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DISSERTATION ABSTRACT

Adam J. Check

Doctor of Philosophy

Department of Economics

June 2016

Title: Regime Switching and the Monetary Economy

For the empirical macroeconomist, accounting for nonlinearities in data series

by using regime switching techniques has a long history. Over the past 25 years,

there have been tremendous advances in both the estimation of regime switching

and the incorporation of regime switching into macroeconomic models. In this

dissertation, I apply techniques from this literature to study two topics that are

of particular relevance to the conduct of monetary policy: asset bubbles and the

Federal Reserve’s policy reaction function.

My first chapter utilizes a recently developed Markov-Switching model in

order to test for asset bubbles in simulated data. I find that this flexible model

is able to detect asset bubbles in about 75% of simulations. In my second and

third chapters, I focus on the Federal Reserve’s policy reaction function. My second

chapter advances the literature in two important directions. First, it uses meeting-

based timing to more properly account for the target Federal Funds rate; second,

it allows for the inclusion of up to 14 economic variables. I find that the long-run

inflation response coefficient is larger than had been found in previous studies,

and that increasing the number of economic variables that can enter the model
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improves both in-sample fit and out-of-sample forecasting ability. In my third

chapter, I introduce a new econometric model that allows for Markov-Switching,

but can also remove variables from the model, or enforce a restriction that there is

no regime switching. My findings indicate that the majority of coefficients in the

Federal Reserve’s policy reaction function have not changed over time.

v



CURRICULUM VITAE

NAME OF AUTHOR: Adam J. Check

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR
Temple University, Philadelphia, PA

DEGREES AWARDED:

Doctor of Philosophy, Economics, 2016, University of Oregon
Master of Science, Economics, 2012, University of Oregon
Bachelor of Business Administration, Economics, 2010, Temple University

AREAS OF SPECIAL INTEREST:

Bayesian Econometrics
Monetary Economics

GRANTS, AWARDS, AND HONORS:

Kleinsorge Summer Research Award, University of Oregon, 2015

Graduate Teaching Fellow Outstanding Teaching Award, 2015

Economics Award, Temple University 2010

vi



ACKNOWLEDGEMENTS

I would like to thank all those who have had a role in shaping the course of

my academic life. I could not have made it this far without the support of all of my

teachers, instructors, and professors at every level of education. I would especially

like to thank Ms. Britt, who fostered my love of reading; Mr. Whelan, who vastly

improved my writing; Professor Diamantaras, who gave me the confidence that

I could complete a Ph.D. and encouraged me to do so; and Professor Piger for

the countless hours of conversation, advice, and support he gave me during this

process. I would also like to thank my peers, especially Sacha Gelfer, Chris Gibbs,

Tyler Schipper, and Jeff Allen, for being willing to listen to my ideas and being

honest enough to tell me which were worthwhile. Finally, I would like to thank

Georgina Santos for her constant encouragement and editing assistance.

vii



For my Mom, who sacrificed so much in order for me to have this opportunity.

viii



TABLE OF CONTENTS

Chapter Page

I. A NEW TEST FOR ASSET BUBBLES . . . . . . . . . . . . . . . . . . . 1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Rational Bubbles, Testing, and Periodically Collapsing Bubbles . . 5

MS-TVP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Testing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II. INTEREST RATE RULES IN PRACTICE - THE TAYLOR RULE OR A
TAILOR-MADE RULE? . . . . . . . . . . . . . . . . . . . . . . . . . 38

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Data and Interest Rate Rule Specification . . . . . . . . . . . . . . 43

Full Sample Estimation Procedure & Results . . . . . . . . . . . . 49

Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

III. THE FOMC’S INTEREST RATE RULE: AN MS-SSVS APPROACH . . 69

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

ix



Chapter Page

Econometric Model . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 78

Monte-Carlo Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 84

Application: Interest Rate Rules . . . . . . . . . . . . . . . . . . . 91

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

x



LIST OF FIGURES

Figure Page

1. Typical Diba and Grossman Bubble . . . . . . . . . . . . . . . . . . . . . 13

2. Typical Evans Bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Median Bubble (Standard MS Model) . . . . . . . . . . . . . . . . . . . . 35

4. Median Bubble (MS-TVP Model) . . . . . . . . . . . . . . . . . . . . . . 36

5. Estimated Inflation Target . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6. Coefficient Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7. Long-Run Inflation Response . . . . . . . . . . . . . . . . . . . . . . . . . 58

8. Cumulative Sum of Log Predictive Density Relative to BMA . . . . . . . 66

9. Prior Probability Density Function for Different Values of β0 and β1 . . . 83

10. Prior Probability Density Function for Different Values of β0 and β1: View
from Above . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

11. Contour Plot of the Prior Probability Density Function for Different Values
of β0 and β1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

12. Regime Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

13. Regression Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

14. Regime Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

15. Regression Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

16. Regression Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

17. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

18. Probability of Weak Unemployment Response Regime . . . . . . . . . . . 100

19. Federal Funds Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

20. Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xi



LIST OF TABLES

Table Page

1. Assessing Hall et al.’s (1999) Test . . . . . . . . . . . . . . . . . . . . . . 28

2. Assessing the MS-TVP Test . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. Power of Bayesian MS Test with 5% Size . . . . . . . . . . . . . . . . . . 33

4. Explanatory Variables Used in Interest Rate Rule Estimation . . . . . . . 40

5. Variables Included in BMA Exercise . . . . . . . . . . . . . . . . . . . . . 43

6. Greenbook Forecasting Example, GDP Growth . . . . . . . . . . . . . . . 45

7. Prior Distribution of Standard Deviation of Error Terms . . . . . . . . . . 51

8. Inclusion Probabilities from BMA . . . . . . . . . . . . . . . . . . . . . . 53

9. Inclusion Probability by Variable Type . . . . . . . . . . . . . . . . . . . 55

10. Inclusion Probability by Variable Type - Prior Robustness . . . . . . . . . 56

11. Probability of “Generalized Taylor Rule” . . . . . . . . . . . . . . . . . . 57

12. Forecast Performance, Rolling Sample vs. Recursive . . . . . . . . . . . . 64

13. Forecasting Performance of Taylor Rules, Relative to BMA . . . . . . . . 65

14. Monte-Carlo Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

15. MS-SSVS Performance, σ = 0.1 . . . . . . . . . . . . . . . . . . . . . . . 87

16. MS-SSVS Performance, σ = 0.5 . . . . . . . . . . . . . . . . . . . . . . . 87

17. MS-SSVS Performance, σ = 1.0 . . . . . . . . . . . . . . . . . . . . . . . 88

18. MS-SSVS Performance, σ = 2.0 . . . . . . . . . . . . . . . . . . . . . . . 88

19. MS-SSVS Performance, σ = 0.1, Linear Regression . . . . . . . . . . . . . 89

20. MS-SSVS Performance, σ = 0.5, Linear Regression . . . . . . . . . . . . . 89

21. MS-SSVS Performance, σ = 1.0, Linear Regression . . . . . . . . . . . . . 89

22. MS-SSVS Performance, σ = 2.0, Linear Regression . . . . . . . . . . . . . 90

xii



Table Page

23. Estimated Restrictions in the “Strong” Unemployment Response Regime 98

24. Estimated Restrictions in the “Weak” Unemployment Response Regime . 98

25. Mean Coefficient Values in Each Regime . . . . . . . . . . . . . . . . . . 98

xiii



CHAPTER I

A NEW TEST FOR ASSET BUBBLES

Introduction

Policymakers at the Federal Reserve believe that it is vital to determine

whether a price bubble exists in important asset markets.1 While the appropriate

steps to take after recognizing the existence of the bubble are debatable, in order

to take any action it would first be necessary to know that the bubble existed.

However, as the transcript of the Federal Open Market Committee meeting from

June 29 to June 30, 2005 indicates, even during the peak of the massive U.S.

housing bubble, policymakers were in disagreement over whether the housing

market was in a bubble. This disagreement highlights an important and surprising

deficiency in the asset bubble literature - the lack of existence of a powerful and

broadly agreed upon test for asset bubbles.

Due to this deficiency, I propose a new test that generalizes the Markov-

Switching test for explosive roots in Hall et al. (1999). Specifically, I allow the

parameters of Hall et al.’s (1999) model to vary over time. In principle, this should

allow the detection of multiple bubbles in the same sample, even if the growth rates

of the bubbles differ. At the same time, I introduce Bayesian estimation of this

model and use Bayesian model comparison to decide between competing models,

rather than using the classical confidence interval-based inference used in Hall et al.

(1999). This Bayesian perspective allows me to easily test jointly for both switching

1This is evident from a speech given on February 7, 2013 by Federal Reserve
Governor Jeremy Stein entitled “Overheating in Credit Markets: Origins,
Measurement, and Policy Responses”. A transcript of this speech available at:
http://www.federalreserve.gov/newsevents/speech/stein20130207a.pdf
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in the price dynamics and an explosive root, whereas Hall et al. (1999) tested only

for the presence of an explosive root.

To investigate the power of my proposed test, I use artificially generated price

series that contain periodically collapsing bubbles. I first estimate the constant

parameter Hall et al. (1999) model using Bayesian methods and altering Hall

et al.’s (1999) testing procedure slightly to jointly test for both an explosive root

and Markov-Switching. Next, I estimate my proposed time-varying parameter

generalization. I find that for a test with 5% size, Bayesian estimation and testing

of both the constant parameter Hall et al. (1999) model and the more general time-

varying parameter model are able to detect these periodically collapsing bubbles

nearly 80% of the time.

The idea to econometrically test for bubbles in asset markets has been

around for decades, originating shortly after the variance bound tests that were

proposed contemporaneously by Shiller (1981) and LeRoy and Porter (1981).

These tests attempt to determine whether the observed variance of actual asset

prices exceeds the variance bound implied by the frequently used risk-neutral asset

pricing equation. Tirole (1985) and Blanchard and Watson (1982) suggest that

these variance bounds tests be used to detect bubbles, but Flood et al. (1994)

eventually showed that variance bounds tests were actually very poorly suited to

test for bubbles, since in the presence of a bubble, the variance may not exceed the

bound implied by the test.

Another bubble testing procedure was put forth by West (1987), who suggests

the use of a two-step test which estimates the relationship between dividends

and stock prices both directly and indirectly. If the estimated relationship differs

between the two methods, and the researcher is reasonably certain that they have
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specified the model correctly, then there exists evidence in favor of a bubble.

The major problem with this test is that under different model specifications,

researchers have come to different conclusions about the existence of bubbles in

U.S. stock prices.

Yet another take on bubble testing was put forward by Diba and Grossman

(1988), who use the integration/cointegration properties of dividends and prices

to test whether prices take on the integration properties of the dividend process.

If they do then there is no bubble, since as suggested by theory, the dynamic

properties of the price series depends only on the process followed by the dividends.

However, if the price series displays integration patterns that are not shared with

the dividend process, then this would suggest that something else is also driving

asset prices. If we are sure that dividends are the only relevant fundamental, then

we would conclude that there is a bubble in asset prices.

More specifically, Diba and Grossman (1988) use an Augmented Dickey-

Fuller (ADF) test in order to test both first differenced prices and first differenced

dividends for a unit root. If first differenced prices display a unit root, but first

differenced dividends do not, then the price series is consistent with a bubble.

Using this test on generated price series data using a very simple bubble process

that grows exponentially in every period, they find that their test can detect a

bubble 95% of the time.

However, Evans (1991) points out that although the Diba and Grossman

(1988) test is appealing and works well on data generated with a relatively simple

bubble process, when faced with bubbles that grow at different rates in different

time periods it loses almost all of its power, and detects only a handful of bubbles.

In order to build on Diba and Grossman’s (1988) intuitive and appealing idea for
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a bubble test, Hall et al. (1999) generalize the Diba and Grossman (1988) test.

First, they test for an explosive root in the levels of prices and dividends, rather

than testing for a unit root in the first differences. Next, they allow the parameters

of this test to alternate between two regimes according to a Markov-Switching

process. This allows the test to capture the fact that the bubble is growing much

faster in some periods than in others, and will allow at least a subset of periods to

be consistent with a bubble. In practice, Hall et al. (1999) find that their test is

capable of detecting the Evans (1991) style bubbles about 60% of the time. While

this is great improvement over the Diba and Grossman (1988) test, to the dismay

of policymakers who wish to determine whether a particular asset is in a bubble, it

will still miss the presence of a bubble nearly 40% of the time.

It is through this lens that I introduce a generalization to Hall et al.’s (1999)

test for asset bubbles. First, I bring a Bayesian perspective to the test. Second, I

allow for the growth rates of bubbles to change upon each episode of bubble, so

that the test does not restrict all bubbles in the sample to have the same growth

rate. Third, I test jointly for Markov-Switching and an explosive root in the price

series, while Hall et al. (1999) assume Markov-Switching under the null, and test

only for an explosive root. I find that jointly testing proves important for the

detection of bubbles that follow Evans’ (1991) bubble generation procedure, as

it improves the detection rate to nearly 80%. Allowing for differing growth rates

does not meaningfully alter the ability of the test to detect for bubbles in this

environment. This may occur because all bubbles have the same expected growth

rate under this process.
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Rational Bubbles, Testing, and Periodically Collapsing Bubbles

Rational Bubbles

Historically, many bubble tests are designed to detect “rational” bubbles.

These include the early variance bounds tests developed by Shiller (1981) and

LeRoy and Porter (1981), and implemented by Cochrane (1992); the two-step tests

developed in West (1987); and the integration/cointegration test developed in Diba

and Grossman (1988).2 However, before we can properly discuss bubble testing, we

must specify what we mean by a “rational” bubble.

Rational bubbles are periods during which agents are willing to pay more

for an asset than the asset’s fundamental value, which is the value implied by the

present value of the expected future dividend stream. The reason that these agents

are willing pay a premium during a rational bubble is that they anticipate being

able to sell the asset for more than the fundamental value at a later date. This

bubble is rational in the sense that if everyone shares this belief, then the asset is

priced correctly despite the fact that it trades for more than its fundamental value.

We can mathematically formalize this intuition in a simple asset pricing

framework. First, assume that there is an infinitely-lived representative agent, who

seeks to maximize expected lifetime utility in an endowment economy:

max
ct

Et

[
∞∑
i=0

βiu(ct+i)

]

s.t. ct+i = yt+i + (pt+i + dt+i)xt+i−1 − pt+ixt+i

2See Gürkaynak (2008) for more detail.
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Where yt is the income of the agent at time t, xt is the number of units of the

asset held by the agent in period t, pt is the price of the asset in period t, dt is the

dividend paid to those holding the asset at the beginning of period t, and 0 < β < 1

is the discount rate of the representative agent.

We can derive the Euler equation using a variational argument. Using the

consumption good, ct, as the numeraire, we consider the gains and losses from

giving up a unit of consumption in order to buy the asset today, and we define the

net one-period rate of return from holding an asset as:

rt+1 =
pt+1 + dt+1

pt
− 1

Then we can see that:

u′(ct) = Etβ(1 + rt+1)u′(ct+1)

In words, if we give up a unit of consumption today, then we can use the

proceeds to buy the asset. However, we lose the marginal utility that the unit of

consumption would give us today. Tomorrow we will be able to consume (1 + rt+1)

units of the consumption good, since we have earned the one-period return given

by the asset. Therefore, tomorrow we will gain the marginal utility of consuming

(1 + rt+1) units of the consumption good. Taking into account the fact that we will

not get this utility until tomorrow and that the return is risky, we average across all

possible returns by using the expectations operator and discount the future utility

using the discount factor β.
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Using our definition of the net return, rt+1, we can substitute and solve

directly for the price of the asset today:

pt = βEt

{
(pt+1 + dt+1)

u′(ct+1)

u′(ct)

}

Assuming risk-neutral preferences, we have u′(ct) = Et[u
′(ct+1)] = k ∀ t, where

k is a constant. We can then rewrite the above equation as:

pt = βEt(pt+1 + dt+1) (1.1)

We can find one solution to this first-order difference equation by using the

law of iterated expectations and iterating on the above equation:

pt = βsEtpt+s +
s∑
i=1

βiEtdt+i

Taking the limit as s → ∞, we can see that as long as βsEtpt+s → 0, we have the

solution:

pt =
∞∑
i=1

βiEtdt+i = Ft

This solution is called the fundamental solution, since the price today relies only

on the expected value of the future dividend stream. This solution is ensured by

imposing a transversality condition on the value of the agent’s savings.
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However, there is another solution for the first order difference equation in

equation (1.1):

pt = Ft +Bt (1.2)

where Bt, the bubble component of the solution, is any random variable that

satisfies:

Bt = βEtBt+1 (1.3)

We verify that this is a solution to equation (1.1) by a direct proof, given

below. First, assume that equations (1.2) and (1.3) constitute a solution to (1.1).

Then we have:

pt = βEt(pt+1 + dt+1)

Ft +Bt = βEt(Ft+1 +Bt+1 + dt+1)

∞∑
i=1

βiEtdt+i + βEtBt+1 = β

(
∞∑
i=2

βiEtdt+i + βEtBt+2 + Etdt+1

)
∞∑
i=1

βiEtdt+i + βEtBt+1 =

(
∞∑
i=1

βiEtdt+i + β2EtBt+2

)

βEtBt+1 = β2EtBt+2

EtBt+1 = βEtBt+2 (1.4)
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Iterating equation (1.3) forward one period, and using the law of iterated

expectations, we have:

Bt+1 = βEt+1Bt+2

EtBt+1 = βEtBt+2

which shows that the equality in equation (1.4) always holds, and verifies that

equation (1.2) nests an entire class of solutions, so long as equation (1.3) also holds.

�

As mentioned previously, note that bubbles of this type are usually ruled

out by imposing a transversality condition. In fact, Tirole (1982) argues that

bubbles can always be ruled out in infinitely lived rational expectations models.

However, it is common practice in the bubble testing literature to abstract away

from this theoretical argument, and work from the assumption that equations (1.2)

and (1.3) define the asset price.3 This approach is justified by the fact that Tirole

(1985) shows that rational bubbles can exist in overlapping generations models. In

practice, Kindleberger (2000) finds numerous examples of asset bubbles throughout

modern history. As pointed out by Evans (1991), if these observed bubbles are not

“rational”, then a desirable feature of a bubble test would be that it has power

against many different bubble specifications.

Imposing Structure on the General Solution

In order to devise a test for rational asset bubbles, it is necessary to put

more structure on the economy described above. It is particularly helpful to define

3See Gürkaynak (2008)
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dynamic equations for both the dividend and the bubble component. For the

dividend component, the typical assumption is that dt is integrated of order one,

i.e. it is I(1).4 Specifically, dt is usually assumed to follow a random walk with

drift:5

dt = µ+ dt−1 + εt (1.5)

Then there are two possible scenarios: the asset price does not contain a bubble

component, Bt, or the asset price does contain a bubble component.

In the absence of a bubble component, Bt, we have pt = Ft, and it can be

shown that pt is also I(1), and that pt and dt are cointegrated. Furthermore, we

have:

EtFt+i =
β

(1− β)
(dt + µi) +

β

1− β
µ

which becomes dominated by β
(1−β)

µi as i gets large.6 This implies that the forecast

of the fundamental value grows linearly over time, increasing by β
(1−β)

µ each period,

and reflects the unit root in the process for dt.

In addition, rearranging equation (1.3) and using the law of iterated

expectations, we can show that the time t expectation of the bubble component

4In a model with dynamic growth, the assumption is instead that ln(dt) is I(1). However, we
will usually be working in the relatively simpler set-up outlined in the text.

5We use a random walk for expositional purposes, but the analysis remains the same for any
stationary ARMA process for ∆dt. See Evans (1991) for more details.

6In general, from Beveridge and Nelson (1981), we know that if dt follows a stationary ARMA
process, then as j tends to infinity, EtFt+j → Ct + jE(∆Ft) for some Ct. See also Evans (1991).
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at time t+ i is given by:

EtBt+i =
1

βi
Bt

Therefore, as pointed out in Evans (1991), the conditional expectation of the

bubble component grows at rate 1
β
> 1. Combining the two components, we can

see that as i gets large we have:

Etpt+i →
β

(1− β)
µi+

1

βi
Bt

Provided Bt > 0, eventually the exponential growth of the bubble component will

overwhelm the linear growth of the fundamental component, and the forecast of the

price will explode to infinity at the rate of the growth of the bubble component, 1
β
.

With the additional structure we have put on the asset pricing model,

we have a testable hypothesis. If the price of the asset grows faster than the

underlying fundamentals grow, then there is a bubble in the asset price.7

Diba and Grossman (1988) Test

Diba and Grossman’s (1988) idea is to exploit the specification of a rational

bubble, noting that if the price of the asset contained a bubble component, the

asset price would grow at a rate faster than suggested by the growth rate of

the fundamental process. Furthermore, Diba and Grossman (1988) provide the

additional insight that if the fundamental process, dt is I(1), then the fundamental

is stationary in first differences. Therefore, if there is no bubble component, then

the first difference of the asset price, ∆pt, would also be stationary.

7Of course, this assumes that all fundamentals are observable.
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However, in the presence of an exponentially growing bubble component,

differencing prices any finite number of times will not yield a stationary process

for ∆pt. Additionally, in the presence of a bubble component, the fundamental and

the asset price would not be cointegrated. Therefore, Diba and Grossman (1988)

propose the following test:8

1. Test pt and dt for stationarity.

2. If both pt and dt are non-stationary test pt and dt for cointegration.

3. If they are cointegrated, conclude that there is no bubble.

4. If they are not, then conclude that we cannot rule out the existence of a

bubble.

In fact, if we were certain that we had included all relevant measures of

fundamentals in dt, then the lack of stationarity in the price series or the lack of

cointegration between the price series and the fundamental series would indicate

the presence of a bubble.

Diba and Grossman (1988) use this test on 100 simulated series, each lasting

100 periods and containing an explosive bubble component that evolves according

to Bt+1 = (1 + r)Bt + zt+1, where r = 0.05 and zt+1 ∼ iid N(0, σz). They find that

their test has high power to detect a bubble, as 95% of their simulated price series

are nonstationary in first differences. However, as pointed out in Evans (1991), the

process assumed for the evolution of the bubble may be overly simplistic, since it

assumes that a bubble will grow at an exponential rate forever. In Figure 1, I show

8They also propose other, similar tests, such as testing the first differences of both series for
stationarity. All of their proposed tests have approximately the same power, and all were shown in
Evans (1991) to have low power against periodically collapsing bubbles.
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what a “typical” Diba & Grossman bubble looks like by generating 201 of these

bubbles and plotting the bubble with the median variance.

FIGURE 1. Typical Diba and Grossman Bubble
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Evans (1991) Bubble Process

Evans (1991) astutely observes that in the real world, bubbles could not

possibly have the form hypothesized by Diba and Grossman (1988). That is, no one

thinks that an asset bubble could grow unabated forever. In fact, all of the dozens

of examples of historical bubbles cited in Kindleberger (2000) eventually collapsed.

Therefore, Evans proposes a process for bubbles that allows them to periodically

collapse, and shows that the tests suggested by Diba and Grossman (1988) have

very little power to detect this more realistic type of bubble.

Evans (1991) retains the same risk neutral asset market set-up considered

in Diba and Grossman (1988), and assumes that dividends evolve according to

equation (1.5). However, he proposes the following formulation for the bubble
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component:

Bt+1 =

 (1 + r)Btut+1 if Bt ≤ α[
δ + 1+r

π

(
Bt − δ

1+r

)
ξt+1

]
ut+1 if Bt > α

Where δ and α are scalars that satisfy 0 < δ < (1 + r)α, ut is a sequence of i.i.d.

random variables with Etut+1 = 1:

ut = exp

(
zt −

σ2
z

2

)
zt ∼ N(0, σ2

z)

and ξt is an exogenous i.i.d. Bernoulli process such that:

Pr(ξt = 0) = 1− π

Pr(ξt = 1) = π

In words, the bubble process follows a linear switching process. Recall from

equation (1.3) that a rational bubble component must satisfy:

Bt = βEtBt+1

Therefore, we verify that the above process satisfies this requirement. When Bt ≤

α, we have:
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EtBt+1 = Et(1 + r)Btut+1

EtBt+1 = (1 + r)BtEtut+1

EtBt+1 = (1 + r)Bt

Bt = βEtBt+1

where we have used the fact that in equilibrium, 1
β

= (1 + r).

If Bt > α, we have:

EtBt+1 = Et

{[
δ +

1 + r

π

(
Bt −

δ

1 + r

)
ξt+1

]
ut+1

}
EtBt+1 = Et

{
δut+1 +

1 + r

π

(
Bt −

δ

1 + r

)
ξt+1ut+1

}
EtBt+1 = δEtut+1 +

1 + r

π

(
Bt −

δ

1 + r

)
Etξt+1ut+1

EtBt+1 = δ +
1 + r

π

(
Bt −

δ

1 + r

)
π

EtBt+1 = δ + (1 + r)

(
Bt −

δ

1 + r

)
EtBt+1 = δ + (1 + r)Bt − δ

EtBt+1 = (1 + r)Bt

Bt = βEtBt+1

where, in order to go from line 3 to line 4 we have used the fact that ξt+1 and ut+1

are each i.i.d. random variables, with E(ξt+1) = π and E(ut+1) = 1.

Now that we know that this bubble process conforms to the requirement for a

rational bubble, we can analyze some of its properties. If Bt ≤ α, then the bubble

grows at rate 1
β
. However, once the size of the bubble exceeds the predetermined

15



level α, then it will grow at the faster rate, Bt
βπ

if ξt+1 = 1. However, if ξt+1 =

0, then the bubble collapses to δut+1. Therefore, 1 − π is the probability of the

bubble collapsing each period. Once the bubble collapses, it will return to growing

at the slower rate, 1
β
, until it eventually exceeds the exogenously given scalar α.

In Figure 2, I show what a “typical” Evans bubble looks like by generating 201 of

these bubbles and plotting the one with the median variance.

FIGURE 2. Typical Evans Bubble
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Evans generates 200 price series, using the same fundamentals process

as Diba and Grossman (1988), and the periodically collapsing bubbles for the

bubble component. Evans then tests these series for the presence of a bubble by

using Diba and Grossman’s (1988) proposed unit root and cointegration tests.9

He finds that these tests perform extremely poorly, and detect only a handful of

bubbles in these generated price series.10 Since these collapsing bubbles are a much

9See the appendix for full detail and the particular parameter values chosen in Evans (1991).

10It is hard to tell from the table presented in Evans (1991). However, it appears that at most
three of the 200 bubbles were detected.
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more plausible bubble generating process than the process set forth in Diba and

Grossman (1988), Evans (1991) concludes that the Diba and Grossman (1988) test

for asset bubbles is insufficient, and that work should be done to devise a more

powerful and flexible bubble test.

Hall et al.’s (1999) Test for bubbles

Hall et al. (1999) attempt to design a bubble test that is better able to detect

the presence of periodically collapsing bubbles than the tests presented in Diba and

Grossman (1988). To do so, they return to the Augmented Dickey Fuller (ADF)

test that was used in Diba and Grossman (1988), with two main differences. In

Diba and Grossman (1988), this ADF test was used to test for the presence of

a unit root in pt or ∆pt. In Hall et al. (1999), the authors instead modify this

test to test for an explosive root in pt. Furthermore, Hall et al. (1999) allow the

parameters of the test to switch between two regimes: a low growth regime and a

high growth regime.

The equation that Hall et al. (1999) estimate to conduct their test for an

explosive root in the level of the price series, pt, is given below:

∆pt = µ0(1− St) + µ1St + [φ0(1− St) + φ1St]pt−1+

k∑
j=1

[ψ0,j(1− St) + ψ1,jSt]∆pt−j + σeet

St ∈ {0, 1}

Here, St is an indicator variable, indicating whether we are in a low growth regime

(St = 1), or a high growth regime (St=0). If these regimes were directly observable,

then we could estimate the above equation by treating St as a dummy variable. An
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alternate way to write this process is as a piecewise function:

∆pt =

µ0 + φ0pt−1 +
∑k

j=1 ψ0,j∆pt−j + σeet if St = 0

µ1 + φ1pt−1 +
∑k

j=1 ψ1,j∆pt−j + σeet if St = 1

Here, pt is the price series of interest,11 φi is the AR(1) parameter determining the

impact of pt−1 on pt. ψi,j is the coefficient on the jth lag of the price series, for j ≥

2, which determines how pt−j impacts pt.

Finally, the interpretation of µi depends on the estimation of φi. If φi < 1,

µi
1−φi is the mean of the price series in regime i. If φi = 1, µi is the drift (i.e. time

trend) of the random walk process for the price series. If φi > 1, then µi partially

determines whether the explosive price process is exploding to negative or positive

infinity.

A problem with the procedure outlined above is that the researcher will not

know which periods constitute a high return or low growth regime, so the regime

dummy variable, St is unobserved. Therefore, Hall et al. (1999) estimate these

regimes using a Markov-Switching model. In this model, the researcher assumes

that the probability of moving from regime i in period t − 1 to regime j in period t

depends only on what regime the price process was in in period t − 1. Since there

are two regimes in the model, then there are four possible transitions that occur,

with probabilities given by pij for i, j ∈ {0, 1}, where pij is the probability of

switching from regime i in period t− 1 to regime j in period t.

The testing procedure is as follows:

1. Estimate the Markov-Switching model via Maximum Likelihood estimation.

11In applied empirical work (looking at S&P data, for instance), this will actually be the log of
the price series. In my simple price generation equations, I can simply use the level of prices.
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2. Use bootstrapping to find a one-sided 95% confidence interval against which

to test the presence of an explosive root in the high growth regime.

3. If this test confirms that the price series, pt, has an explosive root, but the

fundamental series does not, then the price series is consistent with the

presence of a bubble.

4. However, if the price series does not have an explosive root, or if both the

price series and its corresponding fundamental have an explosive root, then

conclude that there is not a bubble.

This generalization of the ADF test allows Hall et al. (1999) to more

accurately detect the presence of bubbles. Using the equations above, and

performing maximum likelihood estimation with bootstrapped errors, Hall et al.

(1999) find that the high growth regime has an explosive root over 75% of the time.

However, because the existence of a bubble is only confirmed when the price has

an explosive root but dividends do not, Hall et al. (1999) are only able to classify

about 60% of their price series as containing a bubble. Compared to the results

in Evans (1991), which detected about three bubbles out of 200, this is a great

improvement. However, the results may be disappointing to policymakers, as this

test still misses about 40% of these bubbles.

Since Hall et al. (1999), there have been more attempts to improve bubble

testing. Some recently developed tests, such as Phillips et al. (2011), use recursive

tests to test for bubbles and remain agnostic about the structural form of the

regime. Using Phillips et al.’s (2011) estimation technique has two desirable

features. First, Phillips and Magdalinos (2007) have worked out limit theory for

mildly explosive processes, and Phillips et al. (2011) are able to apply that theory
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to their bubble testing procedure to test directly for explosive roots without the

need for bootstrapping, a computationally intensive procedure that Hall et al.

(1999) needed to undertake to estimate the distribution of the AR(1) parameter

under an explosive processes. Second, it allows the researcher to date-stamp the

beginning and ending dates of bubbles, although this can also be done in the

Markov-Switching framework by using the estimated regime probabilities. However,

under the feasible parameters used by Evans (1991) and Hall et al. (1999), Phillips

et al.’s (2011) test detects the presence of a bubble only 43.2% of the time.12

MS-TVP Model

Due to the relatively low power of existing bubble tests, there remains a

deficiency in the bubble testing literature. In order to try to increase the power

of existing bubble tests, I generalize Hall et al.’s (1999) test by allowing the AR

parameters in their MS model to evolve according to a random walk each time

the price series enters a high return or low growth regime. My test uses Bayesian

inference, and therefore admits the use of hierarchical priors, as suggested by Koop

and Potter (2007), which makes estimation of this test feasible via Gibbs sampling.

To see where the time-varying nature of my test may be particularly helpful,

consider the following example. Suppose that there are three different bubbles

in our sample, which is a reasonable number for both Evans’ (1991) generated

price series and for the entire history of S&P 500 stock data. Assume that two of

the three bubbles are very large, with very high growth rates, while the third is

relatively small, with a slower growth rate. Then the fixed parameter Hall et al.

(1999) test may find the two large bubbles, and estimate a large value for φ0, the

12This test performs much better for slightly different parameterizations of Evans (1991) bubble
generation process that could still be considered realistic.
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AR(1) coefficient in the high growth regime. Since the estimated φ0 is so large,

the Hall et al. (1999) test may not detect the third bubble, since it will be more

qualitatively more similar to the slow growth regime than the bubble regime.

However, the new model with time varying parameters should be able to detect

this third bubble. Since the AR(1) coefficient in the high growth regime, φ0,t can

change over time, it will be higher during the two large bubbles, and lower, but

still explosive, during the third bubble. With this intuition in mind, I present my

generalization of the Hall et al. (1999) test below.

Eo & Kim’s Model Applied to the ADF Test

In Eo and Kim (2012), the authors present a newly developed MS-TVP model

in the context of GDP growth and identification of recessions. Eo and Kim (2012)

were trying to overcome a similar problem to the example presented above - that

Hamilton’s (1989) Markov-Switching model with constant coefficients did a poor

job at identifying relatively mild recessions, like the one in 2001. While Eo and

Kim (2012) only consider a model that has no autoregressive components, so that

it is only a mean switching model, it is easy to generalize their model to one with

lags. The MS-TVP Augmented Dickey fuller test can be written as:

∆pt = µ0,τ (1− St) + µ1,τSt + [φ0,τ (1− St) + φ1,τSt]pt−1 +

k∑
j=1

[ψ0,τ,j(1− St) + ψ1,τ,jSt]∆pt−j + σeet

Let β0,τ = [µ0,τ φ0,τ ψ0,τ,1 . . . ψ0,τ,k]
′ and β1,τ = [µ1,τ φ1,τ ψ1,τ,1 . . . ψ1,τ,k]

′

be the vectors of time varying parameters in regime 0 and regime 1 in a model with

21



k + 1 lags. Then the parameters transition according to:

β0,τ

β1,τ

 =

β0,τ−1

β1,τ−1

+

ωβ0,τ
ωβ1,τ


where τ = 1, 2, · · · , N0 + N1, and the ωx,τ are white noise shocks particular to each

parameter. In words, τ is the number of the particular realization of the regime.

For example, if τ = 1 is the first realization of the high growth regime, then τ = 2

is the first realization of the low growth regime, τ = 3 is the second realization

of the high growth regime, τ = 4 is the second realization of the low growth

regime, etc. Therefore N0 is the number of times the price series has been in the

high growth regime, N1 is the number of times the price series has been in the low

growth regime, and N0 +N1 is the total number of realizations of all regimes.

For estimation, it will be helpful to collect all parameters in a vector and

rewrite the system in terms of time t instead of τ . First, let βt = [β′0,t β
′
1,t]
′ be the

vector of all estimated coefficients at time t. Then the system can be written in

state space form. First the Measurement Equation (ME):

∆pt = Htβt + et

Ht = [(1− St)pt−1 Stpt−1 (1− St)∆pt−1 . . . Stpt−k]

et ∼ NID(0, σ2
e)
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Likewise, we can write the State Equation (SE):

βt = Fβt−1 + ωt

F = Ilength(β)

ωt ∼MVN





0

0

...

...

0

0


,



d10,tσ
2
µ0

0 0 0 . . . 0

0 d01,tσ
2
µ1

0 0 . . . 0

0 0 d10,tσ
2
φ0

0 . . . 0

0 0 0
. . . . . . 0

...
...

...
...

. . .
...

0 0 0 0 0 d01,tσ
2
ψ1,k




Here, dij,t is a dummy variable which equals one when t − 1 = i and t = j.

Therefore, the shocks, ωt, are heteroscedastic - a shock to the regime i parameters

only occurs when the price series enters an episode of regime i, and equals 0

otherwise. However, because the disturbance term in the ME is conditionally

Gaussian, we are still able to use the Kalman Filter to estimate the parameters

of this state space model.

Estimation

I use Markov Chain Monte Carlo (MCMC) Bayesian estimation techniques

to estimate both Hall et al.’s (1999) model and the time-varying generalization

outlined above. In both estimations, I use a Normal prior on the regression

coefficients, a Gamma prior on the inverse of the variance parameter, and a

Beta prior on the regime transition probabilities. These priors are conditionally

conjugate, so they admit the use of the Gibbs sampler.
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As stated above, in my estimation I use a Normal prior on all of the

regression coefficients, including the AR(1) coefficient, φi,t, at all points in time.

There is a vast literature outlining the sensitivity with respect to the choice of

prior in testing the root of an AR process in a Bayesian framework, with primary

contributions coming from Sims (1988), Berger and Yang (1994), and Lubrano

(1995). Xia and Griffiths (2012) demonstrate that for Bayesian posterior confidence

interval based tests, a uniform prior over the AR(1) coefficient rejects the null

hypothesis of a unit root too infrequently, but that this prior performs much better

when using Bayesian model comparison. Of all the priors considered by Xia and

Griffiths (2012), this uniform prior is most similar to the Normal prior used in this

paper.

Estimation of Hall et al.’s Model

In order to estimate the model presented in Hall et al. (1999), I use the

Gibbs sampler with relatively tight priors on the AR(1) coefficients, but diffuse

priors on µi, the variance parameter, and the transition probabilities. The Gibbs

sampler for this model is standard for a two-state Markov-Switching regression with

autoregressive parameters. I omit a detailed description of the sampler here, but

the interested reader can find a detailed exposition of the Gibbs sampler for this

model in Kim and Nelson (1999).

Recall that the Hall et al. (1999) model is given by:

∆pt =

µ0 + φ0pt−1 +
∑k

j=1 ψ0,j∆pt−j + σeet if St = 0

µ1 + φ1pt−1 +
∑k

j=1 ψ1,j∆pt−j + σeet if St = 1
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Since I will be testing for an explosive root, the prior on the AR(1) coefficient

is of extreme importance. I place a tight prior on the AR(1) coefficient in both

regimes. In the high growth regime (regime 0), the prior on φ0 is a Normal

distribution with mean zero and standard deviation set to 0.05 that is truncated

to lie above zero (the AR(1) parameter in the high growth regime is restricted

to be consistent with explosive growth). This relatively small standard deviation

reflects our prior knowledge that even when a root is only very slightly explosive,

the process blows up quickly. Therefore, I believe that even in the presence of a

bubble, the explosive root will not be very large. This is reflected by my prior,

which holds that I have roughly 95% confidence that the AR(1) parameter is less

than 1.1.

In the low growth regime (regime 1), the prior on the AR(1) parameter, φ1,

is also a Normal distribution with mean zero and standard deviation set to 0.05.

However, this distribution is truncated from above at φ0, in order ensure uniqueness

of the likelihood function of the MS model. This prior again reflects the fact that I

believe that the AR(1) parameter is near 0, and if it is explosive, it is probably only

very slightly explosive.

Estimation of MS-TVP Model

As shown in Eo and Kim (2012), with standard prior distributions on the

parameters that are being estimated, the conditional posterior distributions can

each be derived analytically, so we can use the Gibbs sampler to estimate this

model. Since this model is less well known, I will present an overview of the steps

involved in the Gibbs sampler below. However, since my estimation procedure is
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nearly identical to the procedure discussed at length in Eo and Kim (2012), I will

keep this overview relatively brief.

As in Hall et al.’s (1999) model, the priors on the AR(1) coefficients are very

important. In order to facilitate estimation of the more flexible switching model, I

do not center the prior distributions for the initial conditions for the AR coefficients

at zero.13 Instead, for the AR(1) parameter in the high growth regime, I set the

prior for the initial condition to 0.05, and in the low growth regime, I set the prior

for the initial condition at -0.05, each with a small variance.

The steps for the Gibbs sampler are as follows:

Step 0:

Initialize the hyperparameters of the model, Ω̃ = [σ2
e σ

2
µ0
σ2
µ1
. . . σ2

ψ1,k
]′, the time-

varying parameters, β̃T = [β1 β2 . . . βT ]′, and transition matrix

P̃ =

 p00 1− p00

1− p11 p11


Step 1:

Generate the regime for each time period, S̃T = [S1, S2, . . . , ST ]′, conditional on β̃T ,

Ω̃, P̃ , and data ỸT . This is based on the multi-move sampler developed by Carter

and Kohn (1994) and explained in Kim and Nelson (1999).

Step 2:

Based on the state space model, generate the time-varying parameters:

β̃T = [µ0,T µ1,T φ0,T φ1,T ψ0,1,T ψ1,1,T . . . ψ1,k,T ]′

13This issue is discussed in more detail in section 6
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conditional on Ω̃, S̃T , P̃ , and the data, Ỹt = [p1 p2 . . . pT ]′. This can be done

by exploiting the state space form of the model to run a Carter and Kohn (1994)

algorithm utilizing the Kalman filter.

Step 3:

Generate the hyperparameters of the model, Ω̃, conditional on β̃T , P̃ , S̃T and

ỸT . This is done by exploiting the fact that conditional on the other parameters

of the model, each of the state space equations are line by line OLS, as is the

measurement equation.

Step 4:

Generate the matrix of transition probabilities, P̃ , conditional on S̃T .

Testing Procedure

The estimation method laid out above gives us parameter estimates the for

MS-TVP model. However, after obtaining these estimates, I need to assess the

performance of each test, both in absolute terms and relative to the performance of

the Hall et al. (1999) test. To do so, I use two sets of competing models, and use

Bayesian model comparison to determine which of the two models is more likely.

To assess the performance of the MS-TVP test, I generate 201 time series

each consisting of 100 periods according to Evans’ (1991) dynamic price and

bubble equations. Then, to test for the presence of an explosive root, I specify two

competing models. The first comparison is between the Hall et al. (1999) model

and a null model. The second is between the MS-TVP model and a null model. In

order to assess the performance of the MS-TVP model relative to the Hall et al.

(1999) model, I compare the performance of each test against their corresponding

null models.
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For the standard Hall et al. (1999) model, I first estimate the model

restricting the AR(1) process to be explosive in at least one of the two regimes.

Next, I estimate a model that restricts the price series to behave as it would in the

absence of a bubble. In the absence of a bubble, the price series would be driven

only by the underlying fundamental, so two features would change. First, and most

obviously, the explosive root in the price series would be replaced by a unit root.

However, it is also the case that there would be no regime switching, since in the

Evans’s (1991) bubble generation procedure, regime switching is only a feature of

the bubble component. Therefore, the second model simplifies to Bayesian linear

regression, with the series restricted to be nonexplosive, i.e. I restrict φ ≤ 0. Table

1 summarizes these two competing models.

TABLE 1. Assessing Hall et al.’s (1999) Test

Model Equations Model Restrictions

Model 1 ∆pt = µ0 + φ0pt−1 +
∑k

j=1 ψ0,j∆pt−j + εt φ0 > 0

∆pt = µ1 + φ1pt−1 +
∑k

j=1 ψ1,j∆pt−j + εt φ1 ≤ φ0

Model 2 ∆pt = µ+ φpt−1 + +
∑k

j=1 ψj∆pt−j + εt φ ≤ 0

Next, I do the same for the MS-TVP model. The only difference is that for

this model, I assume that prices follow an AR(1) process in order to reduce the risk

of overfitting. Therefore, when assessing the performance of the MS-TVP model, I

use the following two models shown in Table 2.

For both assessments, I use Bayesian model comparison to compare model 1

to model 2. In order to do so, I first estimate the marginal density of each model
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TABLE 2. Assessing the MS-TVP Test

Model Equations Model Restrictions

Model 1 ∆pt = µ0,t + φ0,tpt−1 + εt φ0,t > 0
∆pt = µ1,t + φ1,tpt−1 + εt φ1,t ≤ φ0,t

Model 2 ∆pt = µ+ φpt−1 + σeet φ ≤ 0

using the decomposition given in Chib (1995):

m(YT ) =
f(YT |θ̃)π(θ̃)

π(θ̃|YT )
(1.6)

where θ = [Ω, P ], i.e. it is the collection of all of the hyperparameters that are

being estimated. In equation (1.6), f(YT |θ̃) is the sampling density, π(θ̃) is the

prior density of θ, and π(θ̃|YT ) is the posterior density of θ, each evaluated at

θ = θ̃ where θ̃ is any fixed value of θ in the posterior distribution. Chib (1995)

recommends setting θ̃ equal to a value that occurs with great frequency, such the

posterior mean or median, in order to achieve the most accurate approximation. In

my application, I use the posterior mean.

Recall that in the MS-TVP model, the shocks in the transition equation are

heteroscedastic, since they only occur when there is a shift in regimes. Therefore,

there is not an easily computable analytical expression for the sampling density,

f(YT |θ̃), in the MS-TVP model. I estimate it using a simple particle filter, based on

Fernández-Villaverde and Rubio-Ramı́rez (2004), which can be used to approximate

the marginal density of any parameterized nonlinear state space model. In

order to decrease the impact of numerical estimation error, I set the number of

particles high enough so that to the first decimal place, the filter produces identical

estimates.14

14In practice, I used 20,000 particles.
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To compute an estimate of π(θ̃|YT ), I use the method suggested in Chib

(1995), which consists of running the Gibbs sampler successively, each time holding

an additional element of θ, the collection of all estimated hyperparameters, at

its posterior mean, θ̃. Once I have the numerically estimated values for both the

sampling density and the posterior density, I can compute the marginal density

using the formula in equation (1.6).

After computing an estimate of the marginal density for each model, I

compare the two models by computing the posterior odds ratio. The posterior odds

ratio simply describes how likely one model is relative to another. For example, if

the posterior odds ratio for model one compared to model two is 3.0 (so that the

odds are 3:1), then I would say, given the data, model one is 3
3+1
− 1

3+1
= 50% more

likely to have generated it than model two.

In general, the posterior odds ratio of model one compared to model two can

be given as:

pr(m1|YT )

pr(m2|YT )
=
m1(YT )

m2(YT )

pr(m1)

pr(m2)

where mi denotes model i, and pr(m1)
pr(m2)

is the prior odds ratio. In my case I assume

equal prior probability between the two models, so the latter term drops out and

equation (1.1) becomes:

pr(m1|YT )

pr(m2|YT )
=
m1(YT )

m2(YT )
= B12

This makes clear that once I have numerically computed my estimates of the

marginal densities, I have all I need to compare the two models.
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Finally, I need to set criteria that determines when I will prefer one model to

another. To do this, I calibrate the testing procedure, by first running competing

models on all generated series of fundamentals. After running these competing

models on data that I know has been generated according to a stationary process,

I compute the odds ratios, and find the odds ratio for which I would incorrectly

prefer model one five percent of the time. In other words, I calibrate the test such

the size of the test is approximately five percent.

For example, when comparing the performance of the MS-TVP model with

the non-explosive linear regression model, this occurs at an odds ratio equal to

2.16. Therefore, if a given price series has an odds ratio greater than 2.16, and its

corresponding fundamental series has an odds ratio less than 2.16, this suggests

the presence of a bubble in the price series. In other words, since the price series

is explosive but the fundamental series is nonexplosive, this suggests that there is

another component aside from the fundamental that is driving the asset price.

However, if both the price series and the fundamental series had an odds ratio

greater than 2.16, this would not suggest the existence of a bubble. Since both

series are determined to be explosive, it does not suggest that the something other

than the fundamental is driving the movements in the price of the asset.

Results

Estimation of Generated Data

Although this procedure is fairly straightforward, I did experience practical

difficulties during estimation of the MS-TVP model. When estimating a Markov-

Switching model, we need to enforce some type of inequality restriction on a subset

of the parameters to ensure uniqueness of the likelihood. In other words, the
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likelihood function is symmetric - it makes no difference to the likelihood function

whether we label the high growth regime as “regime zero” or “regime one”.

Since my procedure requires a forward run of the Kalman filter,15 if I have an

“unlucky” draw of regimes and hyperparameters, the time-varying parameters may

wander outside their restricted region. When I attempt to enforce this restriction

on the backward draw via rejection sampling, my sampler may have to sample

billions (or more) of times in order to find parameters that fit the restriction.

Note that Koop and Potter (2011) point out a similar problem in a time-varying

parameter vector autoregression. In their estimation, they compare a multi-move

algorithm, which is similar to the Carter-Kohn algorithm I use in estimation of

my model, and a single-move algorithm. They find that when they use the multi-

move algorithm, their rejection rates are as high as 99.97%. Although in theory the

single-move algorithm mixes at a slower rate, the rejection rate is substantially

lower than the multi-move algorithm, so in practice Koop and Potter (2011)

suggest using a single-move algorithm.

However, Koop and Potter (2011) perform their analysis within a Metropolis-

Hastings setting on a slightly different estimation procedure, so it is not

straightforward to generalize their results to my estimation technique. Therefore,

to attempt to solve this problem in my model, I set the variances time-varying

parameters equal to a small constant instead of estimating them.16

Because estimation along with approximation of the marginal density is

relatively computationally intensive, I try to strike a balance between accuracy and

15See Step 2 in the previous section.

16While this fixes the issue in most cases, the issue remains in samples that have a very high
variance (about 5% of all price series). When the issue remains, I count that particular series as
“no bubble” series.
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timeliness. Auto-correlation functions and running mean plots on randomly selected

time series simulations suggested the use of at least 5,000 burn-in draws. To be

conservative, I chose to use 10,000 burn-in draws. However, in order to also ensure

a feasible speed of estimation,17 I chose a relatively modest 20,000 post burn-in

draws.18

Power of MS and MS-TVP Tests

In my estimation, I seek to investigate both the absolute and relative power

of the Hall et al. (1999) test and the MS-TVP test. The exact priors used can be

found in the appendix. Below, I present the results from the model assessment, first

comparing the Hall et al. (1999) model restricted to have an explosive root with a

nonexplosive model with no switching, and then comparing the MS-TVP test with

an explosive root to a nonexplosive model with no switching. As described in the

previous section, I calibrate these tests to have size of .05, i.e. 5% of the time it will

incorrectly prefer the model with switching when the true model is the stationary

linear process. My results are presented in Table 3.

TABLE 3. Power of Bayesian MS Test with 5% Size

Calibrated Odds Ratio % Containing Bubble

Bayesian Hall et al. (1999) 45.40 78.61%
MS-TVP 2.16 79.60%

17For each time series, estimation entails the estimation of both competing models, as well as
approximating the likelihoods of each model. This takes about 30 minutes in Matlab on a 2013
Macbook Pro with a 2.7 Ghz. Intel i7 processor.

18Experimenting on a few randomly selected time series, my results were not very sensitive the
increasing the number of post burn-in draws.
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First, compared to the results in Hall et al. (1999), the Bayesian

implementation of the test which jointly tests for both switching and an explosive

root displays higher power to detect the presence of a bubble. Hall et al. (1999) are

only able to detect a bubble in approximately 60% of the price series. Second, for

this particular specification, the more general MS-TVP model does not add much

power to the detect a bubble.

The first result, that the Bayesian implementation has more power than the

classical estimation in Hall et al. (1999), may be partially driven by the fact that I

am jointly testing for both switching and an explosive root, while Hall et al. (1999)

test only for an explosive root. A model with an explosive root and switching may

represent the price process better than a linear model, even if a switching model

with a nonexplosive root might provide a fit of the price series data that is superior

to both of these. This intuition is supported by my initial attempt at implementing

Bayesian testing in the Hall et al. (1999) model, which found that a version of the

test that tested only for an explosive root only detected a bubble about 40% of the

time.19 However, since the underlying dividend series does not have switching, I

believe that testing only for an explosive root would be incorrect, and that the test

presented in this paper fully exploits the specification of the periodically collapsing

bubble process found in Evans (1991).

The second result, that the MS-TVP model does not seem to provide superior

bubble detection in this model, is actually quite intuitive. Since the growth rates

of all of the bubbles in this model are identical conditional on the realized values

of the shocks, the standard Hall et al. (1999) test should be expected to perform

relatively well compared to the more general model. Under an alternate time-

19However, these estimations were conducted with slightly different priors. To the extent that
the results are sensitive to the priors, this would fail to be an apples-to-apples comparison.
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varying specification of the bubble growth rate, or even in an application to real

world price series that may contain several bubbles, my priors are that the MS-

TVP model would perform better relative to the Hall et al. (1999) test.

Finally, for purposes of intuition, I believe it is helpful to see what one of my

generated and estimated price series actually looks like. Following Evans (1991), I

chose the price series with median variance. The first image in Figure 3 plots the

actual asset return and the estimated asset return for all periods. The second image

plots the probability of being in the low growth regime for all periods. The fact

that this probability is virtually zero except for four brief periods suggests that this

price series is in a bubble in almost all time periods. For this price series, model

comparison suggests that this price series contains a bubble.

In Figure 4, I present the same graphs, estimated instead in the MS-TVP

model. In addition, I present the time path of the explosive root, φ0,t, which shows

that following the first large bubble collapse, the next bubble contains a more

explosive root. Following the collapse of the second bubble, the explosive root is

smaller.

FIGURE 3. Median Bubble (Standard MS Model)
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FIGURE 4. Median Bubble (MS-TVP Model)
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Conclusion

Detection of asset bubbles would allow policymakers to implement policies

to either prevent future bubbles or to take action against an ongoing bubble. In

order to aid this detection, I have introduced Bayesian estimation of Hall et al.’s

(1999) Markov-Switching test for asset bubbles, and expanded on it to test for both

regime switching and an explosive root simultaneously. This leads to an increase in

power over the test presented in Hall et al. (1999). In addition, I modify a Markov-

Switching time-varying parameter (MS-TVP) model developed in Eo and Kim

(2012), and I use this MS-TVP model to test for asset bubbles. In theory, this test
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is more flexible, since it allows for the possibility that the unconditional growth rate

of the bubble changes each time the high growth regime is entered.

Using Monte-Carlo analysis, I show that even in the case where the

unconditional growth rate of the bubble remains constant over time, this MS-TVP

test has slightly more power than the Hall et al. (1999) test. This is a promising

sign, since in the real-world it is unclear whether repeated bubbles will have

the same growth rate or different growth rates than previous bubbles. The test

developed in this paper is more flexible than Hall et al.’s original test, yet retains

power against a more restrictive class of bubbles.
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CHAPTER II

INTEREST RATE RULES IN PRACTICE - THE TAYLOR RULE OR A

TAILOR-MADE RULE?

Introduction

Many studies concerning the conduct of monetary policy in the United States

assume the target Federal Funds rate evolves according to a Taylor rule. Under this

rule, the target Federal Funds rate depends only on inflation and output, with this

assumption justified on both theoretical and empirical grounds. However, there

are many different measures of inflation and output, and it is not clear which

of these measures should be used to produce the most accurate description of

policy. Furthermore, there are a host of sectoral level variables, such as industrial

production and commodity price growth, that may be important to the Federal

Open Market Committee’s (FOMC’s) decision making. The primary goal of this

study is to determine what variables have been relevant to the FOMC over the past

40 years.

Determining the variables considered by the FOMC should not only be of

interest to economic historians or Fed watchers. Many macroeconomists need

to specify a policy rule in order to conduct their research, regardless of whether

monetary policy is of central importance to their research question. For example,

it is necessary to specify a policy rule in all monetary DSGE models. If the

researcher’s goal is to evaluate forecasting performance or to study other features

of observed data, knowing the correct form of the policy rule will be of great

importance, and could potentially influence the results.
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Given the long history and large volume of monetary policy research, it is

surprising that this issue has not been studied in detail. Instead, the profession

has largely followed the work of Taylor (1993), which argues that the behavior

of the FOMC can be usefully described by an interest rate rule depending only

on inflation and the output gap. The original justification for use of this rule

was policy arising from the rules vs. discretion literature of the late 1980s. The

empirical application in Taylor (1993) showed that this type of rule fit the Federal

Funds rate data fairly well from 1987-1992, and this analysis was extended in

Taylor (1999) to cover a much longer time frame. By the early 2000s, based on

this and other similar research, “Taylor-type” interest rate rules that include

one measure of inflation and one measure of the output gap became the default

policy rule used in both theoretical and empirical studies of the macroeconomy and

monetary policy. This is still the case today, with some authors also including lags

of the interest rate to account for interest rate smoothing.1

While these Taylor-type rules have clearly become the dominant paradigm

for describing monetary policy in the United States, there is no consensus on the

actual measures of inflation and output that should be used to describe policy.

This is demonstrated in Table 4, which shows the wide range of definitions that are

commonly used. Popular measures of inflation include GDP Deflator inflation and

CPI inflation, while the unemployment gap and the GDP gap are most commonly

used to measure output. Even among studies that include the same variables,

there can be uncertainty about timing; this can be seen in the first two rows of

the table, as Taylor (1999) assumes the FOMC responds to contemporaneous values

1Throughout this paper, policy rules that include lags of the interest rate are referred to as
“generalized” Taylor rules.
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while Clarida et al. (2000) assume the FOMC is forward looking and responds to

forecasts.

TABLE 4. Explanatory Variables Used in Interest Rate Rule Estimation

Study Inflation Measure Output Measure Horizon Other

Taylor (1999) GDP Deflator GDP Gap Contemp. -
Clarida et al. (2000) GDP Deflator GDP Gap Forecast -
Bernanke and Boivin (2003) CPI UN Gap Forecast Factor
Orphanides (2004) GDP Deflator GDP Gap Contemp. -
Cogley and Sargent (2005) CPI UN Rate Past -
Primiceri (2005) GDP Deflator UN Rate Past -
Schorfheide (2005) CPI GDP Gap Contemp. -
Boivin (2006) GDP Deflator UN Gap Forecast -
Sims and Zha (2006) Core PCE GDP growth, Past PCom

UN Rate
Davig and Doh (2008) GDP Deflator GDP Gap Contemp. -

In addition to disagreement about the precise measures of inflation and

output included in the rule, a potential pitfall when using a Taylor rule is that the

FOMC may actually respond to more variables than inflation and output. In this

case, policy rules that include only inflation and output would suffer from omitted

variables bias. In fact, when estimating the Taylor rule using historical data, the

residuals are highly autocorrelated. Therefore, many authors already include a

third variable in their Taylor-type rule - the first lag of the Federal Funds rate.

While this results in residuals that are substantially less autocorrelated, failure

to include an even greater number of relevant variables could still bias coefficient

estimates. Finally, if one goal of a study is to be able to best predict the Federal

Funds rate in the future, failure to include relevant variables will likely result in

predictions that are not as accurate as they could be.

One potential solution would be to include all possibly relevant variables in

a regression model, but this solution has several drawbacks. First, including all

variables implicitly assumes they are all relevant, but it is not necessarily realistic
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that the FOMC adjusts its Federal Funds rate target every time one of a large

number of variables changes. Second, forcing the inclusion of all variables will

reduce the degrees of freedom, leading to less precise estimation of regression

coefficients. While this loss of precision would be justified if all variables actually

belong in the model, it would harm inference if they do not. Similarly, including

potentially irrelevant variables could lead to overfitting in-sample.

Due to these problems, I use Bayesian Model Averaging (BMA) to average

across a large number of regression models. BMA is naturally suited to the current

context in which there is uncertainty about the true underlying model. Under

BMA, each regression model receives posterior weight according to how well it

fits the data. As is well known in the Bayesian literature, this weight includes a

built-in penalty for the number of parameters that the model includes.2 Therefore,

ceteris paribus, more parsimonious models receive higher posterior weight. Since

this technique averages across a large number of regression models, coefficients

on variables that are deemed unlikely to be included in the FOMC’s interest rate

rule are shrunk toward zero. This occurs because the marginal coefficient value is

determined by a weighted average of zero, when the variable is not included, and

the estimated coefficient value when it is included, with the weight on zero being

very high. This shrinkage toward zero typically increases out of sample forecasting

performance relative to the regression model that simply includes all variables.

As a byproduct of this procedure, I get inclusion probabilities for each variable,

which are useful in this context, since a main goal of this study is to determine the

variables that the FOMC responds to.

2See Koop (2003).
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After using BMA, I find four interesting features of monetary policy: (1) the

FOMC has been forward looking, (2) interest rate rules of the “generalized” Taylor

rule form that include only one measure of inflation, one measure of output, and

the first lag of the Federal funds rate receive almost no posterior probability, (3)

the FOMC is much more likely to respond to employment statistics than GDP, and

(4) rules formed using BMA forecast more accurately than generalized Taylor-type

rules.

First, the FOMC has been forward looking, responding to forecasts of future

inflation rather than past inflation. This is evidenced by the posterior inclusion

probabilities on inflation measures where, for example, expected future GDP

Deflator inflation is included with 95.7% probability, while lagged GDP Deflator

inflation is included with only 10.3% probability. Second, “generalized” Taylor-type

interest rate rules, rules that include only one measure of inflation, one measure

of output, and the first lag of the Federal Funds rate, receive almost no posterior

probability. This is true under all three different versions of model priors considered

in this paper, each of which imply very different things about the variables included

in the interest rate rule. A low posterior probability for generalized Taylor-type

rules is consistent with the results of Bernanke and Boivin (2003) and Cúrdia et al.

(2011), who find that standard formulations of the Taylor rule do a relatively poor

job of explaining historical policy responses. Third, the FOMC is much more likely

to respond to the unemployment gap and the change in the unemployment rate

than to the growth rate of GDP. This result aligns with the mandate of the Federal

Reserve, which tasks it with maintaining full employment. Finally, one-step ahead

forecasts formed using BMA are more accurate than those formed using generalized

Taylor-type rules. As judged by Root Mean Squared Forecasting Error (RMSFE), a
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commonly used forecast evaluation metric, the forecasts from BMA are on average

about 20% more accurate than forecasts formed using generalized Taylor-type rules.

Data and Interest Rate Rule Specification

In my analysis, I consider a total of 14 regressors: one lag of the Federal

Funds rate, CPI inflation, past GDP deflator inflation, expected future GDP

deflator inflation, past real GDP growth, expected future real GDP growth, the

unemployment gap, the change in the unemployment rate, industrial production,

housing starts, real PCE growth, payroll employment growth, commodity price

growth, and oil price growth. For the forward looking variables, I use Greenbook

forecasts, which are available over the entire sample. For all other variables,

including variables for which Greenbook forecasts become available later, but are

not available over the entire sample, I use lagged values over the entire sample. For

these lagged values, I use the last available real time data release occurring on or

before the corresponding FOMC meeting date. A description of the variables I use

is presented in Table 5.

TABLE 5. Variables Included in BMA Exercise

Variable Measure Horizon Source

CPI YoY growth Past ALFRED
GDP Deflator YoY growth Past ALFRED
GDP Deflator Mean QoQ growth, 3 Quarters Future Greenbook
RGDP QoQ growth Past ALFRED
RGDP Mean QoQ growth, 3 Quarters Future Greenbook
Unemployment Rate Gap Future Greenbook
Unemployment Rate Change Future Greenbook
Industrial Production Mean QoQ growth, 3 Quarters Future Greenbook
Housing Starts Units Past ALFRED
Real PCE QoQ growth Past ALFRED
Commodity Prices QoQ growth Past World Bank
Payroll Employment QoQ growth Past ALFRED
Oil Prices QoQ growth Past ALFRED
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As far as the frequency of the data collected, I use FOMC meeting-based

timing, which is novel to the Taylor rule literature. That is, for the regressors I

assume that the FOMC had the most recent release of the data that was available

on the meeting date. For the outcome variable, the Federal Funds (FF) rate, I use

the daily Federal Funds rate to construct the average FF rate between meeting

dates. For example, the FOMC met on August 7, 2007. I assume that they had

the latest release of all of the “past” regressors, and that they used the Greenbook

forecast corresponding to the August 7 meeting for all of the “future” regressors.

For the Federal funds rate, I assume that they enforce the agreed upon target until

the next meeting, which occurred on September 16, 2007, and I use the average of

the daily Federal Funds rate between August 7 to September 15 as the outcome

variable.3

The meeting-based timing solves several issues that arise when using monthly

or quarterly averages, which is typically used in studies in FOMC behavior. In

these studies, the Federal funds rate is formed using monthly or quarterly averages

of the Federal Funds rate. These averages are then matched up with corresponding

monthly or quarterly inflation and output data. However, throughout the

sample, the FOMC typically meets eight times per year, twice per quarter. This

idiosyncrasy creates measurement error when using monthly or quarterly averages.

Furthermore, the meeting dates are not necessarily regular throughout the course of

each quarter or each month, which only serves to increase the errors introduced by

using quarterly or monthly data.

Use of meeting date-based timing does create one complication for data

collection, particularly for forecast data found in the FOMC Greenbook. The

3Note that, on occasion, the FOMC changes policy in between formal meetings. This appears
to have happened seven times in my sample, and is unaccounted for with my methodology.
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complication arises from the fact that these Greenbook variables are forecasted at

a quarterly horizon, but the meeting dates of the FOMC occur at vastly different

stages of the quarter. This causes a problem because if a researcher uses the

quarterly forecasts, the meeting date can substantially alter the degree to which

the FOMC is forward looking. To illustrate this potential problem more clearly,

consider the following example in which the FOMC is forward looking and would

like to respond to their “one quarter ahead” GDP growth forecast, presented in

Table 6.

TABLE 6. Greenbook Forecasting Example, GDP Growth

Forecast Horizon Last Day of 2nd Q First Day of 3rd Q

Current Quarter 1.0% 3.0%
One Quarter Ahead 3.0% -2.0%
Two Quarters Ahead -2.0% -1.0%

If the FOMC meets on the last day of the second quarter, their one quarter

ahead forecast will be for the third quarter, at 3.0%. But if the meeting was shifted

one day into the future, so that they meet on the first day of the third quarter,

their one quarter ahead forecast will be for the fourth quarter, at -2.0%. But since

they are meeting on the first day of the quarter, in some sense this -2.0% forecast is

really a two-quarter ahead forecast, since it is their best guess of what growth will

be throughout the fourth quarter, which doesn’t begin for another 90 days. In this

case, the forecast for the “current” quarter, 3.0%, more accurately represent beliefs

about the one-quarter ahead forecast.

To address this problem in a consistent manner, I use a strategy that weighs

future forecasts based on the date of the meeting inside of the current quarter. This

weight changes linearly with the timing of the meeting date. Continuing with the

above example, if the FOMC truly cared about a “one-quarter ahead” forecast, I
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assume that they form their forecast in the following way:

GDP forecast = (1− p)GDPf
t + pGDPf

t+1

p =
days into current quarter

total days in current quarter

Where “GDP forecast” is the forecast that the FOMC will actually respond to,

while GDPf
t is the forecast for the current quarter contained in the Greenbook, and

GDPf
t+1 is the one-quarter ahead forecast contained in the Greenbook. Applying

this formula to the example above, we see that if the meeting falls on the last day

of the 2nd quarter, the actionable one quarter ahead GDP forecast would be 2.98%,

while if the meeting falls on the first day of the 3rd quarter, it would be 2.95%.

Even in the extreme example outlined above, this strategy leads to a sensible and

smooth change in the future forecast.

In its most general form, I apply the following formula to get the h quarter

ahead forecast of variable x as of the meeting date:

xt+h forecast =
1

h

[
(1− p)xft +

h−1∑
j=1

xft+j + pxft+h

]

p =
days into current quarter

total days in current quarter

h > 1

Typically, I am interested in the average of the three quarter ahead growth rates of

the variables included in the Greenbook. Therefore, the exact formula is given as:

xt+3 forecast =
1

3

[
(1− p)xft + xft+1 + xft+2 + pxft+3

]
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In words, to form the “true” three quarter ahead average forecast, I weight the

nowcast for the current quarter and the forecast for the three quarter ahead growth

rate according to the time remaining in the current quarter, while the one and two-

quarter ahead forecasts receive equal weight. This procedure is necessary to keep

the forecast horizon consistent across all observations, since the meeting dates vary

substantially within each quarter, and the forecasts contained in the Greenbook are

expressed as quarterly forecasts.

With forecasts in hand, I turn to computing measures of the inflation gap

and the output gap, which are typically included in Tayor-type rules instead

of raw inflation and output. Unfortunately, the FOMC did not announce their

inflation target until 2012, and they do not regularly provide estimates of potential

output or the natural rate of unemployment. Therefore, I construct these measures

using historical data. For simplifying purposes, I assume that the natural rate

of unemployment is constant. Because addition or subtraction of a constant

from a regressor will not impact inference, I simply leave the unemployment rate

unadjusted.4

For a measure of the inflation target, I use Matlab code that accompanies the

paper by Chan et al. (2013). In that paper, the authors allow for the inflation gap

to evolve according to an autoregressive process and probabilistically bound the

target inflation rate above at 5%.5 I believe that the former is both reasonable

and realistic as a measure of the inflation target, since if the FOMC misses its

target two quarters in a row, it is more likely than not that the misses will be in

4I have experimented with a constant gain learning rule for the natural rate of unemployment,
but found that my results do not change substantively for typical values of the gain parameter.

5They estimate the upper bound, but set a prior on it that only has support between 0% and
5%.
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the same direction. For example, as of writing, GDP Deflator inflation has been

below the Fed’s stated 2% target for 13 consecutive quarters, Q2 2012-Q2 2015.

Additionally, it seems reasonable that the FOMC never desired an inflation rate

higher than 5%, even though the inflation rate reached much higher levels in the

1970’s. Moreover, in an online appendix, Chan et al. (2013) show that increasing

the bound on inflation to 10% has very little influence on their results.

When estimating the inflation target, I use a fully revised measure of the

GDP Deflator. Doing so produces the inflation target measure displayed in Figure

5, and we can see that the 5% upper bound of the target is not binding.

FIGURE 5. Estimated Inflation Target

After computing the inflation gap for each measure of inflation, I have the

entire set of regressors. I consider interest rate rules of the following form:

it = Xtβt + σtεt

εt ∼ N(0, 1)
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where it is the nominal federal funds rate at time t; Xt is a data matrix containing

an intercept, the first lag of the nominal federal funds rate, and the exogenous

variables; β is the coefficient vector; σt is the standard deviation of the monetary

policy shock at time t, and εt is an i.i.d. error term. Note that the coefficient

vector, βt, and the standard variation of the shock, σt, can vary over time. In full

sample estimation, I will allow for the possibility of structural changes in the values

of these parameters in both 1979 and 1983.6

Full Sample Estimation Procedure & Results

Instead of estimating the full model, which implicitly assumes that all of

the included variables were relevant to FOMC decision making, I use Bayesian

Model Averaging (BMA) to average results over every potential regression model.

Essentially, when performing BMA, I run regressions for every possible combination

of regressors, and probabilistically average across the results. The major steps of

BMA are as follows:

1. Run Bayesian Ordinary Least Squares (BOLS) on all possible models.

2. Based on the posterior marginal likelihood, which takes into account in-

sample fit and includes a built in penalty for including more regressors,

compute the probability of each model.

3. Using the model probabilities and the posterior statistics of each model, such

as the mean coefficient values, compute posterior statistics averaged across

the posterior model space.

6The choice of these dates is based on the timing of known changes in monetary policy, and is
discussed in more detail later.
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In order to run BOLS, I need to set priors over all regressors in every model.

For full sample estimation, I assume an independent Normal Inverse-Gamma prior.

That is, I assume that no matter the model under consideration, the regression

coefficients are drawn from a normal distribution, and the variance of the residual

is drawn from an Inverse-Gamma Distribution. Because there are 14 potential

regressors, there are 214 = 16, 384 models for which priors are needed. Clearly,

this task would be infeasible without setting priors in an automatic fashion. In

order to set priors for the regression coefficients, I rely on the g-prior suggested in

Zellner (1986). Let Xr denote the data vector corresponding to model r, and βr be

the regression coefficients in that model. In each model, I center this prior for βr

on βr = 0pr , where 0pr is a vector of zeros with length pr, the number of variables

included in model r. For the covariance matrix of the regression coefficients, Vr, I

set the following prior:

Vr,pri = (grX
′
rXr)

−1

The hyperparameter gr is set to be constant across models, i.e. gr = g ∀ r. It is

set according to the recommendations of Fernandez et al. (2001). Since I have 14

potential regressors and my sample size is T = 351, I set g = 1
T

= 1
351

.7

I assume two breaks in the variance of the interest rate rule. These breaks are

known, and they occur at the October 6th, 1979 meeting and the March 29th, 1983

meeting. These dates were chosen because in the intervening period the FOMC

targeted the money supply rather than the nominal interest rate. Since the Federal

funds rate was allowed to move freely during this time, it is likely that its behavior

7In estimation, I restrict the AR(1) coefficient to be less than one in absolute value. I enforce
this restriction via rejection sampling.
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was much more volatile. Precise prior statistics are provided in Table 7 below,

where σ1 represents the standard deviation of the error term before October 6,

1979, σ2 represents the standard deviation of the error term between October 6,

1979 and March 29, 1983, and σ3 represents the standard deviation of the error

term after March 29, 1983. I assume that the prior distribution of the variance

terms, σ2
1, σ2

2, and σ2
3, is Inverse-Gamma.

TABLE 7. Prior Distribution of Standard Deviation of Error Terms

Parameter Mean S.D

σ1 1.0 0.60
σ2 3.0 1.02
σ3 0.7 0.42

With the priors set, I turn to posterior computation. The independent

Normal Inverse-Gamma prior is conditionally conjugate, meaning that I can use

the Gibbs sampler to draw from the full posterior distributions. Because I am

using BMA, I need to be able to compute the marginal likelihood of each model.

To do so, I use an additional simulation step, which is described in Chib (1995). In

theory, the accuracy of posterior statistics such as the marginal likelihood increases

as the number of simulations increases. In practice, in this relatively simple linear

regression framework, a high level of accuracy can be achieved with as few as 500

posterior draws. This relatively low number of draws makes comparing thousands

of models relatively easy on a modern computer.8

Finally, in addition to the model with breaks only in variance, I estimated a

“flexible coefficients” BMA model that allowed both the regression coefficients and

the variance to change at the break dates. However, consistent with the results

8The full details of this estimation procedure are presented in an online appendix.
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of Sims and Zha (2006), these models did not fit the data well, and resulted in

marginal likelihoods that were lower than the model with breaks only in variance.

In fact, when performing BMA using both the flexible coefficients and the baseline

set-up, the entire set of 16,384 flexible coefficients models received posterior weight

that was less than 10−25, and therefore would have almost no impact on any

posterior feature of interest. For this reason, I drop the flexible coefficients model

and focus only on models that have only a change in variance.

After running BMA I find that the FOMC seems to be strongly forward

looking, responding to expected future inflation with much greater probability

than past inflation. This can be seen in Table 8, where both measures of lagged

inflation, CPI and past GDP Deflator inflation each receive less than 16% posterior

probability, while expected future GDP Deflator inflation receives over 95%

posterior probability. Additionally, it is much more likely that the FOMC responds

to the change in the unemployment rate than the percentage change in real GDP.

Both expected future and lagged real GDP growth receive less than 15% posterior

probability, while the change in the unemployment rate receives an inclusion

probability of 95.8%.

Histograms for the conditional posterior distribution of each coefficient are

presented in Figure 6. These histograms are formed by resampling the posterior

simulations in the following way. First, I draw a model at random, with each

model being chosen in accordance with its posterior model probability. Next, once

a model is selected, I draw one of the 500 posterior draws at random, with each

draw being equally probable. I save this draw, and repeat this process N times to

get N draws from the posterior. I choose N = 3,000,000. These histograms plot

the value of the coefficient conditional on inclusion in the model, and ignore the
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TABLE 8. Inclusion Probabilities from BMA

Variable Probability

First Lag 100.0%
CPI 15.8%
Past GDPD 10.3%
Expected GDPD 95.7%
Past RGDP 14.3%
Expected RGDP 11.4%
UN Gap 96.8%
UN Change 95.8%
Industrial Production 15.7%
Housing Starts 30.8%
Commodity Prices 98.5%
Payroll Employment 19.5%
Oil Prices 24.5%
RPCE 3.2%

point mass that occurs at zero for variables included with probability less than

one. The bars above each histogram represent the inclusion probability, with a full

bar representing inclusion with probability one, and an empty bar representing

inclusion with probability zero. The bars are also color-coded, with green bars

signifying greater than 80% inclusion probability, red bars signifying less than 20%

inclusion probability, and yellow bars indicating anything in between.

Aside from the individual inclusion probabilities and coefficients, I group

variables by their type and measure the associated inclusion probability. I consider

four types: lag of the Federal Funds rate, measures of general inflation, measures

of real output, and sectoral measures. The first type corresponds exactly with one

variable, the first lag of the Federal Funds rate. The next type, measures of general

inflation, includes CPI, past GDPD, and expected GDPD. Real output includes

both past and expected RGDP, the UN gap, and UN change. Sectoral measures

includes all other variables: industrial production, housing starts, commodity
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FIGURE 6. Coefficient Histograms
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prices, oil prices, payroll employment growth,f and RPCE. In Table 9, I show the

prior and posterior probabilities of rules that include at least one variable of each

type. Recall that all models receive equal prior probability. Therefore, categories

that include more variables receive a higher prior weight. Turning to the posterior,

we see that the inclusion probability of each type of aggregated measure moves

towards 100%.

TABLE 9. Inclusion Probability by Variable Type

Rule Lag FF Inflation Real Output Sectoral

Prior Probability 50% 87.5% 93.8% 98.4%

Posterior Probability 100% 98.5% 99.1% 99.9%

While the posterior inclusion probability of at least one sectoral variable

moves towards 100%, the prior inclusion probability was already very high, at

98.4%. Therefore, I conduct a prior robustness check to verify that my result is

coming from the information in the data, rather than the information in the prior.

I use two alternative model priors. First, instead of equal prior probability across

all models, I use equal prior probability across models of different sizes. I call

these priors “binomial”, and they are popular for model comparison and model

averaging since they control for the fact that there are many more medium sized

models than either small or large models. For example, in my current case, there

are
(

14
7

)
= 3, 432 models that include seven variables, but only

(
14
2

)
= 91 models

that include two variables. Continuing with this example, under the binomial prior

each model that includes seven variables receives the same weight as all other

models with seven variables, and the sum of the weights on all models including

seven variables is equal to the sum of the weights on all models including two
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variables. For my second alternative prior, I use equal prior probability across two

sets of models: those that take the form of the generalized Taylor rule, and those

that do not. I call these model priors the “50% Taylor” prior, and I set the prior

probability that one of the versions of the generalized Taylor rule that has been

followed is 50%, with 50% prior probability equally divided across all other models.

The results of this robustness exercise are shown in Table 10. We can see

that regardless of the exact prior used, the posterior probability of inclusion of at

least one of the sectoral variables remains near 100%. This demonstrates that the

high prior inclusion probability for sectoral variables under the baseline prior is

not driving my results, but rather the information contained in the data is capable

of moving the posterior inclusion probabilities very far from the prior inclusion

probabilities. In other words, for all three different versions of model priors, I find

that it is very likely that at least one sectoral variable has been included in the

policy rule of the FOMC.

TABLE 10. Inclusion Probability by Variable Type - Prior Robustness

Model Prior Lag FF Inflation Real Output Sectoral

Equal
Prior Probability 50% 87.5% 93.8% 98.4%

Posterior Probability 100% 98.5% 99.1% 99.9%

Binomial
Prior Probability 53.9% 80.8% 86.2% 89.7%

Posterior Probability 100% 97.7% 98.5% 99.9%

50% Taylor
Prior Probability 75.0% 93.8% 96.9% 49.2%

Posterior Probability 100% 98.5% 99.1% 99.9%

I am also interested in the probability that the generalized Taylor-type rule

was followed. Under a generalized Taylor-type rule, used in a large number of

studies, I assume that the FOMC responds to only the first lag of the Federal
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Funds rate, one measure of inflation, one measure of real production, and no

sectoral variables. Therefore, they respond to only one of CPI, past GDPD, and

expected GDPD; one of past RGDP, expected RGDP, UN gap, and UN change;

and none of the other variables. I show the results in Table 11. We can see that for

both equal model priors and the 50% Taylor rule priors, the posterior probabilities

of the generalized Taylor rule are low. This shows that for sensible, but very

different, model priors, there is very little evidence in support of the hypothesis

that the FOMC’s behavior is best approximated using a generalized Taylor-type

rule.

TABLE 11. Probability of “Generalized Taylor Rule”

Model Prior Prior Probability Posterior Probability

Equal 7.3× 10−4 6.4× 10−9

50% Taylor 0.5 8.7× 10−6

Finally, a posterior feature of interest is the long run inflation response

coefficient. This response coefficient is very important within economic models, as

it helps to pin down determinate equilibria. In the most common case, in order

for a determinate equilibrium in a simple New Keynesian model, the inflation

response coefficient needs to be greater than one. In this paper, since there are

several possible inflation measures included, it is necessary to add the coefficients

on each in order to determine the total short-run inflation response. Then, in

models in which the first lag of the Federal Funds rate is included, I divide this

short-run inflation by one minus the AR(1) coefficient on the lag of the Federal

Funds rate. Mathematically, φπ,LR =
φπ,SR
(1−ρ)

where φπ,LR is the long run inflation

response, φπ,SR is the short-run inflation response, and ρ is the AR(1) coefficient.
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FIGURE 7.

Like the histograms presented earlier, Figure 7 presents the histogram for the long

run inflation response conditional on inclusion, so the point mass at zero is ignored,

and it is weighted according to the posterior model probabilities.

We can see that the long run inflation response coefficient is unimodal and

slightly right-skewed. The unimodal nature of the long-run inflation response

coefficient suggests the presence of only one policy regime over the sample. If there

had been two policy regimes, one with a weaker response closer to 1.0 and one with

a stronger response, as is often hypothesized and has been studied extensively by

Clarida et al. (2000), Orphanides (2004), and numerous others, we would expect

to see a bi-modal distribution. My result supports the conclusions of Orphanides

(2004) and Sims and Zha (2006), who find little evidence of change in the long-run

inflation response over time.
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In addition to being unimodal, the density lies almost entirely to the right of

one, and the posterior median is above three. Roughly 99% of the distribution lies

above 1.0; in other words, there is a 99% chance that, conditional on inclusion of

at least one measure of inflation, the Taylor principal was satisfied. In addition,

the posterior median of the inflation response is relatively high, at 3.0. This is

much higher than other authors that use single equation Taylor rule estimation

have found. For example, Orphanides (2004) finds that the long run inflation

coefficient is about 1.5. After experimenting with different data definitions, I found

that my relatively high inflation response is largely driven by my use of meeting-

based timing. Performing BMA using quarterly averages for the Federal Funds

rate and all regressors yields an estimated long run inflation response coefficient of

1.85, which is much closer to the estimates typically encountered in the policy rule

estimation literature.

My estimation procedure has uncovered several features of monetary policy

between 1970-2007. First, the generalized Taylor rule does a relatively poor job

of describing FOMC behavior. It is much more likely that the FOMC responds

to several measures of inflation and output along with at least one additional

sectoral variable. Next, the long-run inflation response coefficient is unimodal,

suggesting that there has only been one inflation response regime over the sample.

The long run inflation coefficient satisfies the Taylor principal with high probability.

Finally, the median value of this coefficient is high compared to estimates derived in

earlier single equation research. I find that this result is largely driven by my use of

meeting-based timing.
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Forecasting

In order to further assess the gains made by using BMA, I conduct an out

of sample forecasting exercise. In order to avoid potential uncertainty surrounding

the break dates in variance in real time, I focus only on the post 1983 sample.9 I

use two types of forecasts, rolling window and recursive. I find that the recursive

forecasts are superior to those formed via rolling window estimation, which implies

that allowing for structural breaks in a non-parametric fashion by using rolling

window estimation does not lead to increased forecasting performance. This

suggests that to the extent that there have been changes in FOMC interest rate

policy since 1983, they have not been quantitatively important.

When conducting forecasts, I use a slightly different BMA procedure than

when performing full sample analysis. Since I am focusing on post 1983 data, I

assume a homoskedastic error term, which allows me to use the fully conjugate

Normal-Gamma prior. Use of this prior means that the posterior distribution

can be described analytically, and posterior simulation is not necessary. In other

words, for each possible regression model, I am able to compute the exact posterior

distribution, and exact marginal likelihood.10 Doing so greatly speeds computation,

which is important when doing multiple estimations in a recursive exercise. For the

priors on the regression coefficients, I use the same prior as in the previous section,

βr ∼ N(0pr , Vpri,r). Because the intercept and variance term are included in all

regression models, I set an uninformative prior on each.

I conduct both rolling sample and recursive estimation. Under both

techniques, forecasting begins on March 23, 1993, and continues until December

9Due to the post 1983 sample, I add PCE inflation to the analysis.

10These computations are detailed in chapter 12 of Koop (2003)
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11, 2007. With rolling sample estimation, the first observation used in estimation

advances as necessary to keep the sample size constant at 80 observations,

approximately 10 years. With recursive estimation, the first observation remains

fixed at March 23, 1983, and the sample size increases as more observations are

added. I only consider the one-meeting-ahead forecast, and this is formed by

assuming the FOMC has all of the information that will be available to it at the

next meeting.

I conduct rolling sample estimation in order to allow for the possibility of

structural change in the behavior of the FOMC in a non-parametric way. While

I could perform more advanced estimation, such as estimating potential break

dates, or performing a time varying parameter analysis, the relatively simple

rolling window approach admits the use of conjugate priors, which greatly speeds

estimation and makes re-estimation at each observation feasible. If the rolling

window forecasts out-perform the recursive forecasts, this will suggest the presence

of a structural break in the FOMC policy rule.11

I consider three measures of forecasting performance: Mean Absolute

Forecasting Error (MAFE), Root Mean Square Forecasting Error (RMSFE),

and the Sum of the Log Predictive Density (SLPD). The first two metrics are

common in both Bayesian and frequentist environments, while the latter is gaining

traction in Bayesian forecast evaluation. The MAFE measures the mean absolute

difference between the forecasted value and the observed value, and is expressed

11Use of the parametric, more computationally intensive techniques, may be warranted if rolling
window estimation provides evidence of possible structural breaks, but as I will show later, this is
not the case here.
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mathematically as:

MAFE =
1

T f

T f∑
i=1

|yfi − yi|

where T f is the total number of forecasted periods, yfi is the forecasted value of the

variable of interest at time i, and yi is the actual observed value of the variable of

interest at time i. The spirit of RMSFE is similar, and it is computed by:

RMSFE =

√√√√ 1

T f

T f∑
i=1

(yfi − yi)2

When using MAFE, predictions that are twice as far away are punished exactly

twice as much, but when using RMSFE, predictions that are twice as far away are

punished more than twice as much. In this sense, RMSFE will punish a prediction

model containing a few very bad predictions much more harshly than will MAFE.

The last measure of forecasting performance I use is the sum of the log

predictive density. This metric is computed by evaluating the posterior predictive

density at the observed value of the variable of interest:

SLPL =
T f∑
i=1

log [p(yfi = yi)]

where p(yfi = yi) is the posterior predictive density evaluated at the point yfi = yi.

This measure has several nice properties that have led to its increased use as the

forecasting metric of choice in forecasts arising from Bayesian methods. First, it

is robust to non-normal posterior predictive densities in a way that RMSFE and

MAFE are not. For instance, imagine a bi-modal posterior predictive distribution

for yi. In this case the point estimate, yfi , will likely have relatively low posterior
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probability, and lead to RMSFEs and MAFEs that do not do a good job of

capturing the predictive accuracy of the model. This problem is avoided when

using the SLPL, since it fully captures the asymmetries in the predictive density.

Second, as shown in Geweke and Amisano (2011), the log marginal likelihood

of a model can be decomposed into the sum of the logs of the one-step ahead

predictive likelihood, where prediction of the initial observation is made using

only the prior distributions on the parameters in the model. Therefore, the sum

of the log predictive likelihoods starting far away from initial observation mirrors

the marginal likelihood, but diminishes the impact of the prior.

After conducting the forecasting exercise, I find three main results. First,

recursive estimation produces more accurate forecasts than rolling sample

estimation. While this does not prove that structural breaks did not occur,

it shows that the gains achieved by using a larger sample size outweigh those

from allowing for instability. Second, the forecasts produced by BMA generally

outperform forecasts produced by any of the generalized Taylor-type rules.

Third, the performance of generalized Taylor-type rules that consider output

or the unemployment gap deteriorate sharply during the 2001 recession. The

performance of the generalized Taylor rule that instead includes the change in the

unemployment rate greatly improves during this recession, suggesting that during

this recession policymakers only reduced interest rates when they expected the

unemployment rate to increase.

First I compare the three forecasting metrics for rolling sample vs. recursive

estimation, and show the results in Table 12. While I only present the results

for the statistics arising from BMA below, the general pattern is true across

Taylor rules as well - all three forecasting statistics improve when using recursive
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estimation. While MAFE and RMSFE improve slightly when using the recursive

technique, the sum of the log predictive density increases dramatically. The large

increase in the value of the SLPD is most likely due to a predictive density that

is more sharply peaked, due to the fact that we are using more information when

estimating the parameters of the model.

TABLE 12. Forecast Performance, Rolling Sample vs. Recursive

MAFE RMSFE SLPD

BMA, Rolling 0.1679 0.2098 -163.41

BMA, Recursive 0.1434 0.1963 -130.94

Next, I present forecasting metrics for a variety of Taylor rules, relative to

the statistics of BMA, and show the results in Table 13. Here, I have normalized

the MAFE and RMSFE by dividing these statistics for each Taylor rule by the

values listed in Table 12 above. Therefore, a value greater than 1 indicates larger

values of these statistics, which indicates worse forecasting performance. For

example, a value of 1.25 indicates forecasting performance that is 25% worse than

BMA. For the SLPD, I normalize these statistics by subtracting the SLPD of the

Taylor rule from the SLPD from BMA. A positive value indicates worse forecasting

performance relative to BMA, while a negative value indicates superior forecasting

performance.

We can see that the forecasts formed using BMA are superior to every

version of the generalized Taylor rule when forecasting performance is measured

by MAFE or RMSFE. With SLDP, the Taylor rule that includes the change in

the unemployment rate outperforms BMA, but BMA is superior to the other

three measures. In Figure 8, we see that much of the difference in the SLPD’s
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TABLE 13. Forecasting Performance of Taylor Rules, Relative to BMA

Output Measure Inflation Measure MAFE RMSFE SLPD

UN gap
CPI 1.25 1.28 4.23

PCE 1.22 1.27 4.41

Past GDPD 1.26 1.28 4.65

Future GDPD 1.14 1.22 1.58

UN change
CPI 1.12 1.06 -3.29

PCE 1.14 1.09 -1.87

Past GDPD 1.17 1.12 -0.81

Future GDPD 1.14 1.06 -3.24

Past RGDP
CPI 1.22 1.21 2.10

PCE 1.22 1.21 2.65

Past GDPD 1.24 1.22 3.16

Future GDPD 1.17 1.15 0.03

Future RGDP
CPI 1.26 1.24 3.08

PCE 1.26 1.25 3.80

Past GDPD 1.29 1.26 4.33

Future GDPD 1.21 1.16 0.39

BMA, Recursive 1.00 1.00 0.00

is driven by the performance of these rules during the 2001 recession, with the

Taylor rule including only the change in the unemployment rate the only one that

sees performance increase relative to BMA during this recession. The superior

performance of this rule is interesting, as the change in the unemployment rate is

rarely included in other studies estimating the FOMC’s policy reaction function.

Conclusion

The Taylor rule, which has been justified by both its theoretical elegance

and empirical success, is the standard way to formulate monetary policy in

macroeconomic models. However, using Bayesian Model Averaging (BMA) with

many potential variables, I have shown that virtually no posterior probability is
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FIGURE 8. Cumulative Sum of Log Predictive Density Relative to BMA

assigned to generalized Taylor-type rules that include one lag of the Federal Funds

rate, one measure of inflation, and one measure of either the output gap or output

growth. In addition, I find that in a forecasting exercise rules formed using BMA

outperform all generalized Taylor-type rules when forecasting performance is judged

by either Root Mean Squared Forecast Error (RMSFE) or Mean Absolute Forecast

Error (MAFE). Both of these results suggest that most policy rules considered
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in empirical and theoretical settings are misspecified, and that is is important to

model the FOMC as responding to many variables.

My analysis also reveals that the FOMC focuses more on the change in

employment than the change in output, and that the FOMC is forward looking.

The former result makes intuitive sense, because the Federal Reserve is mandated

with promoting maximum sustainable employment, not maximum sustainable

output.12 The latter result, that the FOMC is forward looking, also aligns with the

commonly held view that the FOMC should be proactive rather than reactive in an

effort to smooth business cycles and prevent inflation before it happens. However,

this view is not yet ubiquitous in the profession, as many empirical studies of the

Taylor rule and many theoretical models use a backward looking policy rule.

Finally, I find that the point estimate of the long-run inflation response

coefficient is about twice as large than in comparable studies, and that the Taylor

principle has been satisfied throughout the entire 1970-2007 sample. I find that

the relatively large inflation response coefficient is mostly driven by my use of

meeting-based timing. This indicates that monthly or quarterly averages of the

Federal Funds rate introduce measurement error and dampen the observed inflation

response coefficient. The fact that I find that the Taylor principle has been satisfied

over the full sample adds to the growing body of research (e.g. Orphanides (2004))

that the high inflation of the 1970s was not driven by a weak inflation response.

These findings are important for economic historians, macroeconomists

studying policy in theoretical models, and policymakers. For economic historians,

it is useful and interesting to know how the FOMC has set policy in the past.

12Of course, these two statistics are linked, so in theory the FOMC may respond to changes in
GDP since changes in GDP may lead to changes in employment. In practice, I find this is not the
case.
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For macroeconomists studying policy in theoretical models, it is important to

know what form the interest rate rule has, so that they can accurately represent

it in their model. Changing the form of the interest rate rule could impact policy

analysis, and models with a misspecified interest rate rule may fail to deliver

accurate results. Finally, for policymakers, it is important to know how policy has

been set in the past, as that often serves as a guide for what to do in the future.
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CHAPTER III

THE FOMC’S INTEREST RATE RULE: AN MS-SSVS APPROACH

Introduction

The traditional view of monetary policy is that the Federal Open Market

Committee (FOMC) adjusts the nominal Federal Funds rate based on measures of

economic performance. Mathematically, this is typically formulated as a version of

the the Taylor Rule, first described in Taylor (1993), in which the target nominal

Federal Funds rate is a linear function of output and inflation. This policy rule, and

others taking very similar forms, has served as the foundation of empirical analysis

of FOMC behavior over the past two decades.

Given the episode of “Great Inflation” that occurred in the 1970s, many

authors have suggested the policy rule followed by the FOMC has changed over

time, with the FOMC being less proactive against inflation in the 1970s, and more

proactive since the early 1980s. This view was popularized by Clarida et al. (2000),

who used a split-sample regression approach to show that the inflation response

coefficient was smaller before the the appointment of Paul Volcker as the chair of

the FOMC in 1979. However, later studies cast doubt on this finding. Orphanides

(2004) finds evidence in favor of a change in the output response, but not in the

inflation response, and Sims and Zha (2006) find no evidence of change in either

the output or the inflation response. In a similar vein, Boivin (2006) finds that the

point estimate of the inflation response coefficient has changed over time, but his

time-varying estimates have a very high degree of uncertainty associated with them.

However, other authors have continued to find changes in the inflation response
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coefficient. For example, Taylor (2013) and Kahn (2010) have recently argued

not only that the inflation response was relatively low in the 1970s, but also that

the FOMC reverted to a weak inflation response during the lead-up to the Great

Recession in 2008.

Addressing the question of structural change in FOMC behavior is of

importance to both academics and policymakers. As has been demonstrated

in both small and medium sized DSGE models by numerous authors, different

monetary policy rules can lead to differences in inflation rates, volatility, and

persistence; and short-term output growth rates and volatility. If monetary policy

in the United States has changed, it is crucial that we document this fact, as it will

eventually allow us to attribute changes in economic performance to changes in

policy. This is especially true in light of Taylor’s (2013) claim that a weak inflation

response returned in the mid-2000s and engendered a financial bubble.

In this paper, I introduce a new econometric model in order to address this

question. This Markov-Switching Stochastic Search Variable Selection (MS-SSVS)

model nests both a constant coefficient model, consistent with the findings of

Sims and Zha (2006), and a Markov-Switching model, consistent with Taylor’s

hypothesis, as special cases. In addition, the MS-SSVS model can probabilistically

restrict coefficients in either one or both regimes to be zero, so that a variable may

be completely excluded from the regression in either one regime or in both regimes.

In short, for each coefficient in each regime, there are three possibilities: (1) the

coefficient is restricted to zero; (2) the coefficient is restricted to be the same as the

coefficient in the other regime; (3) the coefficient is freely estimated independently

of the coefficient in the other regime.
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This newly developed MS-SSVS model builds on the work of George

and McCulloch (1993) and George et al. (2008), who developed Stochastic

Search Variable Selection (SSVS) in order to perform variable selection in linear

regression models and in linear VARs. SSVS has some differences with competing

methodologies such as Bayesian Model Averaging (BMA) that make it especially

attractive in a Markov-Switching environment. One major advantage of using

SSVS is that it is not necessary to directly compute or approximate the marginal

likelihood, which is a computationally intensive task in Markov-Switching models.

Instead, the uncertainty associated with variable inclusion and variable switching is

nested within a unified hierarchical model.

This type of variable selection has been found to have good small sample

properties. In a linear regression framework, as the number of variables grows

relative to the sample size, estimators lose power and regression coefficient

estimates become more imprecise. Coefficient estimates which might get sent

to zero in larger sample sizes may instead be relatively large and appear to be

economically and statistically significant in smaller samples. This problem becomes

more acute in Markov-Switching models, since the numbers of parameters is more

than doubled in these models compared to their linear counterparts. Shrinkage-

type estimators such as SSVS have been shown to alleviate these problems, leading

to more accurate estimates and better out-of-sample forecasting performance. For

example, in an application to recession forecasting, Owyang et al. (2015) show that

using BMA improves upon the full sample forecasts, allowing them to identify the

onset of recessions more quickly.

In addition, when considering models in which switching is possible,

accounting for potential model uncertainty can help to identify which features
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of the model are actually changing. For example, if volatility is changing over

time in the data generating process, but is unaccounted for in estimation, it

may appear that the coefficients of the model are changing. Therefore, it is

important to consider more than one type of model, or to consider a model that

can endogenously determine which restrictions are appropriate.

Through Monte-Carlo exercises using simulated data, I show that my

methodology is able to correctly identify parameter restrictions - this is true

both when the actual coefficients are near zero, and when the coefficients are the

same across regimes. As expected, my MS-SSVS model is better able to identify

coefficient restrictions as the signal to noise ratio increases. This increase in

signal is modeled in two ways: as a reduction in error volatility or as an increase

in sample size. The MS-SSVS model is particularly adept at identifying zero-

restrictions with a high degree of accuracy, even as the amount of noise increases.

When I apply this new methodology to Federal Funds Rate data from 1970-

2008, I find two things. First, contrary to Clarida et al. (2000), I find very little

evidence that the FOMC’s inflation response differs across two regimes. Second,

contrary Sims and Zha (2006) I find evidence for two distinct regimes, with the

unemployment gap response coefficient differing across the regimes. I find that

there was a relatively strong unemployment response coefficient in the mid 1970s,

the late 1980s, and early 1990s, and between 2004-2006. This strong unemployment

response corresponds to a heightened probability that the inflation response

coefficient was relatively low; however, the mean inflation response coefficient

in this regime is only very slightly smaller than it is in the weak unemployment

response regime. There is little evidence that there was a noticeable reduction in
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the inflation response during the run-up of the housing bubble in the mid 2000s, or

that a weak inflation response in the 1970s caused the “Great Inflation”.

Econometric Model

The model I introduce is based on a Markov-Switching model with switching

in coefficients:

yt = XtβSt + εt

εt ∼ N(0, σ2)

St ∈ {0, 1}

The regime, St follows a first order Markov process:

Pr(St = j|St−1 = i) = pij

i, j ∈ {0, 1}

The model as detailed above has been well studied, and there exist well known

frequentist and Bayesian procedures to estimate it. These methods are described in

Hamilton (1989), Kim and Nelson (1999), and Früwirth-Schnatter (2006), among

others. While these techniques make it feasible to estimate the model, model

comparison remains relatively cumbersome. The estimation process can be time

consuming, making the estimation of more than a handful of models potentially

infeasible. In addition, performing Bayesian Model Averaging requires estimation

of the marginal likelihood of each model - this is an extra, complicated, and time

consuming step that needs to be undertaken after estimation of the model.
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Model comparison in this class of models, however, remains important. In

linear models, there are only two possibilities for each regressor - either it belongs

in the model or it does not. However, in a regime switching model with two

regimes, there are four possibilities for each regressor: (1) it does not belong in

either regime, (2) it belongs in each regime, and is the true effect is distinct in

regime, (3) it belongs in each regime, but the true effect is the same regardless

of regime, (4) it belongs in only one of the two regimes. This only increases the

burden of model comparison, as the number of models to consider expands rapidly

when the possibility of switching is properly accounted for.

In this paper, I build an econometric model that allows for the four

possibilities elicited above. It does so in a computationally feasible manner by

utilizing a hierarchical prior that nests these four possibilities within a single

model. To do this, I build on the SSVS technique that was developed in George

and McCulloch (1993) and further studied and implemented in George et al. (2008)

and Koop and Korobilis (2010). In the SSVS framework, the possibility that some

coefficients do not enter the model is built into the model likelihood function,

so that only one model needs to be estimated, and the marginal likelihood does

not need to be computed. This framework is therefore much simpler and more

time effective than performing Bayesian model averaging by estimating hundreds,

thousands, or more models and comparing each based on its marginal likelihood.

Let βk = [βki β
k
j ] be a vector that contains coefficient k in state i and state

j. Under the MS-SSVS model, βk is assumed to come from the following prior
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mixture distribution:

βk ∼ γk1N


0

0

 , τ0

1 0

0 1


+ γk2N


0

0

 , τ1

1 0

0 1


+

γk3N


0

0

 , τ1

 1 1− ε

1− ε 1


+ γk4N


0

0

 ,
τ1 0

0 τ0


+

γk5N


0

0

 ,
τ0 0

0 τ1




γk = (γk1 , γ
k
2 , γ

k
3 , γ

k
4 , γ

k
5 ) ∈ {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0),

(0, 0, 0, 1, 0), (0, 0, 0, 0, 1)}

τ0 = 0.1×
√

̂V ar(bk)

τ1 = 15×
√

̂V ar(bk)

k ∈ {1, 2, 3, 4, 5}

where

√
̂V ar(bk) is the standard error of β under the assumption that there is no

regime switching, and τ0, τ1, and ε are hyper-parameters chosen by the researcher

that control the variance of each distribution in the prior for βk.1

The mixture of normal distributions described above represents five

possibilities:

1. The coefficient is restricted to be near zero in each state, i.e. the variable is

excluded in both states.

1This is very similar to Bayesian linear regression, where the researcher typically chooses the
variance of the prior distribution for the regression coefficients.
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2. The coefficient estimates are freely estimated, independently of each other, i.e.

the variable is included in each state, and the effect in each state is different.

3. The coefficient estimates are freely estimated, but identical, i.e. the variable is

included in each state, and the effect in each state is the same.

4. The coefficient in state 0 is freely estimated, but the coefficient in state 1 is

restricted to be near zero, i.e. the variable is excluded from state 1.

5. The coefficient in state 1 is freely estimated, but the coefficient in state 0 is

restricted to be near zero, i.e. the variable is excluded from state 0.

I assume that each indicator vector γk comes from the following prior

distribution:

γkj =



(1, 0, 0, 0, 0) with probability p1

(0, 1, 0, 0, 0) with probability p2

(0, 0, 1, 0, 0) with probability p3

(0, 0, 0, 1, 0) with probability p4

(0, 0, 0, 0, 1) with probability p5

5∑
i=1

pi = 1

0 < pi < 1 ∀ i ∈ {1, 2, 3, 4, 5}

It is important to note that the posterior probability of each restriction is

proportional to the prior probability of the restriction times the prior density

for βk under that restriction evaluated at the posterior draw of βk. Therefore,

the “restrictions” are only enforced approximately. To see why this is necessary,

consider a prior density for the zero-restriction in which τ0 = 0, so that the
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coefficient was literally restricted to equal zero. Unless this restriction was chosen,

our estimate of βk will almost surely never be exactly zero. Therefore, the posterior

density under this restriction will always be zero, since βk 6= 0, and this restriction

will never be enforced. Our goal when choosing τ0 is to choose a sensible value that

will enforce this zero-restriction when appropriate, while keeping the estimate of

βk near zero in the event that this restriction is chosen. Our goal when choosing ε

is similar. We want to choose a number small enough that the prior density under

this restriction will be high when both values of βk are approximately equal, but we

need to be careful to not choose a value for ε that is so small that the restriction

will never be enforced.

The prior laid out above is data dependent since ̂V ar(bk) depends on the

dependent variable. Therefore, it does not adhere to the requirement, in a Bayesian

approach, that the prior be independent of the observed dependent data. However,

as discussed in George and McCulloch (1993), the zero-restriction region depends

on the values for both τ0 and τ1. George and McCulloch (1993) find that using

̂V ar(bk) in the choices of τ0 and τ1 helps to ensure that this zero-restriction region

lies over a sensible space so that the coefficients are restricted to be close to zero

only where appropriate. This prior, although not technically valid due to its

dependence on the observed data, remains popular in the literature, as evidenced

by its use in Koop and Korobilis (2010).2

2Priors of this form are sometimes called “empirical Bayes” methods. One argument for their
use, although not mathematically rigorous, is that the goal of empirics is to discover features of
the data. Priors of this form should be considered if they can be shown to be well behaved and
able to uncover features of the data, even if they do not technically adhere to proper Bayesian
theory.

77



Estimation Procedure

I set independent priors across the hierarchical parameters:

p(p00, p11, σ
2, τ0, τ1, p1, p2,p3, p4, p5, ε) =

p(p00)p(p11)p(σ2)p(τ0)p(τ1)p(p1)p(p2)p(p3)p(p4)p(p5)p(ε)

I assume that the prior parameters τ0, τ1, ε, p1, p2, p3, p4, p5 are each set by the

researcher, i.e. their prior is a point-mass at a particular value. This is a common

assumption in the SSVS literature. The parameters τ0, τ1, and ε control the

variance of the each prior mixture distribution. The probabilities, p1, p2, p3, p4, and

p5, control the weights for each prior distribution.

For the other three hyper-parameters, p00, p11, and σ2, I set prior

distributions:

p(p00) = Beta(a0, b0)

p(p11) = Beta(a1, b1)

p(σ2) = InverseGamma(αQ, βQ)

Drawing from the full posterior directly is intractable. Instead, I draw

from each of the conditional posteriors. This is called the Gibbs sampler. Let

β = [β0, β1]′, Ps = [p00 p11]′, τ = [τ0, τ1]′, Pγ = [p1, p2, p3, p4, p5]′, Γ = γK . The

process is as follows:
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1. Sample the indicators for the mixture of normals prior each variable:

p(Γ(z)|Y, β(z−1), P (z−1)
s , σ2,(z−1), S

(z−1)
T , τ, Pγ) = p(Γ(z)|Y, β(z−1), S

(z−1)
T , τ, Pγ)

p(Γ(z)|Y, β(z−1), S
(z−1)
T , τ, Pγ) = Categorical

Γ
(z)
k = Categorical



p1f(N(0,Σ1)|βk)∑5
i=1 pif(N(0,Σi)|βk)

p2f(N(0,Σ2)|βk)∑5
i=1 pif(N(0,Σi)|βk)

p3f(N(0,Σ3)|βk)∑5
i=1 pif(N(0,Σi)|βk)

p4f(N(0,Σ4)|βk)∑5
i=1 pif(N(0,Σi)|βk)

p5f(N(0,Σ5)|βk)∑5
i=1 pif(N(0,Σi)|βk)


where Σi is the variance/covariance matrix of the ith prior mixture

distribution, described on page 75. This procedure is based on George

and McCulloch (1993). My procedure is slightly modified because I have a

mixture of five normal distributions rather than two. Once the prior mixture

distributions are selected, from the prior variance for β as:

D =



Σk=1 0 · · · 0 0

0 Σk=2 0 · · · 0

0 0
. . . · · · 0

0 0 0 · · · Σk=K


D is block diagonal, with the Cholesky decomposition of the two-by-two

mixture variance for each pair of coefficients, k, Σk along the diagonals, with

zeros everywhere else.
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2. Sample the regression coefficients:

p(β(z)|Y,Γ(z), P (z−1)
s , σ2,(z−1), S

(z−1)
T , τ, Pγ) = p(β(z)|Y,Γ(z), σ2,(z−1), S

(z−1)
T , τ)

p(β(z)|Y,Γ(z), σ2,(z−1), S
(z−1)
T , τ) ∼ Normal

β(z) ∼ N
(
β̂, V

)
V = ((DRD′)−1 +X ′X)−1

β̂ = V X ′Y

where R is a prior correlation matrix, typically set to the identity matrix.

3. Sample the variance of the regression error:

p(σ2,(z)|Y,Γ(z), β(z), P (z−1)
s , S

(z−1)
T , τ, Pγ) = p(σ2,(z)|Y, β(z), S

(z−1)
T )

p(σ2,(z)|Y, β(z), S
(z−1)
T ) = Inverse Gamma

σ2,(z) ∼ IG

(
aQ +

T

2
, βQ +

SSE

2

)

where T is the sample size and SSE = (Y −Xβ)′(Y −Xβ)

4. Sample the Markov State indicators:

p(S
(z)
T |Y,Γ

(z), β(z), σ2,(z), , P (z−1)
s , τ, Pγ) = p(S

(z)
T |Y, β

(z), σ2,(z), P (z−1)
s )

using the procedure described in Kim and Nelson (1999).
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5. Sample the Markov transition probabilities:

p(P (z)
s |Y,Γ(z), β(z), σ2,(z), S

(z)
T , τ, Pγ) = p(P (z)

s |Y, S
(z)
T )

p(P (z)
s |Y, S

(z)
T ) = Beta

P ii,(z)
s = Beta(ai +Nii, bi +Nij)

where Nij is the number of times that the regime transitioned from regime i

to regime j in S
(z)
T .

Helicopter Tour of Prior for βk

Recall that the prior for βk = [βk0 β
k
1 ]′ is given by a mixture of five Normal

distributions:

βk ∼ γk1N


0

0

 , τ0

1 0

0 1


+ γk2N


0

0

 , τ1

1 0

0 1


+

γk3N


0

0

 , τ1

 1 1− ε

1− ε 1


+ γk4N


0

0

 ,
τ1 0

0 τ0


+

γk5N


0

0

 ,
τ0 0

0 τ1




In my application, I set the following prior probabilities on the mixture

distributions:

Pr(γk1 = 1) = 0.4
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Pr(γk2 = 1) = 0.2

Pr(γk3 = 1) = 0.2

Pr(γk4 = 1) = 0.1

Pr(γk5 = 1) = 0.1

This imposes a prior belief that there is a 50% probability that βki is restricted

to be near 0. Given that βki is not restricted to be near 0, there is a 40% prior

probability that βki ≈ βkj , and a 60% probability that βki is independent of βkj .

In addition, I choose:

τ k0 = 0.1

√
̂var(βk)

τ k1 = 15.0

√
̂var(βk)

where ̂V ar(bk) is the uncertainty associated with the OLS estimate of βk under

a no regime switching assumption. These priors are similar to ones suggested in

George and McCulloch (1993) and Koop and Korobilis (2010). Finally, for the case

of parameters restricted to be equal across regimes, I set ε = 1.0− 0.99999.

In Figures (9)-(11), I plot the prior probability density function of β0 and

β1. This prior density function has some striking features. It is strongly peaked

near β0 = 0 and β1 = 0, so there is a relatively high prior probability that both

coefficients are restricted to zero. If the estimated coefficients land in the orange

region of figure 2 (or the yellow region of figure 3), it is almost a certainty that

the priors for β0 and β1 will be centered on zero with a very tight prior variance.

Additionally, there are three other regions which receive relatively large prior mass:

both regions where one of the coefficients is restricted to be near zero, and the
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diagonal region representing coefficients that are (roughly) identical under each

regime. Outside of these four relatively narrow but sharply peaked regions, the

Normal distribution with the highest probability density function corresponds to

both regimes being freely estimated.

FIGURE 9. Prior Probability Density Function for Different Values of β0 and β1

FIGURE 10. Prior Probability Density Function for Different Values of β0 and β1:
View from Above
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FIGURE 11. Contour Plot of the Prior Probability Density Function for Different
Values of β0 and β1
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Monte-Carlo Analysis

With the estimation procedure in hand, I turn to analyzing how effective the

MS-SSVS procedure is at identifying features of the data. I am most interested in

the ability of this model to identify the various restrictions that are built into it,

when they are actually present in the data. I consider two cases: one in which data

is generated from a process that has several types of restrictions, and another that

corresponds to linear regression.

Monte-Carlo Exercise

To investigate how well this procedure does in identifying features of

restricted Markov-Switching models, I run a series of simulations. Under the true

84



model:

yt = XtβSt + εt

εt ∼ N(0, σ2)

Pr(St = j|St−1 = i) = pij

Where Xt =

[
1 X1,t X2,t

]
and

X1,t

X2,t

 ∼MvN


0

0

 ,
1 0

0 1




i.e. there are three elements in each Xt: an intercept term and two randomly

generated and independent regressors. Since there are three columns in Xt, K = 3.

Recall that βk = [βk0 β
k
1 ]′ for k ∈ {1, · · · , K}. In words, the vector βk contains the

coefficients on regressor k in each state. In this exercise, I chose:

β1 =

 1.0

−0.5

 β2 =

1.0

1.0

 β3 =

0.0

0.0


An alternative way of viewing the coefficients is to define the coefficients separately

in each state:

β0 =


1.0

1.0

0.0

 β1 =


−0.5

1.0

0.0



85



Finally, the transition probabilities for each state are given by:

P =

p00 p01

p10 p11

 =

0.8 0.2

0.3 0.7


I will discuss the choices of σ2 later, since σ2 will vary across simulations.

Priors

In this exercise, I assume that the variance term is constant. Therefore, I set

an Inverse-Gamma prior on the variance term. My priors are described in Table 14.

TABLE 14. Monte-Carlo Priors

Parameter Prior Mean Prior S.D.

p1 0.4 0.0
p2 0.2 0.0
p3 0.2 0.0
p4 0.1 0.0
p5 0.1 0.0
p00 0.8 0.16
p11 0.8 0.16
σ2 1.0 0.58

Results

In the Monte-Carlo exercise, I vary both the number of observations, T , and

the standard deviation of the error term, σ. I consider T ∈ {50, 100, 150, 200, 250}

and σ ∈ {0.1, 0.5, 1.0, 2.0}. I find that the models with large T and small σ are

most able to pick out the correct restrictions. Intuitively, this makes sense, since

these models have the largest sample size and smallest variance, allowing the true

features of the model to shine through.
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In Tables 15, 16, 17, 18, I present the average accuracy of identification of the

correct restriction by the estimation procedure. This number has been averaged

over the results across 200 separate data generation and estimation procedures.

For example, in the first column of Table 15, I set σ = 0.1 and T = 50. I then

generate 200 data sets and run the estimation procedure on each. For each data

set, I calculate the percentage of the time the “correct” restriction was chosen, and

I average this percentage across all 200 data sets. For my estimation procedure, I

use 15,000 burn-in draws and 20,000 posterior draws. For ease of notation, define

the regression intercept as

β1
0

β1
1

 ≡
µ0

µ1

. Finally, in the tables below, I have

abused notation in the first two rows. For µ0 6= 0 and µ1 6= 0, I mean that each

is freely estimated, so that they are not restricted to be equal to zero and also not

restricted to be identical to each other.

TABLE 15. σ = 0.1

T = 50 T = 100 T = 150 T = 200 T = 250

µ0 6= 0 98.6% 100% 100% 100% 100%
µ1 6= 0 97.5% 100% 100% 100% 100%
β1

0 = β1
1 92.5% 96.2% 97.3% 97.9% 98.4%

β2
0 = 0 96.4% 97.6% 97.9% 98.1% 98.2%
β2

1 = 0 95.8% 97.4% 97.9% 97.9% 98.1%

TABLE 16. σ = 0.5

T = 50 T = 100 T = 150 T = 200 T = 250

µ0 6= 0 71.7% 96.9% 99.8% 100% 100%
µ1 6= 0 39.4% 81.8% 96.1% 99.3% 100%
β1

0 = β1
1 71.1% 84.7% 89.2% 90.4% 91.6%

β2
0 = 0 88.8% 91.9% 91.8% 93.2% 92.6%
β2

1 = 0 87.5% 90.8% 90.3% 92.2% 91.5%
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TABLE 17. σ = 1.0

T = 50 T = 100 T = 150 T = 200 T = 250

µ0 6= 0 51.5% 72.3% 85.5% 91.1% 95.0%
µ1 6= 0 22.3% 36.3% 47.3% 54.6% 64.7%
β1

0 = β1
1 54.4% 65.7% 72.4% 75.1% 77.3%

β2
0 = 0 84.5% 87.4% 88.1% 88.0% 88.9%
β2

1 = 0 82.1% 86.6% 86.5% 86.7% 87.2%

TABLE 18. σ = 2.0

T = 50 T = 100 T = 150 T = 200 T = 250

µ0 6= 0 35.3% 44.6% 56.6% 62.2% 65.3%
µ1 6= 0 19.3% 20.2% 23.8% 27.9% 30.6%
β1

0 = β1
1 34.4% 45.5% 50.0% 53.3% 54.5%

β2
0 = 0 82.9% 86.0% 84.0% 83.6% 85.1%
β2

1 = 0 82.7% 85.5% 83.6% 83.7% 84.8%

Three things become apparent when looking at these tables. First, the MS-

SSVS model is able to correctly identify all types restrictions when the data has

a high signal to noise ratio. This is a sign that our estimation procedure is well-

behaved when the amount of noise in the data generating process is relatively

small. Second, the model performs very well at detecting true zero restrictions,

but as the noise rises, correct selection of the “identical” restriction declines. I find

that even under the noisiest condition tested, T = 50 and σ = 2.0, the model

still detects the zero restrictions with about 83% accuracy. Third, as the noise

increases, the model has a relatively more difficult time detecting that µ1 is actually

different than zero compared to µ0. This is due to the fact that the absolute value

of µ1 is smaller than the absolute value of µ1. Note that this has some carryover

effect on the accuracy of the other restrictions, causing β2
1 = 0 to be slightly less

accurately detected than β2
0 = 0 (about one percentage point less accurate in most

simulations).
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Results: Linear Model

I repeat the same exercise as above, except with the following:

β1 =

1.0

1.0

 β2 =

1.0

1.0

 β3 =

1.0

1.0


This case corresponds to linear regression. I leave everything else, including my

priors, unchanged and conduct the same analysis as above. I present my results in

the Tables 19, 20, 21, 22.

TABLE 19. σ = 0.1, Linear Regression

T = 50 T = 100 T = 150 T = 200 T = 250

µ0 = µ1 93.2% 100% 100% 100% 100%
β1

0 = β1
1 91.6% 100% 100% 100% 100%

β2
0 = β2

1 92.0% 100% 100% 100% 100%

TABLE 20. σ = 0.5, Linear Regression

T = 50 T = 100 T = 150 T = 200 T = 250

µ0 = µ1 58.3% 65.1% 68.9% 72.9% 75.3%
β1

0 = β1
1 56.7% 64.3% 68.4% 72.0% 74.8%

β2
0 = β2

1 56.6% 64.2% 68.2% 72.8% 74.7%

TABLE 21. σ = 1.0, Linear Regression

T = 50 T = 100 T = 150 T = 200 T = 250

µ0 = µ1 49.9% 53.8% 54.1% 57.3% 57.9%
β1

0 = β1
1 52.7% 56.7% 59.2% 60.8% 62.0%

β2
0 = β2

1 52.6% 55.5% 58.7% 59.1% 62.2%

In the linear regression case, there is a rapid deterioration in performance of

identifying βk0 = βk1 as the amount of noise in the data generating process increases.
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TABLE 22. σ = 2.0, Linear Regression

T = 50 T = 100 T = 150 T = 200 T = 250

µ0 = µ1 25.2% 35.5% 37.3% 40.4% 42.8%
β1

0 = β1
1 38.1% 48.8% 52.7% 54.2% 53.3%

β2
0 = β2

1 36.6% 48.0% 51.9% 53.7% 55.9%

This may be partially driven by the fact that there is only a 20% prior probability

placed on each of these coefficients being identical. It is important to note that

while I have fixed the prior mixture probabilities to be identical for all sets of

parameters, in general a researcher could relax this assumption, placing different

prior mixture probabilities on each pair of coefficients. If a researcher suspected

that one pair of coefficients would be identical in each regime, she could increase

the prior probability of that restriction holding.

Additionally, the estimation procedure seems to have more trouble identifying

that the mean parameters are identical than it does identifying the other regression

coefficients are identical. In linear regression, it is often the case that the mean

is the least precisely estimated coefficient, since there is no variation along that

dimension of X. Given this, a researcher should expect that the densities of the

mean coefficients will have a greater spread than the other coefficients. Therefore,

it is relatively unsurprising that the model has a hard time detecting that the mean

coefficients are actually identical.

Finally, there is no reason a researcher needs to stop their analysis after

conducting this estimation procedure. If they find relatively strong evidence for

coefficient restrictions, in some circumstances it might make sense to enforce those

restrictions exactly. For example, they could use this model to find the mode of

the mixture distribution, and then estimate a standard Markov-Switching model at
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that mode, allowing only some coefficients to switch and discarding the regressors

that were restricted to zero at the mode.

Application: Interest Rate Rules

Now that we understand more about the properties and accuracy of this

estimator, I apply it to monetary policy rule estimation. I use a data set compiled

in Check (2016) that uses the official forecasts prepared for the FOMC by their

staff. These forecasts are contained in what is known as the “Greenbook”, which is

published with a six year lag. I follow many papers in the policy reaction function

literature, and estimate a rule of the form:

it = µst + ρstit−1 + φπst (π
e
t − πT ) + φustu

e
t + φ∆ust

∆uet + σtεt

st ∈ {0, 1}

εt ∼ N(0, 1)

Finally, I assume that the volatility of the error term follows a random walk. Let

σt = exp(ht
2

). Then:

ht = ht−1 + vt

vt ∼ N(0, Q)

This interest rate srule is fairly standard, with four exceptions. First, it allows for

the possibility of Markov-Switching in the coefficients. Second, it is estimated using

“meeting-based timing”, with the Federal Funds rate on the left-hand side being

the average Federal Funds rate between meeting dates rather than between months
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or quarters. This helps to ensure that the left hand side truly is the nominal federal

funds rate target that is implemented by the FOMC. Third, when considering the

employment response, it includes the expected future change in the unemployment

rate in addition to the unemployment gap to account for possible asymmetric

unemployment responses over the business cycle. In Check (2016), I found that

inclusion of this variable was important for both in-sample fit and for out-of-

sample forecasting. Fourth, and finally, it includes stochastic volatility. The use

of stochastic volatility is relatively rare in this literature, but it is not unique to this

study. Sims and Zha (2006) included stochastic volatility when estimating a similar

interest rate rule inside of a VAR, and found strong evidence for its inclusion.3

In Markov-Switching models, the likelihood function is bi-modal, with two

peaks of identical height. This is due to the fact that the model is symmetric to

relabeling, so the value of the likelihood function would be identical if the labeling

of the regimes were switched. Because the Gibbs-sampler wanders around the

posterior density, if the peaks of the likelihood function are close enough, then

a researcher can encounter a “label-switching” problem, where the sampler will

switch between the two peaks of the likelihood function, and the regimes will flip.

This causes bi-modal densities for the regression coefficients in each regime, each

spanning the same space. In addition, both regime probabilities at each point in

time get pushed towards 50%, since the sampler is switching the labeling of the

regimes.

One way to circumvent this problem is to normalize the model, and this is the

strategy that I employ in this paper. In general, a researcher typically selects one

(or more) coefficients on which to include inequality restrictions across regimes.

3Allowing for stochastic volatility requires replacing step (3) on page 80 with the procedure
described in Kim et al. (1998).
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For example, when estimating a Markov-Switching model on U.S. GDP data,

the researcher typically restricts the mean growth rate so that in one regime the

mean is always greater than the mean coefficient in the other regime. This type of

normalization allows the sampler to converge to a distribution around one of the

two peaks of the likelihood function, rather than switching back and forth between

peaks.

Due to the work of Clarida et al. (2000), among others, I first tried to

normalize the model by restricting the inflation response in one regime to be

greater than the inflation response in the other. Implementing this restriction led

to extremely poor performance of the sampler. After inspecting the histograms of

the regression coefficients, it became clear that the model preferred the inflation

coefficients to be approximately equal. Therefore, normalization using the inflation

coefficient was ineffective. Under this normalization, the while the coefficients on

inflation were approximate equal, the coefficients on the unemployment gap were

both bi-modal, spanning the same two modes. This indicated that label-switching

was occurring. This was also clear from inspection of the plot of regimes over time,

as the probability of both regimes was near 50% throughout the sample.

Due to the evidence that normalizing on the inflation response coefficient

failed to properly normalize the model, and that the only coefficient where

differences were pronounced between regimes was the coefficient on the

unemployment gap, I instead normalized the model on the unemployment gap

response coefficient. After doing so, I found that the sampler was much better

behaved, with the densities on the unemployment coefficient distinct and unimodal.

I still found that the coefficients on all other variables, including the inflation

gap, were unimodal and nearly identical. This evidence contradicts the findings
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of Clarida et al. (2000), but is consistent with evidence presented in Orphanides

(2004) and Sims and Zha (2006). Orphanides (2004) finds that the inflation

response has been relatively unchanged over time, but that there has been variation

in the response to a measure of the real-time output gap. Sims and Zha (2006)

find that the introduction of stochastic volatility implies that the coefficients in the

interest rate rule have remained constant over time.

Convergence Diagnostics

Below, I present evidence that the estimator converges to a unique stationary

distribution. I first present running mean plots throughout the burn-in samples

in Figures 12 and 13. If the sampler is converging to a stationary distribution,

then the means of all of the parameters of the model should converge to their

means in the stationary distribution. If it is not, then these means will be trending

up, down, or bouncing around. Next, I present the autocorrelation functions for

the parameters of the model in Figures 14 and 15. These functions show the

correlation between the draw of the parameter at one iteration and the draw of

the same parameter t iterations later. If the sampler is well-behaved, then the

autocorrelation functions should fall towards zero as the number of iterations

increases. A simple rule-of-thumb is that the number of discarded “burn-in” draws

should be at least ten times larger than the maximum number of iterations that it

takes the autocorrelation of any parameter to drop to zero.
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Running Mean Plots

FIGURE 12. Regime Probabilities

FIGURE 13. Regression Coefficients
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Autocorrelation Functions

FIGURE 14. Regime Probabilities

FIGURE 15. Regression Coefficients
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Both of these metrics suggest that the sampler is well-behaved. The running

mean plots become flat towards the end of the discarded draws, suggesting

that the sampler has converged to a stationary distribution. In addition, the

autocorrelation plots settle down to zero at roughly 500-1000 draws, suggesting

that only 5,000-10,000 burn-in draws are needed. I perform 100,000 burn-in draws

in an abundance of caution. I keep the next 150,000 draws and use them to form

posterior inference.4

Results

Next, I present my results. First, in Tables 23, 24, and 25, I present estimates

of the restriction probabilities and regression coefficients in each regime. Second,

in Figures 16 and 17, I plot the coefficient densities for each parameter of the

model. For the regression coefficients, I display the densities under each regime

on the same plot. Third, in Figures 18 and 19, I plot the estimates of the regimes.

Because the only major difference between the two regimes is the unemployment

gap response, I name one regime the “weak unemployment response regime” and

the other the “strong unemployment response regime”. Finally, in Figure 20, I

display the estimate of the volatility term over time, along with the uncertainty

associated with it.

Restriction Probabilities and Mean Regression Coefficient Estimates

4I have repeated this exercise with p1 = p2 = p3 = p4 = p5 = 0.2 and found nearly identical
results to what is presented in this section and in the Results section below.
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TABLE 23. Estimated Restrictions in the “Strong” Unemployment Response
Regime

Zero-Restriction Freely Estimated “Identical” Restriction

µ0 0.0% 0.0% 100%
ρ0 0.0% 0.0% 100%
φπ,0 15.4% 14.7% 69.9%
φUN,0 1.2% 94.3% 4.5%
φ∆UN,0 5.3% 15.6% 79.1%

TABLE 24. Estimated Restrictions in the “Weak” Unemployment Response
Regime

Zero-Restriction Freely Estimated “Identical” Restriction

µ1 0.0% 0.0% 100%
ρ1 0.0% 0.0% 100%
φπ,1 4.6% 25.5% 69.9%
φUN,1 49.9% 45.6% 4.5%
φ∆UN,1 2.3% 18.6% 79.1%

TABLE 25. Mean Coefficient Values in Each Regime

“Weak” Regime “Strong” Regime

µ 6.61 6.61
ρ 0.94 0.94
φπ 0.26 0.22
φUN -0.08 -0.34
φ∆UN -0.19 -0.18
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Coefficient Densities

FIGURE 16. Regression Coefficients

FIGURE 17. Transition Probabilities
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Regime Estimation

FIGURE 18. Probability of Weak Unemployment Response Regime

FIGURE 19. Federal Funds Rate

Note: Gray areas correspond to weak unemployment response regime probability ≥ 0.5
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Stochastic Volatility

FIGURE 20.

These results add to the evidence found by both Sims and Zha (2006) and

Orphanides (2004). First, the stochastic volatility term seems very important,

as it fluctuates greatly over time. The period from 1979-1983 has the highest

volatility. This should be expected, since the FOMC targeted the money supply

rather than the Federal Funds rate during this period. Therefore, we should

expect the error term of a linear rule that suggests the FOMC has targeted the

Federal Funds rate would be much higher during this period. Next, as found

by Orphanides (2004) when using real time data, I find evidence that the only

change that occurred in the FOMC’s reaction function was its response to the

unemployment gap. The FOMC seems to have responded very strongly to the

forward-looking unemployment gap in the 1970s. If their forecasts about this gap

were incorrect, which Orphanides (2004) suggests, then they may have engaged in
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overly accommodative policy during this time period. In other words, the FOMC

may have allowed interest rates to be low due to an anticipated high level of

unemployment that never materialized.

These results also stand in contrast to the recent work of Taylor (2013)

and Kahn (2010). Particularly, it does not appear that the FOMC became lax

against fighting inflation in the mid 2000s, or even that it had responded weakly

to inflation in the mid to late 1970s. The probability of being in the “strong

unemployment response” regime was nearly one between late 2004 and 2006,

but that would only imply overly loose policy if the FOMC had believed at each

meeting that the unemployment rate was going to increase over the following year.

Finally, my results stand in contrast to a recent application of a Markov-

Switching model to interest rate rules in Murray et al. (2015). These authors find

that the inflation response in one regime was much lower than in the other regime,

and that it failed to satisfy the “Taylor Principle”, i.e. the long-run response to a

one percentage point increase in the inflation gap was a less than one percentage

point increase in the Federal Funds rate. They find that this weak inflationary

response occurred between roughly 1973-1975 and again during the Volcker years,

1979-1985. This second period seems highly counterfactual, since most economists,

and previous studies such as Clarida et al. (2000), attribute the decline in inflation

after 1980 to the strong inflation response during Volcker’s tenure.

There are three major differences between my estimation procedure and the

procedure used in Murray et al. (2015). First, I use meeting-based timing, and

they use quarterly timing. Second, and very importantly, I allow the volatility

associated with the interest rate rule to evolve according to a separate process

than the regression coefficients. This is crucial, since their regression coefficient
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results could be driven entirely by regime-switching in the variance parameter.

Indeed, their estimated regimes appear to be highly correlated to periods where

I find that volatility was relatively high. Third, I use my newly developed MS-

SSVS procedure, where Murray et al. (2015) use an unrestricted Markov-Switching

model.5

Conclusion

Over the past 15 years, there has been considerable disagreement about

the existence of changes in the response coefficients in the FOMC’s interest rate

rule. In order to address this question, I build a Markov-Switching model that

can endogenously determine the existence of two types of restrictions: (1) zero-

restrictions, in which a variable may not be included in one or all of the regimes

and (2) identity-restrictions, in which the regression coefficient on the same variable

may be restricted to be identical across all regimes. My estimation procedure

blends and extends the Gibbs samplers that were previously derived for estimation

of Markov-Switching models and Stochastic Search Variable Selection models. I call

this unified model an MS-SSVS model.

I find that the MS-SSVS model performs well at identifying true restrictions

in a Monte-Carlo exercise using simulated data. In general, the MS-SSVS model

performs best in data-sets that have a relatively small amount of noise. In

these data sets, it is able to detect zero-restrictions, “identical” restrictions, and

switching in the coefficients with high probability. The MS-SSVS procedure is still

able to identify these restrictions as the amount of noise grows, and it is able to

5In separate, unpublished, analysis, I find that their main result - regime switching between
one regime that satisfies the Taylor principle and another regime that doesn’t - falls apart when a
standard Markov-Switching model is estimated, but using stochastic volatility instead of forcing
the switch in both the regression coefficients and the volatility term to occur at the same time.
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detect zero-restrictions with a very high degree of accuracy in even the noisiest data

sets that I generated.

When I apply this model to Federal Funds rate data I find three major

things. First, there is relatively little evidence that there have been economically

significant shifts in inflation response over the period 1970-2007. Second, there

is substantially more evidence that there has been a shift in the unemployment

gap coefficient, between strong and weak responses to the unemployment rate. I

find that the periods most likely to have had a weak response are the early to late

1980s, and roughly 1995-2004. The first period corresponds to the chairmanship

of Paul Volcker, suggesting that the FOMC focused relatively less on responding

to changes in output or unemployment under his leadership. The second period

corresponds to the middle of Greenspan’s tenure as chairman, however both the

beginning and end of his leadership are characterized by a strong unemployment

response. As the estimated volatility of the interest rate rule declines after 1980,

the distinction between regimes grows. Finally, I find strong evidence that there

have been changes in the volatility of interest rate rule. This adds to a relatively

strong body of existing evidence, as Sims and Zha (2006), Check (2016), and

Murray et al. (2015) all find that models that allow for a change in variance out-

perform models with constant variance.

These findings add to the growing body of literature that the FOMC has

not drastically changed policy over the past 45 years. After allowing for switches

in mean, persistence, inflation response, unemployment gap response, and the

response to the change in the unemployment rate, I find evidence that only the

unemployment gap response has changed over time. One potential explanation

for this is that the staff at the FOMC is well respected and holds great influence
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in policy-making decisions. Additionally, because the FOMC makes decisions

by committee, any change in chairman may have a limited influence on policy.

While the chairs of the FOMC may have strong personal beliefs about how to best

respond to changes in the economy, their actions can be fairly well characterized by

an interest rate rule that has changed only slightly over time.
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