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DISSERTATION ABSTRACT

Christopher G. Gibbs

Doctor of Philosophy

Department of Economics

June 2013

Title: Heterogeneous Expectations, Forecast Combination, and Economic Dynamics

This dissertation examines the forecast model selection problem in economics

in both theoretical and empirical settings. The forecast model selection problem

is that there often exists a menu of different suitable models to forecast the same

economic variable of interest. The theoretical portion of this dissertation considers

agents who face this problem in two distinct scenarios. The first scenario considers

the case where agents possess a menu of different forecast techniques which includes

rational expectations but where the selection of rational expectations is costly.

The assumptions that are necessary to include rational expectations as a choice

are characterized and the equilibrium dynamics of a model under the appropriate

assumptions is studied and shown to exhibit chaotic dynamics. The second scenario

considers agents who possess a menu of econometric forecast models and examines

the equilibrium outcomes when agents combine the different forecasts using strategies

suggested by the forecasting literature. The equilibrium outcomes under these

forecasting assumptions are shown to exhibit time-varying volatility and endogenous

structural breaks, which are common features of macroeconomic data.

iv



The empirical portion of the dissertation proposes a new dynamic combination

strategy for the forecast model selection problem to forecast inflation. The procedure

builds on recent research on inflation persistence in the U.S. and on explanations

for the efficacy of simple combination strategies, often referred to as the forecast

combination puzzle. The new combination strategy is shown to forecast well in real-

time out-of-sample forecasting exercises.
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CHAPTER I

INTRODUCTION

This dissertation consist of three stand-alone pieces of research that are each

variations on a common theme: the selection and combination of forecasts. The

research topic covers a broad literature in economics that includes empirical and

theoretical research. This dissertation makes contributions to both literatures and in

many instances bridges the divide between dynamic macroeconomic theory and the

applied practice of forecasting.

The first chapter considers an expectation formation problem in the dynamic

macroeconomic theory literature. The literature considers deviations to standard

equilibrium outcomes that may arise when individual agents face a cost to forming

optimal or rational expectations. The goal of the literature is to endogenize the

rationality of the agents by explicitly modeling the fact that information and complex

computations are costly. The seminal paper in this literature is Brock and Hommes

(1997) who posit a model where agents possess a menu of ways to form expectations

that each have different implementation costs. Brock and Hommes show that when

heterogeneous agents are allowed to endogenously choose between costly rational

expectations or free naive expectations that the market outcomes can exhibit chaotic

dynamics.

However, the results obtained by Brock and Hommes raise questions about the

validity of assuming rational expectations, even for a cost, in a model where agents can

explicitly choose non-rational expectations. The problem is that rational expectations

requires agents to coordinate independently on a unique expectation to hold and

the traditional assumptions that underlie the coordination may not be satisfied in
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the presence of non-rational agents. I study the assumptions underpinning rational

expectations in the Brock and Hommes model to characterize the conditions under

which coordination is a strategic or rationalizable outcome of the model using the

eductive approach to studying expectations.

The eductive justification of rational expectations is that rational expectations

directly follows from assuming the common knowledge of rationality, meaning that

each agent is rational and knows that all other agents are rational and so on. I show

that conditions under which coordination is found to not be a consequence of the

common knowledge of rationality coincide with the conditions for chaotic dynamics

in the Brock and Hommes model. I then propose an extension to their model to

explore the impacts of coordination failures on equilibrium dynamics.

The second chapter considers multiple ways to form expectations in an applied

forecasting problem. In the practice of forecasting there often exists a plethora of

suitable ways to forecast the same macroeconomic variable of interest. It is also

common to find that among the suitable methods the efficiency or accuracy of the

different forecasts varies greatly over time. The instability and uncertainty that

surrounds many forecast methods has prompted practitioners to consider ways to

combine the many reasonable forecasts into one. A natural question that arises when

combining forecasts is whether or not there exist an optimal way to combine the

forecasts.

The pursuit of this question has led to an empirical puzzle. The best forecast

combination procedure in practice is often a simple average of forecasts. The result

is consistently obtained despite the fact that the theoretically optimal weights for a

combination strategy based on the properties of the data under study often deviate

substantially from the equal weights implied by averaging. The result is known as
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the forecast combination puzzle. In this chapter I propose a new dynamic forecasting

procedure for inflation that can robustly beat the simple average of forecasts by

exploiting a hypothesis for why the forecast combination puzzles exists and new

empirical finding from the inflation literature. The procedure is shown to create

robust and efficient forecasts on four different measures of inflation in real-time out-

of-sample forecasts.

The third chapter returns to dynamic macroeconomic theory and considers the

effects of the widespread use of forecast combination strategies, like those discussed

in Chapter 2, on the macroeconomy. I proposes an equilibrium concept where

homogeneous economic agents possess a menu of ways to forecast an endogenous

variable. The agents combine the forecasts using a forecast combination strategy

to create a single forecast of the endogenous variable of interest to make dynamic

decisions in the model.

The combined forecasts or expectations studied in the model are self-referential,

which allows for the exploration of possible unanticipated endogenous effects of

employing common forecasting strategies that cannot be captured in forecasting

exercises like those undertaken in Chapter 2. Forecast combination strategies are

largely atheortic with respect to economic theory and their justification lies solely on

their ability to perform well in “pseudo” out-of-sample forecasting exercises. Results

and conclusions based on these types of studies may lack external validity because

they do not capture the self-referentiality that exists in the macroeconomy, where

forecasts lead to changes in agent behavior that ultimately dictates the accuracy of the

forecast. I show that the consideration of self-referentiality of combined forecasts can

have significant implications for macroeconomic dynamics and model predictions.
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CHAPTER II

STRATEGIC EXPECTATIONS: FICTITIOUS PLAY IN A MODEL OF

RATIONALLY HETEROGENEOUS EXPECTATIONS

Introduction

The dominant paradigm in dynamic macroeconomics is to model homogeneous

forward-looking agents who possess rational expectations (RE). The calculation of

RE is intuitively a costly process due to the amount of information and number of

computations an economic agent must undertake to obtain a proper expectation. This

cost implies that under certain circumstances it may be utility or profit maximizing

to forgo calculating a rational expectation.

A model of rationally heterogeneous expectations (RHE) explicitly captures this

scenario by assuming that agents possess a menu of ways to form expectations

about the future value of endogenous state variables. The menu of ways to form

expectations, known as predictor rules, includes rational expectations along with

other less sophisticated rules. The predictor rules have different costs to implement

based on the information and cognitive power necessary to calculate an expectation.

The agents evaluate the predictors based on a fitness criterion that incorporates the

costs of using each rule. The agents endogenously select among the predictor rules

over time as the relative fitness of each rule changes.

The seminal paper in this literature is Brock and Hommes (1997), “A rational

route to randomness” (hereafter referred to as BH).1 BH models heterogeneous agents

1The RHE genesis is from the related idea of calculation equilibria proposed by Evans and Ramey
(1992 and 1998) who studied agents who pay a cost to incrementally improve an expectations.
They found that under certain circumstance it is optimal for the agents to not select fully rational
expectations.
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in a cobweb model who possess an explicit choice of rational expectations for a cost

or naive expectations for free. The agents select among the two predictor rules

based on the past observed net profits of each predictor. The model results in an

equilibrium price process that BH calls Adaptively Rational Equilibrium Dynamics

(ARED), which under certain conditions is shown to converge to a strange attractor

and generates chaotic price dynamics.

The necessary condition identified in the BH model for chaotic dynamics is that

the relative slopes of supply and demand must be greater than one. This condition

exactly coincides with the necessary and sufficient condition identified by Guesnerie

(1992) for the rational expectations equilibrium of the cobweb model to lack strong

rationality. The lack of strong rationality means that individual agents, who possess

only the common knowledge of rationality and full information about the parameters

of the model, cannot coordinate on a unique rational expectation to hold.2 The

coinciding conditions raise the question of whether the outcomes of the model are the

plausible result of individually rational firms competing in a market.

This is an interesting question because of the volume of research that has adopted

the RHE modeling structure. The basic RHE framework has been studied in asset

pricing models as in Brock and Hommes (1998), Gaunersdorfer (2000), and Brock,

Hommes, and Woo (2009); the New Keynesian model as in Branch and McGough

(2010); and in further detail in the cobweb model in works such as Brock, Dindo, and

Hommes (2006) and Branch and McGough (2004 and 2008). The common finding is

that heterogeneous agents with an explicit choice to hold costly rational expectations

or free naive expectations can lead to exotic or chaotic dynamics. In addition, there

exists a large literature that considers predictor rule selection without including the

2The existence of strong rationality is referred to as the eductive justification for rational
expectations.
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choice of a rational predictor such as in Chiarella and He (2003) and Branch and

Evans (2006 and 2007). The possible implausibility of the rational predictor based

on the lack of strong rationality provides justification for studying models that omit

rational expectations.

I employ the eductive learning approach of Guesnerie (1992) to study the

strategic motivation of predictor selection and of the rational predictor in the BH

model. The term strategic is used to connote that the model’s predictions are the

unique outcomes resulting from individually rational agents competing in a game.

I first establish that predictor selection requires a coordination assumption beyond

standard RE in order to be well-defined. I then show that the rational expectations

predictor, given this coordination assumption for selection, is not a strategic outcome

for a broad range of the relevant parameter space. The two results imply that ARED is

not justified as an outcome of rationally heterogeneous agents competing in a market,

but is the result of strong implicit assumptions that coordinate agents’ actions.3

The justification that BH is not a strategic outcome is based on analyzing an

agent’s predictor choice and expectation formation from a game theoretic perspective.

Therefore, I propose to use another concept from game theory, fictitious play, to add

a minimal amount of plausible strategic interaction into the BH framework to explore

the implications of a deviation from the standard RHE assumptions. I call this new

equilibrium concept Fictitious Play Equilibrium Dynamics (FPED).

Fictitious play is an adaptive learning approach to playing a game with an

unknown and possibly changing opponent. Fictitious play has agents form an

empirical distribution of the likely play of their competitors based on the history of

3Hommes and Wagener (2010) show that eductive stability of the underlying cobweb model
studied in BH does not imply evolutionary stability when heterogeneous agents select among different
predictor rules. But, the eductive stability of the BH framework itself and rational expectations is
not studied.
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past play. The agents then choose their strategy as a best response to the empirical

distribution. The concept was originally proposed by Brown (1951) as a plausible way

agents could compute and coordinate on a Nash equilibrium. More recent treatments

and variations of the approach are found in Fudenberg and Kreps (1993), Young

(2001), and Waters (2009).4

There are a number of advantages to adopting fictitious play as an expectation

and coordination device for heterogeneous agents in the BH framework. The first is

that fictitious play makes agents’ predictor selection explicitly strategic by requiring

agents to best respond to the expected contemporaneous actions of their competition.

This feature is inherent to the BH model, but as Branch and McGough (2010) point

out, has not been addressed in the literature. The second is that fictitious play is a

forward-looking selection mechanism. The agents try to anticipate the other market

participants’ expectations based on past observations. This builds on the work of

Brock, Dindo, and Hommes (2006) (hereafter Brock et al.), who study forward-looking

ARED under rational expectations by adding a learning component to their model.

The third is that fictitious play provides a plausible way agents could actually form

strategically motivated expectations, which may provide insight into explaining the

experimental results of “learning to forecast” studies such as Hommes et al. (2005 and

2007) and Hommes (2011). Finally, fictitious play has stable equilibrium dynamics

in the cobweb model if agents use the process to pick production quantities rather

than predictor rules as demonstrated by Thorlund-Petersen (1990).5 In addition,

Branch (2002) shows that the inclusion of a free learning-based predictor rule results

4Waters (2009) analyzes a fictitious play like mechanism for selecting predictor rules in the cobweb
model. The paper, however, does not use it to address the strategic issue of predictor rule selection.

5The fictitious play stability results demonstrated in Thorlund-Petersen (1990) is in a multi-player
Cournot model. The Cournot model is the finite player version of the cobweb model.
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in stable equilibrium dynamics. The stability of the dynamics, when learning is

present, suggests that the implicit coordination assumptions of the rational predictor

may be the main driver of the dynamics. However, I show this is not the case.

The equilibrium dynamics under fictitious play replicate many of the key features

of ARED in a forward-looking model with either heterogeneous or homogeneous

agents. The addition of fictitious play makes the firms’ beliefs a state variable of

the economy. The market structure is such that there is an incentive to deviate from

the predictor rule when a firm believes that the majority of market participants will

select it. These incentives result in a perpetual miscoordination between beliefs and

outcomes that helps to drive the equilibrium price dynamics.

The remainder of the paper proceeds as follows. Section 2 introduces the

BH model and discusses the strategic decision the agents face. Section 3 explores

the strategic justification of the BH model. Section 4 introduces Fictitious Play

Equilibrium Dynamics and demonstrates its properties. Section 5 concludes.

The BH Model

The model of BH is a linear cobweb model that describes the price dynamics of a

competitive market with a non-storable good that has a one-period production lag.6

The model features a continuum of identical firms who select among a fixed menu

of predictor rules to forecast price in order to choose a profit-maximizing quantity of

goods to supply to the market. The production decision is made at time t and the

goods are produced and sold at time t+ 1. The market demand at time t+ 1 is

D(pt+1) = A−Bpt+1; A > 0, B > 0. (2.1)

6The notation adopted follows Brock et al. (2006)
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The firms supply to the market based on their expectation of price at time t + 1,

which is denoted as pej,t+1, where j indicates the jth firm’s expectation. The firm’s

expectation is used to produce a profit-maximizing quantity according to

S(pej,t+1) = argmaxqj,t{pej,t+1qj,t − c(qj,t)}. (2.2)

The firms each face an identical cost function,

c(qj,t) =
q2
j,t

2b
, b > 0, (2.3)

which results in a unique profit-maximizing quantity of goods to supply to the market,

given an expectation of price:

S(pej,t+1) = bpej,t+1. (2.4)

The firms choose between two predictor rules to form a forecast of price in

each period t. The firms can choose the rational predictor, denoted p1,e
t+1 = pt+1,

for an explicit cost C ≥ 0 or a naive predictor, denoted p2,e
t+1 = pt, for free. The

cost is imposed to represent the extra computational power and information that is

necessary to calculate a rational expectation. The fraction of firms that choose the

rational predictor is denoted n1
t and the fraction of that choose the naive predictor is

denoted n2
t . Given the fractions of firms, the market clearing condition is

D(pt+1) = n1
tS(p1,e

t+1) + n2
tS(p2,e

t+1). (2.5)
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Strategic Decisions

There are potentially two strategic decisions that firms face each period. The

firms must select a predictor rule, and contingent on the selection of the rational

predictor, they must select a rational expectation. The choice of a predictor is

strategic because of the explicit cost of choosing the rational predictor. The cost

creates a trade-off between investing resources to calculate a correct forecast and lost

profits that may occur due to forecast errors. The size of the forecast errors depend on

market volatility, which depends on agents’ predictor choices. The rational predictor

is always a strategic expectation in that it must take into account both the naive and

rational forecasts of the other firms in order to determine the correct expectation.

The BH framework introduces a behavioral assumption that removes the

strategic element from the predictor selection decision. The firms ignore the strategic

aspect of selecting a predictor rule by being backward-looking. The firms choose

predictor rules by comparing the past realized profits of each rule, net the cost of

implementation. The past profit of each predictor is given by

πit = π(pt, p
i,e
t ) =

b

2
pi,et (2pt − pi,et )− Ci (2.6)

for i = 1, 2 and is considered public information. The past profits are called the

fitness measure.

The fraction of firms that choose each predictor is determined by the fitness

measure and a discrete-choice econometric model:

nit =
eβU

i
t∑2

i=1 e
βU it

, (2.7)
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where U i
t , the fitness measure, is U1

t = π1
t − C or U2

t = π2
t . The parameter β is

called the intensity of choice parameter and it governs the relative size of the fraction

of firms that choose each rule based on the realization of the fitness measure. The

intensity of choice parameter is a proxy for the firms’ uncertainty over their choices.

If β is large, then more firms use the rule with highest past profit. BH closes the

model by defining mt = n1
t−n2

t and substituting in the predictor rules into the market

clearing condition (2.5) to yield the following system of equations

A−Bpt+1 =
b

2
(pt+1(1 +mt) + pt(1−mt) (2.8)

mt+1 = Tanh[
β

2
(
b

2
(pt+1 − pt)2 − C)]. (2.9)

BH defines equations (2.8) and (2.9) as Adaptively Rational Equilibrium Dynamics

(ARED).

The ARED system has a unique steady-state

E∗ = (
A

B + b
,Tanh[−βC

2
]) (2.10)

and possesses the following stability properties:

Result 1: (BH Theorem 3.4 ) Assume that the slopes of supply and demand satisfy

b/B > 1

i. When the cost of the rational predictor is C = 0, the steady-state E = (p̄, 0) is

globally stable.

ii. When the cost of the rational predictor is C > 0, then there exists a critical

value β1 such that for 0 ≤ β < β1 the steady state is globally stable, while for
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β > β1 the steady state is an unstable saddle path with eigenvalues 0 and

λ(β) = − b(1−m∗(β))

2B + b(1 +m∗(β))
.

At the critical value β1 the steady state value m∗(β1) = −B/b

iii. When the steady state is unstable, there exists a locally unique period 2 orbit

{(p̂, m̂), (−p̂, m̂)} with m̂ = −B/b. There exists a β2 > β1 such that the period

cycle is stable for β1 < β < β2.

Result 2: (BH Theorem 3.2 ) For β = +∞, even when the market is locally

unstable (i.e. b/B > 1) and when the cost of the rational predictor is C > 0, the

system always converges to the saddle point equilibrium steady state E∗.

Furthermore, if β is set to a significantly large value, C > 0, and b/B > 1, then

ARED may exhibit chaotic price dynamics. Examples of the dynamics are given in

Section 4.

The Eductive Justification of the Rational Predictor

The rational predictor is inherently a strategic calculation where rational firms

must anticipate the combined effect of all agents’ expectations on the market price to

determine a correct expectation to hold. The strategic justification of this calculation

is to determine whether the agents are capable of independently coordinating on the

RE price possessing only the common knowledge of rationality (CK):

Common Knowledge of Rationality: The individual knowledge by a rational

firm of the structure of the economy and that all other firms are rational and know the
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structure of the economy and that all firms know that the other firms know and so on.

A rational expectation is strategically or eductively justified if the agents, given the

stated assumptions, can coordinate on a unique expectation to hold through iterated

deletion of strictly dominated strategies. In what follows, I present the basic results

from Guesnerie’s (1992) analysis of the cobweb model without predictor rule selection

to motivate and demonstrate the tools necessary to analyze the more complicated

case.

The basic cobweb model is composed of a linear demand and supply functions

given by equations (2.1) and (2.4). The unique rational expectations equilibrium

(REE) of the model is

p̄ =
A

B + b
. (2.11)

The REE is strategically or eductively justified if the following definition holds:

Strongly Rational: A rational expectation is strongly rational if it is the unique

rationalizable expectation for firms to hold assuming the common knowledge of

rationality.

The strong rationality of an expectation is determined by analyzing the strategic

choices of agents as a one period normal-form game. The cobweb model can be

formulated as a game with a continuum of players on the unit interval, J = [0, 1]. The

strategy set of the players is all feasible prices P = [0, A/B] such that an individual’s

price expectation is pe ∈ P . The aggregate expected price in the market is
∫
pejdj,

which given equation (2.4) results in a market supply of b
∫
pejdj and an equilibrium
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price p = D−1(b
∫
pejdj). The jth firm’s best response in this game is to pick pe such

that pe = p.

The agents choose a best response using iterated deletion of strictly dominated

strategies. Given the common knowledge of rationality, it follows that each firm only

chooses strategies that are best responses to the possible profile of strategies other

rational firms would actually play. Therefore, there may exist a subset of strategies

that are never played because they are never best responses. If the firms eliminate

these strategies, then they have a smaller feasible strategy set P 1 ⊂ P from which to

choose. The smaller strategy set P 1, however, can be put through the same deduction

and the firms may again be able to discard strategies to arrive at P 2 ⊂ P 1 ⊂ P . If

firms continue this line of reasoning, it may be possible to reduce the strategy set to

P∞ = pe, which implies that each firm will conclude there is only one price expectation

a rational firm would choose. For the cobweb model, if P∞ = p̄, it is said that p̄ is

strongly rational.

Result 3: Guesnerie (1992): Proposition 1 - Given equations (2.1) and (2.4), i)

if b/B < 1, then REE of the cobweb model is strongly rational. ii) If b/B ≥ 1, then

the REE of the cobweb model is not strongly rational and the set of rationalizable

prices is P .

Therefore, in the basic cobweb, the REE is not a consequence of strategic interaction

when b/B ≥ 1.7

7The term rationalizable means that a strategy is not strictly dominated by another feasible
strategy.
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The Common Prior

The assumption necessary for coordination of rational expectation in the absence

of strong rationality is that firms hold model consistent beliefs or beliefs that are in

line with ”the relevant economic theory,” as stated in Muth (1961). This belief is

called by Aumann and Dreze (2008) the common prior belief (CP):

Common Prior Belief: The strategy choices of different types of agents are

common knowledge.

The CP is a coordinating assumption akin to the law iterated expectations for

heterogeneous agents, where firm j’s expectation of firm k’s expectation of price

is EjEk[p] = Ej[p] for j 6= k.8 If agents possess the common knowledge of

rationality and the common prior belief, they can select the REE price from the

set of rationalizable prices with the expectation that the other firms will make the

same choice.

Strategic Interaction in ARED

The cobweb game with predictor selection is more complicated. The firms in the

expanded game have two choices: they must select a predictor and then choose an

expectation of price. The predictor choice can be thought of as the agents choosing

a type. If agents choose the rational predictor, then they play the cobweb game

as described in the previous section. If they choose the naive predictor, then they

abandon strategy and choose last period’s price. The CP assumption in this context

8The idea of an analog to the law of iterated expectations for heterogeneous agents is also explored
in Branch and McGough (2009) in the context of the New Keynesian model.
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is not sufficient to motivate predictor rule choices or the rational predictor because

the agents cannot always deduce the distribution of player types.

To illustrate the issue, suppose that the firms who select the rational predictor

are endowed with CK and CP, where CP imparts the knowledge of each type’s

strategy, but does not include information about n1
t or n2

t , the fraction of types.

Knowledge of the fraction of firms that choose each rule is necessary to calculate a

rational expectation and to choose a predictor rule. Under certain conditions, without

knowledge of the fractions, the firms cannot deduce a unique predictor to select. Each

predictor or firm type is rationalizable given the other agents’ potential actions. To

formalize the argument, let the fraction of firms who choose the rational predictor be

n, the fraction of naive firms be 1−n, and let the naive predictor forecast be denoted

p−1.

Theorem 1: Suppose that the firms are endowed with CK and CP. The firms can

deduce that

i. if |p̄ − p−1| ≤ B
B+b

√
2C
b

, then n = 0 and p2,e = p−1 is the unique rationalizable

predictor choice.

ii. if |p̄−p−1| ≥
√

2C
b

, then n = 1 and p1,e = p is the unique rationalizable predictor

choice.

iii. if |p̄ − p−1| ∈ ( B
B+b

√
2C
b
,
√

2C
b

), then both p2,e = p−1 and p1,e = p are

rationalizable.
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Proof: The firms are profit maximizers and will choose the predictor rule with the

highest profit. The rational predictor under ARED assuming CK and CP is

p =
A− (1− n)bp−1

B + bn
. (2.12)

Equating profits of the predictors for an unspecified n results in

π1 = π2

b

2
p2 − C =

b

2
p−1(2p− p−1).

Solving the equation the for p−1 and substituting in (2.12) yields

p1 − p̄ = ±B + bn

B + b

√
2C

b
,

where p̄ = A/(B + b). (i) If |p̄− p−1| ≤ B
B+b

√
2C
b

, then the rational predictor is never

more profitable than being naive, therefore all agents choose to be naive and n = 0.

(ii) If |p̄ − p−1| ≥
√

2C
b

, then the naive predictor is never more profitable than the

rational predictor and all agents will choose n = 1. (iii) If |p̄−p−1| ∈ ( B
B+b

√
2C
b
,
√

2C
b

),

then there exists n ∈ (0, 1) such that π1 = π2. Therefore, the rational and naive

predictors are each rationalizable. Q.E.D.

The agents are unable to determine the contemporaneous strategy choices of the other

firms for a range of feasible prices because if the strategies are chosen in exactly the

right proportions, then a firm is indifferent between the rational or naive predictors.

Any n ∈ [0, 1] could result in the model because there is no way to coordinate which

firms choose the rational predictor and which firms chooses the naive predictor to
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enforce the correct fraction given a realization of p−1 in the relevant range.9 Therefore,

the standard assumptions invoked when using rational expectations are not sufficient

to justify the firms’ deduction of n or the realization of n as a market outcome when

there exists rationally heterogeneous expectations.10

Rationally heterogeneous expectations requires an additional assumption to

justify the knowledge of n for the range of feasible prices where there exists

heterogeneous predictor choices. We define this assumption as the non-rational agent

common prior belief (NACP)

Non-rational Agent Common Prior: The fraction of firms who choose the

rational predictor is n and the selection of the rational predictor imparts common

knowledge among the rational firms of n.

The NACP assumption is similar to the notion of a Correlated equilibrium, where

firms are told a strategy to choose and it is rational for a firm to choose that strategy

given all players follow their instructions.11 The NACP assumption is invoked in the

BH model by assuming it is common knowledge that predictor selection is based on

past profit and knowledge of the discrete choice rule given by equation (2.7) that

governs the precise fraction of firms that choose each rule.

The knowledge of n is necessary to form a rational expectation, which implies

that NACP is a necessary condition to form a rational expectation in ARED. Thus,

9The third case is an example of a mixed strategy equilibrium. However, the playing of mixed
strategies is not permitted.

10Note that this is a stronger result than that of strong rationality because it holds for all b/B.

11See Aumann and Dreze (2008) for more information on the relationship between Correlated
equilibria and RE.
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the next question is to determine whether CK and NACP are the only necessary

conditions to make the rational predictor a strategic outcome of the model.

Theorem 2: Given CK and NACP, the rational predictor of ARED is i) strongly

rational if nb/B < 1. ii) The rational predictor is not strongly rational if nb/B ≥ 1

and the set of rationalizable prices is P0 = [0, (A− b(1− n)p−1)/B].

Proof: The agents who choose the RE predictor possess CK and NACP, which

implies they know market clearing is given by

A−Bp = nbpe + (1− n)bp−1

Market clearing can be rewritten as

p = µ0 + µ1p
e,

where µ0 = (A − b(1 − n)p−1)/B and µ1 = nb/B. The agents possess CK, so the

result is obtained by applying Result 3. Q.E.D.

The intuition for theorem 2 is that the rational agents know at a minimum

(1 − n)bp−1 of goods will be supplied to the market. This implies that the highest

price the market will obtain is pH = D−1((1 − n)bp−1), which results in an initial

feasible strategy set of P0 = [0, pH ]. The agents can perform iterated deletion of

strictly dominated strategies by exploring whether pH is ever a best response. If the

agents that choose the rational predictor expect pH , then the price next period is

p1 = D−1(nbpH + (1 − n)bp−1). If nb/B < 1, then 0 < p1 < pH and all pe < p1,
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such that pe ∈ P0, are revealed to never be best responses. This results in a smaller

feasible set P1 = [p1, p
H ] of possible best responses. The agents can continue the

deduction by evaluating whether p1 is a best response. The firms will find that this

again leads to the elimination of more strategies. If the deduction is continued it will

eventually converge to the rational expectation price forecast. If however nb/B ≥ 1,

then p1 ≤ 0 and no prices are eliminated for being a best response. The entire set P0

is rationalizable.

The conditions of Theorem 2 for strong rationality are less restrictive than in

the standard case presented in Result 3. For n < 1, the firms can coordinate on

a rational expectation for values of b/B where coordination is not justified in the

basic cobweb framework. This has a nice economic intuition because as n increases,

the number of agents whose forecasts are known with certainty decreases. The more

uncertainty that enters the market, the harder the agents find it to coordinate on

a single rational expectation. However, this result does not necessarily imply that

the rational predictor is strategically justified for a range of b/B that greatly exceeds

Result 3 because n is dynamic in ARED. If b/B > 1, then the instability of the

price dynamics will cause n to fluctuate between zero and one. The fluctuations

may lead to periods where coordination is not strategically justified. The likelihood

of unjustified coordination rises with the instability of the dynamics and with the

likelihood of chaotic dynamics.

Theorems 1 and 2 show that CK, CP, and NACP are the implicit coordination

assumptions that are necessary to coordinate actions in ARED. The ARED framework

is not well defined under only the CK assumption by Theorem 1, and the rational

predictor is in general not strategically justified under CK and NACP by Theorem 2 in

the relevant parameter space. Hence, there is in general no strategic justification for
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the interesting ARED outcomes in the current modeling framework. The dynamics

are not the result of rationally heterogeneous firms competing in a market, but

they are the manifestation of strong coordinating assumptions. This implies that

the inclusion a rational predictor rule is no more justified than the inclusion of a

heuristic, econometric, or boundedly rational rules on the menu of predictor choices

to coordinate agent behavior.

Strategic Expectations

The inclusion of the rational predictor, however, is a natural modeling choice in

dynamic macroeconomics. Therefore, in this section I propose an extension to ARED

that adds a strategic element to the model while retaining as much of the original

structure as possible. The dynamic properties of the extension are characterized and

compared to ARED.

The CK and CP assumptions are standard in macroeconomics and are retained

in what follows. The NACP is non-standard and I focus my attention on adding

strategic interactions to model this assumption. I modify the NACP assumption

employed in BH by assuming that firms engage in fictitious play. The firms construct

an empirical estimate of the distribution of predictor choices in an average period to

create an expectation of the contemporaneous predictor rule choices that will take

place in the current period. The firms then choose a predictor rules as a best response

to this expectation.

Fictitious play is added to the existing framework by assuming firms estimate

the difference in the fraction of firms who choose the rational and naive predictors.

The firms use the estimate to pick a best response and if they choose the rational

predictor, they use the estimate of mt along with CK and CP to form an expectation.
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The firms estimate mt using a simple learning rule

ζt+1 = ζt + γ(mt − ζt), (2.13)

where ζt+1 is the estimated difference in the fraction of firms that choose each

predictor and 0 < γ ≤ 1 is the gain parameter that governs the weight placed on

new observations.12 The firms use the estimate to calculate the expected profitability

of the two predictor rules and the predictor with the highest expected profit is chosen.

This best-response assumption requires the firms to be forward-looking, which

introduces a simultaneity issue into the BH framework when the cost of the rational

predictor is positive. The firm must know the rational forecast in order to know

whether it is profitable to pay the cost and choose the rational predictor. This is a

known issue of dynamic predictor selection models and is addressed in Brock et al.

(2006), who investigate forward-looking ARED under rational expectations. I employ

a similar framework to the one they developed to overcome the simultaneity issue.

The Expert Manager

Brock et al. (2006) posits the existence of a single expert manager who has the

ability to form rational expectations and charges the firms a fee for her service. I

modify this concept and assume that there exists a continuum of expert managers

on the unit interval that have structural knowledge about the economy equivalent

to the CK and CP assumptions. An expert manager can be hired by the firm for

the fee C ≥ 0 in order to calculate an expert prediction. An expert manager can

only provide services to one firm each period. There is perfect competition among

12The gain parameter is a common feature of learning models in macroeconomics. For a more in
depth discussions see Evans and Honkapohja (2001).
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the managers and any firm can hire any manager, which results in a uniform fee

that is equal to the expert managers’ marginal cost of producing a prediction C ≥ 0.

The expert managers possess CK and CP which implies that their price expectations

are coordinated given a shared belief of ζt, the fraction of firms believed to hire an

expert manager in each period. The fraction of firms that hire an expert manager and

the expected net profits of doing so are public information.13 The information can

be thought of as provided by a government agency that monitors the market. The

fraction of firms that hire an expert manager in a given period is determined by the

discrete-choice random-utility framework of the original BH model given by equation

(2.7).

The expert managers use the belief ζt, CK, and CP to produce the following

price prediction:

p1,e
M,t+1 =

2A− bpt(1− ζt)
2B + b(1 + ζt)

. (2.14)

An expert manager’s prediction is identical to the rational predictor of ARED, except

that mt is replaced with ζt. An expert manager is acting strategically in using ζt to

form a forecast by attempting to predict the contemporaneous strategy choices of

the other firms and the effect those choices will have on realized profits. The expert

managers’ prediction is used to calculate the expected profits of paying for their

13An additional assumption is made in Brock et al. (2006) that the fee is unknown to firms to
prevent the firms from reverse engineering the price forecast from the advertised expected net profit.
I omit this assumption because the reverse engineering violates the spirit of the cost associated with
rational expectations. A firm that reverse engineers the price would have to pay the same cost as
hiring a manger to do so.
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service or remaining naive using the following equations:

π1,e
t+1 =

b

2
(
2A− bpt(1− ζt)
2B + b(1 + ζt)

)2 − C (2.15)

π2,e
t+1 =

b

2
pt(

2A− bpt(1− ζt)
2B + b(1 + ζt)

− pt). (2.16)

The resulting expected net profits are advertised to the firms and used as fitness

measure to make a hiring decision.

As acknowledged in Brock et al. (2006), the expert manager is a limited

description of market behavior. But, given the difficulties that exist with modeling

heterogeneous agents, it is an interesting theoretical benchmark to consider and a

necessary assumption in order to make direct comparisons to past work.

Fictitious Play Equilibrium Dynamics

The expert manager’s profit advertisements, the predictor P 1,e
M,t+1, the discrete

choice model, and the learning rule together form Fictitious Play Equilibrium

Dynamics (FPED):

A−Bpt+1 =
b

2
(
2A− bpt(1− ζt)
2B + b(1 + ζt)

(1 +mt) + pt(1−mt)) (2.17)

ζt+1 = ζt + γ(mt − ζt) (2.18)

mt = Tanh[
β

2
(
b

2
(
2A− bpt(1− ζt)
2B + b(1 + ζt)

− pt)2 − C)]. (2.19)

FPED has two state variables pt and ζt. The introduction of fictitious play makes

market beliefs, as opposed to market outcomes, a state variable of the economy.
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The switch from outcomes to beliefs only introduces subtle changes to the

dynamics properties of the market for small values of the intensity of choice parameter.

Fictitious Play Equilibrium Dynamics retains the same unique fixed point as ARED

E∗ = (p∗, ζ∗) = (p̄,Tanh[−βC
2

]) (2.20)

and it possesses the following stability properties.

Theorem 3: Assume that the slopes of supply and demand satisfy b/B > 1 and

0 < γ ≤ 1

i. When the cost of the rational predictor is C = 0, the steady-state E = (p̄, 0) is

locally stable.

ii. When the cost of the rational predictor is C > 0, then there exists a critical

value β1 such that for 0 ≤ β < β1 the steady state is locally stable, while for

β > β1 the steady state is an unstable saddle path with eigenvalues 1− γ and

λ(β) = −b(B + bζ∗(β) + (b+B)Tanh(βC/2))

B(b+ 2B + bζ∗(β))
.

At the critical value β1 the steady-state value ζ∗(β1) = −B/b

iii. When the steady state is unstable, there exists a locally unique period 2 orbit

{(p̂, ζ̂), (−p̂, ζ̂)} with ζ̂ = −B/b. There exists a β2 > β1 such that the period

cycle is stable for β1 < β < β2.

The proof appears in the appendix. Result 1 and Theorem 3 reveal that the FPED

has similar dynamics to ARED locally and for small values of β. However, The two

systems diverge globally and for large values of β, when β approaches positive infinity.
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Theorem 4: Assume that the slopes of supply and demand satisfy b/B > 1, C > 0

and β = +∞, then E = (p̄,−1) is an unstable saddle path if 0 < γ < 1 and globally

stable if γ = 1.

Theorem 4 illustrates the effect that strategic interaction has on coordination. When

0 < γ < 1, the firms have uncertainty over the contemporaneous choices of the other

firms in the market, which is grounded in past observed behavior. The firms observe

heterogeneous predictor rule selection between periods and they posit that there may

exist heterogeneous predictor rule selection within each period. The best response of

the firms is to incorporate this uncertainty into their expectations. The uncertainty

drives a wedge between beliefs and actual actions that can never be overcome. It is

only when the firms discard information (i.e. γ = 1) that the uncertainty is removed

and coordination is achieved.14 The same intuition of perpetual miscoordination of

belief and actual actions taken in the market holds in the case with finite-β.

Chaotic Dynamics

The hallmark of ARED is the chaotic price dynamics that arise for large but

finite values of β. Similar price dynamics are obtained for FPED. The FPED system,

however, has two bifurcation parameters that govern dynamics in the model: the gain

parameter γ and the intensity of choice parameter β. I demonstrate the effect of both

parameter on equilibrium dynamics.

14In the limiting case, the miscoordination is perhaps an obvious error on the part of the firms
and expert managers, but the solution to the error is not straightforward. An expert manager that
recognized the mistake and attempts to make a rational deviation will find themselves in another
eductively unjustified decision, where they must consider the possibility that other expert managers
have noted the same relationship and are trying to exploit it.
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Figure 1 depicts the bifurcation diagrams for β with fixed values of γ, along with

the bifurcation diagram for ARED (panel (a)). The figures demonstrate the similar

equilibrium dynamics of ARED and FPED around the initial bifurcation, β < β2, as

described in Theorem 3 and Result 1. The differences between plots (b), (c), and (d)

are generated by choosing different values for the gain parameter γ. The choice of γ

affects dynamics most when β is large. The γ parameter can cause the appearance

of stable cycles for ranges of the parameter space that are chaotic for ARED and it

causes the variance of the overall price process to increase.15 The dynamics portrayed

in Figure 14 lie in between the results of the rational forward-looking agents of Brock

et al. (2006) and the backward-looking agents of ARED depending on the gain. The

rational agents of Brock et al. (2006) produce the same initial dynamics for small

values of β, but remain in a stable 2-cycle for large values of β. FPED mimics ARED

for low values of γ by generating chaotic and complex dynamics.16 But as γ increases,

FPED can transition into stable cycles similar to Brock et al. (2006).

Figure 2 depicts the bifurcation diagrams for γ with fixed values of β. The

main diagram of interest is (c), which shows the dynamics of FPED when β = +∞.

The dynamics of (c) are generated by homogeneous firms who believe that there

may exist heterogeneous predictor choices. These dynamics are achieved with no

explicit or implicit randomness in the system. The perpetual miscoordination of

belief is the primary driver of the outcome. The agents always believe there is a

chance of heterogeneity in predictor choices within each period because they observe

heterogeneity between periods. The chaotic dynamics witnessed in this case are

15I forgo formal demonstrations of sensitive dependence on initial conditions for FPED because
the chaotic dynamics that arise in the cobweb model is a well-documented phenomena.

16The dynamics in plot (d) appears as if the model has not converged to the attractor. This is not
the case. Further analysis reveals there are multiple coexisting attractors that fill out the diagram
if plotted.
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unique to FPED. No other known version of the BH model generates chaotic dynamics

in the β = +∞ case without the introduction of explicit random shocks.

The simulations show that rational routes to randomness remain when the

market is composed of forward-looking and strategic agents endowed with the usual

- CK and CP - rational assumptions. The introduction of a learning rule to motivate

the expert manger’s or “rational” predictor does not enforce stability in the market.

It instead adds a new plausible dimension of miscoordination that was missing from

the model that can drive and justify the exotic equilibrium price dynamics.

Forecast Errors

The perpetual miscoordination between beliefs and actions highlighted in the

β = +∞ case is the key feature of FPED. The price dynamics of FPED are justified

as the consequence of miscoordination among strategic firms. The miscoordination,

though, does lead to perpetual incorrect predictions of the fraction of firms that choose

each predictor and incorrect expert forecasts. This raises the question as to whether

the expert manager would want to change the gain parameter on the fictitious play

learning rule or the entire rule in response to forecast errors.

A natural reason to desire a change in the learning rule is if the forecast errors

are systematic. FPED can produce systematic and non-systematic forecast errors for

the learning rule and the expert manager’s prediction. Simulations show that whether

the forecast errors are systematic is dependent on the parameterization of the model.

Figure 15 shows examples of non-systematic and systematic forecast errors for

a single parameterization of FPED with two different gain parameters. The figures

in column (a) depict the non-systematic forecast errors from the expert manager’s

prediction when γ = 0.95. The top graph (a.1) plots (pt,mt) and (pt, ζt) to
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demonstrate the strange attractor of FPED under this parameterization to illustrate

the underlying reason the forecast errors are not systematic, which is mathematical

chaos. The plot shows the time path of (pt,mt) and (pt, ζt) for 20,000 periods after

an initial 10,000 iterations of FPED. The last two graphs of column (a) show the

forecast errors of the expert managers’ price prediction and the forecast errors of

the prediction for the difference in the fraction of predictors chosen over time. The

forecast errors for the learning rule appear to almost be white noise (panel (a.3)). The

mean forecast error of the learning rule is zero and the first autocorrelation is 0.0776,

which suggest there is not a strong empirical reason to alter the rule. The forecast

errors of the expert forecast are also mean zero and have a first autocorrelation of

0.2791. Ironically, the higher autocorrelation in the expert managers’ price forecasts

provides empirical justification for abandoning rational expectations (CK and CP)

over fictitious play learning.

The figures of column (b) show the opposite result for the same parameterization

of the model with γ = 0.5. The forecast errors are systematic and the expert

manager may indeed wish to alter the forecast rule. This line of reasoning adds a

secondary layer of dynamic predictor selection to the model, which further illustrates

the complexity of heterogeneous expectations. Further exploration of these issues

is interesting, but it is beyond the scope of this paper. My goal is only to

provide evidence of the strategic issues that are present in rationally heterogeneous

expectations models.

Conclusion

The selection of predictor rules in a model of rationally heterogeneous

expectations is inherently motivated by strategic interaction. A firm considers
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alternatives to costly rational expectations because there may exist a profit

opportunity to use a free naive predictor depending on the other firms’ predictor

choices. However, the introduction of an explicit choice of rational or non-rational

expectations requires that additional coordination assumptions be made to coordinate

agent behavior. The coordinating assumptions remove the underlying strategic

justification for the model’s outcomes.

I demonstrate this fact by showing that the standard rational expectations

assumptions are insufficient to allow agents to deduce the distributions of predictor

rules chosen under certain conditions. The model requires a non-rational agent

common prior belief that assigns each agent a predictor rule to choose and which

imparts the knowledge of the distribution of predictor rules chosen in the market.

Only with this information can a well-defined predictor rule choice be made and a

rational expectation calculated. I then show that the rational expectations predictor

is not strategically justified in a relevant range of the parameter space, even if

agents possess the non-rational agent common prior belief in addition to the common

knowledge of rationality. The two results imply that the standard dynamic predictor

selection framework that results in chaotic dynamics is not justifiable as the market

outcome of competing, strategic, rationally heterogeneous firms.

The introduction of a minimal amount of strategic interaction into the BH model

through the introduction of fictitious play is shown to not alter the basic conclusions of

the BH model. There still exist rational routes to randomness. Fictitious play actually

increases the range of the known parameter space for which these price dynamics are

possible. The impact of fictitious play is to change the justification for the price

dynamics. The model’s outcomes under Fictitious Play Equilibrium Dynamics are

the result of strategic behavior and perpetual miscoordination between firms’ beliefs

30



of the contemporaneous actions of their competitors and the actual actions taken in

the market.

Supplementary Material and Proofs

Theorem 3 Proof: The proof follows closely to the proof of Result 1 from Brock

and Hommes (1997) as the two systems are very similar.

i) When C = 0 the steady state is E = (p̄, 0). The eigenvalues of the system are

−1 < λ1 = −b/(b + 2B) < 0 and λ2 = 1− γ < −1. Therefore it is locally stable. ii)

For C > 0, the first eigenvalue is given by

λ1(ζ) = −b(B + bζ∗(β) + (b+B)Tanh(βc/2))

B(b+ 2B + bζ∗(β))
,

while λ2 remains the same. As β increases from 0 to infinity, ζ∗(β) = Tanh(−βc/2)

decreases from 0 to -1, which implies that λ1(ζ) decreases from −b/(b + 2B) to

−b/B < 1. Thus, the steady state becomes an unstable saddle point for some critical

value β1. For β = β1, the eigenvalue λ1 = −1, which implies ζ∗(β1) = −B/b.

iii) For β > β1 a 2 - cycle is created as in ARED. The symmetry of the system

implies that the 2 - cycle is of the form {(p1, ζ
∗), (p2, ζ

∗)} where p2 = −λ1(ζ)p1. Let

p̂ = p1 = −p2 > 0 and it must be the case that Tanh(β/2(2bp̂2 − c)) = −B/b. This

equation has a positive solution when β > β1. The local uniqueness and stability of

the 2 -cycle are established using the center manifold reduction technique described

by Wiggins (1990). The approximate center manifold is
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ut+1 = f(ut)

= −
b
(
B + (b+B)Tanh

[
cε
2

])
B(b+ 2B)

ut + Ωu3
t +O[u]4

where Ω =
b2(b+B)2εSech[ cε2 ]

3
(B(2B+b(2+γ))Cosh[ cε2 ]+b(b+B(1−γ))Sinh[ cε2 ])
B(b+2B)3(2B+bTanh[ cε2 ])

and ε is substituted

for β1. Stability of the cycle is given by checking that a = 1
2
f ′′(0) + 1

3
f ′′′(0) > 0,

which holds at β1 if b > B. Q.E.D.

Theorem 4 Proof: There are two cases to consider:

Case 1: Suppose that γ = 1 and consider an initial point E1 = (p1, ζ1) 6= E∗.

If γ = 1, then ζt+1 = mt and if β = +∞ then mt takes only the values −1 and 1.

The naive predictor is unstable so for any E1 6= E∗ the price will eventually satisfy

|p̄−pt| > (B+b(1+ζt)/2)/(B+b)
√

2C/b, at which point mt = 1 because π1,e
t+1 > π2,e

t+1.

The next period the price is pt+1 and ζt+1 = mt = 1. If the expert prediction has the

highest expected profit and is chosen by all agents, then the system is mapped onto E∗

because p1,e
M,t+2 = p̄ and ζt+2 = mt+1 = 1. This occurs if b/2p̄2−C > b/2pt+1(2p̄−pt+1),

which holds if pt+1 > (B+b(1+ζt)/2)/(B+b)
√

2C/b. Now pt+1 is the market outcome

of all firm using the expert prediction, so either ζt = mt−1 = 1 and pt+1 = p̄ and the

system is already at E∗ or ζt = mt−1 = −1, which implies |p̄ − pt+1| > |p̄ − pt| by

b/B > 1 and the system is mapped to E∗ in period t+ 2.

Case 2: By Theorem 2 the naive predictor is always chosen when price is in a

neighborhood of the steady state and the naive predictor is unstable when b/B > 1.

The stable arm of the unstable saddle path is defined by the set Esa = {(p̄, ζ)|ζ ∈
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[−1, 1]}. If the price pt = p̄, then the naive predictor is chosen and mt = −1. This

follows from the tie-breaking rule assumed in BH, where firms choose to be naive if

profits are equal. The naive predictor is chosen every period and the price remains

at p̄. For any initial ζ, the learning rule converges asymptotically to ζ∗ = −1 for

0 < γ < 1.

The steady state is not globally unstable because for any initial p0 >
√

2C/b

with γ0 = 1, the rational predictor will be chosen and the steady state obtained. But

for initial points not mapped onto steady state in the next period, there are no paths

to steady state. To show that there are no other paths to E∗ consider an initial point

E1 = (p1, ζ1) such that p1 6= p̄ and p0 < (B + b(1 + ζ1)/2)/(B + b)
√

2C/b of FPED.

Without loss of generality suppose that E1 is one iteration from being mapped onto

E∗ i.e. E1 is the last iterate on a path to E∗. This implies that E1 = (p1, 1) since

p1,e
M,t+1 = p̄ if and only if ζt = 1. But if ζ1 = 1, then mt−1 and ζt−1 = 1 because

ζt = ζt−1 + γ(mt−1 − ζt−1), 0 < γ < 1, and mt−1 can only take on the values of 1 and

−1. And if ζt−1 = 1 and mt−1 = 1, then p1 = p̄ which is a contradiction. Therefore,

there does not exist a path from some E 6= E∗ to E∗. Q.E.D.
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(a)

(b)

(c)

(d)

FIGURE 1. Bifurcation diagrams with respect to β. (a) is ARED. (b) is FPED
with γ = 0.95. (c) is FPED with γ = 0.5. (d) is FPED with γ = 0.1. The other
parameters of the model are A = 0, B = 1, b = 2, C = 0.1.
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(a)

(b)

(c)

FIGURE 2. Bifurcation diagrams with respect to γ. (a) is FPED with β = 20. (b) is
FPED with β = 60. (c) is FPED with β = +∞. The other parameters of the model
are A = 0, B = 1, b = 2, C = 0.1.
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(a.1) (b.1)

(a.2) (b.2)

(a.3) (b.3)

FIGURE 3. The forecast errors of the fictitious play learning rule (2.13) and the
expert managers’ predictions for β = 60, A = 0, B = 1, b = 2, C = 0.1 and γ = 0.95
(column (a)) and γ = 0.5 (column (b)). (a.1) and (b.1.) are the attractors of FPED.
Both (pt,mt) and (pt, ζt) are plotted. In (b.1) the squares correspond to (pt, ζt).
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CHAPTER III

THE INFLATION GAP, FORECAST COMBINATION, AND THE FORECAST

COMBINATION PUZZLE

Introduction

Short horizon forecasts of economic measure of the macroeconomy are key

inputs into the decision making process of monetary policymakers. The uncertainty

surrounding individual forecasts and the plethora of forecasting methods that exist to

construct these short horizon forecasts prompt many monetary authorities to consider

combined or pooled forecasts.1 The natural question that arises when considering

combined forecasts is how the forecasts should be combined to create an optimal or

best forecast.

This paper proposes a new dynamic forecast procedure to create combined

forecasts of inflation that is shown to consistently and robustly outperform other

common forecast combination strategies in root mean squared forecast error (RMSFE)

in real-time out-of-sample forecasting exercises. The proposed method combines

recent results from the literature on inflation persistence with research that explains

the stylized facts that exist in studies of empirical forecasts to create a simple

dynamic combination procedure. The combination procedure proposed is general

and potentially could improve the forecast efficiency for combined forecasts for any

time series of interest, but I restrict the analysis to inflation so as to draw upon a large

literature of empirical observations that can explain the increased efficiency obtained.

1Robertson (2000) details the different forecasting strategies employed by a subset of central
banks and describes how many explicitly use combined forecasts.
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Forecast Combination

Forecast combination or pooling of forecasts is a well-known approach to improve

forecast efficiency dating back to the seminal paper of Bates and Granger (1969).

This paper launched an entire subfield of econometrics dedicated to explaining the

efficiency gains observed from combining forecasts and to devise new schemes to

improve efficiency. Surveys of the literature are found in Clemen (1989), Diebold and

Lopez (1996), and Timmermann (2006).

A common empirical finding in this literature, including with forecast of inflation

(see Stock and Watson (2003)), is that the simple average of the considered forecasts

consistently produces the most efficient combined forecasts. The average typically

outperforms each individual forecast considered and forecasts generated by more

sophisticated combination procedures. The result is found despite the fact that under

standard assumptions about the data, equal weights (averaging) is only theoretically

optimal under very restrictive assumptions. This empirical finding is called by Stock

and Watson (2004), ”the forecast combination puzzle.”

Hendry and Clements (2004) provide details of a generally accepted hypothesis

for the existence of the forecast combination puzzle, which is that equal weights

provide a hedge against unanticipated structural breaks and misspecification errors

that affect the individual forecasts’ efficiencies differently. The majority of the

sophisticated weighting strategy proposed in the literature attempt to use past data

to choose the combination weight for each forecast. However, the existence of the

aforementioned breaks and errors implies that the historical performance of a forecast

may not be a guide to its future performance. Employing equal weights is superior

in these scenarios because the weights are agnostic about the best forecasts and do
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not shift weight to forecasts that have performed well in past, leading to suboptimal

forecasts in the future when efficiencies change.2

The literature studying inflation persistence in the U.S. confirms the existence

of both frequent structural breaks (Levin and Piger (2006)) and time-varying

misspecification in popular econometric forecasts (Stock and Watson (2010)).

However, the literature also finds thats the structural breaks and time-varying

misspecification are not necessarily unpredictable.

The Inflation Gap

Cogley, Primiceri, and Sargent (2010) and Stock and Watson (2007) both propose

parsimonious univariate models of inflation that decompose inflation into a stochastic

trend, a serially uncorrelated transitory component, and which allow for stochastic

volatility (UC-SV) to study how inflation persistence has changed over time. These

studies focus on a measure termed by Cogley, Primiceri, and Sargent (2010) as the

inflation gap. The inflation gap is the deviation of inflation from its estimated

stochastic trend. These studies find evidence that the inflation gap is predictable

using real activity measures, such as GDP and unemployment. Stock and Watson

(2010) argue further that the inflation gap can be used to create improved forecasts

of inflation.

The inflation gap is the forecast error from the optimal univariate forecast

of inflation generated by the UC-SV model. Therefore, one interpretation of the

literature’s findings is that the forecast errors of parsimonious forecasting model,

which are consistently found to produce the best forecasts of inflation, have time-

2A second hypothesis is based on the practical implementation of combination strategies that
require additional estimation from past data. The additional parameters add either new sources
estimation uncertainty that lead to lower forecast efficiency as found in Smith and Wallis (2009) or
contribute to model overfitting.
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varying structures that are predictable using real activity measures or other relevant

explanatory variables. I explore the possibility that the predicted efficiency could

be used to construct intercept corrections of the forecasts similar to those studied

in Stock and Watson (2010) or used to pick weights to create an efficient combined

forecast. I find that creating combined forecast using the predicted forecast errors of a

menu of candidate forecasts can significantly and robustly produce efficient forecasts

of inflation that outperform equal weights forecasts and other simple combination

strategies in real-time out-of-sample forecasting exercises.

The concept is demonstrated by selecting a list of parsimonious candidate

forecast models commonly used in the inflation forecasting literature. I show that

the real-time forecast errors generated by the candidate models are serially correlated

and can be predicted using real activity measures. I then use the predictions to create

combined real-time forecasts for four different measures of inflation.

Predicting Forecast Errors

Stock and Watson (2007 and 2010) consider the following tightly parameterized

UC-SV model for inflation:

πt = τt + ηt, where ηt = ση,tζη,t (3.1)

τt = τt−1 + εt, where εt = σε,tζε,t (3.2)

lnσ2
η,t = lnσ2

η,t−1 + ψη,t (3.3)

lnσ2
ε,t = lnσ2

ε,t−1 + ψε,t, (3.4)

where ζt = (ζη,t, ζε,t) is i.i.d. N(0, I2), ψt = (ψη,t, ψε,t) is i.i.d N(0, γI2), and ζt and ψt

are independently distributed, and γ is a scalar parameter. The optimal univariate
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time-t forecast of this model is τt|t for all h ≥ 1 and the inflation gap at time t + h

can be defined as at+h = πt+h− τt|t. Stock and Watson posit that the inflation gap is

predictable using real activity measures of the economy such that

πt+h − τt|t = ωhxt + et+h, (3.5)

where xt is vector of real activity measures and et+h is the error term.

The justification for their supposition is that if the stochastic volatility in τt is

ignored, then τt can be written as

τt = (1− θ)
∞∑
i=1

θiπt−i (3.6)

and the inflation gap can be expressed as

πt+h − πt = −θ
∞∑
i=1

θi∆πt−i + ωhxt + et+h, (3.7)

by substituting (3.6) into (3.5). Stock and Watson note that equation (3.7) is just

a tightly parameterized backward-looking Phillips curve, which has been a staple of

the inflation forecasting literature for decades. They show that this specification is

able to augment and improve the forecasts from the UC-SV model compared to other

common forecast methods in pseudo out-of-sample forecasts.

I expand this idea to consider the possibility that the forecast errors of any

forecast of inflation are predictable using real activity measures and lags of inflation.

If this is true, then the predicted forecast errors can be used to augment the original

forecast to improve forecast efficiency or it can be used as a measure of forecast

41



accuracy to rank a set of candidate forecasts. For the purposes of this paper, I

consider the forecast error and the inflation gap to be synonymous.

Correcting and Ranking Forecasts

Consider a set of candidate forecasts for inflation based on time-t information

π̂i,t+h|t for i = 1, 2, ...n. Let the inflation gap of the ith forecast be given by

âi,t+h = πt+h − π̂i,t+h|t. (3.8)

An intercept corrected forecast using the predicted inflation gap is given by

π̂ci,t+h|t = π̂i,t+h|t + âi,t+h, (3.9)

where âi,t+h is added to correct for the presumed bias in the intercept. The correction’s

efficacy depends on the absolute accuracy of the point forecast, âi,t+h. The prediction

must correctly discriminate the direction and magnitude of the gap to increase the

overall forecast efficiency.

A combined forecast is a weighted sum of the candidate forecasts

π̂fct+h =
n∑
i=1

γiπ̂i,t+h, (3.10)

where γi denotes the weight given to the ith forecast. I determine the weights by

ranking the forecasts using the square of the inflation gap and assigning the largest

weights to those forecasts with the smallest predicted gap. Recall that the inflation

gap is a forecast error, so that this ranking implies high weights are assigned to

the forecasts with the lowest predicted error. Note that this creates an important
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distinction between corrected forecasts and the combined forecasts. The combined

forecast identifies off the relative magnitudes of the predicted inflation gaps, while

the correction depends on both magnitude and direction.

I determine the weights using the multinomial logit functional form which is

popular in the discrete-choice econometric literature,

γi =
e−βa

2
i,t+h

Zt
, Zt =

n∑
i=1

e−βa
2
i,t+h , (3.11)

where β is the shrinkage or intensity of choice parameter that governs the relative

weight given to each model for predicted differences in the inflation gap.3 The β

parameter is treated as constant in the analysis of this paper, but it could be estimated

as well.

Candidate Forecasts and Data

Data

The forecast exercises I conduct are on the real-time data sets provided by the

Philadelphia Federal Reserve and ALFRED. A real-time data set is a panel data

set with multiple observations of the a given time series that reflects the actual

vintages of data that were available to a forecaster on the middle month of a

given quarter.4 I consider four different measures of inflation. The measures are

headline CPI spanning the time period 1947Q1-2011Q2 with real-time data starting

in 1994Q2, the Price Index for Personal Consumption Expenditure (PCE) spanning

the time period 1947Q1-2011Q1 with real-time data starting in 1965Q4, the Core

3The seminal reference in this literature is Manski and Mcfadden (1981).

4For further explanation see Croushore and Stark (2001).
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Price Index for Personal Consumption Expenditure (Core PCE) spanning the time

period 1959Q2-2011Q1 with real-time data starting in 1996Q1, and GDP Deflator

(GDPDEF) spanning the time period 1947Q1-2011Q1 with real-time data starting in

1991Q1. Quarterly inflation is defined as

πt = ln(
Pt
Pt−1

), (3.12)

where Pt is quarterly price index at time t.5

I consider two real activity measures, GDP and unemployment, to predict

inflation and inflation gaps. I select these two measures because of their common

use in constructing Phillips curve inspired forecasts. This data is also from the

Philadelphia Federal Reserve’s Real-Time data sets. The real GDP (RGDP) spans the

time period 1947Q1-2011Q1 with real-time data starting in 1965Q4 and the civilian

unemployment rate (CUR) spans the time period 1948Q1-2011Q2 with real-time data

starting in 1965Q4.

Real GDP is transformed into two different measures. The first measure is log

differenced RGDP,

∆yt = ln(
yt
yt−1

). (3.13)

The second measure uses the Hodrick-Prescott filter to calculate an estimate of the

cycle component of RGDP to create a measure of the output gap.6 This series is

called ygapt .

5For price indices that are recorded at a monthly frequency Pt is the three month average.

6The smoothing parameter is λ = 1600. Filters of this type have well known end-of-sample
problems for providing accurate measures of the cycle component and thus can be a poor real-time
forecast tools. Despite this fact, the gap measure does well in out-sample forecasting compared to
the other measures considered in this paper.
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The civilian unemployment rate is transformed into a single gap measure. The

measure is a one-sided gap developed by Stock and Watson (2010) which only

captures increases in unemployment compared to the minimum level of unemployment

observed over the current and previous 10 quarters7

ugapt = ut −min{ut, ut−1, ..., ut−10}. (3.14)

The measure is meant to capture the non-linearity in Phillips curve specifications

where inflation only responds to increases in the unemployment rate.

Candidate Forecasts

I propose a short list of candidate forecast models to test the proposed forecast

strategies. The list of models is given in Table 1. The list of candidate forecasts

is small because of the recommendations of Granger and Jeon (2004), Aiolfi and

Timmermann (2006), and Jose and Winkler (2008) who suggest trimming the list of

candidate forecasts to include only a subset of the best performing models to maximize

the forecast efficiency of a combined forecast.

The list of candidate forecasts model was constructed by choosing models that

are found to be hard to beat in the literature or which would provide a good robustness

check for the proposed forecasting strategy. The fourth column of Table 1 gives the

reason the model was included. A reference to a paper indicates that the model was

recommended by the paper or was the benchmark model considered. For example,

the ARMA(1,1) is the benchmark econometric forecast specification used by Ang,

7Stock and Watson (2010) use a 12 quarter measure, while this measure is 11 quarters. The time
frame I chose comes from the fact that the average peak-to-peak cycle over the postwar period is 66
months. So our measure covers exactly half of the average length of post-war peak-to-peak cycles.
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Type Abr. Specification Recommendation

ARMA ARMA11 ARMA(1,1) Ang, Bekaert, and Wei (2007)
ARMA AR4 AR(4) Marcellino, Stock, and Watson (2006)
Random Walk RW πt = πt−1 + εt Atkeson and Ohanian (2001)
VAR VAR1 VAR(2) with X ′t = [πt y

gap
t ]′ Stock and Watson (1999)

VAR VAR2 VAR(2) with X ′t = [πt u
gap
t ]′ Robustness

ARMA AR1 AR(1) Robustness
ARMA AR2 AR(2) Robustness
ARMA ARMA44 ARMA(4,4) Robustness
Direct Forecast DF1 πt,4 = c+ φ1πt−4,4 + θ1y

gap
t−1 + εt,4 Robustness

Direct Forecast DF2 πt,4 = c+ φ1πt−4,4 + θ1u
gap
t−1 + εt,4 Robustness

Direct Forecast DF3 πt,4 = c+ φ1πt−4,4 + θ1∆yt−1 + εt,4 Robustness
VAR VAR3 VAR(3) with X ′t = [πt ∆yt u

gap
t ygapt ]′ Robustness

TABLE 1. Candidate forecasts models.

Bekaert, and Wei (2007), who tested dozens of different forecast specifications covering

surveys, ARMA models, regressions using real-activity measures, and term structure

models and found that a majority of models are unable to improve upon this simple

specifications. Similarly, Atkeson and Ohanian (2001) show that a random walk

specification systematically outperform better specified Phillips curve specifications

during the 1990’s.

The “Robustness” notation in the recommendation column denotes that the

forecast model is included because either it is found to forecast well or it attempts to

allay a concern about the proposed inflation forecasting strategy. The three ARMA

models with this moniker fall into the former category, while the remaining models are

chosen to include different combinations of the information that is used to predict the

inflation gap. If the inflation gap is predictable, then the forecast model is misspecified

and the forecast may be improved simply by adding this information into the original

forecast model. These forecast accommodate this criticism to show that the gain in

forecast efficiency cannot be achieved simply by correcting for omitted variables in

the usual way.
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Forecast Definitions and Individual Forecasts

The forecast horizon of interest for this paper is four quarters. I employ the

definition used by Ang, Bakaert, and Wei (2007):

π̂t+4,4 = Et−1[
4∑
i=1

πt+i], (3.15)

where the forecast is the sum of the expected quarterly rates of inflation. The

expectation is dated t − 1 because with real-time data the current quarterly rate

is unknown. This definition is nice because it is a proxy for the forecast efficiency for

all h ≤ 4 forecasts.

The benchmark forecast in this paper is an equal weights combined forecast of

all considered models. Table 2 presents the out-of-sample RMSFE of the candidate

forecasts and the relative RMSFE compared to the benchmark for the four measures

of inflation. The real-time RMSFE of a forecast is calculated as

RMSFEi =

√√√√ 1

M − k

M∑
t=k

πT,t − π̂i,t (3.16)

where k is the first available vintage of real-time data, T is most recent vintage of

data, M is equal to T − 4, πT,t is the actual inflation at time t from vintage T data,

and π̂i,t is the ith forecast of inflation at time t using vintage t data. The results

in Table 2 illustrate the forecast combination puzzle with the equal weights forecast

outperforming the overwhelming majority of individual forecasts considered.

Predicting Inflation Gaps

The identifying assumption for the forecasts of inflation in this paper is that

forecast errors are predictable. This section proposes model specifications for the
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CPI GDPDEF

Models RMSFE Relative RMSFE Relative

AR1 0.0181 1.1220 0.0108 1.3204
ARMA11 0.0175 1.0867 0.0083 1.0214
AR2 0.0180 1.1206 0.0090 1.0938
AR4 0.0152 0.9415 0.0084 1.0305
ARMA44 0.0151 0.9373 0.0083 1.0168
RW 0.0168 1.0437 0.0078 0.9540
DF1 0.0183 1.1337 0.0089 1.0901
DF2 0.0166 1.0303 0.0090 1.0989
DF3 0.0150 0.9345 0.0076 0.9256
VAR1 0.0202 1.2529 0.0093 1.1357
VAR2 0.0185 1.1500 0.0088 1.0712
VAR3 0.0204 1.2684 0.0095 1.1621

Equal Weights 0.0161 1.0000 0.0082 1.0000

Sample Period 1994Q2-2010Q2 1991Q4-2010Q2

Core PCE PCE

Models RMSFE Relative RMSFE Relative

AR1 0.0065 1.2022 0.0199 1.1065
ARMA11 0.0057 1.0492 0.0174 0.9619
AR2 0.0059 1.0911 0.0177 0.9839
AR4 0.0056 1.0766 0.0184 1.0223
ARMA44 0.0057 1.0319 0.0192 1.0643
RW 0.0050 0.9348 0.0171 0.9475
DF1 0.0081 1.5098 0.0223 1.2369
DF2 0.0080 1.4827 0.0206 1.1428
DF3 0.0051 0.9348 0.0205 1.1353
VAR1 0.0074 1.3712 0.0198 1.0977
VAR2 0.0067 1.2385 0.0182 1.0096
VAR3 0.0079 1.4651 0.0204 1.1315

Equal Weights 0.0054 1.0000 0.0180 1.0000

Sample Period 1996Q1-2010Q2 1971Q4-2010Q2

TABLE 2. RMSFE for the candidate forecasts of inflation compared to an equal
weights combined forecast of the same candidate forecast models for the four different
measures of inflation. Numbers larger than 1 indicate that the equal weights forecast
has a lower RMSFE over the relevant period.
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inflation gaps to create inflation gap predictions. The forecast errors for annual

inflation are given by

ai,t+4,4 = πt+4,4 − π̂i,t+4,4. (3.17)

I consider two different specifications for predicting (3.17). The first is inspired by

the autoregressive-distributed lag model given by equation (3.7) and posits that the

inflation gap can be predicted by lags of inflation, a real activity measure, and is first

order autoregressive,

ai,t+4,4 = ω0 + ω1πt + ω2πt−1 + ω3πt−2 + ω4xt + vt

vt = φvt−1 + εt,4, (3.18)

where xt is a real activity measure and εt,4
iid∼ N(0, σ2). The second specification

is geared towards the annual inflation definition given by equations (3.15). The

definition impart an MA(3) structure to ai,t+4,4 due to the summation of multiple

quarterly forecasts. Therefore, the specification posits that the inflation gaps can be

predicted by real activity measures and follows an MA(3) process,

ai,t+4,4 = ω0 + ω1xt−1 + vt (3.19)

vt = θ3εt−3,4 + θ2εt−2,4 + θ1εt−1,4 + εt,4

Equation (3.18) and (3.19) are estimated by maximum likelihood (MLE) using

the Kalman Filter. Table 3 and 4 (the remaining tables and figures appear in the
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supplementary materials section) gives the coefficient estimates for these model on a

selection of inflation gaps produced by the candidate forecasts. The table shows that

the real activity measures are significant for most inflation gap series considered.

Real-Time Forecasts

The construction of real-time forecasts requires the sample data to be separated

into three subsets to produce out-of-sample forecasts. The required divisions are

1. a training subset to estimate the parameters of the candidate forecast models

2. an in-sample forecast subset to recursively forecast the candidate models to

construct series of inflation gaps to estimate the inflation gap models

3. and an out-of-sample subset to conduct out-of-sample forecasts.

The sample divisions are dictated by the availability of real-time data for each of the

four measures of inflation considered. Table 6 details the sample periods.

Intercept Correction

A natural use of the predicted inflation gap is to add the prediction back to

the original point forecast. This is known in the literature as intercept correction.

Traditional intercept correction methods suggest adding the most recent forecast error

to the model to correct for the deviation in the intercept. Turner (1990), Wallis and

Whitney (1991), and Clements and Hendry (1998) report that intercept correction

can result in modest improvement in forecast efficiency.

In this paper I go beyond traditional intercept correction by modeling the

forecast error dynamics and predicting the path of forecast errors out to the same

horizon as the original forecast. This procedure should capture any dynamics in the
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forecast errors that are detectable in past data. The intercept corrected forecasts are

constructed using definition (3.9).

Table 5 shows a representative sample of the relative forecast efficiencies obtained

by intercept correction. The forecast errors are predicted using equation (3.18) with

∆yt as the real activity measure. The results are presented relative to an equal weights

combined forecast of the uncorrected models. The values marked with asterisks denote

intercept corrected forecasts that have improved forecast efficiency. About half of the

models considered improve forecast efficiency, but none improve significantly. The

row marked “Equal Weights (IC)” combines all forecasts and predicted forecast errors

together. The row shows that even in aggregate, the intercept correction approach

does not increase relative efficiency compared to equal weights forecasts made with

the uncorrected models. The results are consistent across different specifications for

modeling forecast error dynamics and are consistent with the previous findings in the

literature.

Combined Forecasts

In this section, instead of correcting forecasts, I use predicted inflation gaps

to construct dynamics weights to create a combined forecast. The real-time out-

of-sample combined forecasts for πt+4,4 are made recursively using the following

procedure at each time period t:

1. Each candidate forecast model is estimated on vintage t data and used to

construct the set of n forecasts denoted {π̂i,t+4,4}ni=1

2. The set of past forecasts dated t and earlier is used to construct n time series

of inflation gaps using vintage t inflation data.
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3. A set of predictions for the inflation gaps {âi,t+4,4}ni=1 is estimated.

4. The set of forecasts {π̂i,t+4,4}ni=1 are combined using {âi,t+4,4}ni=1 according to

equation (3.10).

π̂t+4,4 =
n∑
i=1

e−β(̂ai,t+4,4)2

Zt
π̂i,t+4,4 (3.20)

Table 6 shows the results for the RMSFE of the combined forecasts for β = 2, 000 for

predicting the inflation gap and for the four measure of inflation. The predicted

inflation gap combined forecast results in lower RMSFE than the equal weights

forecast in all but five out of twenty-eight specifications.8

Shrinkage Parameter

The shrinkage or intensity of choice parameter governs the deviation of the

predicted inflation gap combined forecast (PIGC) from an equal weights forecast.

A β = 0 collapses the combined forecast to an equal weights forecast, while larger

values of the intensity of choice parameter cause a larger proportion of the weight to be

placed on the individual candidate forecasts with the lowest predicted squared forecast

error. A known result in the literature, shown by Clemen and Winkler (1986), Deibold

and Pauly (1990), and Stock and Watson (2004), is that shrinking the combination

weights towards equals weight increases forecast efficiency. This implies that lower

β should result in lower RMSFE. The predicted inflation gap combined forecasts do

not follow this trend.

Figure 4 plots the time path of PCE inflation, the combined forecast of PCE, and

an equal weights forecast of PCE for the entire out-of-sample forecast period using

8The chosen β parameter is small for the scaling of the data considered. The β parameter is
scalable by the units of ai,t. The ai,t is scaled so that 1% is 0.01. If instead 1% is 1, then the
corresponding β is 0.2.
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four different values of β.9 The time path of the weights generated by PIGC are

shown along the bottom of the figure. Note that as the intensity of choice parameter

is increased, the weights become more volatile, indicating that PIGC is placing more

weight on the best predicted model. The increased dependence on the predicted

best model causes PIGC to perform better, relative to equal weights. The relative

RMSFE in plots “A-D” is 0.9668, 0.9447, 0.9303, and 0.9214, respectively. The plots

also reveal that time variation in the weights is not uniform throughout the sample

period. PIGC appears to be increasing efficiency greatly during the late 1970’s and

early 1980’s, which corroborates the findings in Cogley, Primiceri, and Sargent (2010)

for predicting the inflation gap.

To explore the relationship observed in Figure 4 more thoroughly, I conduct

comparisons between the combined forecast and equal weights by varying both the

sample period and the intensity of choice parameter. For PCE, I start by forecasting

the sample period 1971Q4-1978Q1 and calculating the relative RMSFE obtained for

values of β between 0 and 50,000. This allows for the relative RMSFE to plotted

as a smooth curve against the values of β. Then, I increase the forecast sample

period by five quarters to 1971Q4-1979Q2 and repeat the same exercise. I continue

to repeat the same routine until all available data is exhausted. This results in 27 out-

of-sample test periods with relative efficiency plotted as smooth curve dependent on

β. I summarize the data by plotting the RMSFE against β for the mean, minimum,

and maximum relative RMSFE observed out of the 27 sample periods. By plotting

the mean, minimum, and maximum relative RMSFE a sense for the distribution of

possible forecast efficiency, irrespective of the out-of-sample time period, is gained.

Figure 5 and 6 show the results for PCE in the third column.

9Equation (3.18) is used to predict the forecast errors with ygapt acting as the real activity measure.
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The black lines indicate the mean, minimum, and maximum relative RMSFE

observed for the different sample forecast periods for PIGC forecasts. The gray lines

indicate the mean, minimum, and maximum relative RMSFE for the limiting case

of PIGC forecasts where β is infinite and all weight is placed on single forecast in

each period. The same exercise is conducted with CPI, GDPDEF, and Core PCE

starting with the initial sample ending in 2001Q4 and each successive sample growing

by 5 quarters until the data is exhausted to create 8 out-of-sample periods. Each

column of the figure represents a different measure of inflation and each row denotes

a different real activity measure used in estimating equation (3.18) or (3.19). The

28 figures overwhelmingly show that on average predicted inflation gap combined

forecasts outperforms equal weights.

Discussion

The main criticism to any out-of-sample forecast exercise is the possibility of

data mining. Since the pseudo forecaster possess all the data, it is possible to

tailor a sample test period specifically to generate a positive result. Figures 5 and

6 are designed to overcome this criticism. The figures shows how data mining is

possible with some sample periods considered resulting in little or no increase in

relative forecasting performance, while others result in 10% or greater gains. However,

ultimately figures 5 and 6 demonstrates that this criticism does not apply to PIGC.

Figures 5 and 6 also demonstrates that PIGC is an outlier in regards to the

forecast combination puzzle. The forecast combination puzzle implies that the further

a combination method moves away from equal weights in an attempt to account for

the time variation in forecast efficiency, the less efficient a forecast should become.

PIGC displays the exact opposite behavior, with larger β’s resulting in lower MSFE
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forecasts, indicating that the predicted forecast errors are providing an accurate

prediction of future performance. The most striking illustration of this is the gray

lines of figures 5 and 6 that represent the minimum, maximum, and mean relative

forecasts produced when a weight of 1 is placed on the model that is predicted to

yield the lowest RMSFE in each period. The RMSFE produced in these cases is on

average as good as equals weights or better, even though placing all weight on a single

model eliminates the theoretical advantages of combining forecasts. It can also be

shown that if the limiting case is compared to picking a model at random to forecast

in each period, then PIGC produces a forecast with on average 30% lower RMSFE

when both are compared to equal weights.

Forecast Tournament

This section evaluates the out-of-sample forecast performance of the inflation gap

combined forecast compared to four other combination methods employed frequently

in the literature as well as equal weights. I tests the strategy’s ability to combine

different subsets of the 12 candidate forecasts models to produce efficient forecasts to

create a robust comparison of the methods. A robust forecast combination strategy

should be able to produce the best forecast possible given any set of models. I

consider all possible combination of models of size greater than two, which results in

4,083 unique sets of candidate forecasts.

I compare predicted inflation gap combined forecasts to regression weights

(GRW), MSFE weights (SW), backward-looking weights (BL) and equal weights

(EW). The regression weights method I employ follows Granger and Ramanathan

(1984) to obtain theoretically optimal weights for unbiased forecasts. The regression

weights are calculated by estimating the following equation
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πt,4 =
n∑
i=1

γi,tπ̂i,t,4 + εt,4.

s.t.

n∑
i=1

γi,t = 1.

(3.21)

The equation is estimated using constrained least squares. The MSFE weights follow

Stock and Watson (2001 and 2004) and weight candidate forecasts according to their

relative past mean squared forecast error using

γi,t =
(1/MSFEi,t)

k∑n
i=1(1/MSFEi,t)k

, (3.22)

where MSFEi,t = (1/m)
∑t

τ=t−m e
2
i,τ−4,4 and k is a shrinkage parameter.10 The

MSFE weights are one of the simple combination procedures that, like equal weights,

consistently beats more sophisticated weighting procedures such as regression weights.

The backward-looking weights is a weighting strategy that acts as a robustness

measure for PIGC. It uses the last known inflation gap to construct relative weights

for the candidate forecast models. The weights are formed using

γi,t =
e−βa

2
i,t−4,4∑n

i=1 e
−βa2

i,t−4,4

, (3.23)

where β is the same intensity of choice parameter used for the inflation gap weights.

It provides a benchmark measure for the amount of forecast efficiency that is gained

by forecasting the inflation gap of each model. If there is no useful information

in iterating out the path of the forecast errors and all gains are made simply by

10For the forecast tournament I choose k = 2.
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including the ranking information in the last known inflation gap, then this measure

should perform as well as the predicted measure.

The predicted inflation gap forecasts for the tournament are estimated using

equations (3.18) with ∆yt as the real activity measure and β = 20, 000 for the intensity

of choice parameter. Note that ∆yt and β = 20, 000 do not maximize the absolute

performance gains found in figures 5 or 6. The parameters are instead chosen because

of the general pattern that arises in figures 5 and 6, which show that including a

real activity measures increase forecast efficiency and that a large, but finite β also

increases forecast efficiency.

The five forecast combination methods are used to construct real-time out-of-

sample forecasts of inflation for all 4,083 sets of candidate models for the sample

periods given in Table 6. The methods are ranked 1 to 5 for their performance in

four categories for each set of candidate forecasts of size n. The four categories are

the average RMSFE, the variance of the RMSFE, the minimum RMSFE, and the

maximum RMSFE recorded for the out-of-sample forecast period. The average and

minimum RMSFEs show the absolute forecasting ability of each method, while the

variance of the RMSFEs and maximum RMSFE represent metrics that are important

to the risk adverse forecaster by showing the min-max efficiency. The ranking is from

low to high in all categories with 1 assigned to the method with lowest observed value.

Tables 7, 8, 9, and 10 shows the individual results for all five methods. The

mean, minimum, and maximum results are presented relative to an equal weights

forecast of all 12 candidate models. The standard deviation results are for the RMSFE

of all the point forecasts produced by a given method, combining n models. The

far right columns display the ranking of each method in each category. Table 11

shows the cumulative results for each method across the four categories. The forecast
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tournament shows that the predicted inflation gap combined forecast is the best

forecast procedure considered.

The tournament also demonstrates the appeal of predicted inflation gap

combinations to a risk adverse forecaster. If a forecaster is worried about ex ante

selecting the worst set of forecasts to combine, then this method has a clear advantage

because it consistently produces a low standard deviation of point forecasts indicating

that it is robust to the inclusion of poor performing forecasts. It also produces on

average the lowest maximum MSFE. The lowest maximum is an important benchmark

because it shows the worst case scenario under each combination strategy. Since

forecast combination is primarily a technique to hedge the risk of using a single

forecast model, this is a desirable property of a combination technique.

Conclusion

This paper uses the explanation for the forecast combination puzzle and empirical

results from the inflation persistence literature to create dynamic forecast weights

that can robustly beat an equal weights forecast. The effectiveness of the proposed

procedure demonstrates a promising way to construct efficient combined forecasts.

The analysis presented in this paper, however, represent only a proof of concept.

It demonstrates the existence of exploitable information in real-time out-of-sample

forecast errors, but does so only on inflation. The success of the method demonstrates

a promising path for future research into efficient combined forecasts.

Supplementary Materials

This section contains the remaining figures and tables that are commented in

the chapter.
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FIGURE 4. PCE inflation (solid line), the PIGC forecast of PCE (dashed line), the equal weights forecast of PCE (dotted
line), and the time-varying weights of PIGC (solid lines on the bottom of each figure). Each panel is created using a
different intensity of choice parameter for PIGC. A: β = 2, 000, B: β = 10, 000, C: β = 20, 000, and D: β = 50, 000.
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MA(3) CPI GDPDEF PCE Core PCE

ugapt

∆yt

FIGURE 5. Mean, minimum, and maximum relative RMSFE for all out-of-sample forecasts period plotted against the
value of intensity of choice parameter used to construct the PIGC forecast. The left-hand column denotes the real
activity measure used in estimation equation (3.19).
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ugapt CPI GDPDEF PCE Core PCE

∆yt

ygapt

none

FIGURE 6. Mean, minimum, and maximum relative RMSFE for all out-of-sample forecasts period plotted against the
value of intensity of choice parameter used to construct the PIGC forecast. The left-hand column denotes the real activity
measure used in estimation equation (3.18).
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Parameter Estimates for the Model of Forecast Error Dynamics

CPI GDPDEF

AR1-FE DF1-FE VAR3-FE AR2-FE DF3-FE VAR1-FE

vt−1 0.9729*** 0.9687 *** 0.9707*** 0.9669*** 0.9400*** 0.9397***
(0.0146) (0.0181) (0.0159) (0.0189) (0.0326) (0.0273)

πt−1 -2.8113*** -1.2332*** -2.7822*** -0.4837*** -.7150*** -1.7752***
(0.1143) (0.1154) (0.1523) (0.1241) (0.1032) (0.1524)

πt−2 -0.4274*** -0.7366*** -0.9319*** -1.3372*** -0.5888*** -0.7491***
(0.1053) (0.0875) (0.0899) (0.1279) (0.1148) (0.1948)

πt−3 -0.0910 -0.3968*** -0.6654*** -0.4056*** -0.3078** -0.1625
(0.1033) (0.1199) (0.1445) (0.1237) (0.1292) (0.1904)

ugapt−1 -0.0063*** -0.0046***
(0.0017) (0.0010)

ygapt−1 -0.0001*** 4.95e-6
(9.6e-6) (6.12e-6)

∆yt−1 -0.4214*** -0.2465***
(0.0583) (0.0602)

c 0.0458** 0.0300 0.0538* 0.0244* 0.0124** -0.0227*
(0.0231) (0.0191) (0.0299) (0.0142) (0.0061) (0.0124)

Rel. AIC 0.855 0.953 0.839 0.935 1.005 0.950
Obs. 170 170 170 155 155 155

PCE Core PCE

ARMA11-FE DF2-FE VAR2-FE AR4-FE ARMA44-FE RW-FE

vt−1 0.9768*** 0.9696*** 0.9695*** 0.9759*** 0.9673*** 0.9653***
(0.0151) (0.0155) (0.0177) (0.0175) (0.0202) (0.0232)

πt−1 -0.7769*** -0.9801*** -2.3986*** -0.8238*** -0.7752*** -1.0546***
(0.1284) (0.1079) (0.1014) (0.1301) (0.1429) (0.1279)

πt−2 -1.8654*** -0.7058*** -1.0049*** -1.8895*** -1.7052*** -0.9416***
(0.1031) (0.1107) (0.1589) (0.1459) (0.1608) (0.1309)

πt−3 -0.5236 -0.4539 -0.0591 -0.6415*** -0.3679** -0.6761
(0.1263) (0.1184) (0.1559) (0.1631) (0.1561) (0.1374)

ugapt−1 -0.0042 -0.0033***
(0.0011) (0.0010)

ygapt−1 -2.35e-6 1.2e-5
(7.96e-6) (8.30e-6)

∆yt−1 -0.0741 -0.0206
(0.0490) (0.0335)

c 0.0339 0.0239 0.0328*** 0.0320 0.02162** 0.01989
(0.0224) (0.0171) (0.0197) (0.0203) (0.0169) (0.0144)

Rel. AIC 0.905 1.006 0.890 0.949 0.941 1.013
Obs. 179 179 179 155 155 155

TABLE 3. This table presents the parameter estimates for the model of forecast error
dynamics proposed in Section 4, equations (3.18). The table includes only a selection
of the forecast error series. Standard errors in parentheses (*** p<0.01, ** p<0.05,
* p<0.1)
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Parameter Estimates for the Model of Forecast Error Dynamics

CPI GDPDEF

AR1-FE DF1-FE VAR3-FE AR2-FE DF3-FE VAR1-FE

θ1 0.748*** 1.149*** 0.865*** 1.135*** 0.967*** 0.639***
(0.0634) (0.0573) (0.0778) (0.0661) (0.0453) (0.0782)

θ2 0.341*** 1.214*** 0.529*** 0.738*** 0.949*** 0.455***
(0.0719) (0.0740) (0.0883) (0.0921) (0.0622) (0.0755)

θ3 0.381*** 1.160*** 0.343*** 0.294*** 0.793*** 0.247***
(0.0684) (0.0769) (0.0751) (0.0777) (0.0569) (0.0549)

ugapt 0.00272* -0.00145*
(0.00151) (0.00079)

∆yt -0.336*** -0.178
(0.130) (0.0651)

c 0.00325 0.0278 0.00926** -0.00299 -0.00246 -0.00193
(0.00329) (0.00328) (0.00376) (0.00189) (0.00167) (0.00176)

Rel. AIC 1.000 0.999 0.995 1.000 0.999 0.998
Obs. 170 170 170 155 155 155

PCE Core PCE

ARMA11-FE DF2-FE VAR2-FE AR4-FE ARMA44-FE RW-FE

θ1 1.329*** 1.395*** 0.952*** 1.175*** 1.20*** 1.163***
(0.0634) (0.0598) (0.0727) (0.0661) (0.0726) (0.0525)

θ2 0.747*** 1.411*** 0.555*** 0.786*** 0.748*** 1.104***
(0.0719) (0.0787) (0.0813) (0.0921) (0.0957) (0.0627)

θ3 0.216*** 1.104*** 0.369*** 0.283*** 0.213*** 0.818***
(0.0684) (0.0566) (0.0696) (0.0736) (0.0712) (0.0569)

ugapt 0.00101* -0.00246**
(0.00104) (0.00116)

∆yt -0.0734 -0.003
(0.0825) (0.0249)

c 0.00369 0.00502 0.00526** -0.00073 0.00138 -0.00153
(0.00232) (0.00218) (0.00257) (0.00182) (0.00232) (0.00147)

Rel. AIC 1.000 1.001 1.001 1.000 0.997 1.002
Obs. 179 179 179 155 155 155

TABLE 4. This table presents the parameter estimates for the model of forecast error
dynamics proposed in Section 4, equations (3.19). The table includes only a selection
of the forecast error series. Standard errors in parentheses (*** p<0.01, ** p<0.05,
* p<0.1)
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Intercept Corrected Models Compared to Equal Weights Forecast

CPI GDPDEF

Models RMSFE Relative RMSFE Relative

AR1 0.0162* 1.0082 0.0098* 1.1934
ARMA11 0.0169* 1.0524 0.0092 1.1185
AR2 0.0163* 1.0174 0.0096 1.1684
AR4 0.0187 1.1653 0.0092 1.1308
ARMA44 0.0179 1.1170 0.0093 1.1416
RW 0.0199 1.2415 0.0085 1.0469
DF1 0.0200 1.2476 0.0089 1.0102
DF2 0.0200 1.2447 0.0090 1.0989
DF3 0.0197 1.2299 0.0078 0.9242
VAR1 0.0161* 1.0012 0.0089* 1.0925
VAR2 0.0165* 1.0242 0.0102 1.2489
VAR3 0.0176* 1.0966 0.0123 1.5085

Equal Weights (IC) 0.0174 1.0837 0.0088 1.0081

Sample Period 1994Q2-2010Q2 1991Q4-2010Q2

Core PCE PCE

Models RMSFE Relative RMSFE Relative

AR1 0.0056* 1.4065 0.0192* 1.0663
ARMA11 0.0057 1.0634 0.0191 1.0615
AR2 0.0057* 1.0592 0.0190 1.0548
AR4 0.0057 1.0588 0.0184* 1.0218
ARMA44 0.0060 1.1238 0.0203 1.1264
RW 0.0057 1.0591 0.0207 1.1453
DF1 0.0079* 1.4746 0.0180* 0.9976
DF2 0.0067* 1.2562 0.0186* 1.0331
DF3 0.0054 1.0049 0.0198* 1.1001
VAR1 0.0065* 1.2228 0.0191* 1.0612
VAR2 0.0057* 1.0601 0.0186 1.0307
VAR3 0.0070* 1.2972 0.0201* 1.1177

Equal Weights (IC) 0.0053 0.9796 0.0183 1.0161

Sample Period 1996Q1-2010Q2 1971Q4-2010Q2

TABLE 5. Real-time out-of-sample intercept corrected forecasts of inflation. The
values are compared to an equal weights combined forecast of the uncorrected models.
The asterisks denote models that have improved forecast efficiency with intercept
correction compared to Table 2.
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Sample Subsets

Training Subset In-sample Subset Out-of-sample

CPI 1947Q2-1971Q3 1971Q4-1994Q1 1994Q2-2010Q2

GDPDEF 1947Q2-1971Q3 1971Q4-1990Q4 1991Q1-2010Q2

PCE 1947Q2-1965Q3 1965Q4-1971Q3 1971Q4-2010Q2

Core PCE 1947Q2-1971Q3 1971Q4-1996Q1 1996Q1-2010Q2

PIGC compared to Equal Weights

Model/xt−1 CPI GDPDEF PCE Core PCE

MA(3) / none 1.0001 1.0004 0.9691 0.9997

(3.19) / ugapt 0.9891 0.9987 0.9829 0.9986

(3.19) / ∆yt 0.9963 0.9997 0.9678 1.0002

(3.18) / ugapt 1.0225 0.9975 0.9823 0.9983

(3.18) / ∆yt 0.9716 0.9981 0.9854 0.9901

(3.18) / ygapt 0.9959 1.0041 0.9668 0.9734

(3.18) /none 0.9797 0.9978 0.9919 0.9939

TABLE 6. The top portion of the table denotes the data subsets chosen for the
implementation of PIGC. The bottom of the table shows the relative RMSFE of
PIGC compared to an equal weights combined forecast on the full range of out-of-
sample date and for β = 2, 000.
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Forecast Tournament Results - Core PCE

n Sets EW PIGC GRW BL SW Ranking

Mean 2 66 1.0952 1.0675 1.1477 1.1061 1.1199 2, 1, 5, 3, 4
3 220 1.0584 1.0181 1.1507 1.0679 1.0878 2, 1, 5, 3, 4
4 495 1.0394 0.9924 1.1638 1.0472 1.0695 2, 1, 5, 3, 4
5 792 1.0278 0.9765 1.1818 1.0342 1.0577 2, 1, 5, 3, 4
6 924 1.0200 0.9657 1.2067 1.0252 1.0494 2, 1, 5, 3, 4
7 792 1.0143 0.9578 1.2403 1.0186 1.0433 2, 1, 5, 3, 4
8 495 1.0101 0.9518 1.2828 1.0136 1.0386 2, 1, 5, 3, 4
9 220 1.0067 0.9471 1.3323 1.0097 1.0348 2, 1, 5, 3, 4
10 66 1.0040 0.9432 1.3851 1.0066 1.0318 2, 1, 5, 3, 4
11 12 1.0018 0.9401 1.4355 1.0041 1.0292 2, 1, 5, 3, 4
12 1 1.0000 0.9374 1.4788 1.0020 1.0271 2, 1, 5, 3, 4

Std. Dev. 2 66 0.1261 0.1342 0.1571 0.1435 0.1354 1, 2, 5, 4, 3
3 220 0.0943 0.0952 0.1200 0.1084 0.1021 1, 2, 5, 4, 3
4 495 0.0753 0.0735 0.0998 0.0871 0.0819 2, 1, 5, 4, 3
5 792 0.0621 0.0594 0.0956 0.0723 0.0677 2, 1, 5, 4, 3
6 924 0.0518 0.0491 0.1020 0.0609 0.0567 2, 1, 5, 4, 3
7 792 0.0434 0.0408 0.1117 0.0514 0.0476 2, 1, 5, 4, 3
8 495 0.0361 0.0337 0.1182 0.0429 0.0396 2, 1, 5, 4, 3
9 220 0.0293 0.0273 0.1174 0.0350 0.0322 2, 1, 5, 4, 3
10 66 0.0227 0.0210 0.1064 0.0272 0.0250 2, 1, 5, 4, 3
11 12 0.0158 0.0146 0.0835 0.0190 0.0174 2, 1, 5, 4, 3

Minimum 2 66 0.8992 0.8699 0.9211 0.8803 0.9031 3, 1, 5, 2, 4
3 220 0.8968 0.8607 0.9251 0.8703 0.8893 4, 1, 5, 2, 3
4 495 0.8994 0.8731 0.9314 0.8859 0.9004 3, 1, 5, 2, 4
5 792 0.9052 0.8839 0.9330 0.8983 0.9184 3, 1, 5, 2, 4
6 924 0.9166 0.8924 0.9352 0.9103 0.9355 3, 1, 4, 2, 5
7 792 0.9241 0.9002 0.9825 0.9248 0.9512 2, 1, 5, 3, 4
8 495 0.9315 0.9063 1.0301 0.9359 0.9603 2, 1, 5, 3, 4
9 220 0.9461 0.9127 1.0698 0.9502 0.9673 2, 1, 5, 3, 4
10 66 0.9623 0.9205 1.1552 0.9653 0.9825 2, 1, 5, 3, 4
11 12 0.9793 0.9278 1.2755 0.9843 1.0014 2, 1, 5, 3, 4
12 1 1.0000 0.9374 1.4788 1.0020 1.0271 2, 1, 5, 3, 4

Maximum 2 66 1.4395 1.4431 1.5151 1.4633 1.4623 1, 2, 5, 4, 3
3 220 1.3883 1.3855 1.4606 1.4139 1.4060 2, 1, 5, 4, 3
4 495 1.3296 1.3142 1.4274 1.3431 1.3456 2, 1, 5, 3, 4
5 792 1.2924 1.2462 1.5128 1.3110 1.3051 2, 1, 5, 4, 3
6 924 1.2100 1.1467 1.5792 1.2379 1.2461 2, 1, 5, 3, 4
7 792 1.1546 1.0988 1.6240 1.1841 1.1962 2, 1, 5, 3, 4
8 495 1.1140 1.0577 1.6297 1.1390 1.1536 2, 1, 5, 3, 4
9 220 1.0858 1.0404 1.5948 1.1113 1.1187 2, 1, 5, 3, 4
10 66 1.0657 1.0169 1.5600 1.0927 1.0918 2, 1, 5, 4, 3
11 12 1.0335 0.9753 1.5324 1.0544 1.0560 2, 1, 5, 3, 4
12 1 1.0000 0.9374 1.4788 1.0020 1.0271 2, 1, 5, 3, 4

TABLE 7. Forecast tournament results for Core PCE. The n indicates the number of
candidate forecast models being combined to form the forecast. The column “Sets”
denotes the number unique groups of candidate forecasts of size n that are formed
out of the 12 models. The “Ranking” column assign a 1 to lowest relative value in
each row.
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Forecast Tournament Results - CPI

n Sets EW PIGC GRW BL SW Ranking

Mean 2 66 1.0397 1.0296 1.1463 1.0812 1.0556 2, 1, 5, 4, 3
3 220 1.0240 1.0175 1.1797 1.0880 1.0423 2, 1, 5, 4, 3
4 495 1.0161 1.0134 1.1921 1.0962 1.0353 2, 1, 5, 4, 3
5 792 1.0113 1.0119 1.1968 1.1041 1.0310 1, 2, 5, 4, 3
6 924 1.0081 1.0110 1.2000 1.1110 1.0281 1, 2, 5, 4, 3
7 792 1.0058 1.0101 1.2045 1.1169 1.0260 1, 2, 5, 4, 3
8 495 1.0041 1.0089 1.2110 1.1218 1.0244 1, 2, 5, 4, 3
9 220 1.0027 1.0074 1.2202 1.1258 1.0232 1, 2, 5, 4, 3
10 66 1.0016 1.0056 1.2334 1.1291 1.0222 1, 2, 5, 4, 3
11 12 1.0007 1.0035 1.2520 1.1318 1.0214 1, 2, 5, 4, 3
12 1 1.0000 1.0012 1.2787 1.1339 1.0207 1, 2, 5, 4, 3

Std. Dev. 2 66 0.0722 0.0638 0.1063 0.1075 0.0614 3, 1, 5, 4, 2
3 220 0.0547 0.0464 0.0971 0.0986 0.0475 3, 1, 5, 4, 2
4 495 0.0441 0.0354 0.0853 0.0870 0.0393 3, 1, 5, 4, 2
5 792 0.0366 0.0274 0.0729 0.0745 0.0334 3, 1, 5, 4, 2
6 924 0.0308 0.0217 0.0629 0.0622 0.0286 3, 1, 5, 4, 2
7 792 0.0259 0.0176 0.0552 0.0504 0.0245 3, 1, 5, 4, 2
8 495 0.0216 0.0146 0.0484 0.0394 0.0207 3, 1, 5, 4, 2
9 220 0.0176 0.0121 0.0421 0.0291 0.0171 3, 1, 5, 4, 2
10 66 0.0137 0.0100 0.0353 0.0197 0.0134 3, 1, 5, 4, 2
11 12 0.0095 0.0075 0.0281 0.0112 0.0094 3, 1, 5, 4, 2

Minimum 2 66 0.9120 0.9274 0.9565 0.9176 0.9145 1, 4, 5, 3, 2
3 220 0.9198 0.9267 0.9945 0.9174 0.9178 3, 4, 5, 1, 2
4 495 0.9328 0.9318 0.9894 0.9229 0.9513 3, 2, 5, 1, 4
5 792 0.9393 0.9376 1.0089 0.9321 0.9609 3, 2, 5, 1, 4
6 924 0.9471 0.9505 1.0339 0.9415 0.9643 2, 3, 5, 1, 4
7 792 0.9555 0.9590 1.0157 0.9535 0.9698 1, 3, 5, 2, 4
8 495 0.9623 0.9656 1.0198 0.9631 0.9771 1, 3, 5, 2, 4
9 220 0.9703 0.9720 1.0514 0.9729 0.9876 1, 2, 5, 3, 4
10 66 0.9789 0.9893 1.1627 1.0520 0.9986 1, 2, 5, 3, 4
11 12 0.9887 0.9953 1.2236 1.1029 1.0088 1, 2, 5, 4, 3
12 1 1.0000 1.0012 1.2787 1.1339 1.0207 1, 2, 5, 4, 3

Maximum 2 66 1.2441 1.2132 1.3798 1.2868 1.2437 3, 1, 5, 4, 2
3 220 1.2003 1.1884 1.3910 1.2905 1.1962 3, 1, 5, 4, 2
4 495 1.1643 1.1499 1.3964 1.2872 1.1542 3, 1, 5, 4, 2
5 792 1.1429 1.1335 1.4054 1.2842 1.1361 3, 1, 5, 4, 2
6 924 1.1292 1.1156 1.4217 1.2791 1.1219 3, 1, 5, 4, 2
7 792 1.1029 1.0824 1.4146 1.2605 1.1042 2, 1, 5, 4, 3
8 495 1.0745 1.0490 1.3545 1.2348 1.0853 2, 1, 5, 4, 3
9 220 1.0514 1.0352 1.3373 1.1969 1.0700 2, 1, 5, 4, 3
10 66 1.0336 1.0289 1.3101 1.1709 1.0540 2, 1, 5, 4, 3
11 12 1.0158 1.0218 1.3220 1.1466 1.0397 2, 1, 5, 4, 3
12 1 1.0000 1.0012 1.2787 1.1339 1.0207 1, 2, 5, 4, 3

TABLE 8. Forecast tournament results for CPI. The n indicates the number of
candidate forecast models being combined to form the forecast. The column “Sets”
denotes the number unique groups of candidate forecasts of size n that are formed
out of the 12 models. The “Ranking” column assign a 1 to lowest relative value in
each row.
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Forecast Tournament Results - GDP Deflator

n Set EW PIGC GRW BL SW Ranking

Mean 2 66 1.0349 1.0366 1.0440 1.0175 1.0314 3, 4, 5, 1, 2
3 220 1.0209 1.0215 1.0575 0.9951 1.0175 3, 4, 5, 1, 2
4 495 1.0139 1.0130 1.0931 0.9818 1.0107 4, 3, 5, 1, 2
5 792 1.0097 1.0073 1.1388 0.9722 1.0067 4, 3, 5, 1, 2
6 924 1.0069 1.0031 1.1864 0.9646 1.0040 4, 2, 5, 1, 3
7 792 1.0050 1.0000 1.2311 0.9583 1.0021 3, 4, 5, 1, 2
8 495 1.0035 0.9975 1.2704 0.9529 1.0007 4, 2, 5, 1, 3
9 220 1.0023 0.9954 1.3034 0.9482 0.9996 4, 2, 5, 1, 3
10 66 1.0014 0.9937 1.3302 0.9441 0.9988 4, 2, 5, 1, 3
11 12 1.0006 0.9922 1.3517 0.9404 0.9981 4, 2, 5, 1, 3
12 1 1.0000 0.9909 1.3694 0.9370 0.9975 4, 2, 5, 1, 3

Std. Dev. 2 66 0.0775 0.0754 0.0669 0.0733 0.0672 5, 4, 1, 3, 2
3 220 0.0629 0.0619 0.0765 0.0613 0.0520 4, 3, 5, 2, 1
4 495 0.0527 0.0529 0.0929 0.0539 0.0422 2, 3, 5, 4, 1
5 792 0.0447 0.0458 0.1072 0.0482 0.0352 2, 3, 5, 4, 1
6 924 0.0382 0.0398 0.1172 0.0432 0.0296 2, 3, 5, 4, 1
7 792 0.0325 0.0344 0.1224 0.0384 0.0250 2, 3, 5, 4, 1
8 495 0.0274 0.0294 0.1224 0.0336 0.0209 2, 3, 5, 4, 1
9 220 0.0225 0.0244 0.1165 0.0285 0.0170 2, 3, 5, 4, 1
10 66 0.0176 0.0193 0.1034 0.0230 0.0132 2, 3, 5, 4, 1
11 12 0.0123 0.0136 0.0810 0.0167 0.0092 2, 3, 5, 4, 1

Minimum 2 66 0.8784 0.8917 0.9066 0.8466 0.8956 2, 3, 5, 1, 4
3 220 0.8799 0.8919 0.8964 0.8496 0.8949 2, 3, 5, 1, 4
4 495 0.8982 0.9005 0.8917 0.8513 0.9135 2, 4, 3, 1, 5
5 792 0.9138 0.9092 0.8879 0.8635 0.9305 4, 3, 2, 1, 5
6 924 0.9246 0.9204 0.8880 0.8774 0.9430 4, 3, 2, 1, 5
7 792 0.9348 0.9306 0.9100 0.8897 0.9541 4, 3, 2, 1, 5
8 495 0.9475 0.9420 0.9316 0.8985 0.9631 4, 3, 2, 1, 5
9 220 0.9579 0.9513 1.0097 0.9070 0.9703 3, 2, 5, 1, 4
10 66 0.9683 0.9617 1.1058 0.9162 0.9797 3, 2, 5, 1, 4
11 12 0.9783 0.9723 1.1642 0.9245 0.9872 4, 3, 5, 1, 2
12 1 1.0000 0.9909 1.3694 0.9370 0.9975 4, 2, 5, 1, 3

Maximum 2 66 1.1985 1.2561 1.2393 1.1803 1.1861 3, 5, 4, 1, 2
3 220 1.1495 1.1819 1.3182 1.1364 1.1393 3, 4, 5, 1, 2
4 495 1.1263 1.1481 1.3815 1.1128 1.1141 3, 4, 5, 1, 2
5 792 1.1107 1.1279 1.4878 1.0865 1.1006 3, 4, 5, 1, 3
6 924 1.0920 1.1016 1.5148 1.0693 1.0786 3, 4, 5, 1, 4
7 792 1.0781 1.0835 1.5450 1.0572 1.0649 3, 4, 5, 1, 5
8 495 1.0674 1.0708 1.5489 1.0480 1.0540 3, 4, 5, 1, 6
9 220 1.0582 1.0592 1.5403 1.0269 1.0466 3, 4, 5, 1, 7
10 66 1.0477 1.0490 1.5369 1.0144 1.0398 3, 4, 5, 1, 8
11 12 1.0303 1.0280 1.4639 0.9863 1.0213 4, 3, 5, 1, 2
12 1 1.0000 0.9909 1.3694 0.9370 0.9975 4, 2, 5, 1, 3

TABLE 9. Forecast tournament results for GDP Def. The n indicates the number of
candidate forecast models being combined to form the forecast. The column “Sets”
denotes the number unique groups of candidate forecasts of size n that are formed
out of the 12 models. The “Ranking” column assign a 1 to lowest relative value in
each row.
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Forecast Tournament Results - PCE

n Set EW PIGC GRW BL SW Ranking

Mean 2 66 1.0318 1.0037 1.1216 1.0300 1.0180 4, 1, 5, 3, 2
3 220 1.0190 0.9855 1.2185 1.0214 0.9960 3, 1, 5, 4, 2
4 495 1.0126 0.9787 1.3622 1.0189 0.9837 3, 1, 5, 4, 2
5 792 1.0088 0.9763 1.5174 1.0185 0.9757 3, 1, 5, 4, 2
6 924 1.0063 0.9756 1.6546 1.0187 0.9701 3, 2, 5, 4, 1
7 792 1.0045 0.9758 1.7658 1.0192 0.9659 3, 2, 5, 4, 1
8 495 1.0031 0.9764 1.8592 1.0199 0.9626 3, 2, 5, 4, 1
9 220 1.0021 0.9772 1.9390 1.0208 0.9600 3, 2, 5, 4, 1
10 66 1.0013 0.9782 1.9877 1.0218 0.9578 3, 2, 5, 4, 1
11 12 1.0006 0.9792 1.9423 1.0228 0.9560 3, 2, 5, 4, 1
12 1 1.0000 0.9802 1.6601 1.0235 0.9545 3, 2, 5, 4, 1

Std. Dev. 2 66 0.0674 0.0425 0.1248 0.0448 0.0700 3, 1, 5, 2, 4
3 220 0.0556 0.0274 0.2153 0.0305 0.0642 3, 1, 5, 2, 4
4 495 0.0468 0.0199 0.2954 0.0245 0.0596 3, 1, 5, 2, 4
5 792 0.0399 0.0159 0.3281 0.0219 0.0546 3, 1, 5, 2, 4
6 924 0.0341 0.0128 0.3316 0.0205 0.0492 3, 1, 5, 2, 4
7 792 0.0291 0.0103 0.3359 0.0194 0.0436 3, 1, 5, 2, 4
8 495 0.0245 0.0081 0.3507 0.0181 0.0379 3, 1, 5, 2, 4
9 220 0.0201 0.0060 0.3705 0.0165 0.0319 3, 1, 5, 2, 4
10 66 0.0157 0.0040 0.3913 0.0142 0.0254 3, 1, 5, 2, 4
11 12 0.0110 0.0019 0.4123 0.0110 0.0181 3, 1, 5, 2, 4

Minimum 2 66 0.8775 0.9296 0.9248 0.9527 0.8643 2, 4, 3, 5, 1
3 220 0.9002 0.9284 0.9239 0.9589 0.8663 2, 4, 3, 5, 1
4 495 0.9177 0.9306 0.9457 0.9645 0.8804 2, 3, 5, 4, 1
5 792 0.9327 0.9410 0.9774 0.9678 0.8926 2, 3, 5, 4, 1
6 924 0.9436 0.9478 0.9862 0.9706 0.9046 2, 3, 5, 4, 1
7 792 0.9531 0.9499 1.0145 0.9747 0.9135 3, 2, 5, 4, 1
8 495 0.9637 0.9544 1.2302 0.9788 0.9231 3, 2, 5, 4, 1
9 220 0.9728 0.9581 1.3168 0.9821 0.9307 3, 2, 5, 4, 1
10 66 0.9823 0.9609 1.4877 0.9981 0.9372 3, 2, 5, 4, 1
11 12 0.9909 0.9764 1.5393 1.0057 0.9434 3, 2, 5, 4, 1
12 1 1.0000 0.9802 1.6601 1.0235 0.9545 3, 2, 5, 4, 1

Maximum 2 66 1.1663 1.1042 1.4596 1.1366 1.1712 3 ,1, 5, 2, 4
3 220 1.1444 1.0936 1.9071 1.1242 1.1494 3, 1, 5, 2, 4
4 495 1.1183 1.0476 2.4570 1.1057 1.1204 3, 1, 5, 2, 4
5 792 1.1015 1.0251 2.9710 1.0876 1.0897 4, 1, 5, 2, 3
6 924 1.0908 1.0153 3.3534 1.0759 1.0792 4, 1, 5, 2, 3
7 792 1.0760 1.0088 3.4842 1.0690 1.0632 4, 1, 5, 3, 2
8 495 1.0644 1.0033 3.4546 1.0622 1.0515 4, 1, 5, 3, 2
9 220 1.0548 0.9962 3.0778 1.0577 1.0416 3, 1, 5, 4, 2
10 66 1.0434 0.9907 2.8351 1.0549 1.0264 3, 1, 5, 4, 2
11 12 1.0323 0.9824 2.7105 1.0469 1.0129 3, 1, 5, 4, 2
12 1 1.0000 0.9802 1.6601 1.0235 0.9545 3, 2, 5, 4, 1

TABLE 10. Forecast tournament results for PCE. The n indicates the number of
candidate forecast models being combined to form the forecast. The column “Sets”
denotes the number unique groups of candidate forecasts of size n that are formed
out of the 12 models. The “Ranking” column assign a 1 to lowest relative value in
each row.
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Forecast Tournament Summary Results

EW PIGC GRW BL SW

PCE 3.00 1.60 4.91 3.28 2.21

Core PCE 2.07 1.07 4.98 3.21 3.67

CPI 2.05 1.63 5.00 3.56 2.77

GDPDEF 3.19 3.07 4.56 1.63 2.51

Mean 2.58 1.84 4.86 2.92 2.79

TABLE 11. The cumulative tournament ranking of each combination method on
the four measures of inflation. Each entry is the average ranking for all subsets and
categories.
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CHAPTER IV

FORECAST COMBINATION IN THE MACROECONOMY

Introduction

A popular alternative to rational expectations in dynamic macroeconomics is to

model agents as econometricians. The approach, known as econometric learning, is

commonly used as a stability criterion for rational expectations equilibria and as a

selection mechanism for models with multiple equilibria. It is also used as a rational

basis to justify boundedly rational economic behavior. Evans and Honkapohja (2013)

call this justification the cognitive consistency principle.

The standard econometric learning approach assumes that agents possess a single

subjective forecast model with initially unknown parameters. The agents estimate the

unknown parameters given data and forecast recursively, updating their parameter

estimates as new data becomes available. If the subjective forecast model is specified

correctly, then the recursively formed parameter estimates typically converge to

rational expectations.

The standard implementation of econometric learning outlined in Evans and

Honkapohja (2001) is to assume that all agents possess a single forecast model or

perceived law of motion for the economy to form expectations. In the empirical

practice of forecasting, however, econometricians often possess a menu of different

subjective forecast models form which to choose. The menu of different models may

reflects diverse views on the structure of the economy or different misspecifications

that must be made to satisfy degrees of freedom restrictions when there exists limited

data. An econometrician has two recourses when presented with multiple suitable
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models, she can select among the models by assigning a fitness measure to each or

she can devise a way to combine them.

The forecasting literature has studied both solutions extensively and has

consistently found that combination is the more robust and efficient solution to the

model selection problem. The seminal paper demonstrating the result is Bates and

Granger (1969). This paper spawned an entire subfield of econometrics dedicated

to developing new forecast combination techniques and explaining the origins of

the results. Surveys of this literature are found in Clemen (1989), Granger (1989),

Timmermann (2006), and Wallis (2011).

Despite the dominance of forecast combination in the forecasting literature,

theoretical models that have studied agents with a menu of forecasts overwhelmingly

model agents that select, rather than combine forecasts. A brief list of examples are

Brock and Hommes (1997 and 1998), Branch and Evans (2006, 2007, and 2011), and

Branch and McGough (2008 and 2010). The agents in these models select forecasts by

a process called dynamic predictor selection. The agents use a fitness measure to select

models that evolve with the dynamics of the economy. The evolving fitness measure

prompts the agents to switch among the forecast models over time. Dynamic predictor

selection is often used to motivate heterogeneous expectations and is shown to produce

a number of interesting and relevant economic phenomena such as multiple equilibria,

time-varying volatility, and exotic dynamics, which can match dynamics observed in

actual economic data. However, It remains an open question whether these economic

phenomena exist if agents choose the more common and robust solution to the model

selection problem of forecast combination.

In this paper I propose a general framework to study homogeneous agents who

consider a menu of different forecast models to form forecasts of endogenous state
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variables to determine the equilibrium and dynamic effects of employing forecast

combination strategies to the model selection problem. The assumption of agents

who use forecast combination strategies is more closely aligned with the spirit of

the cognitive consistency principle because combined forecasts are favored by both

practitioners and policymakers.1 In addition, combined forecasts are some of the most

widely distributed forecasts such as Survey of Professional Forecasters, the Michigan

Inflation Expectations Survey, or the Blue Chip Consensus Forecasts, which are all

either mean or median combined forecasts.

Contribution

I introduce a formal equilibrium concept called a Forecast Combination

Equilibrium. The concept is an extension of the Restricted Perception Equilibrium

concept used to study dynamic optimizing agents that possess limited information as

in Sargent (2001), Evans and Honkapohja (2001), and Branch (2004). The equilibrium

concept creates a general framework in which any forecast combination strategy can

be studied as an expectation formation strategy of agents in a macroeconomic model.

The concept proposes that a continuum of identical agents considers a menu of

underparameterized forecast models. The consideration of underparameterized and

parsimonious models follows the recommendations of the forecasting literature.2 The

agents combine the forecasts from the menu models to form a single expectation

using a predetermined strategy. The resulting equilibrium beliefs and dynamics are

explored. The forecast combination strategies are judged on their ability to obtain

1Monetary and fiscal policymakers typically rely on consensus or combined forecasts. As an
example, Robertson (2000) compares the forecasting methods of different central banks including
the Federal Reserve and the Bank of England and reports that in general they rely on combined
forecasts for policy decisions.

2For example see Hendry and Clements (1998).
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or approximate the Rational Expectations Equilibrium (REE) in keeping with the

traditional use of learning techniques as selection and robustness measures.

I use the equilibrium concept to study a popular reduced form macroeconomic

model that is consistent with either a Lucas-type aggregate supply model of Lucas

(1973) or a Muth cobweb model of Muth (1961) to demonstrate the possible

congruence or divergence in outcomes that occurs compared to the standard learning

model and rational expectations. I consider agents who form combined forecast using

a weighted sum of the menu of forecasts they consider. The goal of the agents is

to choose weights for the sum to produce an optimal forecast. I explore two basic

strategies that agents can use to pick weights: an optimal weighting scheme that

attempts to minimize a quadratic loss function and simple averaging (equal weights).

I show that different forecast combination strategies can result in fundamentally

different equilibrium outcomes from one another and from rational expectations. I

also show that under an the optimal weight combination strategy, where the weights

become an endogenous variable, that there may exist multiple equilibra. In addition, if

there exists multiple equilibria and the rational expectations equilibria is one of those

equilibria, then the rational expectations equilibria is never learnable in the sense

that if agents are estimating the parameters of their forecast models and the optimal

weights, they will never converge to the REE from nearby initial points. However,

many of the other equilibria of the model are shown to stable under learning.

The multiplicity of equilibria in the model can generate dynamics under real time

econometric learning that are similar to the results found in the dynamic predictor

selection literature. In particular, an economy that only is subject to small white noise

shocks can exhibit stochastic volatility as in Brock and Hommes (1998) and Branch

and Evans (2007) and endogenous structural change. The result is novel because
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the agents take into account the full history of past data when choosing weights, the

weights are not confined to unit interval as in dynamic predictor selection where they

represent population shares, and the agents hold homogeneous beliefs.

The remainder of the paper proceeds as follows. Section 2 introduces a general

framework and equilibrium concept in which to study forecast combination. Section

3 proposes forecast combination strategies from the forecasting literature to analyze

and characterizes the forecast combination equilibria that exist for a particular

specification of the model under study. Section 4 uses econometric learning to study

the stability of the Forecast Combination Equilibria when agents estimate parameters

and weights in real time. Section 5 demonstrates the time-varying volatility that

optimal forecast combination can generate. Section 6 discusses the relationship

between endogenous weight forecast combination strategies and the Lucas Critique.

Section 7 concludes.

A General Framework

To fix ideas I present a macroeconomy that has a unique Rational Expectations

Equilibrium (REE) in which to study forecast combination. I then propose a plausible

way for boundedly rational agents to possess a menu of different forecasts based on

standard practices from the forecasting literature. Finally, I present an equilibrium

concept to study the properties of different forecast combination strategies when

employed by dynamic optimizing agents in place of rational expectations.
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A Reduced Form Economy

I consider a reduced form economy described by a self-referential stochastic

process driven by a vector of exogenous shocks. The model takes the following form,

yt = µ+ αEt−1yt + ζ ′xt−1 + vt, (4.1)

where yt is a scalar state variable, xt−1 is a n× 1 vector of exogenous and observable

shocks, and vt is white noise.3 The model is the reduced form version of two well-

known macroeconomic models depending on the value of α. The model is the reduced

form version of the Muth (1961) cobweb model for α < 0 and the Lucas-type aggregate

supply model of Lucas (1973) for 0 < α < 1.

The rational expectations solution of this model can be represented as linear

combination of the exogenous observable shocks:

Et−1yt = φ′zt−1, (4.2)

where φ is a (n+1)×1 vector of coefficients that reflect agents beliefs about the effect

of the shocks on yt and zt−1 = (1 x′t−1)′. The necessary and sufficient condition for

the expectation to be rational is that in equilibrium its forecast errors are orthogonal

to the agents’ information sets,

Ezt−1(yt − φ′zt−1) = 0, (4.3)

where E is the unconditional expectations operator and 0 is an (n + 1) vector of

zeros. The unique beliefs that satisfy (4.3) and constitute a rational expectations

equilibrium are φ = (1− α)−1(µ ζ ′)′.

3The model permits many different shock structures such as VAR(p) or VARMA(p,q) processes.
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Misspecified Models and Forecast Combination Equilibria

To study forecast combination I deviate from rational expectations and assume

there exists uncertainty over the correct specification to forecast yt. I assume that

agents consider k different underparameterized versions of equation (4.2) that each

omit one or more of the exogenous shocks in xt−1. The k underparameterized models

are denoted as yi,t = φ′izi,t−1 for i = 1, 2, ...k, where φi and zi,t−1 are m × 1 vectors

such that m ≤ n.

The assumption of underparamerterized and misspecified models mimics

standard practices in the forecasting literature. Macroeconomic forecasters typically

possess limited data and must make restrictions on the number of parameters that

are estimated in any given model. Also, the use of many predictors is found to

create estimation uncertainty in the form of model overfitting that reduces out-of-

sample forecast accuracy. Empirical examples of the efficacy of using parsimonious

forecasts are Ohanian and Atkeson (2001), Ang, Bekaert, and Wei (2007), and

Stock and Watson (2004), who show that simple univariate time series models

forecast inflation and output better respectively, than more correctly specified and

theoretically grounded models. A survey of the literature on forecasting with many

predictors is given by Stock and Watson (2006).

The agents, in accordance with the cognitive consistency principle, choose to

combine the k different forecasts to create a single forecast of yt. The agents combine

the forecasts using a weighted sum approach that is standard in the forecasting

literature. The weighted sum of the k underparameterized model is given by

Et−1yt =
k∑
i=1

γiφ
′
izi,t−1, (4.4)

where γi ∈ R is the weight given to ith model.
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Forecast Combination Equilibrium

The equilibrium concept I propose is a natural extension of the Restricted

Perceptions Equilibrium (RPE) concept. In an RPE the agents are required to have

an optimal forecast given their restricted information set. In an FCE the agents have a

similar restriction that is model specific for each model on their menu. Each model on

the menu is required to be optimal given the information set used to create it. These

individual forecasts are, however, not necessarily optimal given the total information

set of the agents. The definition reflects the behavior of actual forecasters who

optimally fit different misspecified models conditional on their included information

and then combine the forecasts.

Definition 1: A Forecast Combination Equilibrium (FCE) is a set of beliefs

{φ1, φ2, ..., φk} that describes a vector of forecasts Yt = (y1,t y2,t... yk,t)
′ ∈ Rk, given

weights Γ = (γ1 γ2... γk)
′ ∈ Rk, such that Et−1yt =

∑k
i=1 γiyi,t and

Ezi,t−1(yt − φ′izi,t−1) = 0 (4.5)

for all i = 1, 2, ..., k.

The basic definition takes the weights as an exogenous variable. This is done so that

different weights or different optimality requirements for weights can be studied under

a single equilibrium definition. The selection of weights is a non-trivial problem in the

empirical practice of forecasting and one of the questions of interest is how different

exogenous or endogenous weighting strategies may alters equilibrium outcomes.

This equilibrium concept is related to another equilibrium definition proposed in

the literature, the Misspecification Equilibrium (ME) concept developed in Branch
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and Evans (2006). An ME is employed to analyze heterogeneous agents that select

forecasts from a list of misspecified models using a fitness measure. The aggregate

forecast in the economy is the weighted average of the different forecasts chosen by

the agents where the weights are equal to the measure of agents that chose each

forecast. An ME requires in equilibrium that the individual models satisfy the same

orthogonality condition given in Definition 1. However, the Forecast Combination

Equilibrium concept is distinct from ME because in the case under study there is no

heterogeneity in forecasts among agents choice and no restrictions on the value of the

weights.

Existence of an FCE

I begin my analysis of forecast combination by establishing the conditions that

must be met for an FCE to exist given an exogenous vector of weights. Suppose

that the agents possess a menu of misspecified forecasts Yt = (y1,t y2,t ... yk,t)
′ ∈ Rk

and they choose to combine them to form a single forecast using the weights Γ =

(γ1 γ2 ... γk)
′ ∈ Rk. The expectation of the agents, Et−1yt, is given by equation (4.4)

and the economy under the combined forecasts can be written as

yt = µ+ α
k∑
i=1

γiφ
′
izi,t−1 + ζ ′xt−1 + vt. (4.6)

The economy is said to be in a Forecast Combination Equilibrium if given the weights

Γ, the individually misspecified forecasts are individually optimal in accordance with

equation (4.15) given in Definition 1. This implies the beliefs of the agents represented

by the φi’s must satisfy the following system of equations
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Ez1,t−1(µ+ α
k∑
i=1

γiφ
′
izi,t−1 + ζ ′xt−1 + vt − φ′1z1,t−1) = 0

...

Ezk,t−1(µ+ α

k∑
i=1

γiφ
′
izi,t−1 + ζ ′xt−1 + vt − φ′kzk,t−1) = 0. (4.7)

There exists a unique FCE given the following condition is satisfied:

Existence Condition: Given Yt and Γ, a unique FCE exists if det(∆) 6= 0, where

∆ =



(1− αγ1)(u1Σzu
′
1) −αγ1u1Σzu

′
2 ... −αγ1u1Σzu

′
k

−αγ2u2Σzu
′
1 (1− αγ2)(u2Σzu

′
2) ... −αγ2u2Σzu

′
k

... ... ... ...

−αγkukΣzu
′
1 −αγkukΣzu

′
2 ... (1− αγk)(ukΣzu

′
k)


,

Ezt−1z
′
t−1 = Σz, and ui is an m × (n + 1) sector matrix that selects the appropriate

elements out of Σz that correspond to the ith underparameterization.4

The existence condition is derived in detail in the appendix.

If there exists an FCE for a given Γ and menu of forecast Yt, then in general there

exists and open set U of weight vectors, such that Γ ∈ U , which will also satisfy the

existence condition for the same Yt. This follows from the fact that the eigenvalues of

∆ are a continuous function of Γ. The existence of multiple weights that constitute

and FCE for a given Yt implies that there is not a unique weight vector for the agents

4The condition is a necessary, but not sufficient condition for an ME in Branch and Evans (2006).
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to choose. The next section studies different possible ways agents may choose weights

based on recommendations from the forecasting literature.

Exogenous and Endogenous Selection of Weights

I consider the possibility that agents either exogenously impose recommended

weights or endogenously choose weights according to an optimality criterion to form

a combined forecasts. I restrict my analysis to the homogeneous selection of weights

by all agents to characterize the possible equilibrium outcomes when agents coordinate

on single combination strategy. The analysis of the homogeneous case is sufficiently

complicated to leave the questions of heterogeneity to future research.

The goal of forecast combination is to choose weights to create the optimal

combined forecast. I employ the standard definition of optimal used in the forecasting

literature, which is that an optimal forecast minimizes the expected squared error of

a forecast.5 Given a set of underparmeterized models Yt, the forecast combination

problem is

min
{Γ}

E[(yt − Γ′Yt)
2]. (4.8)

The agents solve the minimization problem the same way they form a forecast by

positing a form of the solution and finding optimal coefficients Γ. I study three

different solutions to (4.8) proposed by Granger and Ramanathan (1984) who consider

regression models for estimating the solution from past data. The three specifications

5The effect of using other metrics, such as asymmetric loss functions, is an interesting avenue for
future research.

81



are

yt = γ1y1,t + γ2y2,t + ...+ γkyk,t + et (4.9)

yt = γ1y1,t + γ2y2,t + ...+ γkyk,t + et : s.t.

k∑
i=1

γi = 1 (4.10)

yt = γ0 + γ1y1,t + γ2y2,t + ...+ γkyk,t + et, (4.11)

where et represents the error term. The first specification, equation (4.9), is argued

by Granger and Ramanathan to be the optimal solution when the menu of forecasts

is believed to be unbiased. This specification is the main one of interest and I will

denote it as the optimal weights (OW) specification.

The two other specifications are modifications to the OW case. The second

specification imposes the restriction that the weights sum to one. I call this case

restricted optimal weights (ROW). The restriction is argued to guarantee that the

combined forecast of unbiased forecasts is unbiased. The restriction is also argued to

ensure that the combined forecast optimally uses the available information. Diebold

(1988) shows that combined forecasts that do not impose this restriction can generate

serially correlated forecast errors in out-of-sample forecasting exercises.

The third specification adds a constant term to the optimal weights (OWC). The

constant term is used to remove any bias that may exist in the elements of Yt from

the combined forecast. The addition of a constant to the weights regression is not

a trivial modification to the OW case because in forecasting, parsimony is key. The

estimation error introduced by the addition of extra parameters when there exists

limited data can significantly reduce forecast efficiency.6 The modification is also not

6A specific example of this appear in Smith and Wallis (2009) who show that estimation
uncertainty is one explanation for the forecast combination puzzle.
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an obvious addition based on the objective function given by (4.8). Although, it is a

more natural modification when considered in a regression framework.

In addition to the optimal weights, I consider the choice of static equal weights.

The equal weights solutions is given by γi = 1/k for i = 1, 2, ..., k. This specification

is only a solution to (4.8) under very specific conditions, but it is found to work well

in empirical practice. Equal weights also serve as a good comparison to the optimal

weights because it does not require knowledge of the distribution of yt or the vector

of forecasts Yt to implement.7 The four different strategies are used to modify the

FCE definition to incorporate the selection of weights as an equilibrium condition.

Assessing FCEs

Rational expectations is the natural benchmark for the characterization of FCEs

formed under different combination strategies. The resulting FCEs are compared to

an REE in four categories:

1. equilibrium differences in beliefs

2. equilibrium differences in forecasts

3. stability under learning

4. and dynamics under real-time learning.

The first two categories address a forecast combination strategy’s ability to

approximate rational expectations in equilibrium. I capture these categories in a

new definition.

7A popular forecast combination strategy not studied in this paper is to weight forecasts by the
inverse of their past mean squared error measured over a rolling window. The weights in this case are
not explicit solutions, but, like equal weights, they are found to be effective. For empirical examples
see Bates and Granger (1969) or Stock and Watson (2004).
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Definition 2: An FCE {φ1, φ2, ..., φk} is called a fundamental FCE if the individual

model beliefs φi = (ai b
′
i)
′ are equivalent to the REE beliefs, such that ai = (1−α)−1µ

and bi = (1− α)−1(ζi,1 ζi,2 ... ζi,m−1)′ for i = 1, 2, ...k and EREE
t−1 yt = EFCE

t−1 yt.

The notation EREE
t−1 yt = EFCE

t−1 yt denotes equivalence between the equilibrium

forecasts. This condition is necessary because equal beliefs in general do not

imply equivalent forecasts or vice versa because the combination weights affect the

equilibrium expectations.

The third category assesses the likelihood an FCE is an actual outcome when

agents must infer their beliefs from past data. The fourth category assesses the

dynamics on the off equilibrium paths when agents form forecasts recursively using

real-time econometric learning. The off equilibrium paths under learning can

sometimes diverge far from the equilibrium dynamics when there exists unobservable

stochastic shocks. The comparisons are made with respect to the value of α assumed

in the model. The value of α determines the type of economic model represented

by equation (4.1) by determining the amount feedback a forecast has on the actual

realization of the data. If α = 0, the model has no self-referential component and

forecasting is reduced to a purely statistical exercise.

Characterizing FCEs

This section characterizes the possible FCEs under each of the four proposed

combination strategies for an example of the reduced form economy and a specific

menu of forecast models. I consider an economy driven by a 2 × 1 vector xt−1 of

exogenous and observable shocks. The shocks are assumed i.i.d. with Exi,t−1 = 0 for

i = 1, 2 and
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Ex′t−1xt−1 =

 σ2
1 σ12

σ12 σ2
2

 . (4.12)

The results are not dependent on this assumption, but the simple structure simplifies

analysis to better illustrate the intuition.

The agents’ menu of forecasts consists of all non-trivial underparameterizations

of the data generating process. The menu of forecasts is

y1,t = a1 + b1x1,t−1 (4.13)

y2,t = a2 + b2x2,t−1., (4.14)

which can be express as yi,t = φ′izi,t−1 with beliefs φi = (ai bi)
′ for i = 1, 2. The

inclusion of all non-trivial underparameterizations make the agents’ information sets

equivalent to the information set under rational expectations. This assumptions

allows for a precise characterization of the difference between an FCE and the REE.

Equal Weights

The equal weights solution requires the least amount of information for the agents

to impose. The equilibrium outcomes provide an illustrative example of how forecast

combination alters equilibrium beliefs and forecasts.

Definition 3: An Equal Weights Forecast Combination Equilibrium (EWFCE)

is a set of belief {φ1, φ2} that describes a vector of forecasts Yt = (y1,t y2,t)
′, given

weights Γ = (1
2

1
2
)′, such that Et−1yt =

∑k
i=1 γiyi,t and

Ezi,t−1(yt − φ′izi,t−1) = 0 (4.15)
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for all i = 1, 2.

The set of beliefs that constitute an EWFCE for the model under consideration are

φ1 and φ2 that satisfy

Ez1,t−1(yt − φ′1z1,t−1) = 0

Ez2,t−1(yt − φ′2z2,t−1) = 0. (4.16)

These conditions can be represented as a projected T-map. A projected T-map

is a mapping from the individual beliefs to the actual outcomes of the economy

under forecast combination. The mapping from beliefs to outcomes is a useful

representation to calculate equilibrium beliefs and is the key to analyzing the stability

of any equilibria under real-time econometric learning. The projected T-map is also

equivalent to constructing the ∆ matrix to establish existence of an FCE discussed in

Section 2. I translate the conditions in each of the four cases into a projected T-map

to solve for the equilibrium beliefs.

A projected T-map is constructed by specifying the agents’ perceived law of

motion (PLM) for the economy. The PLM under forecast combination is the combined

forecast given the appropriate weights,

Et−1yt =
1

2
φ′1z1,t−1 +

1

2
φ′2z2,t−1. (4.17)

The PLM represents how agents form Et−1yt in equation (4.1). The PLM can be

substituted in for Et−1yt to produce the actual law of motion (ALM) of the economy,

yt = µ+ α(
1

2
φ′1z1,t−1 +

1

2
φ′2z2,t−1) + ζ ′xt−1 + vt. (4.18)
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The ALM describes how yt evolves given agents beliefs and their forecast combination

strategy. The ALM is then substituted into the orthogonality conditions, the

expectation is taken, and the conditions are simplified so that φ1 and φ2 appear on

the right-hand side of the equations and a function of φ1 and φ2 are on the left-hand

side. The T-map under equal weights is

T



a1

a2

b1

b2


=



µ+ α
2
(a1 + a2)

µ+ α
2
(a1 + a2)

α
2
(b1 + b2

σ12

σ2
1

) + ζ1

α
2
(b2 + b1

σ12

σ2
2

) + ζ2


, (4.19)

where ζ = (ζ1 ζ2)′. The fixed points of the projected T-map correspond to EWFCEs

of the economy.

Lemma 1: There exists a unique fixed point given by

a1 = a2 =
µ

1− α

b1 =
(α

2
− 1)ζ1σ

2
1σ

2
2 − α

2
ζ1σ

2
12 − ζ2σ12σ

2
2

1
4
σ2

12α
2 − (1− α

2
)2σ2

1σ
2
2

b2 =
(α

2
− 1)ζ2σ

2
1σ

2
2 − α

2
ζ2σ

2
12 − ζ1σ12σ

2
1

1
4
σ2

12α
2 − (1− α

2
)2σ2

1σ
2
2

, (4.20)

which is not a fundamental FCE.

The lemma is obtained by solving for a fixed point of the T-map and by comparing

the resulting beliefs to rational expectations.

The rational expectations beliefs for the given model are a = µ
1−α , b1 = ζ1

1−α ,

and b2 = ζ2
1−α . The difference in the beliefs between the EWFCE and REE are from

the misspecification of the two underparameterized models and the interaction of the

87



forecast combination strategy in a self-referential environment. The misspecification

error is an omitted variable. The bias is captured by the σ12 terms in the bi beliefs. If

σ12 = 0, then the omitted variable bias is removed and the EWFCE beliefs collapse

to bi = ζi
1−α/2 for i = 1, 2, where the remaining difference is due to the combination

strategy and the feedback from expectations. The use of equal weights prevents the

agents from fully responding to a predicted change from one of the individual models.

The attenuated response to the prediction impacts the actual realization of yt when

α 6= 0. This alters the actual relationship between xt−1 and yt in equilibrium, which

is the reflected in agents beliefs in the EWFCE.

The combination weights drive a wedge between the EWFCE forecasts and the

RE forecasts. Under RE, the expected squared forecast error of the agents is given

by Ev2
t = σ2

v , while the expected squared forecast error in the EWFCE is

E(yt −
1

2

2∑
i=1

yi,t)
2 = σ2

v + ξ1σ
2
1 + ξ2σ

2
2 + ξ1ξ2σ12, (4.21)

where ξi = (1
2
(α− 1)bi + ζi) and bi is the EWFCE belief given previously for i = 1, 2.

The equal weights forecast as expected will have higher expected squared forecast

errors than under rational expectations.

Optimal Weights

The optimal weights case uses the regression specification (4.9) to form optimal

weights for the menu of forecasts. The regression specification can be translated into

an extra orthogonality condition that must be satisfied in equilibrium. I formalize

these conditions into a new definition.
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Definition 4: An Optimal Weights Forecast Combination Equilibrium (OWFCE)

is a set of beliefs and weights {φ1, φ2,Γ} such that Et−1yt =
∑2

i=1 γ1yi,tand

EYt(yt − Γ′Yt) = 0

Ez1,t−1(yt − φ′1z1,t−1) = 0

Ez2,t−1(yt − φ′2z2,t−1) = 0, (4.22)

where the 0’s are 2× 1 vectors of zeros.

To study OWFCEs I again translate the equilibrium conditions into a projected T-

map. The PLM under optimal weights is

Et−1yt = γ1φ
′
1z1,t−1 + γ2φ

′
1z2,t−1, (4.23)

and the corresponding ALM is

yt = µ+ α(γ1φ
′
1z1,t−1 + γ2φ

′
1z2,t−1) + ζ ′xt−1 + vt. (4.24)

Substituting the ALM into the conditions of Definition 4, simplifying the system with

respect to each coefficient in {φ1, φ2,Γ}, and taking expectations gives the following

projected T-map

T



a1

a2

b1

b2

γ1

γ2


=



µ+ α(a1γ1 + a2γ2)

µ+ α(a1γ1 + a2γ2)

αγ1b1 + (αγ2 + ζ2)σ12

σ2
1

+ ζ1

αγ2b2 + (αγ1 + ζ1)σ12

σ2
2

+ ζ2

αγ1a2
1+b1(αγ1σ2

1b1+(α−1)γ2σ12b2+σ1ζ1+σ12ζ2)+a1((α−1)γ2a2+µ)

(a2
1+σ2

1b
2
1)

(α−1)(γ1a1a2+γ1σ12b1b2)+αγ2a2
2+αγ2σ2b22+ζ1σ12b2+ζ2σ2

2b2+µa2

(a2
2+σ2

2b
2
2)


. (4.25)
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The fixed points of the T-map are OWFCEs of the economy.

The T-map is a system of polynomial equations which suggest the potential

for multiple equilibria to exist. However, obtaining analytic solutions to systems

of polynomial equations is difficult (see Sturnfels (2002)). It is possible to solve

this system analytically with the aid of computers, but the solutions are large and

impractical to study. So instead of solving for the entire family of solutions, I analyze

the T-map using bifurcation theory to characterize OWFCEs in the neighborhood of

rational expectations equilibrium. The possible equilibria that exist outside of this

neighborhood are then explored numerically.

Lemma 2: If σ12 = 0 and µ = 0, then there exists an OWFCE that is a

fundamental FCE with optimal weight Γ = (1 1)′.

The lemma can be established by substituting in the appropriate values into the

T-map and checking that it is a fixed point. The requirement that σ12 = 0 is

necessary to prevent omitted variable bias in the individual agents beliefs and µ = 0

is required so that optimal weights are correctly specified. The condition that σ12

and µ equal zero does not remove the non-linearity from the T-map, so there may

exist non-fundamental OWFCEs as well as the fundamental OWFCE in some cases.

The existence of non-fundamental OWFCEs implies that rational expectations may

only be one of many equilibrium outcomes under optimal weights.

The existence of non-fundamental OWFCEs can be established by monitoring

the properties of the fundamental OWFCE as a bifurcation parameter is varied. The

existence of a bifurcation can precisely characterize the existence of non-fundamental

OWFCEs without having to explicitly solve for them. The natural parameter to
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study is α, the feedback parameter on expectations, which captures the self-referential

element of the model.

To apply bifurcation theory, consider the T-map as a differential equation given

by

Θ̇ = T (Θ)−Θ. (4.26)

The differential equation governs the dynamics of Θ = (φ′1 φ
′
2 Γ′)′ in notional time.8

Bifurcation theory characterizes the existence of OWFCEs by monitoring the stability

of a fixed point. If the fixed point of the system has eigenvalues that are equal to zero

for some value of α, it may indicate that new fixed points have come into existence

by way of a bifurcation.

The fundamental FCE experiences a bifurcation at α = 1
2
. The type of

bifurcation and its affect on the fundamental FCE is analyzed by using the

center manifold reduction technique described in Wiggins (1990). The center

manifold reduction creates a one-dimensional projection of the bifurcation that fully

characterizes the existence of the fixed points in the larger system.

Theorem 1: Given µ = 0 and σ12 = 0, there coexists non-fundamental and

fundamental OWFCEs for some α > 1
2
.

The theorem is proved by showing the existence of a pitchfork bifurcation. A pitch

fork bifurcation is where a single fixed point destabilizes and creates two new stable

OWFCEs. The approximate center manifold is given in Figure (7).

Theorem 1 is a surprising result. It says that optimal weights lives up to

its moniker for negative or small positive values of α and can provide equilibrium

8Notional time is used to distinguish the treatment of the T-map as a differential equation from
the actual timing of outcomes in the model.
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FIGURE 7. A pitchfork bifurcation on the approximate center manifold of the T-map
(4.26). The bifurcation has been normalized to occur at (0, 0). The solid line indicate
stable fixed points and the dashed line indicates unstable fixed points.

outcomes that are equivalent to rational expectations. But, as α becomes large,

optimal weights can also provide equilibrium outcomes that diverge from rational

expectations.9 The economic intuition for the existence of the non-fundamental

OWFCEs when the feedback parameter on expectations is positive is that positive

feedback creates a self-fulfilling quality to expectations. The degree to which a forecast

has an affect on yt is determined by the sign of α. In the case where α is negative any

beliefs that deviate from rational expectations will result in poor forecasts because

yt will move in the opposite direction of the forecast. In the case where α is positive

any beliefs that deviate from rational expectations will be partly confirmed because

yt will move in the same direction as the forecast. The self-fulfilling quality allows

the non-fundamental beliefs to interact with the optimal weights to create new fixed

points of the system.

9non-rational or non-fundamental beliefs are associated with stable dynamics in notional time. As
indicated when the T-map was introduced, the mapping is key for analyzing the stability of equilibira
under real-time econometric learning and the theorem suggests that although the fundamental FCE
always exists, it may not always be stable under learning. Unfortunately Theorem 1 does not
constitute a proof because the specific technique used is not equivalent to studying the equilibrium
under econometric learning, but the intuition is shown to be correct in Section 4.
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To illustrate the multiple OWFCEs that exist graphically and show their

dependence on α, I create a pseudo-bifurcation diagram. The diagram fixes a

realization of x̂t−1 and plots the different equilibrium forecasts that the agents would

hold for the set of OWFCES that exist for a given α. Figure 8 is the pseudo-bifurcation

diagram for α between −1.5 and 1.5 with parameters ζ1 = .9, ζ2 = −.9, σ2
1 = σ2

2 = 1,

σ12 = 0, µ = 0, and x̂t−1 = (1 1)′ as the specific realization of xt−1. The range of α is

chosen to cover the relevant regions of the parameter space that are typically explored

in the literature.10 The REE forecast under the given parameters for the fixed x̂t−1 is

EREE
t−1 [yt|x̂t−1] = 0 for all α. The simulation shows that the fundamental FCE is the

unique OWFCE before the bifurcation and is one of many after the bifurcation. The

system also bifurcates a second time at α = 3
4
, which results in six OWFCEs existing

simultaneously in addition to the OWFCE that is the fundamental OWFCE.

Further Exploration

No fundamental OWFCE exists when either σ12 6= 0 or µ 6= 0. Figure 9 illustrates

the deviations in the forecasts from rational expectations by plotting the equilibrium

forecasts for OWFCEs with µ = 1 and the remaining parameters the same as Figure

8. The figure shows the OWFCEs forecast in black and the REE forecast in gray.

The deviation between the OWFCE nearest the REE is driven by the weights. This

OWFCE has equilibrium beliefs equivalent to rational expectations, but optimal

weights Γ = (
ζ2
1+αµ2

ζ2
1+µ2

ζ2
2+αµ2

ζ2
2+µ2 )′. The weights provide a combined forecast that is not

equivalent to the rational expectations forecast.

10The majority of papers look at α between -3 and 1. The action in FCEs is in the positive
feedback case, so I restrict the size of α on the left. Some examples from the literature are Brock
and Hommes (1997) who use α = −2.7, Branch and Evans (2006) who use α = −2, and Branch and
Evans (2007) who use α = 0.6.
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FIGURE 8. A plot of the OWFCE forecasts for a specific realization of xt−1 and for
different values of α.

The genesis of the deviation is due to the forecast combination strategy. The

strategy is misspecified along the line considered by Granger and Ramanathan (1984).

The individual forecasts have positive intercepts that are not correctly accounted for

by the optimal weights specification. Note that if α = 0, the equilibrium weights will

still not equal Γ = (1 1)′, which is required for the OWFCE forecast to equal the

REE forecast.

The addition of a positive intercept also alters the second bifurcation of the

system. The equilibrium forecasts for a relatively large positive α change compared

to Figure 8. There now exists multiple OWFCEs for α > 1. The maximum number

of OWFCEs remains at seven.
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FIGURE 9. A plot of the OWFCE forecasts (black) and the REE forecast (gray) for
a specific realization of xt−1 and for different values of α.

Restricted Optimal Weights

The second specification proposed by Granger and Ramanathan (1984) imposes

the restriction that the weights sum to one. The purpose of the restriction is to ensure

that the combined forecast of unbiased forecasts is unbiased. An FCE with restricted

optimal weights can fit into Definition 4 by imposing the restriction that γ2 = 1− γ1

on the first orthogonality condition to yield

E(y1,t − y2,t)[(yt − y2,t)− γ1(y1,t − y2,t)]. (4.27)

The FCE under restricted regression weights will be referred to as ROWFCE. The

system can be represented by a T-map following the same procedure executed under

optimal weights. The T-map for ROW is
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T



a1

a2

b1

b2

γ1


=



µ+ αγ1a1 + α(1− γ1)a2

µ+ αγ1a1 + α(1− γ1)a2

αγ1b1 + (ζ2 + α(1− γ1)b2)σ12

σ2
1

+ ζ1

α(1− γ1)b2 + (ζ1 + αγ1b1)σ12

σ2
2

+ ζ2

b1Ω1−b2Ω2+(a1−a2)Ω3

a2
1−2a1a2+a2

2+σ2
1b

2
1−2b1b2+σ2

2b
2
2


(4.28)

where Ω1, Ω2, and Ω3 are expanded in the footnote.11

The possible FCEs under restricted optimal weights are similar to the OW

case with a unique FCE that experience a bifurcation resulting in multiple FCEs

for positive α above a threshold. Figure 10 plots the ROWFCE forecasts given by

EFCE
t−1 [yt|x̂t−1] for α ∈ (−1.5, 1.5) using identical parameters as Figure 8, but with

µ = 1, and σ12 = .1.

The ROWFCEs are dissimilar to the OW case because the restriction prevents

the existence of a fundamental FCE.

Lemma 3: There does not exist a fundamental FCE in the set of ROWFCEs.

The lemma is obtained by substituting in the REE beliefs into the T-map to verify

that they are not a fixed point for any γ1.

The combined forecast under restricted optimal weights also does not provide

a forecast equivalent to rational expectations. Figure 10 in the bottom panel shows

the ROWFCE forecasts and the REE forecasts for ζ = (.9 − .65)′, σ2
1 = σ2

2 = 1,

σ12 = 0, and µ = 0. In this case the forecast diverges from the rational expectations

forecast even when the intercept term and the covariance of the shocks are zero. The

11Ω1 = σ2
1(αγ1b1 +ζ1)+σ12(b2(α−αγ1−1)+ζ2), Ω2 = σ12(αγ1b1 +ζ1)+σ2

2(b2(α−αγ1−1)+ζ2),
and Ω3 = µ+ αγ1a1 + a2(α− αγ1 − 1).
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restriction that the weights sum to one restricts the possible beliefs and forecasts from

ever being equivalent to rational expectations.

Optimal Weights with a Constant

The third solution to the forecast combination problem offered by Granger and

Ramanathan (1984) is to add a constant parameter to the weights. The constant is

added to offset biases that may exist in the forecasts contained in Yt. A forecast

combination equilibrium under optimal weights with a constant can be fit into

Definition 4 by redefining Γ to include an intercept such that Γ = (γ0 γ1 γ2)′. The FCE

under optimal weights will be referred to as OWCFCE. The transformed equilibrium

conditions can then be represented as a projected T-map following the same procedure

executed for optimal weights. The T-map for OWC is

T



a1

a2

b1

b2

γ0

γ1

γ2



=



µ+ α(γ0 + γ1a1 + γ2a2)

µ+ α(γ0 + γ1a1 + γ2a2)

αγ1b1 + (αγ2b2 + ζ2)σ12

σ2
1

+ ζ1

αγ2b2 + (αγ1b1 + ζ1)σ12

σ2
2

+ ζ2

µ− γ1a1 − γ2a2 + α(γ0 + γ1a1 + γ2a2)

αγ1a2
1+b1(αγ1σ2

1b1+(α−1)γ2σ12b2+σ2
1ζ1+σ12ζ2)+a1((α−1)(γ0+γ2a2)+µ)

a2
1+b1σ2

1

αγ2a2
2+b2((α−1)σ12b1+αγ2σ2b2+σ12ζ1+σ2ζ2)+a2((α−1)(γ0+γ1a1)+µ)

a2
2+σ2

2b
2
2



. (4.29)
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FIGURE 10. Plots of the ROWFCE forecasts. The top plot demonstrates multiple
ROWFCEs for the same parameter values used in Figure (8), but with µ = 1 and
σ12 = 0.1. The bottom plot compares ROWFCE forecasts (black) to the REE forecast
(gray) for different values of α and ζ = (.9 − .65)′, σ2

1 = σ2
2 = 1, σ12 = 0, and µ = 0.
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Lemma 4: There exists a unique OWCFCE given by

a1 = a2 =
µ

1− α
γ0 =

(σ2
1σ

2
2 − (σ12)2)ζ1ζ2µ

(α− 1)(σ2
1ζ1 + σ12ζ2)(σ12ζ1 + σ2

2ζ2)

b1 =
σ2

1ζ1 + σ12ζ2

σ2
1(1− α)

γ1 =
σ2

1ζ1

σ2
1ζ1 + σ12ζ2

b2 =
σ12ζ1 + σ2

2ζ2

σ2
2(1− α)

γ2 =
σ2

2ζ2

σ2
2ζ2 + σ12ζ1

and if σ12 = 0, then the OWCFCE is the fundamental FCE with weights Γ =

( µ
α−1

1 1)′.

The result provides intuition for why there exist multiple FCEs under OW

or ROW. The addition of the intercept term correctly specifies the weights for

all possible parameterizations of the economy. The correct specification eliminates

the possibility of a self-reinforcing bias originating in the misspecified models. For

example, note that the non-fundamental forecasts in Figure 8 are non-zero. The

forecasts deviate from zero because one or both of the individual models posits,

incorrectly, a positive (negative) value for the intercept. The incorrect belief of a

positive (negative) value for the intercept exists because of the interaction between

the weights and the expectational feedback, which biases the agents’ beliefs compared

to rational expectations. The addition of the intercept, γ0, eliminates the possibility

of a sustained bias in the combined forecast from this interaction and results in a

unique equilibrium.

Results Summary

The findings of the section are summarized in Table 12. The table is organized

by forecast combination strategies and by the feedback parameter to illustrate the

different outcomes that occur for positive, negative, and zero feedback. The table

99



denotes the number of possible equilibria, whether one of the forecast combination

equilibrium is equivalent to REE as indicated by the existence of a fundamental FCE,

and the conditions under which the fundamental FCE occurs.

There are two important results shown in this section. The first is that

optimal weighting strategies can provide equilibrium outcomes equivalent to rational

expectations under certain conditions. This shows that optimally combined

underparameterized models can be a route to rational expectations. The second

result is that optimal combination strategies can deviate from rational expectations

in surprising ways, in that, there coexists multiple FCEs under OW and ROW in the

positive feedback case. The existence of the multiple FCEs suggest that although

rational expectations outcomes are possible, they may not be likely.

The deviations from rational expectations also show that the recommendations

from the out-of-sample forecasting literature do not always carry over into the self-

referential environment. The recommendations of Granger and Ramanathan are

consistent with the multiple FCE case of OW, when σ12 and µ equal zero, and

consistent for many of the ROWFCEs, which prove never to be fundamental. The

next section determines whether the FCEs found under the four solutions to the

forecast combination problem are learnable if agents estimate the weights and beliefs

in real time.

Learning FCEs

This section assesses the stability of the FCEs identified in Section 3 under

recursive least squares learning following the method of Evans and Honkapohja (2001).

The FCE concept follows the cognitive consistency principle which makes econometric

estimation the natural way agents would form forecasts and combination weights.

In real time, the agents are executing the econometric procedures recursively by
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FCE Representative Results Summary

Number of FCE Fundamental FCE Fundamental Condition

EW α = 0 1 no -
α < 0 1 no -
α > 0 1 no -

OW α = 0 1 yes σ12 = 0, & µ = 0
α < 0 1 yes σ12 = 0, & µ = 0
α > 0 7 yes (1/7) σ12 = 0, & µ = 0

ROW α = 0 1 no -
α < 0 1 no -
α > 0 3 no -

OWC α = 0 1 yes σ12 = 0
α < 0 1 yes σ12 = 0
α > 0 1 yes σ12 = 0

TABLE 12. Tabulated representative results for the FCEs under equal weights (EW),
optimal weights (OW), restricted optimal weights (ROW), and optimal weights with
a constant (OWC). The Fundamental FCE column denotes existence. The notation
(1/7) indicates that only one of the 7 OWFCEs is a fundamental FCE. The Condition
column gives the necessary condition for the existence of fundamental FCE result to
be obtained. A dash indicates that there is no broad or economically significant
restriction.
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estimating models on existing data, forming an expectation, and then interacting in

the economy to form a new data point. The econometric learning analysis acts an

equilibrium selection mechanism by characterizing the likelihood of convergence to a

given FCE from nearby initial beliefs.

E-stability

The agents form their estimates of belief and weights using recursive least squares

learning. The estimation of multiple individual models and combination weights

requires the use of the Seemingly Unrelated Regression (SUR) method of estimation.

The SUR method allows the agents’ estimation strategy to be written in a way that

standard learning results can be applied. The ability of the agents’ estimation strategy

to be written in this form is an advantage of the optimal weights strategies studied

in this paper. In related work by Evans et al. (2012), the agents use Bayesian model

averaging, which is found to not be emendable to standard learning analysis.

The SUR is written recursively as

Θt = Θt−1 + κtR
−1
t zt−1(yt − z′t−1Θt−1)

Rt = Rt−1 + κt(zt−1z
′
t−1 −Rt−1), (4.30)

where the first equations governs the evolution of the belief and weight coefficients,

the second equation is the estimated second moments matrix, and κt is the gain

sequence that governs the weight given to new observations. To estimate the SUR

under optimal weights (OW), the agents stack three copies of yt into the vector
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yt = (yt yt yt)
′ and stack the regressors into the matrix

zt =


z1,t 0 0

0 z2,t 0

0 0 Yt+1

 , (4.31)

where the zeros are 2×1 vectors of zero so that zt is a 6×3 matrix. The other forecast

combination techniques can fit into this form by making the appropriate changes to

yt and zt.

The possible rest points of (4.30) are equivalent to the FCEs determined in

Section 3. The stability of these FCEs are determined by appealing to the E-stability

principle.12 The E-stability principle states that the stability of a rest point of (4.30)

is governed by the stability of an associated differential equation. The associated

differential equation is determined by fixing the parameter Θ and taking the limit of

the expected values of (4.30) as t goes to infinity.13 The resulting system is

dΘ

dτ
= R−1Ezz′(T (Θ)−Θ)

dR

dτ
= Ezz′ −R. (4.32)

The stability of an FCE under the econometric learning process is determined by

dΘ

dτ
= T (Θ)−Θ, (4.33)

which is the same differential equation studied in Section 3, where T (Θ) is the

appropriate T-map derived previously. The stability of this equation evaluated at

12Guse (2008) explores using SUR to analyze RPE under E-stability. Guse shows that the E-
stability results can be applied directly to SUR.

13See Evans and Honkapohja (2001) for a more detailed explanation.
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fixed point governs the stability of (4.30). The condition for stability is that the

Jacobian of the T-map evaluated at an FCE has eigenvalues with real parts less than

one. The benchmark result in the literature is that if agent consider a single correctly

specified model that is of the form of the REE, then there exists a single equilibrium

that is stable under learning if α < 1.

Equal Weights

The Equal Weights FCE can easily be characterized analytically. Stability under

learning of EWFCE requires the same condition as stability of the REE when agent

learn using a correctly specified model in the standard learning analysis.

Theorem 2: The EWFCE is E-stable if α < 1, α < 2
ρ+1

, and 2
1−ρ where ρ is the

correlation between x1,t−1 and x2,t−1.

The binding condition of Theorem 2 is α < 1. Although, it is worth noting that

if the agents did not include intercepts in their misspecified forecast models, then the

conditions for E-stability would be relaxed. This reflects the dampening effect the

weights have on agents’ beliefs that was discussed in Section 3.

Optimal Weighting Strategies

Analytic characterizations of the E-stability conditions for the optimal weights

cases is difficult because the eigenvalues that indicate stability are large polynomials.

I study E-stability in these cases by providing analytic results for special cases that are

tractable and use numerical simulation to show evidence that the results generalize.

In the OW case, Theorem 1 strongly suggests that after the bifurcation the

two non-fundamental OWFCEs that come into existence are stable under learning
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and that the fundamental OWFCE is unstable. Unfortunately, Theorem 1 does not

provide a proof because it required the system to be reduced to a smaller dimension

than needed to determine stability. However, if the bifurcation in the larger system

shares the same stability properties as the smaller system, then the fundamental

OWFCE should be stable under learning before the bifurcation and unstable after.

Theorem 3: The fundamental OWFCE is E-stable if α < 1/2.

Theorem 3 shows that the fundamental steady state behaves as expected, which

suggests that the two non-fundamental equilibria are stable under least squares

learning. This result is confirmed numerically.

For simplicity I illustrate the E-stability of the different OWFCEs and

ROWFCEs by modifying the pseudo-bifurcation diagrams. Figures 2, 3, and 4 are

replicated in Figure 5 with solid lines corresponding to FCEs that are stable under

learning and dashed lines corresponding to FCEs that are not stable. The upper right

plot of Figure 11 shows the result predicted by Theorem 3 with the fundamental FCE

destabilizing at α = 1
2
. The intuition from the bifurcation analysis is also seen in the

ROW case. The unique FCE destabilizes and the system bifurcates to produce two

new stable equilibria.

The FCE under OWC is also not tractable analytically and is analyzed using

numeric simulation. A numerical investigation of the parameter space shows that

the E-stability condition can vary from 0 < α < 1, depending on the value of the

intercept, the correlation between the exogenous shocks, and ζ. Figure 12 plots a grid

of the parameter space for α, σ12, and µ with the remaining parameters ζ = (.9 − .9)′,

σ2
1 = σ2

2 = 0. The light regions of the figure indicates E-stability and the dark regions
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FIGURE 11. The E-stability of the OWFCEs and ROWFCEs. The EFCE
t−1 [yt|x̂t−1]

under OW (left) and ROW (right) for different values of α. E-stability is indicated
by solid lines and E-instability is indicated by dashed lines.
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FIGURE 12. E-stability of the fundamental FCE under OWC for pairs of parameters
(α, σ12), and (α, µ). The light portion corresponds to the parameter space that is
E-stable.

indicates E-instability. The figures demonstrates a non-linear relationship between

E-stability and the parameters of the model.

Discussion

The E-stability results are summarized in Table 13. The E-stability analysis

reveals that the fundamental FCEs under OW have stricter conditions for E-stability

than rational expectations. However, many of the non-fundamental OWFCEs that

exist are learnable for the same parameters as rational expectations.

The OWC case provides a unique equilibrium, but the equilibrium is not stable

over the same parameter space as rational expectations. The E-stability of the

OWCFCE varies non-linearly with parameters of the model and in many cases the

E-stability condition for α is far lower than is traditionally found in the literature.

The result implies that even a correct optimal forecast combination specification does

not guarantee rational expectations under learning.
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E-stability Results

Fundamental FCE Non-Fundamental Coexisting Condition

EW - α < 1 - -

OW α < 1
2

α < 1 4 µ = 0

- α < 1 4 µ 6= 0

ROW - α < 1 2 -

OWC α < 2
3

α . 0.8∗ - µ = 0

α . 1∗∗ α . 1∗∗ - µ 6= 0

TABLE 13. Tabulated E-stability results for the FCEs under equal weights (EW),
optimal weights (OW), restricted optimal weights (ROW), and optimal weights with
a constant (OWC). The Coexisting column indicates the maximum number of stable
FCEs that exist for the stated conditions in the Non-Fundamental column. ∗The
E-stability condition on α is a non-linear function of σ12 and ζ that ranges between
(0, 0.8) (see Figure (12)). ∗∗The E-stability condition is a non-linear function of σ12,
ζ, and µ that ranges between (0, 1).

The best combination strategy compared to rational expectations is equal

weights. Equal weights always results in a unique and learnable equilibrium over

the same parameter space as rational expectations. This is in contrast to OW, which

has as many as four non-fundamental coexisting and stable equilibria, or ROW, which

has two stable and non-fundamental coexisting equilibria. It is also in contrast to the

OWCFCE, which is not learnable at all for portions of the parameter space.

Learning in Real Time

The last metric to assess the different forecast combination strategies is to analyze

the dynamics generated by the strategies under econometric learning. The result

from the dynamic predictor selection literature is that when agents use constant

gain learning the economy can experience time-varying volatility as the economy
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transitions endogenously between equilibria as shown in Branch and Evans (2007). I

demonstrate that this behavior also occurs under certain conditions when agents use

optimal weights to combine forecasts.

Constant gain learning is used to model agents that are concerned about

structural breaks as argued in Orphanides and Williams (2006) and Branch and Evans

(2006b and 2007). Constant gain learning assumes that agents place more weight on

new information when forming their parameter estimates. The placement of higher

weight on new observation can cause agents’ expectations to drift in response to the

random shocks in the economy. When there exists multiple FCEs, the economy may

transition from one stable FCE to another.

Endogenous Volatility

The endogenous volatility is driven by the existence of multiple equilibria when

agents use OW or ROW with constant gain learning. The following simulation

assumes agent use OW to form combined forecasts. Similar results are obtained

using the ROW strategy. The time-varying volatility that may occur alters both the

mean and variance of yt after an endogenous break. The agents estimate beliefs and

weights in real time using the SUR recursive formula given by (4.30).

The simulation is conducted with parameters α = .9, µ = 0, ζ = (.9 .9)′,

vt ∼ N(0, 1), σ2
1 = σ2

2 = 1, σ12 = 0, and a gain parameter of κ = 0.05.14 There are

four E-stable OWFCEs under this parameterization of the model. The OWFCEs are

14There is a debate over the plausibility of large gain parameters. I do not address this debate
here, but note that the gain I selected is typical for the literature. For example, Orphanides and
Williams (2006) and McGough (2006) use gains between 0.01 and 0.03, while Branch and Evans
(2007) uses gains that vary from 0.01 to 0.15.
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FIGURE 13. Time-varying volatility generated by OW forecast combination under
constant gain learning with vt ∼ N(0, 1).

Θ1 =



2.846
1.014
2.846
7.985
0.125
0.985

 ,Θ2 =



−2.846
1.014
2.846
7.985
0.125
0.985

 ,Θ3 =



−2.846
7.985
−2.846
1.014
0.985
0.125

 ,Θ4 =



2.846
7.985
−2.846
1.014
0.985
0.125

 .

The white noise shocks, vt, cause the agents to occasionally move away from

the neighborhood of one stable equilibrium into the attractor of another stable

equilibrium, which results in a time series that exhibits endogenous volatility. Figure

(13) shows a time series of yt generated under constant gain learning with a 100 period

moving average of the variance shown below. The simulation shows the economy

endogenously transitioning in response to white noise shocks from Θ1 to Θ2.

The transition between Θ1 and Θ2 results in a small change in the mean of yt.

The change in the mean can temporarily become very large if the transition is between
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FIGURE 14. Time-varying volatility generated by OW forecast combination under
constant gain learning with vt ∼ N(0, 2).

distant FCEs such as between Θ1 and Θ3. To illustrate this change, I increase the

variance of the white noise shocks to increase the likelihood that the agents’ beliefs

move far away from an initial FCE. Figure (14) shows the dynamics of the system

when vt ∼ N(0, 2). The time paths of yt, b1, b2 and Γ show that the system transitions

from Θ1 to Θ3 and results in a large temporary deviation in yt.

VAR Shocks

Next, I simulate the model assuming a VAR(1) shock structure for xt−1. The

simulation demonstrates that the main equilibrium results of the paper carry over

to more complicated shock structures. The model does not need to be altered to

accommodate this new shock structure. The list of models assumed for the agents

still represents all non-trivial underparameterizations of the VAR(1) process. The

only change to agent behavior is in the estimated beliefs, which are altered due to

different misspecification errors when compared to the case with i.i.d shocks.
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FIGURE 15. Time-varying volatility generated by OW forecast combination under
constant gain learning with xt following a VAR(1) process.

The exogenous shocks of the economy are

xt = Axt−1 + εt, (4.34)

where A is 2 × 2 and εt is 2 × 1. The simulation uses similar parameters to those

consider by Branch and Evans (2007). The parameters are α = .95, ζ = (.5 .5)′,

µ = 0, and

A =

 .5 .001

.001 .3

 ,Σx =

 .2668 .1190

.1190 3.5166

 ,Σε =

 .2 .1

.1 3.2

 , (4.35)

where Σx = Ext−1x
′
t−1 and Σε = Eεtε

′
t. The agents combined the forecasts using

OW. Figure (15) shows the time path of yt and a 100 period rolling window average

of the variance of yt. The time-varying volatility shown in the figure is similar to the

results obtained by Branch and Evans (2007) under dynamic predictor selection.
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Forecast Combination Equilibria and Actual Forecasting

The Forecast Combination Equilibrium concept is presented as an open concept

in which numerous combination strategies can be applied because there exists no firm

consensus in the forecast combination literature on the best combination strategy.

The best forecast combination strategies observed in the empirical literature has

actually generated a puzzle.15 The strategies that are consistently found to perform

best are simple strategies such as averaging forecasts. This result is obtained despite

the fact that there is significant time variation in the relative efficiency of popular

forecasting models that should be exploitable by more sophisticated combination

routines.

The criteria used to evaluate the efficacy of different forecast combination

strategies and which generates the forecast combination puzzle is pseudo out-of-

sample forecasting efficiency. Pseudo out-of-sample forecasting is an exercise where

an existing data set is partitioned into in-sample and out-of-sample subsets. The

in-sample subset is used to estimate a menu of forecast models and initialize the

combination strategy. The out-of-sample subset is then recursively forecasted. If a

combination strategy forecasts the out-of-sample subset well versus some benchmark,

then the strategy is deemed effective. This method of evaluation and justification

for forecast combination strategies has the potential to suffer from a external validity

problem along the lines of the Lucas Critique.

A main objective of researchers in this field is to publish and widely distribute

the forecasting strategies they develop. If a combination strategy were to show a

substantial improvement in forecasting efficacy over existing strategies, and it were

15The puzzle was first called “the forecast combination puzzle” by Stock and Watson (2004), but
has been noted in the literature by many authors over the last 40 years.
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widely adopted by firms, used to produce forecasts for policymakers, or used to create

widely publicized forecasts such that the forecasts influence decision making on a

macroeconomic level, then there is reason to believe that the forecast efficiency of

that strategy will not continue. A link between the forecasting strategy and the data

generating process is created which may render invalid the demonstrated efficacy of

a strategy to predict past data. The same way a macroeconomic policy change based

on empirical correlations found in past data can often fail to have the intended effect

as described by Lucas (1976).

The Forecast Combination Equilibrium concept provides a way to model the

general equilibrium effects of a widely used forecast combination strategy. Since

these strategies are largely atheoretic with respect to economic theory and because

the current evaluation method yields a puzzle, the Forecast Combination Equilibrium

concept provides another perspective from which to evaluate forecast combination

strategies. Granger (1989) and Wallis (2011) both remark that the forecast

combination literature is large and repetitive, but important, and this concept offers

a new way to design and evaluate strategies.

Forecast Combination and the Lucas Critique

This paper demonstrates that forecast combination strategies suffer from a

perverse form of the Lucas Critique. The non-fundamental FCEs that coexist with

the fundamental FCE under optimal weights are self-fulfilling equilibria, where past

forecasting success that occurred by chance is self-fulfilling as more weight is placed

erroneously on the better performing forecasts. This form of the Lucas Critique is

perverse because instead of past correlations in the data being disconfirmed through

poor forecasting performance, the agents receive confirming information for the
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erroneous correlations. The confirming information moves agents’ beliefs away from

the fundamentals of the economy and prevents agents from recognizing their mistakes.

Given that one of the goals of research in forecasting is to publish and

widely disseminate strategies, and that forecast combination strategies lack economic

justifications, the forecast combination equilibrium framework provides a new way to

assess a forecast combination strategy. The ability of a forecast combination strategy

to equal or approximate rational expectations, given a menu of forecasts, is a measure

of strategy quality. A forecast combination strategy that results in deviations from

ration expectations is a strategy that econometricians may not want to promote.

When analyzing a forecast strategy from the macroeconomic perspective there is

more at stake than mean squared forecast error. Economists should be concerned with

putting forward strategies that lead to optimal decisions by individuals, policymakers,

and in aggregate.

An example of the usefulness of the Forecast Combination Equilibrium approach

to the empirical practice of forecasting is to apply the equilibrium results of

this paper to the forecast combination puzzle. I show that the optimal weights

forecast combination strategy can result in multiple, non-fundamental, and learnable

equilibria, which can move the economy far from the rational predictions. In contrast,

I also show that equal weights results in a unique, learnable equilibrium that remains

in the neighborhood of rational expectations for the majority of the parameter space.

These differing results imply that the cause of equal weights dominance in the forecast

combination puzzle may be immaterial, because even if optimal weights were shown

to be superior in an out-of-sample forecasting exercise, their widespread use may have

unintended and possibly undesirable general equilibrium effects.
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This paper cannot speak explicitly to the welfare implications of forecast

combination because of the reduced form model employed. But, the paper

demonstrates the point that different forecast combination strategies will result in

different equilibrium outcomes when widely employed. This difference is a reasonable

way to study and think about forecast combination for selection and justification as

an addition to the current techniques employed in the forecasting literature.

Conclusion

Forecast combination is touted by the forecasting literature as the most robust

and efficient way to forecast. In addition, combined forecasts are often the way

forecasts are presented to the general public, such as with the Survey of Professional

Forecasters. Due to these facts, I adopt the cognitive consistency principle to

model boundedly rational agents who combine different forecasts to forecast a

single endogenous state variable. The agents follow the actual recommendations

of the forecasting literature to combine the forecasts and the concept of Forecast

Combination Equilibrium is introduced to describe the equilibrium behavior of the

agents.

The equilibrium concept is explored by assuming agents possess a menu of

misspecified forecasts that together span the information set needed to form rational

expectations. The agents’ objective is to combine the menu of misspecified forecasts

to create a combined forecast that minimizes expected squared forecast error. The

Forecast Combination Equilibria that result are compared to rational expectations.

I find that different types of Forecast Combination Equilibria can both

approximate and deviate substantially from rational expectations in a simple

specification of the model under study, depending on how agents combine the

forecasts and the assumptions of the model. In a model with negative feedback,
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the combination of forecasts by optimal weights and equal weights produces unique,

learnable equilibria that closely approximate rational expectations. In contrast, a

model with positive feedback can have equilibria that diverge from one another

and from rational expectations. The Optimal Weights FCE can produce up to six

distinct equilibria that each minimize expected squared forecast error, but deviate

substantially from rational expectations. These non-fundamental equilibria exist

because of the self-referential nature of forecasting in the macroeconomy, where

incorrect forecasts can become self-fulfilling. Furthermore, some of these non-

fundamental equilibria are found to be stable under learning.

In addition, the use of optimal weights forecast combination strategies by agents,

when analyzed under constant gain learning, are shown to exhibit time-varying

volatility in the presence of high positive feedback. The dynamics are similar to

the those observed in the dynamic predictor selection literature. The results shows

that model uncertainty is a key driver in creating these types of outcomes.

Although this paper focuses on the representative agent case, the FCE

concept can easily be adapted to accommodate heterogeneous expectations. The

heterogeneous expectations case could be used to model specific forecast combination

techniques employed by policymakers, such as a central bank, to characterize

policy implications of different strategies. The variation in equilibrium outcomes

demonstrated in this paper suggests that further study of homogeneous or

heterogeneous agents who use forecast combination strategies to form expectations

may help explain the stylized facts of macroeconomic and financial data, as well as

contribute to the evaluation and design of actual forecasts combination strategies.

117



Supplementary Materials and Proofs

Existence Condition: The conditions for existence of an FCE require that beliefs

φi for i = 1, 2, ...k satisfy

Ez1,t−1(µ+ α

k∑
i=1

γiφ
′
izi,t−1 + ζ ′xt−1 + vt − φ′1z1,t−1) = 0

...

Ezk,t−1(µ+ α
k∑
i=1

γiφ
′
izi,t−1 + ζ ′xt−1 + vt − φ′kzk,t−1) = 0.

The k underparameterizations can be rewritten as φ′iuizt−1, where zt−1 is (n +

1) × 1 and ui is an m × (n + 1) selector matrix that picks the elements out of zt−1

that belong in the ith model. Also, the intercept term µ and ζ can be combined in

B = (µ ζ ′)′ to write the system as

Eu1zt−1((B′ + α
k∑
i=1

γiφ
′
iui)zt−1 + vt − φ′1u1zt−1) = 0

...

Eukzt−1((B′ + α

k∑
i=1

γiφ
′
iui)zt−1 + vt − φ′kukzt−1) = 0.

Then simplify

Eu1zt−1z
′
t−1(B + α

k∑
i=1

γiu
′
iφi) + Eu1zt−1vt − Eu1zt−1z

′
t−1u

′
1φ1 = 0

...

Eukzt−1z
′
t−1(B + α

k∑
i=1

γiu
′
iφi) + Eukzt−1vt − Eukzt−1z

′
t−1u

′
kφk = 0

and take expectations such that Ezt−1z
′
t−1 = Σz, which results in
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−α
k∑
i=1

γiu1Σzu
′
iφi + u1Σzu

′
1φ1 = u1ΣzB

...

−α
k∑
i=1

γiukΣzu
′
iφi) + ukΣzu

′
kφk = ukΣzB.

The system of equations has a unique solution given det(∆) 6= 0

∆ =



(1− αγ1)(u1Σzu
′
1) −αγ1u1Σzu

′
2 ... −αγ1u1Σzu

′
k

−αγ2u2Σzu
′
1 (1− αγ2)(u2Σzu

′
2) ... −αγ2u2Σzu

′
k

... ... ... ...

−αγkukΣzu
′
1 −αγkukΣzu

′
2 ... (1− αγk)(ukΣzu

′
k)


.

Theorem 1: The theorem is proven by establishing the existence of pitchfork

bifurcation for the fundamental FCE steady state. The condition for a bifurcation to

occur is one of the eigenvalues of the T-map evaluated at the steady state must equal

zero. This occurs in the eigenvalue associated with a1 and a2 for the fundamental FCE

at α = 1
2
. I proceed by describing the basic technique for characterizing a bifurcation

following Wiggins (1990) and then show how to apply the technique to the T-map.

A bifurcation is characterized by deriving an approximation to the center

manifold of the dynamic system. The dynamic behavior of the system on the

center manifold determines the dynamics in the larger system. To demonstrate the

derivation of the center manifold, consider the following dynamic system

ẋ = Ax x ∈ Rn.
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The system has n eigenvalues such that s + c + u = n, where s is the number of

eigenvalues with negative real parts, c is the number of eigenvalues with zero real

parts, and u is the number eigenvalues with positive real parts. Suppose that u = 0,

then the system can be written as

ẋ = Ax+ f(x, y, ε),

ẏ = By + f(x, y, ε), (x, y, ε) ∈ Rc × Rs × R,

ε̇ = 0, (4.36)

where

f(0, 0) = 0, Df(0, 0) = 0,

g(0, 0) = 0 Dg(0, 0) = 0,

and ε ∈ R is the bifurcation parameter. Suppose that the system has a fixed point at

(0, 0, 0). The center manifold is defined locally as

W c
loc(0) = {(x, y, ε) ∈ Rc × Rs × Rp | y = h(x, ε), |x| < δ, |ε| < δ, h(0, 0) = 0, Dh(0, 0) = 0}.

The graph of h(x, ε) is invariant under the dynamics generated by the system, which

gives the following condition

ẏ = Dxh(x, ε)ẋ+Dεh(x, ε)ε̇ = Bh(x, ε) + g(x, h(x, ε), ε). (4.37)

The equation can be used to approximate h(x, ε) to form f(x, h(x, ε), ε). The sufficient

conditions for the existence of a bifurcation at (0,0,0) are
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f(0, 0, 0) = 0 ∂f
∂x

(0, 0, 0) = 0 ∂f
∂ε

(0, 0, 0) = 0

∂2f
∂x2 (0, 0, 0) = 0 ∂2f

∂x∂ε
(0, 0, 0) 6= 0 ∂3f

∂x3 6= 0.

The T-map: The point of interest is the fundamental FCE, so I set µ = 0 and

σ12 = 0. To simplify the analysis, I reduce the dimension of the system by solving

a2, b1, and b2 in terms of a1, γ1, and γ2. Let η = (a1 γ1 γ2)′ and define differential

equations as η̇ = T (η)− η where

η̇ =


−a1(−1+α(γ1+γ2))

−1+αγ2

−a2
1(−1+α)γ1(−1+αγ1)2+σ2

1(−1+γ1)(−1+αγ2)ζ2
1

(−1+αγ2)(a2
1(−1+αγ1)2+σ2

1ζ
2
1 )

a2
1(−1+α)αγ2

1−σ2
2(−1+γ2)ζ2

2

a2
1α

2γ2
1+σ2

2ζ
2
2

 .

The fixed point of the system is given by (0, 1, 1), which corresponds to the

fundamental FCE. A change of variables is used to put the system in normal form

with the fixed point at (0,0,0), and with the bifurcation occurring at 0 as well. Let

u = a1, γ1 = v + 1, γ2 = w+ 1, and α = ε+ 1
2
. Using the transformation, the system

can be written in the form of (4.36) with A = 0, B = (1 1)′,

f(u, v, w, ε) = −u(v + w + 4ε+ 2vε+ 2wε)

−1 + w + 2ε+ 2wε

g(u, v, w, ε) =

 −u2(1+v)(− 1
2

+ε)(−1+(1+v)( 1
2

+ε))2+vσ2
1(−1+(1+w)( 1

2
+ε))ζ2

1

(−1+(1+w)( 1
2

+ε))(u2(−1+(1+v)( 1
2

+ε))2+σ2
1ζ

2
1 )

u2(1+v)2(− 1
2

+ε)( 1
2

+ε)−wσ2
2ζ

2
2

u2(1+v)2( 1
2

+ε)2+σ2
2ζ

2
2

 .

Let v = ha(u, ε) and w = hb(u, ε) such that h(u, ε) = (ha(u, ε) hb(u, ε))′, then using

equation (4.37) the center manifold must satisfy

Duh(u, ε)[Au+ f(u, ha(u, ε), hb(u, ε), ε)]−Bh(u, ε)− g(u, ha(u, ε), hb(u, ε), ε) = 0.

(4.38)
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Equation (4.38) can be implicitly differentiated to form a second order Taylor

approximations of ha(u, ε) and hb(u, ε). The approximations are substituted into

f(u, ĥa(u, ε), ĥb(u, ε), ε) to form the center manifold. Figure 7 is a graph of the center

manifold with  ĥa(u, ε)

ĥb(u, ε)

 =

 2σ2
1(−1+2ε)3ζ2

1

ε(u2(1−2ε)2+4σ2
1ζ

2
1 )2

−2σ2
2(1+2ε)(ζ2−2εζ2)2

ε((u+2uε)2+4σ2
2ζ

2
2 )2


and σ2

1 = σ2
2 = 1 and ζ = (.9 .9)′. The partial derivatives of the center manifold meet

the specified conditions for the existence of a pitchfork bifurcation.

Lemma 4: To solve for the FCE, first solve for a1, a2, and γ0 using the

corresponding equations. The three linear equations yield

a1 = a2 =
µ

1− α

γ0 =
(γ1 + γ2 − 1)µ

α− 1

Then substitute these back into the four remaining equations of the T-map.

b1 = b1αγ1 + (b2αγ2 + ζ2)
σ12

σ2
1

+ ζ1

b2 = b2αγ2 + (b1αγ1 + ζ1)
σ12

σ2
1

+ ζ2

γ1 =
(b2

1σ
2
1(α− 1)2α + µ2)γ1 + b1(α− 1)2(b2σ12(α− 1)γ2 + σ2

1ζ1 + σ12ζ2)

b2
1σ

2
1(α− 1)2 + µ

γ2 =
(b2

2σ
2
2(α− 1)2α + µ2)γ2 + b2(α− 1)2(b1σ12(α− 1)γ1 + σ2

2ζ2 + σ12ζ1)

b2
2σ

2
2(α− 1)2 + µ
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The γ1 and γ2 equations can be simplified to

γ1 =
b2σ12γ2(α− 1) + σ2

1ζ1 + σ12ζ2

b1σ2
1(1− α)

γ2 =
b1σ12γ1(α− 1) + σ2

2ζ2 + σ12ζ1

b2σ2
2(1− α)

.

Then substituting γ1 and γ2 into b1 and b2 yields

b1 = α
b2σ12γ2(α− 1) + σ2

1ζ1 + σ12ζ2

σ2
1(1− α)

+ (α
b1σ12γ1(α− 1) + σ2

2ζ2 + σ12ζ1

σ2
2(1− α)

+ ζ2)
σ12

σ2
1

+ ζ1

b2 = α
b1σ12γ1(α− 1) + σ2

2ζ2 + σ12ζ1

σ2
2(1− α)

+ (α
b2σ12γ2(α− 1) + σ2

1ζ1 + σ12ζ2

σ2
1(1− α)

+ ζ1)
σ12

σ2
1

+ ζ2,

which is linear and b1 and b2. This shows that the non-linearity cancels out of the

system leaving a unique solution.

The second part of the proposition can be verified by substituting σ12 = 0 and

µ = 0 into the OWCFCE beliefs to verify that they equal the REE coefficients.

Theorem 2: The Jacobian matrix for the EW T-map (4.19) evaluated at the

EWFCE is



α
2

0 α
2

0

0 α
2

0 ασ12

2σ2
1

α
2

0 α
2

0

0 ασ12

2σ2
2

0 α
2


.

The eigenvalues of the Jacobian are λ1,2,3,4 = 0, α, α
2
(ρ + 1), and α

2
(1 − ρ), where ρ

is the correlation coefficient between x1,t−1 and x2,t−1. The E-stability conditions are

that α must satisfy α < 1 and α < 2
1±ρ and since −1 ≤ ρ ≤ 1, the binding condition

for stability is α < 1.
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Theorem 3: The Jacobian matrix for the OW T-map (4.25) evaluated at the

fundamental FCE is



α 0 α 0 0 0

0 α 0 0 αζ1
1−α 0

α 0 α 0 0 0

0 0 0 α 0 αζ2
1−α

0 − (−1+α)2

ζ1
0 0 α 0

0 0 0 − (−1+α)2

ζ2
0 α


.

The eigenvalues of the matrix are λ1,2,3,4, 2α, α −
√
−α + α2, α −

√
−α + α2, α +

√
−α + α2, α +

√
−α + α2. The binding condition for E-stability is α < 1

2
.
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CHAPTER V

CONCLUSION

The forecast selection problem affects to some degree every actor in the

macroeconomy. Individuals as well as policymakers find themselves in an increasingly

data rich environment, where the number of way to form a forecast of a variable

of interest grows by the day. This dissertation provides two major theoretical and

one major empirical contribution to our understanding of this problem and how its

proposed solutions may affect economic dynamics and forecast efficiency.

The first theoretical contribution is that the common assumptions that underpin

rational expectations are not sufficient to yield a rational forecast when agents

explicitly face the model selection problem. The knowledge that other agents may

deviate from rational expectations prohibits agents from individually coordinating

without the assumption of shared information about individual choices. The lack of

coordination may result in chaotic market dynamics and persistent forecast errors

that follow from the miscoordination of the agents at the aggregate level.

The second theoretical contribution is that the use of forecast combination

strategies to overcome the model selection problem by agents economy-wide may

result in multiple equilibria and endogenous volatility. The use of optimal weighting

strategies in this context results in self-fulfilling equilibria where erroneous beliefs

about the forecasting efficiency of a model are reinforced by agents behaving as if the

forecast is correct. The findings contribute insights into the possible expectational

causes of economic volitility and raises questions about the theoretical underpinning

of many forecast combination strategies if they were employed at the macroeconomic

level.
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The empirical contribution of the paper is to show the common explanation for

the forecast combination puzzle can be used to create a combine forecast that does not

exhibit the puzzle for inflation. The strategy also demonstrates the value of predicting

the future efficiency of a forecast to rank and weight models to create combined

forecasts. The strategy provides a promising way to create combined forecasts for

many economic variables of interest.

The contributions of this dissertation also provide a number of interesting avenues

for future research. Chapter 2 provides justification for heterogeneous agent models

that use bounded rationality by showing the strong implicit assumptions that exist

under traditional assumptions. The chapter justifies current research in the field

and provides a new type of predictor that uses the rational assumptions, but does

not necessarily yield a correct forecast. In addition, Chapters 3 and 4 present new

forecasting and modeling concepts respectively, which have numerous unexplored

applications and extensions that may improve our ability to forecast, while providing

justifications based in macroeconomic theory.
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