are continuing

problems world-wide and continued investigation on the impact and determinants of these

issues is necessary.
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APPENDIX A

LEDGER DATA CLEANING

The paper made use of meeting-level data from handwritten registries of a number

of Ugandan savings groups (see Table 24). Of the 110 groups that were part of the study,

70 groups submitted photographs of their cashbooks for their first cycle. Many of these

pictures had missing pages, poor focus, or were otherwise difficult (if not impossible) to

digitize. We found that 29 groups had substantial portions of their cashbooks missing

or were in formats that were illegible. Of the remaining 41 groups, 22 were thoroughly

cleaned and reconciled.

TABLE 24. Description of Cashbook Cleaning Process.

In order to determine whether there was an error in any particular record, we

reconstructed the cash-in-the-box balance from meeting to meeting (cash-in minus cash-

out plus balance from previous period). We then looked at the difference between the
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reported balance with our calculated balance and found that 59.2% of the observations

required an edit. The primary reason for these edits were omissions and typos due to the

digitization of the picture data which was easily corrected for by looking at the photos

and inputting the correct amounts. Occasionally, there was a miscalculation or written

error by the record keeper for the group which could be correctly interpolated from correct

data. Even through our careful cleaning, 44.1% of observations retained some level of

discrepancy (but we minimized this amount as much as possible). On average the size of

this discrepancy was about 972 UGX, but the range of this amount was quite substantial.1

1A lot of these discrepancies occurred on observations in the middle of the cycle which were corrected
for by audits throughout and there was fewer discrepancies during the latter parts of the cycle.
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APPENDIX B

THEORETICAL EXTENSIONS

More on Rationing

It is interesting to note that, if we allow some convexities in the outside investment,

the uniform rule may fail to be either efficient or resource monotonic. For example,

suppose that all investment opportunities are discrete, in the sense that they require a

fixed investment level to deliver a given return. It follows that an agent’s utility may have

local maxima, which emerge whenever extra funds allocated to the agent are not sufficient

to start a new investment opportunity, but need nonetheless to be repaid with interest.

When resources are scarce, an agent may borrow little and settle for a local maximum. As

aggregate resources increase, some agents may discretely increase the amount borrowed

with the group, potentially decreasing the resources available to other members of the

group.

Motivated by this observation, we consider here a second widely-studied rationing

rule: serial dictatorship, in which all agents are ordered and each of them can, in turn,

choose how much to receive from the available funds. Serial dictatorship is appealing

because it is efficient, strategy proof and satisfies resources monotonicity whenever two

conditions are met:

– when indifferent between multiple borrowing levels, members demand the lowest

level.

– consider the list of dictators, 1, 2, ...k, where dictator 1 chooses before all other

dictators (and so on). If the kth dictator borrows a positive amount, then all k − 1
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dictators fully meet their demand for loans. i.e. they would not borrow more even if

more resources were available.

To understand better the last point, suppose that an earlier dictator leaves funds to the

following dictator, who then uses these funds. The above condition rules out situations

in which an earlier dictator can only invest in projects requiring an upfront investment

larger than the available funds (and therefore leaves funds on the table), while the later

dictator can invest in projects that require an upfront investment lower than the available

funds. This condition is always satisfied if the return on investment is continuous, smooth

and concave. It is also satisfied if all investment opportunities faced by all agents have the

same minimum investment level (but may deliver different returns).

Hence, the uniform rule has very appealing properties if all fi() are smooth and

concave, but it fails to be resource monotonic in other cases. Serial dictatorship has less

appealing properties (in particular, it does not satisfy the no-envy condition), but remains

efficient, strategy proof and resource monotonic also for some fi() that are not convex.

Rules Setting

In period 0, the choice of r and s is determined by two basic trade-offs. For given R?

and given available funds, a higher r or a lower s will make everybody in the group weakly

worse off. However, a higher r or a lower s may actually increase R?, benefiting everybody

in the group. Furthermore, r and s have an additional effect on the availability of funds

and on whether some borrowers will be rationed out. Crucially, each group member will

solve these trade offs differently depending on their demand for funds and on the rationing

mechanism.

For this reason a voting game over the rules r, s̄ may not have a Condorcet winner.

A group member may have a preferred r and s in case she is a borrower and a preferred
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r and s in case she is a pure saver (i.e. no borrowing). If a borrower, an agent is facing a

trade off between availability of funds (which is increasing in r), and cost of borrowing. In

general, an agent prefers the smallest r such that her demand for loans is fully met to any

larger r (but may, in fact, prefer an even smaller one). If a pure saver, the agent prefers

the r and s that maximize R?. Hence, an agent’s utility may be first decreasing and then

increasing with r if the agent switches between being a borrower to being a saver.

When preferences are not single peaked, the collective decision over r and s depends

on the details of the voting game being played, such as who can propose options for

voting, how many voting rounds are allowed, how long can voting last, whether options

that have previously been outvoted can be re-proposed, and so on. Because the voting

procedure is not part of the model, each group is likely to have adopted a different voting

game. Despite these difficulties, we can show that, under some strong assumptions, the

voting game has a Condorcet winner. We assume here a uniform rule for allocating scarce

funds.

Proposition 2. Suppose that βi = 0 for all i, so that, in period 0, each group

member maximizes u1(ci,1). Call r?i the preferred r of agent i (if it exists). There exists

a Condorcet winner of the game, which is the median r?i (which we call r?m) and the s

maximizing the availability of funds for this r.

It is reasonable to assume that, in period 0, all members of the group discount

heavily the payoff at share out relatively to the instantaneous payoffs earned while the

group is operating, because the share-out date is sufficiently far in the future while the

date at which each agent may borrow from the group is much closer. The proposition

considers the limit case βi = 0 for all i, in which the utility at share out is completely

ignored and the only determinant of the choice over r and s is the ability to borrow

cheaply in period 1. Hence, for every r, everybody agrees that s should maximize the
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availability of funds.1 When choosing over r, conditioned on the agent being a borrower,

preferences are single peaked, because a higher r reduces rationing but makes borrowing

more expensive. In case an agent does not expect to borrow, she will be indifferent over r

and s. A Condorcet winner exists if agents break their indifference in favor of the option

closer to their peak.

Finally, some agents are never borrowers and therefore do not have a peak r. The

Condorcet winner is the median peak if these agents abstain. However, other Condorcet

winners may exists, depending on the number of agents who never borrow and on how

these agents break their indifference. For example, of only one agent in the group is always

a saver, there are two other Condorcet winners. Assuming that the agent who is always

a saver always votes for the largest r, then the peak just above the median peak is a

Condorcet winner. Similarly, assuming that the agent who is always a saver always votes

for the smallest r, then the peak just below the median peak is a Condorcet winner.

Despite being based on fairly strong assumptions, the above proposition is relevant

because it shows that the outcome of the voting game will, in general, not reflect the

”preferences” or ”welfare” of the group, but rather the preferences of the median member

of the group. In particular, note that if r?i > r?m for at least one i, then the interest rate

chosen by the group will generate rationing, because some of the group’s member will not

be able to borrow as much as they want at the chosen r?m.

1Note the amount of cash available for borrowing may not be monotonic in s. For example, if the
person saving the most is actually a net borrower, constraining this person in the amount she can save
may generate more resources to the remaining members of the group.
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APPENDIX C

MATHEMATICAL DERIVATIONS

Proof of Lemma 1

Proof. Because the objective function of the utility maximization problem is quasiconcave, and

all constraints are continuous and convex valued, by the theorem of the maximum si,t(r,R, C̃i,t)

and bi,t(r,R, C̃i,t) are upper hemicontinuous, closed and convex for all r, R and C̃i,t. In addition,

note that si,t and R are complements in the objective function. Therefore by Topkins’s theorem

si,t(r,R, C̃i,t) is weakly increasing in R (if si,t(r,R, C̃i,t) is a correspondence, then lower and

upper bound of this correspondence are weakly increasing in R).

Finally, bi,t(r,R, C̃i,t) is weakly increasing in C̃i,t because increasing C̃,ti relaxes the

aggregate resource constraint and allows for higher borrowing. At the same time, because

of Equation 4.1, an agent may save to borrow. When the resource constraint is binding,

bi,t(r,R, C̃i,t) = Ci,t. Hence, as Ci,t increases, the amount that can be borrowed increases, and

with it the amount that may need to be saved in order to reach a given level of borrowing.

Proof or Proposition 1

Proof. Note that the aggregate demand for savings and aggregate demand for loans inherit the

properties of the individual demand for savings and loans derived in Lemma 1 and remark 1.

Note also that each St(R) is bounded above by
∑

i mini{wi, s}. It follows that each Bt(R) is also

bounded above. Hence, for R sufficiently large:

R
∑
t

St(R) > r
∑
t

Bt(R)

At R = 0 members are indifferent between saving inside or outside of the group. Whenever

savings inside of the group are positive, also borrowings can be positive and r
∑

tBt(R) ≥ 0.
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Hence, it must be the case that

R
∑
t

St(R)|R=0 = 0 ≤ r
∑
t

Bt(R)|R=0

Together with the fact that all functions are upper hemicontinuous and compact valued, these

results imply that an equilibrium exists.

Finally, as βi decreases, each Bt(R) becomes progressively flat, because the borrower’s

behavior becomes independent on R (and depends exclusively on r). At the same time, by

Lemma 1 St(R) is always (weakly) increasing. Therefore, as βi decreases for all i, r
∑

tBt(R)

becomes flat, while R
∑

t St(R) is strictly increasing and diverges to infinity. It follows that the

equilibrium must be unique. It also follows that at the unique equilibrium R
∑

t St(R) must cross

r
∑

tBt(R) from below.

Proof of Corollary 2

Proof. If all aggregate resource constraints are binding, then at R = R?:

R

k∑
t

St(R) = r

k∑
t

St(R)

k−t∑
s

(1 + r)s

Which implies that increasing all St(R) by the same factor does not change R?. At the

same time, higher St(R) relax the aggregate resource constraint. Net savers and borrowers

who are not rationed out are indifferent, while borrowers who are rationed out increase their

borrowing and are better off.

Proof of Proposition 2

Proof. We start by making few preliminary observations. First, the availability of funds within

the group is increasing in r. An increase in r causes three responses. Those who did not borrow

at all do not change their behavior. Some of the borrowers will decrease the amount borrowed,

but continue borrowing. Finally, some of the borrowers will switch from being borrowers to
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being savers. It follows that increasing r always (weakly) increases the availability of funds to

those who remain borrowers. Second, because the individual demands and supplies of funds are

are upper hemicontinuous in r (by the theorem of the maximum), also the funds available for

borrowing are upper hemicontinuous in r. Third, for r sufficiently large, nobody will want to

borrow and, quite trivially, the demand for loans of the entire group is satisfied.

For every agent i, call r?i this agent’s preferred r, which is computed solving for the trade

off between borrowing cheaply and being able to access funds. Note that this r?i may not exist

for all group members, but will exist for some member as long as f ′i,1(0) > 0 for some i. The

reason is that, by the uniform rule, as long as the group has some funds to distribute (i.e. as long

as there is one saver in the group), then everybody who demands funds will receive some. On

the other hand, if the agent expects to be a saver for every r, then r?i does not exist because this

agent is indifferent among all r.

If r′ > r?i , r
′′ > r?i , r

′ > r′′, and assuming that the agent is a borrower at r′′, the agent

prefers r′′ to r′, because conditionally on being able to meet his demand for loans, this agent

strictly prefers lower r. Similarly, if r′ < r?i , r
′′ < r?i , r

′ > r′′, and assuming that the agent

can borrow a positive amount at r′, this agent prefers r′ to r′′, because this agent will be able

to access more funds (remember that, by the uniform rule, more funds for the group imply more

funds available for each member of the group). Furthermore, this agent always prefers an r at

which she is a borrower to an r at which she is a saver, and is indifferent between all r for which

she is a net saver.

Hence, preferences are single peaked over r (and a Condorcet winner exists) as long as we

impose the following tie breaking rule: in case of indifference, an agent will vote for the option

that is closer to her peak. Note, however, that agents who are always savers do not have a peak

r. Depending on how these agents break their indifference, we may have different Condorcet

winner. Here we assume here that, if indifferent among all options, these agents do not vote, so

that the Condorcet winner is the median peak r. To conclude, note that every borrower prefers
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the s that generates more funds to any other s, because it allows to maintain the same level of

rationing but at lower r’s.
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