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DISSERTATION ABSTRACT

Charles Richard Higgins

Doctor of Philosophy

Department of Economics

June 2014

Title: Stochastic Volatility, Financial Frictions, and the Great Moderation

This dissertation examines changing macroeconomic volatility and some of the empirical

difficulties associated with studying volatility. Macroeconomic volatility can potentially have

large welfare costs, so understanding why volatility changes over time is important. A natural

setting to study changing macroeconomic volatility is the Great Moderation, a period of reduced

volatility in the United States. This dissertation studies this time period in two ways. First, it

explores the importance of specification when estimating models during this time period. Second,

it looks at the role financial frictions, monetary policy, and luck played in causing the Great

Moderation. Large, structural models are estimated to study these problems. One of the main

findings from the dissertation is that changing financial frictions were an important factor in

reducing macroeconomic volatility during the Great Moderation.
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CHAPTER I

INTRODUCTION

One of the biggest unsolved problems in macroeconomics is what caused the decline

in macroeconomic volatility known as the Great Moderation. This dissertation studies the

causes of changing macroeconomic volatility and examines some of the empirical difficulties of

doing this. The second chapter examines some of the empirical pitfalls when studying changing

macroeconomic volatility, specifically looking at the dangers of misspecification. The third and

fourth chapters study the role of changing financial frictions in explaining the Great Moderation.

The second chapter is titled ”Jumping or Drifting in the Great Moderation: A Comparison

of Parameter Drifting and Regime Switching in DSGE Models.” This chapter explores the

importance of the specification of DSGE models used to analyze the Great Moderation.

Specifically, it studies the importance of correctly specifying Taylor rule monetary policy

parameters as discretely changing or drifting over time. Using parameter drifting and stochastic

volatility, Fernández-Villaverde, Guerrón-Quintana, and Rubio-Ramı́rez (2010) show that the

Great Moderation appears to be mostly caused by good luck, with less volatile shocks, rather

than by changing monetary policy. This chapter analyzes whether there are concerns about using

parameter drift in a model where instead there are discrete jumps in monetary policy parameters.

In this chapter, I simulate a DSGE model with regime switches (and constant variance shocks)

and then estimate the simulated data with a model that has parameter drifting and stochastic

volatility. I find little support for the variance of shocks changing over time, but stochastic

volatility does greatly improve model fit. This suggests that researchers need to study more than

model fit to make conclusions when using models with stochastic volatility.

The third chapter is titled ”Financial Frictions and Macroeconomic Volatility.” In this

chapter, a medium scale dynamic stochastic general equilibrium (DSGE) model with financial

frictions is augmented with parameter drift and stochastic volatility. This model is estimated

using Bayesian techniques and the particle filter to study the causes of the Great Moderation,

a period of reduced macroeconomic volatility observed in the U.S. economy from 1984 to 2007.

During this time period, I find that financial frictions declined. While the model finds evidence of

1



stochastic volatility and changing monetary policy, the results indicate that the change in financial

frictions was the main driver of the Great Moderation.

The fourth chapter is titled ”Changing Macroeconmic Volatility in a New Keynesian Model

with Financial Frictions.” In this chapter, a New Keynesian Model with financial frictions is

augmented with parameter drift and stochastic volatility. This model is estimated and used to

study the causes of the Great Moderation. The model finds evidence of stochastic volatility and

a decrease in financial frictions, but does not find support for changes in monetary policy. Based

on counterfactual studies, the reduction in financial frictions was an important reason for the

reduction in volatility observed during the Great Moderation. It also appears that good luck was

a factor in reducing consumption volatility during the Great Moderation.
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CHAPTER II

JUMPING OR DRIFTING IN THE GREAT MODERATION: A COMPARISON OF

PARAMETER DRIFTING AND REGIME SWITCHING IN DSGE MODELS

Introduction

Understanding the causes of changing macroeconomic volatility is a widely studied and

much debated topic, with special emphasis placed on the role monetary policy plays. This paper

explores some of the empirical difficulties that occur when studying macroeconomic volatility.

Specifically, I analyze whether model misspecification can lead to misinterpreting changes in

volatility due to changing monetary policy as being caused by changes in the nature of shocks. To

do this, I simulate data from a DSGE model with constant variance shocks and regime switches

in the Taylor rule coefficients. I then use the simulated data to estimate two models that have

Taylor rules with parameter drifting. One model has stochastic volatility and the other does not.

The estimation results are then compared to determine how much of the model misspecification is

showing up as changing volatility of shocks.

There has been much debate not only over the causes of volatility changes and the causes

of the Great Moderation, but also the empirical techniques used in analyzing the causes. Some

research, including Sims and Zha (2006) and McConnell and Perez-Quiros (2000), point to good

luck from changes in the structure of shocks as the cause of the Great Moderation. While other

research, including Clarida, Gaĺı, and Gertler (1999), argues that good monetary policy should

be credited for the moderation. Despite extensive research on the topic, it remains unclear which

theory is more valid.1

Much of the early research was done using vector autoregressions (VAR). However, Benati

and Surico (2009) show that using a VAR in the analysis could lead to incorrect conclusions

about the causes of the Great Moderation. They argue that when using a VAR for analysis,

changes caused by variations in monetary policy might be incorrectly attributed to variation in

the magnitude of structural shocks, even when the variability of the structural shocks did not

1Other explanations have been studied, but these are the two main areas of research. For example, some have
studied improvements in inventory management cuased by changes in information technology (McConnell and
Perez-Quiros, 2000) and others have studied financial innovation (Dynan, Elmendorf, and Sichel, 2006)

3



change. Due to these findings, recent research uses DSGE models in order to properly identify the

causes of the Great Moderation.

Estimating DSGE models to analyze the Great Moderation and changing macroeconomic

volatility is not without faults. Due to the size and complexity of some DSGE models, there are

limitations to how these models can be estimated. One way to estimate changes in policy and the

variance of shocks is to estimate a DSGE model with regime switches in the variance of structural

shocks and/or monetary policy rules.2 However, due to technical limitations, only simple regime

switching models can be estimated. Another option is to use models with parameter drifting. This

has been done recently in Fernández-Villaverde et al. (2010) where the Taylor rule parameters

are allowed to drift and there is stochastic volatility.3 The models differ in their interpretation

of how monetary policy changes over time. If policy changes occur smoothly over time, then a

parameter drifting model may be more accurate. However, if policy does in fact change discretely,

then regime switching models are more appropriate.4

Some studies on the Great Moderation use models with regime switching to analyze

changes in policy or changes in the variance of shocks. For example, Sims and Zha (2006)

analyze regime switching in a VAR. Liu, Waggoner and Zha (2010) analyze regime switching in

a medium-scale DSGE model, but changes in the interest rate rule are in the form of changing

inflation targets instead of changes in Taylor rule parameters. While the targets might have

changed, changes in the Taylor rule parameters could be more relevant in the good policy versus

good luck debate about the Great Moderation. Davig and Doh (2009) estimate a medium-scale

DSGE model with markov-switching in the policy coefficient, but their model is log-linearized.

However, in order to pick up the effects of policy change on variances in DSGE models, higher-

order approximations must be used as shown by Schmitt-Grohe and Uribe (2004). To avoid these

critiques I will use a second-order approximation when estimating the DSGE model.

Research also focuses on models with policy parameters and volatility that change smoothly

over time. Fernández-Villaverde et al. (2010) use a medium-scale DSGE model with both

stochastic volatility and parameter drifting in the Taylor rule. They find overwhelming evidence of

2Examples are Bianchi (2009) and Farmer, Waggoner, and Zha (2009).

3In models with stochastic volatility, the variance of the structural shocks exogenously drift over time.

4Either type of model may better portray the true state of the world since the actual monetary policies used are
not known.
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parameter drift in the Taylor rule, but find that changes in the variance of the underlying shocks

can account for most of the reduction in volatility found during the Great Moderation. While

there does appear to be drift in the Taylor rule, there also appear to be regime changes. Based on

Figure 9.5 in Fernández-Villaverde et al. (2010), there appear to be regime changes that coincide

with changes in leadership of the Federal Reserve. If there are indeed regime switches, there

should be a discrete jump in the Taylor rule coefficients. If in the time around the jump in the

Taylor rule the model is estimated to have smooth changes, then changes in volatility could very

well be attributed to stochastic volatility instead of policy changes (even if the structural shocks

actually have constant variances). This might lead to an improper interpretation that changes in

volatility are due to good luck when it is actually due to good policy.

Since only small regime switching DSGE models have been estimated, it is important to

know how well models with parameter drifting perform if misspecified, which is what I analyze

in this paper. This is very important if policy does in fact change discretely, which is reasonable

since Federal Reserve leadership changes discretely; therefore it is unclear how well a DSGE model

with parameter drifting will pick up the change in policy. To perform this analysis I first simulate

data from a New Keynesian model with regime switches in the Taylor coefficients and constant

variance shocks. I use a simple model along the lines of Lubik and Schorfheide (2004) and I use

their results to calibrate the model. Regime switching in the Taylor coefficients are added to

the model. Then, I use the simulated data to estimate a model featuring parameter drift in the

monetary policy coefficients and stochastic volatility. I then compare these results with estimates

from a model with parameter drift in the Taylor coefficients and constant variance shocks.

While the parameter drifting does a reasonable job of fitting changes in monetary policy,

I find evidence of changes in stochastic volatility in the estimated models. Adding stochastic

volatility to the model can greatly improve model fit which is concerning, since flat priors are

used for the stochastic volatility terms, which should put downward pressure on the marginal

likelihood. This should give researchers pause when estimating DSGE models with stochastic

volatility and parameter drifting. Great care must be used to ease concerns that there are indeed

changes in the variance of innovations, instead of the estimated changes being due to model

misspecification. Since this specification is the best that can be feasibly estimated with current

technical limitations, more work must be done to check the importance of stochastic volatility
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beyond looking at marginal likelihoods. One way to study this is to look at the underlying states.

Based on the underlying states in this study, there do not appear to be any discernible patterns

to the standard deviation of the underlying shocks, and none of the movements appear to be

significant. Therefore, it does not appear that the misspecification will hurt efforts to study

changes in monetary policy rules. This should give researchers confidence in these models, but

the findings of this chapter should be taken into consideration when interpreting the results of

similar models.

The rest of the paper is organized as follows. Section 2 presents the model used to generate

the data and the two models that are used to estimate the generated data. Section 3 explains

how the data was generated and discusses some of the features of the generated data. Section 4

presents the estimation methodology and describes how the likelihood is approximated. Section 5

presents and analyzes the estimation results. Section 6 provides some concluding remarks.

Models

Three models are needed to analyze the misspecification of a regime switching model by

estimating a model with parameter drift and stochastic volatility. The first model is one with

regime switching that can be used to generate the artificial data. In this model, monetary policy

parameters change discretely and the shocks have constant variances. Using the generated data,

I estimate a model with a policy rule allowing for drifting parameters and stochastic volatility.

For comparison, a model with parameter drift in the monetary policy rule, but without stochastic

volatility is estimated as well. All three of these models are based on the simple New Keynesian

style model from Lubik and Schorfheide (2004). These models are described in more detail below.

Regime Switching Model

To simulate a case where Federal Reserve policy changes discretely, a model with regime

switching is a natural fit. In this model the two parameters that represent the Fed’s reaction to

inflation and the output fluctuations are allowed to discretely change. All other parameters are

held constant. The model is based on a standard, simple New-Keynesian Model that has already

been log-linearized. Since a log-linearized model is used as a basis for the model, the only non-
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linearities in the model arise from changes in monetary policy.5 The model is summarized by

Xt = EtXt+1 − τ(Rt − EtΠt+1) + gt (2.1)

Πt = βEtΠt+1 + κ(Xt − zt) (2.2)

Rt = ρRRt−1 + (1− ρR)(ψ1,tΠt + ψ2,t(xt − zt)) + σRεR,t (2.3)

X, Π and R represent output, inflation and the nominal interest rate respectively.6 εR is an i.i.d.

standard normal shock. This model deviates from Lubik and Schorfheide (2004) by how ψ1, the

central bank’s response to inflation fluctuations, and ψ2, the central bank’s response to output

fluctuations, change over time. These two parameters are defined as

ψ1 =

 α1 if st = 1

α2 if st = 2

ψ2 =

 ι1 if st = 1

ι2 if st = 2.

The variable st represents the state of the economy. When the state of the economy

changes, the monetary policy rules discretely change. If the state is unchanged, then the policy

rules are also unchanged. The state follows a Markov switching process with the following

transition matrix

P =

p1,1 p1,2

p2,1 p2,2


where pi,j = Prob(st+1 = j|st = i).

The economy is completed by two univariate AR(1) processes, one for government

spending, g, which can be thought of as a demand shock, and a supply shock, z. These processes

5Since a first-order approximation is used in the model simulation, this should not change the data simulation.

6Lubik and Schorfheide (2004) define these as percentage deviations from the steady state or trend path in the
case of output. Therefore, the generated data should be interpreted as percentage deviations from a steady state or
trend.
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are defined as

gt = ρggt−1 + σgεg,t (2.4)

zt = ρzzt−1 + σzεz,t. (2.5)

The innovations to these shocks, εg and εz, are i.i.d. normal mean zero shocks with standard

deviations of one. Note that σg and σz, the standard deviations of the innovations to the shocks,

as well as σR are all constant.

Model with Parameter Drift and Stochastic Volatility

The data generated from the regime switching model is estimated by a model with

stochastic volatility and parameter drift in the monetary policy rule. This model is designed to

be similar to the regime switching model while incorporating the parameter drifting and stochastic

volatility. The equations for inflation and output are identical to 2.1 and 2.2. Equations 2.3 to 2.5

are modified to incorporate parameter drift and stochastic volatility, and are defined as

Rt = ρRRt−1 + (1− ρR)(ψ1,tΠt + ψ2,t(xt − zt)) + σR,tεR,t (2.6)

gt = ρggt−1 + σg,tεg,t (2.7)

zt = ρzzt−1 + σz,tεz,t. (2.8)

The logged standard deviations of the shocks follow an AR(1) process defined by

log(σR,t) = ρσR log(σR,t−1) + (1− ρσR) log(σR) + ηRuR,t (2.9)

log(σg,t) = ρσg log(σg,t−1) + (1− ρσg ) log(σg) + ηgug,t (2.10)

log(σz,t) = ρσz log(σz,t−1) + (1− ρσz ) log(σz) + ηzuz,t. (2.11)
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Instead of discretely changing as in the regime switching model, the coefficients in the monetary

policy rule are allowed to drift. The processes for the policy rules are defined by

log(ψ1,t) = ρψ1
log(ψ1,t−1) + (1− ρψ1

) log(ψ1) + ηψ1uψ1,t (2.12)

log(ψ2,t) = ρψ2 log(ψ2,t−1) + (1− ρψ2) log(ψ2) + ηψ2uψ2,t. (2.13)

All shocks, which are labeled as ε and u, are i.i.d. N(0,1) shocks. All nonlinearities in the model

arise from parameter drifting and stochastic volatility. While this may not completely mimic real

world applications, it does match the nature of the data generating process of the simulated data.

Model with Parameter Drift and Constant Variance Shocks

In order to consider the importance of stochastic volatility when the model is estimated

using parameter drifting in the policy coefficients, I must also estimate a model with parameter

drift and constant variance shocks. This model is a nested version of the model in subsection 2.2,

which simplifies down to the following processes:

Xt = EtXt+1 − τ(Rt − EtΠt+1) + gt (2.14)

Πt = βEtΠt+1 + κ(Xt − zt) (2.15)

Rt = ρRRt−1 + (1− ρR)(ψ1,tΠt + ψ2,t(xt − zt)) + σRεR,t (2.16)

gt = ρggt−1 + σgεg,t (2.17)

zt = ρzzt−1 + σzεz,t. (2.18)

Where the shocks are distributed i.i.d. N(0,1). The monetary policy parameters, ψ1 and ψ2, follow

the same process as in equations 2.12 and 2.13.

Data

The data used in this analysis is artificial data generated from the models described above.

The models are calibrated using the results from Lubik and Schorfheide (2004). Data is generated

from two different specifications of the regime switching model as well as a specification of the

model with parameter drift and stochastic volatility. Data is also generated from a model with
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parameter drift and constant variance shocks, which is the same model as the one used for the

estimation. For each model, 12 sets of data are generated for 193 periods after an initial data

generation of 10,000 periods is discarded for each set. The data mimics a quarterly sample of

data from 1959:Q1 to 2007:Q1, which is a standard set of data to use when analyzing the great

moderation.7 From the generated data, it is assumed that only R, Π and X are observed, which is

a reasonable assumption based on real data that is actually available for estimation.

Regime Switching Models

There are two types of regime switching models used to generate data, one model is forced

to have one regime change while the other allows for multiple regime changes. Both models use

the calibration found in Table 1. In the data with only one change, hereafter referred to as the

baseline data, p1,1 and p2,2 are both set to 0.99. In the alternative regime switching data, p1,1 and

p2,2 are both set to 0.9 and regimes are allowed to freely change at those probabilities. For the

baseline data, there is a regime change in the 101st period, which would correspond to 1984:Q1,

roughly the start of the Great Moderation, from the state 1 to 2. This corresponds to the Federal

Reserve running a policy where ψ1 = 0.89 and ψ2 = 0.15 prior to 1984.8 Then, in 1984 the Fed

switches to a more active policy where ψ1 = 2.19 and ψ2 = 0.3 in all later periods, which is in

line with the results from Lubik and Schorfheide (2004). In the alternative regime switching data,

there are an average of 17.25 regime changes in each data set.

TABLE 1. Calibration Values for Regime Switching Model

Value Value

τ 0.5 ρR 0.65
β 0.99 ρg 0.81
κ 0.66 ρz 0.76
α1 0.89 σR 0.2
α2 2.19 σg 0.2
ι1 0.15 σz 0.8
ι2 0.3

7This is the time period used in Fernández-Villaverde et al. (2010) which is closest to the type of model I’m
studying.

8While a coefficient of 0.89 usually implies the possibility of sunspot equilibria, this is not necessarily the case
for a model with regime switching. As long as there is the chance that policy will switch to a more active policy in
the future, the model may not suffer from indeterminacy.
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To generate the data from the regime switching models, the model must first be

approximated. A first-order approximation is done using the techniques developed in Foerster,

Rubio-Ramı́rez, Waggoner, and Zha (2011).9 Each calibration described above has a unique, non-

explosive solution around the steady-state. To determine this, mean square stability (MSS), which

determines whether a solution is stable or not, is used. Since in both cases, only one solution

satisfies the MSS criterion, the model has a unique, stable first-order approximation as explained

in Foerster et al. (2011).

The generated baseline data shows decreasing volatility of inflation following the switch

from passive to active monetary policy. Across the 12 simulated data sets,the average standard

deviation of inflation decreases from 1.43% down to 0.6% which is a 58% drop. The average

standard deviation of output decreased by 1.3% from 1.01% to 1%. The changes in standard

deviations are in line with the changes experienced during the Great Moderation.10 The standard

deviation of inflation from 1959:Q1-1983:Q4 decreases by 52% from 0.95% to 0.47% for the data

from 1984:Q1-2007:Q1. During the same time period, the standard deviation of output increased

by 7%, increasing from 0.28% to 0.30%. While the simulated data does not perfectly match the

actual data; overall, the volatility of the simulated data is comparable to the actual data and

mimics the changes observed during the Great Moderation.

Parameter Drift Model and Constant Parameter Model

The parameter drift model with constant variance shocks described above is used to

generate 12 sets of data. Another variation of this model, where the parameters are all held

constant (ψ1 and ψ2 are both constant), is used to generate another 12 sets of data. Both

specifications use calibrations similar to those found in Table 1. For the model with parameter

drift, the coefficients on the terms controlling the drift process are set to ρψ1 = 0.95, ψ1 = 1.5,

ηψ1 = 0.2, ρψ2 = 0.95, ψ2 = 0.2, and ηψ1 = 0.2. Both models are approximated using a second-

order perturbation. The data is generated using the pruned state-space specification described in

Andraesen, Fernández-Villaverde, and Rubio-Ramı́rez (2013).

9Unlike with a standard approximation, Foerster et al. (2011) show that models with regime switching do not
face certainty equivalence with first-order approximations.

10As in Lubik and Schorfheide (2004), I use percent deviations of log Real GDP from its HP filtered trend for
my measure of output. Inflation is defined as the percentage change of CPI from the year before. The raw data is
retrieved from the FRED database and their codes are GDPC3 and CPIAUCSL.
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Estimation Methodology

The models described in sections 2.2 and 2.2 are estimated using a Metropolis-Hastings

Algorithm. There are two main problems that arise when estimating the model with stochastic

volatility. First, there is not a simple closed form solution to these models so the solution must

be approximated. Second, the model and its approximation are non-linear, so calculating the

likelihood function, which is needed to get the posterior distribution, is not analytically possible.

To overcome the first problem, I use a second-order approximation using perturbation methods.11.

A second-order or higher approximation is needed to capture changes in the variance of shocks

over time in the approximation, so a first-order approximation is not sufficient. The second-order

approximation is an inherently non-linear approximation so the likelihood function cannot be

directly calculated nor approximated with the Kalman Filter. Therefore, I use a particle filter

along the lines of Fernández-Villaverde and Rubio-Ramı́rez (2007) to approximate the likelihood.

This is then combined with a prior distribution to run a Metropolis-Hastings algorithm to

estimate the posterior distribution. In the following paragraphs I will first briefly describe the

estimation procedure and then explain how the likelihood is approximated.

Both models that are estimated can be generically rewritten in state space format as

Yt = g(St) and St+1 = f(St,Wt+1) with an Nx1 vector of coefficients θ. The posterior distribution

of the coefficients can be estimated using a Metropolis-Hastings algorithm. First, a starting value

θ[0] is selected to initialize the algorithm. Next, a second-order approximation is done using

perturbation methods, yielding Yt ≈ G(St) and St+1 ≈ F (St,Wt+1). The likelihood function

is then evaluated using a particle filter, which is described in more detail below. Then, a new θ

is proposed based on random walk given by θ∗ = θ[0] + η. The increment random variable, η, is

picked to be a multivariate normal distribution with mean 0N and a variance that is selected to

achieve an appropriate acceptance rate.12 With the new proposal, θ∗, the model and likelihood

are approximated. The likelihood is then combined with the prior, p(θ∗), in order to calculate the

acceptance probability, α(θ[0], θ∗) = min
[
p(θ=θ∗|Y )
p(θ=θ[g]|Y )

, 1
]
. θ[1] is set to θ∗ with probability α and is

11Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006) show that perturbation methods are extremely fast
and very accurate. For more information on the methodology, see Schmitt-Grohé and Uribe (2004) and Klein and
Gomme (2011)

12Other distributions could be used, but the multivariate normal distribution was chosen for ease of computation.
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set to θ[0] with probability 1 − α. The algorithm then proceeds like this for 10,000 draws after a

burn-in of 5,000 draws.13

Due to the nonlinearities of the approximation to the model, a particle filter is used to

approximate the likelihood for each draw of θ. To set up the particle filter, I define a vector of

observed variables Õt for each time period, t = 1, ..., T , in the case of this model the observed data

is defined as Xt, Πt and Rt from from the generated data The observables are realizations of a

measurement equation, Ot = j (St, Vt|θ), which includes a term for measurement error,Vt.
14 The

underlying innovations, Wt are partitioned into two vectors, W1,t and W2,t, such that dim (W2,t) +

dim (Vt) ≥ dim (Ot), which is necessary for running the particle filter.

The particle filter uses a sequential Monte Carlo filter to approximate the likelihood,

p
(
Õ|θ
)

. To start, a large number of particles, P, and a large number of initialization periods,

K, must be selected. For this analysis 10,000 particles were used. The particle filter follows the

following steps:

1. Initialize the filter by setting all of the values of S equal to their steady state values. Use

the approximated solution of the model to generate several periods, K, of data P times by

drawing from the distribution of W . Store the Kth period of generated data of S and Kth

period draws of W1 for each of the the P particles and label these as {si0|0,W
i
0|0}

P
i=1.

2. Set t=1.

3. Sample P values of sit−1|t−1 and si1,t−1|t−1 from {Sit−1|t−1,W
i
1,t−1|t−1}

P
i=1.

4. Generate P draws from the distribution of W1,t and W2,t−1 and label these

{w1,t, w2,t−1}.

5. Calculate P values of {sit, wi1,t}Pi=1 using the information from steps 3 and 4.

6. Calculate {wi2,t, vit}Pi=1 by comparing G(sit) to Õt.

7. Calculate the weights

qit =
p
(
wi2,t, v

i
t

)
ΣPi=1p

(
wi2,t, v

i
t

) .
8. Sample with replacement P values of {sit, wi1,t} using the weights given by qi1. Call these

samples {Sit|t,W
i
1,t|t}

P
i=1.

13This is done with a starting value of θ that is picked from a grid search to find the maximum of the posterior
pdf as has been done in other papers. For example, see Fernández-Villaverde et al. (2010).

14The inclusion of measurement error is not always necessary. In this chapter the model with stochastic volatility
is estimated with and without measurement error.
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9. If t < T , set t; t+ 1 and go to step 3. Otherwise, stop.

From this filtering process, the marginal likelihood can be approximated as

p(Õ|θ) ≈ ΠT
t=1

1

P
ΣNi=1p

(
wi1,t, v

i
t

)
.

This marginal likelihood is then combined with the prior in order to run the Metropolis-Hastings

algorithm.15

Estimation Results

In this section I will present the estimation results. First, I will discuss the priors and my

reason for selecting the priors I chose. Second, I will present and analyze the parameter estimates

by describing the posterior distributions. Third, I will present the data for the underlying states.

Finally, I will compare the two models and see which model is preferred by the data.

Priors

The prior distributions for parameters were selected to mimic priors that have been used in

previous research and to limit the parameters to areas of determinacy. In order to mimic standard

research practices, I chose a uniform distribution for most parameters as can be seen below in

Table 2. The priors for the model without stochastic volatility are the same as the model with

stochastic volatility excluding the parameters the two models do not share. The parameters that

are U(0,1) are constrained at 1 in order for there to be a steady state which is needed in order

to use the perturbation approximation. The parameters set as U(0,3) are set to a disperse range

that is large enough to hold any plausible values. The prior distribution of the variance of the

measurement errors, σγX , σγΠ and σγR , is a little less straight forward. Since measurement errors

are difficult to identify, I placed a relatively tight prior distribution on these parameters. Overall,

these priors play a rather small role in the estimation of the posterior distribution since most of

the priors are flat. When comparing models, the use of flat priors does affect the analysis. The

flat priors impose a penalty on the model with stochastic volatility. This makes it less likely that

15As recommended in Fernández-Villaverde and Rubio-Ramı́rez (2007), the random shocks differ by period but
are the same in each respective period across draws in order to cut down on excess noise from random draws. This
is not necessary, but it greatly increases the efficiency of the procedure.
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the data prefers the model with stochastic volatility since it has more parameters and all the

additional parameters have flat priors. However, the role the flat priors play is not too large since

the priors are the same for all the parameters shared between the models.

TABLE 2. Priors

Parameter Prior Parameter Prior

τ U(0,1) σg U(0,4)
κ U(0,1) σz U(0,4)
ρR U(0,1) ηR U(0,4)
ρg U(0,1) ηg U(0,4)
ρz U(0,1) ηz U(0,4)
ρψ1 U(0,1) ψ1 U(1,4)
ρψ2

U(0,1) ψ2 U(0,2)
ρσR U(0,1) σγX Gamma(1, 1

200 )
ρσg U(0,1) σγΠ Gamma(1, 1

200 )
ρσz U(0,1) σγR Gamma(1, 1

200 )
σR U(0,4)

Parameter Estimates

The full posterior estimates can be found in Tables A.3 to A.10 in Appendix A for all

of the estimates for the stochastic volatility models without measurement error. Each of the

estimations show strong persistence of the monetary policy parameters, as shown in Tables 3

to 6 which average across all data sets for each data type. Not surprisingly, the persistence is

larger in the baseline specification of the regime switching model than in the other specifications.

One thing that is surprising is the posterior mean persistence of the monetary policy parameters

in the estimation of the drifting parameter data is much lower, ρψ1
= 0.78 and ρψ1

= 0.52, than

the true values of the underlying data, where ρψ1 and ρψ2 both equal 0.95. For the data that

was generated from the constant parameter data, the standard deviation of the shocks to ψ1 are

much smaller than in any other specification, which is a sign that the model may be accurately

identifying the movements in the parameter. However, the standard deviation of the shocks to ψ2

are similar throughout all models, so that may not be well identified.

In the baseline case, Table 3 shows that there is a relatively high level of persistence in

the monetary policy rule on inflation as the mean of ρψ1
is 0.83. This is not surprising since the

probability of switching policy parameters is only 1% each period and the actual parameters only
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TABLE 3. Posterior Mean for Baseline Regime Switching Data

ψ1 ρψ1
ηψ1

1.89 0.83 0.54

ψ2 ρψ2
ηψ2

0.22 0.54 0.27

TABLE 4. Posterior Mean for Alternative Regime Switching Data

ψ1 ρψ1
ηψ1

1.46 0.58 0.34

ψ2 ρψ2
ηψ2

0.22 0.59 0.20

change once. The steady states for the parameters are given by ψ1 and ψ2 which have means of

1.89 and 0.22 are similar to the true mean policy parameters for all periods which are 1.52 and

0.22. In the alternative specification, there is much less persistence in the inflation term, as the

mean of ρψ1
is 0.53, which is not surprising since there are several changes in the policy terms. In

both specifications, there is estimated to be a relatively large degree of volatility as the standard

deviations of the innovations to the policy parameter drifts are estimated to be well above 0. This

is not surprising, as large standard deviations will allow the model to better pick up changes in

policy parameters.

TABLE 5. Posterior Mean for Drifting Parameter Data

ψ1 ρψ1 ηψ1

1.61 0.78 0.32

ψ2 ρψ2
ηψ2

0.27 0.52 0.27

The coefficient estimates for the parameters driving the stochastic volatility processes

show quite large variances, which can be seen in Tables 7 to 10. There is also a large degree

of persistence across all estimations. This is surprising since the underlying data has constant

variance shocks. Even for the data generated from the model with constant policy parameters, the

stochastic volatility shocks have large variances and a high degree of persistence. Table 9 shows
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TABLE 6. Posterior Mean for Constant Parameter Data

ψ1 ρψ1
ηψ1

1.48 0.52 0.12

ψ2 ρψ2
ηψ2

0.23 0.48 0.24

that even when the monetary policy parameters are correctly specified, the data still shows a high

level of persistence and variability in the stochastic volatility terms.

TABLE 7. Posterior Mean for Baseline Regime Switching Data

σR ρR ησR

0.34 0.69 0.98

σg ρg ησg

0.26 0.73 0.63

σz ρz ησz

0.82 0.79 0.43

TABLE 8. Posterior Mean for Alternative Regime Switching Data

σR ρR ησR

0.31 0.66 0.1.13

σg ρg ησg

0.25 0.75 0.66

σz ρz ησz

0.73 0.81 0.41

Underlying States

Getting an understanding of just how much the standard deviation of shocks and policy

parameters change over time is of major importance in studies like this one. In order to do

this, the underlying states must be pulled out from the particle to filter. In this study, I use

the approach described in Fernández-Villaverde and Rubio-Ramı́rez (2007). This is done for the

generated data from the baseline model using the stochastic volatility model with no measurement

error. In most cases, there does appear to be an increase in ψ1, the policy parameter controlling
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TABLE 9. Posterior Mean for Drifting Parameter Data

σR ρR ησR

0.19 0.67 0.66

σg ρg ησg

0.21 0.79 0.46

σz ρz ησz

0.99 0.72 0.37

TABLE 10. Posterior Mean for Constant Parameter Data

σR ρR ησR

0.14 0.67 0.83

σg ρg ησg

0.22 0.78 0.33

σz ρz ησz

0.86 0.74 0.37

reactions to inflation, but little change in ψ2, the policy term related to the output gap. The

smoothed underlying states for the monetary policy parameters and the logged deviation from

mean of the stochastic volatility terms can be seen in Figures A.1 to A.48 in Appendix A.

A major question this paper asks is whether incorrect specification of the monetary policy

parameters can lead to incorrect conclusions about whether there is stochastic volatility or not.

One way to look at this is to determine if the standard deviation of shocks change over time. If

the policy misspecification led to incorrect conclusions about stochastic volatility, there should be

changes in σR, σg, or σz over time. In studying both the baseline case and alternate case, there

do not appear to be large swings in stochastic volatility. The stochastic volatility is observed, does

not appear to be systematic or related to the changes in monetary policy. This shows that it is

unlikely that misspecification of monetary policy, at least the type of misspecification described

in this paper, can lead to incorrect conclusions about the stochastic volatility terms changing over

time. Therefore, models with parameter drifting and stochastic volatility can be used to estimate

models with discretely changing monetary policy, but the researcher must look beyond model fit

which can give misleading results.
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For the baseline regime switching data, based on the analysis it appears that the Taylor

parameter on inflation, ψ1, appears to increase in the 101st period, which is in line with the

underlying data. However, the smoothed state for the Taylor parameter on output gap, ψ2, does

not appear to change much over time, which is slightly concerning since it discretely changes from

0.15 to 0.3 in the underlying data generating process.

Studying the monetary policy parameters in the alternative specification, where policy is

allowed to change multiple times, raises more concerns. It appears that the model has a difficult

time picking up the frequent changes in monetary policy. In several cases there are extreme values

for the monetary policy parameters, as can be seen in the supplementary materials. While this

is concerning, it is unlikely that there are frequent, large switches in monetary policy. So, this is

unlikely to be a concern when studying real data. Therefore, if the researcher suspects there are

several discrete changes in policy, a model with parameter drift may not be able to pick up the

policy changes in the underlying states.

Model Comparison

This section will present information on the fit of the models using log marginal likelihoods,

which are shown in Tables A.1 and A.2. The model with stochastic volatility that is estimated

without measurement error has the largest log marginal likelihood of any specification for all data

sets and all specifications. However, this is not an equitable comparison, since the other models

include measurement errors. In several of the data sets, models containing stochastic volatility are

preferred by the data, despite all of the data containing constant variance shocks.

In both regime switching specifications, many of the data sets preferred the model with

stochastic volatility with measurement error when compared to the model without stochastic

volatility, but with measurement error. For the baseline regime switching, 9 of the 12 data sets

have larger log marginal likelihoods when estimated with stochastic volatility and measurement

errors than when estimated without stochastic volatility and measurement errors. When the ρ

parameters are set to 0.95, all 12 data sets prefer the model with stochastic volatility. For the

alternate regime switching model, 5 of the 12 data sets prefer the stochastic volatility specification

and 4 of the 12 data sets prefer the stochastic volatility specification when the ρ parameters are
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set to 0.95. This shows a strong level of support that the simulated data prefers the stochastic

volatility models, despite it being a misspecification.

In order to better understand why the stochastic volatility model seems to be preferred by

the regime switching data sets, the marginal likelihoods for the parameter drifting and constant

parameter models must be analyzed. For the data sets simulated from the model with parameter

drifting, 8 of the 12 data sets prefer the model with stochastic volatility and measurement error

to the model without stochastic volatility. For the data sets generated from the model with

constant parameters, only one of the 12 data sets prefers the model with stochastic volatility

and measurement error over the model without stochastic volatility. Based on these results,

it appears that the added flexibility of stochastic volatility helps fit the model better when the

underlying data has parameters that change, even if the shocks have constant variances. However,

if parameters do not change, the added flexibility of stochastic volatility does not improve model

fit.

The evidence supporting the model with stochastic volatility is troubling and surprising.

While it is not surprising that adding stochastic volatility to the model would improve model fit,

it is surprising that the improvement was enough to overcome relatively diffuse priors. With the

diffuse prior on the stochastic volatility parameters, there is a built in penalty for including these

parameters. The increase in the likelihood function from including the stochastic volatility was

more than enough to overcome this penalty. This is troubling since it shows how a misspecified

model with stochastic volatility can be preferred over a model without stochastic volatility, even if

the model without stochastic volatility is correctly specified. This is especially troubling, since the

data shows a preference for stochastic volatility models even when the process for the monetary

policy parameters are correctly specified. Therefore, it is very important for researchers to look

beyond model fit when studying stochastic volatility.

Conclusion

In this paper a simple New Keynesian model is augmented with regime switching monetary

policy parameters and constant variance shocks is used to generate data. The generated data was

then used to estimate a model with stochastic volatility and parameter drifting in the monetary

policy rules, as well as a model with drifting in the monetary policy rules and constant variance
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shocks. The models were estimated using a Metropolis-Hastings algorithm where the likelihood

was approximated using a particle filter. These two models were then compared.

I find that the model featuring stochastic volatility is strongly supported by the data in

comparison to the model without stochastic volatility. The fact that the model with stochastic

volatility is better supported by the data is troubling, since the model the data is generated

from has constant variance shocks. This is true, even when estimating data using the correct

specification of monetary policy. This should give researchers pause when considering the

importance of stochastic volatility in their results. Further research must be done beyond looking

at model fit to determine the importance of stochastic volatility, as this might be a misleading

measure of the importance of stochastic volatility.

While it is troubling that the model fit is improved in most cases by including stochastic

volatility, even with misspecified monetary policy parameters, there do not appear to be any

changes in volatility over time when looking at the underlying states. There does appear to be

movement in the stochastic volatility terms, but all of it is small in comparison to their standard

deviations and it does not systematically change across regimes.

This paper has studied potential problems when estimating misspecified DSGE models.

Based on the results discussed in this paper there are concerns when doing model comparison of

misspecified models with and without stochastic volatility. However, if the goal of the researchers

is to study the changing nature of shocks over time, this paper does not find many concerns.

While there appear to be some small changes in the nature of the shocks, these are small in

comparison to their standard deviations and do not appear to be changing with the policy. Based

on these results, it appears that even with the monetary policy rule being misspecified, at least

in the way discussed in this paper, then stochastic volatility can be used to study the changing

nature of shocks. However, caution should be used when performing model comparison of models

featuring stochastic volatility to those without stochastic volatility.
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CHAPTER III

FINANCIAL FRICTIONS AND CHANGING MACROECONOMIC VOLATILITY

Introduction

A key stylized fact about the US economy in the second half of the 20th century is the

dramatic reduction in volatility of real and nominal macroeconomic variables starting in the

1980s, which is commonly called the Great Moderation.1 Despite much research, it is still unclear

what caused the Great Moderation. The debate has focused mainly on whether the moderation

can be attributed to good monetary policy or good luck.2 Changing financial markets have

been largely overlooked as a potential factor in the Great Moderation. This paper explores the

role that financial frictions play in explaining the Great Moderation using a DSGE model that

features time-varying financial frictions. The model is based on the financial accelerator model of

Bernanke, Gertler and Gilchrist (1999). The model is augmented with stochastic volatility in the

shocks, parameter drifting in the monetary policy coefficients, and drifting financial frictions. I use

Bayesian techniques to estimate this model and study whether changing financial frictions, good

monetary policy or good luck with shocks caused the Great Moderation.

A major focus of macroeconomics has been to study the effects and causes of business cycle

fluctuations and macroeconomic volatility since they can have large welfare effects. Understanding

the causes of the Great Moderation is important in guiding future macroeconomic policy that

seeks to limit volatility.3 For this reason, there has been a great deal of research in this area, but

there is not a consensus about what caused the reduction in volatility. Clarida, Gaĺı, and Gertler

(1999) argue that the Great Inflation, a period of raised inflation during the 1970s, was mainly

caused by poor monetary policy. They argue that monetary policy did not react strongly enough

to changes in the price level, which allowed prices to continuously climb higher. During the early

1Kim and Nelson (1999), McConnell and Perez-Quiros (2000), and Stock and Watson (2003) provide an
empirical analysis of the change in volatility associated with the Great Moderation.

2The good luck story focuses on a decrease in the volatility of the exogenous shocks affecting the economy.
There is a significant amount of research that suggests this is the main cause of the Great Moderation. Some
other potential causes that have been studied include improvements in inventory management cuased by changes
in information technology (McConnell and Perez-Quiros, 2000) and financial innovation (Dynan, Elmendorf, and
Sichel, 2006)

3Research of optimal monetary policy often focuses on minimizing inflation and output volatility. For a review of
optimal monetary policy, see Woodford (2010).

22



1980s, Clarida et al. (1999) find that the Federal Reserve’s interest rate policy had a stronger

reaction to inflation than during the 1970s, which led to the Great Moderation.

Others have argued that it has not been good policy, but “good luck” that can be

attributed to the decrease in the volatility of exogenous shocks affecting the economy. Sims

and Zha (2006) and McConnell and Perez-Quiros (2000) point to smaller exogenous shocks to

the economy as the reason for reduced volatility. Much of the previous research was done using

vector autoregressions (VAR). However, Benati and Surico (2009) showed that using a VAR

in the analysis could lead to incorrect conclusions about the causes of the Great Moderation.

They showed that when using a VAR for analysis, changes caused by changing monetary policy

might be incorrectly attributed to changes in the variance of structural shocks, even when the

variance of the structural shocks did not change. Due to these findings, recent research has used

DSGE models in order to identify what caused the Great Moderation. Fernández-Villaverde,

Guerrón-Quintana, and Rubio-Ramı́rez (2010) analyze a New Keynesian model that has stochastic

volatility (i.e. the variance of shocks are allowed to smoothly change over time) and drifting

coefficients in the Taylor rule that mimics the Federal Reserve’s decision-making process when

setting interest rates. They find that despite evidence of changes in the coefficients in the Taylor

rule, most of the decrease in volatility is explained by changes in the variance of shocks (i.e. good

luck) and not due to changes in policy. Still, a consensus has not been reached and little is known

about why the nature of the shocks to the economy have changed over time.

Little research has been conducted into what role financial and credit markets may have

played in the Great Moderation. This is surprising since Bernanke et al. (1999) showed how

financial frictions could affect the size of business cycle fluctuations in their financial accelerator

model. Financial frictions can arise due to imperfect information in the lending market or overly

restrictive regulations. In the financial accelerator model, banks require collateral when making

loans since they are unsure of the productivity level of the firms that are seeking funding. This

can lead to productive firms failing to receive financing due to a lack of collateral, especially

during a recession when a firm’s wealth level is depressed. If this causes less lending during

recessions, it can further increase the magnitude of the business cycle. So, if financial frictions

changed during the 1980s and 1990s, then these changes could be a very important reason for the

reduction in volatility during the Great Moderation.
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There is reason to think that financial frictions changed greatly in the 1980s and later years

due to deregulation and financial innovation. The 1980s and 1990s saw several changes in bank

regulation, including the Depository Deregulations and Monetary Control Act of 1980, Garn-St.

Germain Depository Institutions Act in 1982, the Financial Institutions Reform Act in 1989, the

Riegle-Neal Interstate Banking and Branching Efficiency Act in 1994 and the Gramm-Leach-

Bliley Act in 1999.4 The 1980s and 1990s also saw financial innovation in the form of interest rate

swaps as well as expanded bond option markets. Jermann and Quadrini (2009) develop a model

that shows how financial innovation can reduce macroeconomic volatility. In an empirical study,

Dynan, Elmendorf and Sichel (2006) find that financial innovation may be an important factor in

explaining the decrease in volatility during the Great Moderation.5 Since Dynan et al. (2006) use

a VAR in their study and VARs may give misleading results for the reasons explained above, it is

important to further study this using a model with more structure.

In a study similar to this paper, Fuentes-Albero (2011) analyzes the Great Inflation and

Great Moderation using a DSGE with New Keynesian style frictions that is augmented with

aspects of the financial accelerator model. This model is estimated, allowing structural breaks in

the variance of shocks, the monetary policy coefficients and the average level of financial rigidities.

Fuentes-Albero (2011) finds that, based on this estimation, the Great Inflation was caused mostly

by large shocks (bad luck) while the Great Moderation can be mostly attributed to easier access

to credit and better monetary policy, which runs counter to the findings of Fernández-Villaverde

et al. (2010). Fuentes-Albero (2011) has to make extreme assumptions in order to estimate this

model. The structural breaks are assumed to happen at specific times and agents assume the

changes are permanent and the coefficients will remain constant forever following the break. This

is hard to reconcile with the rational expectations used in the model since it is unlikely agents

would view changes as permanent when they have previously seen changes occur. However,

Fuentes-Albero (2011) is very important since it shows the importance of including financial

frictions in DSGE models when studying the Great Moderation.

This paper explores the causes of the Great Moderation by analyzing the relative

importance of financial frictions, good monetary policy and good luck in explaining changing

4For an overview of financial deregulation in the US in recent decades, see Sherman (2009).

5These findings were also supported by Guerrón-Quintana (2007).
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macroeconomic volatility. A real business cycle (RBC) model is augmented with financial

frictions, stochastic volatility and parameter drifting. The parameters governing monetary policy

and financial frictions drift, so changing financial frictions or policy can be studied with the

model. Incorporating stochastic volatility allows for the model to pick up changes in the standard

deviation of the exogenous shocks, which Fernández-Villaverde et al. (2010) show are important

to fitting the data. This estimated model is the first, to the best of my knowledge, to incorporate

stochastic volatility into a DSGE model with financial frictions.

In order to study observed changes in macroeconomic volatility, the model is estimated

using a particle filter and Bayesian econometric methods. To understand the importance of

the different features of the model, I do three exercises. First, the fit of models with different

specifications are compared to determine the importance of certain features for matching the data.

Second, to get an understanding of how unobserved variables have changed over time, a particle

filter is used along with the estimation results to pull out the underlying state variables from the

model. This shows how the financial frictions, monetary policy and the standard deviation of

exogenous shocks have changed over time. The underlying state variables allow for a final exercise,

where the importance of drifting parameters can be studied by doing a counterfactaul experiment.

This is done by simulating data using the underlying states and holding the parameters being

studied, either the financial friction parameter or the monetary policy parameters, constant. The

counterfactual data is then compared with the actual data.

I find strong evidence that changing financial frictions are necessary for fitting the data.

During the middle of the 1980s, financial frictions fell for an extended period of time before

increasing again starting after the year 2000. The decrease in financial frictions observed in the

1980s and 1990s, was an important contributor to the fall in macroeconomic volatility witnessed

during the Great Moderation, which is similar to the findings of Fuentes-Albero (2011). This

shows the importance of changing financial frictions for explaining the Great Moderation even

when allowing for stochastic volatility, which was not included in the model estimated by Fuentes-

Albero (2011). In addition to changing financial frictions, there is also evidence that monetary

policy changed during the 1980s, with policy becoming more responsive to inflation. While I find

that changing monetary policy played a role in the Great Moderation, it does not appear to be

the main reason for the reduction of volaitlity. I find a significant amount of stochastic volatility
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throughout the sample, but this does not appear to be a driver of the Great Moderation, a finding

that differs from the conclusions of Fernández-Villaverde et al. (2010). These results suggest that

part of the reason for good luck being considered a strong driver of the Great Moderation, may

be due to some prior studies ignoring the role that changing financial frictions played in the Great

Moderation.

The rest of the paper is organized as follows. Section 2 presents the model to be estimated.

Sections 3 and 4 describe the data sources and present the estimation strategy. Section 5 presents

the priors and estimation results, while section 6 describes the model fit. Sections 7 and 8 show

the underlying states and results from counterfactual experiments. Finally, section 9 provides

some concluding remarks and describes some potential future related research.

Model

The model economy is populated by a representative household, financial intermediaries,

entrepreneurs, capital producers, final good producers, and a government. The RBC model

serves as a basis for the model, with aspects of the financial accelerator model of Bernanke et

al. (1999) added. Stochastic volatility is incorporated into the model so the standard deviation

of the underlying shocks are allowed to drift over time. The monetary policy rule parameters

and the term measuring financial frictions are allowed to drift over time. The model is based on

the models of Smets and Wouters (2007), Christiano, Motto and Rostagno (2010), Fernández-

Villaverde et al. (2010), and Fuentes-Albero (2012). This model is unique since it combines

stochastic volatility, parameter drifting and the financial accelerator in a DSGE model. While

this model leaves out some of the features of standard New-Keynesian models, like sticky prices

and wages, it serves as a feasible model to estimate and draw initial conclusions.

The main departure from a standard New-Keynesian or RBC model is the inclusion of

a financial accelerator. The financial accelerator introduces entrepreneurs who use their own

funds and borrow funds in order to purchase capital at the end of every period. After capital

is purchased, entrepreneurs are hit with a productivity shock that the entrepreneur costlessly

observes, but the financial intermediary must pay a fee in order to observe the entrepreneur’s

productivity. This asymmetric information introduces new dynamics into the model and can
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amplify business cycles. In this paper, the monitoring cost paid by banks will be allowed to

change over time, which will pick up changes in financial frictions.

Household

There is a representative household that maximizes expected lifetime utility represented by

EtΣ
∞
s=0β

sdt+s

[
log ct+s + log

Mt+s

Pt+s
− ψ

l1+γ
t+s

1 + γ

]
(3.1)

subject to the budget constraint

ct+s +
Dt+s+1

Pt+s
+
NBt+s+1

Pt+s
+
Mt+s+1

Pt+s
≤

wt+slt+s +Rt+s−1
Dt+s

Pt+s
+RNt+s−1

NBt+s
Pt+s

+
Mt+s

Pt+s
+ divt+s − Tt+s − Transt+s, ∀s.

The utility function is separable in consumption, ct, real money balances, Mt

Pt
, and hours worked,

lt. β is the discount factor, Rt is the risk-free, gross nominal interest rate paid on deposits, Rnt

is the risk-free nominal interest rate paid on government bonds, NBt is the nominal value of

government bonds held, Dt is the nominal value of deposits at the financial intermediary, divt

is the real value of dividends obtained from ownership of firms, Tt are taxes paid, and Transt

is the real value of wealth transfers to/from the entrepreneurial sector. The household faces an

intertemporal preference shock, dt, which evolves as

log dt = ρd log dt−1 + σd,tεd,t. (3.2)

The standard deviation of the innovation is allowed to change over time and follows the process

log σd,t = (1− ρσd) log σd + ρσd log σd,t−1 + ηdud,t. (3.3)

The exogenous innovations, εd,t and ud,t, and all other innovations described in the model are

i.i.d. N(0, 1). Allowing for σd,t to drift through time will allow the model to pick up changes in

the nature of underlying shocks over time as in Fernández-Villaverde et al. (2010), if such changes

exist. This specification of stochastic volatility will be present for all shocks in the model.
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Goods Production

A perfectly competitive, representative goods producer rents capital, kt, from entrepreneurs

and hires labor, lt, from the representative household to produce goods. The firm uses a Cobb-

Douglas technology production function

yi,t = (Atlt)
1−α

kαt . (3.4)

The logged productivity term, At, follows a random walk with drift and features stochastic

volatility. The process is defined as

logAt = logAt−1 + ΥA + σA,tεA,t (3.5)

where the standard deviation of the innovation follows the process

log σA,t = (1− ρσA) log σA + ρσA log σA,t−1 + ηduA,t. (3.6)

Capital Producers

Capital producers are perfectly competitive, infinitely lived agents who produce new capital

and purchase capital from entrepreneurs. Capital is produced using a linear production function,

where one unit of investment in period t produces ζt units of time t + 1 physical capital. The

productivity of capital production, ζt, is allowed to change over time following the process

log(ζt) = ρζ log(ζt−1) + σζ,tεζ,t (3.7)

where the standard deviation of the innovation follows the process

log σζ,t = (1− ρσζ ) log σζ + ρσζ log σζ,t−1 + ηζuζ,t. (3.8)

Financial Intermediaries and Entrepreneurs

Entrepreneurs are risk-neutral, finitely lived agents who can borrow funds from financial

intermediates. Entrepreneurs survive from one period to the next with probability ν. Financial
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intermediaries attain funds from households. At the end of period t entrepreneurs purchase

physical capital. At the beginning of period t + 1, entrepreneurs observe an idiosyncratic shock

that affects the productivity of their capital. Entrepreneurs then determine how much of their

capital to rent. At the end of the period entrepreneurs sell off undepreciated capital and pay of

debts to the financial intermediary.

Each entrepreneur faces an idiosyncratic productivity shock, ωjt , at the beginning of each

period which is only observed by the entrepreneur and affects the productivity of his capital

holdings. This shock is assumed to have a lognormal distribution with c.d.f. F (ω) with parameters

µω and σω satisfying E
(
ωj
)

= 1 . Entrepreneurs maximize profits by determining the fraction of

capital to utilize, ujt , to solve

max
ujt

[
ujtr

j,k
t − a

(
ujt

)]
ωjtK

j
t . (3.9)

The rental rate of capital is denoted rj,kt and a(·) represents the cost of utilizing capital and has

the following properties around the steady state: a(·) = 0, a′(·) > 0, a′′(·) > 0.

Capital demand for entrepreneur j is determined by the gross nominal returns on holding

capital

Rj,kt+1 =


(
ujt+1r

j,k
t+1 − a

(
ujt+1

))
+ ωjt+1(1− δ)Qt+1

Qt

 Pt+1

Pt
. (3.10)

The gross return on capital is denoted Rj,kt+1 and ωjt+1(1 − δ)Qt+1 is the return from selling

undepreciated capital.

An entrepreneur can use his own net worth, N j
t+1, or external financing to purchase new

physical capital. Lenders are unable to observe the returns of entrepreneurs unless they pay an

auditing cost. Due to cost minimization, lenders will only audit entrepreneurs when the loan is

not fully repaid. The auditing cost is represented by a fraction, µt+1, being lost in the process of

liquidation leaving (1−µt+1)Ptω
j
t+1R

k
t+1QtK

j
t+1. The auditing cost is allowed to change over time,

which is intended to pick up changes in financial frictions. When the auditing cost falls, this is

interpreted as a lowering of financial frictions since more entrepreneurs can get access to credit.

Since the auditing cost must be between 0 and 1, it is defined as µt = 1
1−µµ̌t . The process that µ̌t

follows is defined by

log µ̌t = ρµ log µ̌t−1 + σµεµ,t. (3.11)

29



The debt contract is set to maximize expected entrepreneurial profits subject to a

participation constraint. The maximization problem is defined as

max
ω̄t+1,kt+1

Et

{
[1− Γ(ω̄t+1)]

Rkt+1

Rt
(Bt+1 +Nt+1)

}
(3.12)

subject to the constraint

Et
Rkt+1

Rt
[Γ(ω̄t+1)− µt+1G(ω̄t+1)] =

QtKt+1 −Nt+1

QtKt+1
(3.13)

where Γ(ω̄t+1) is the expected share of gross entrepreneurial earnings going to the lender and

µt+1G(ω̄t+1) is the expected monitoring cost.6 The size of the loan is defined as Bt+1, the net

worth of the borrower is defined as Nt+1, Qt is the shadow cost of capital, and ω̄t+1 represents

the productivity that must be drawn in order for the borrower to be able to repay the loan. This

results in an external finance premium defined by E
Rkt+1

Rt
.

The net worth of entrepreneurs evolves as

PtNt+1 = xtνVt + PtW
e
t (3.14)

where xt represents a wealth shock, Vt represents entrepreneurial equity, and W e
t is the value

of wealth transfers made by exiting firms.7 The wealth shock changes over time according to

log xt = (1− ρx) log x+ ρx log xt−1 + σx,tεx,t and log σx,t = (1− ρσx) log σx + ρσx log σx,t + ηxux,t.

The entrepreneurial sector provides transfers to/from the private sector equal to Transt = Nt+1 −

νVt −W e
t .

Government

The government finances spending by issuing government bonds to households and

collecting lump-sum taxes. The government’s finances are defined by

NBt+1 + PtTt +Mt+1 = PtGt +Rt−1NBt +Mt. (3.15)

6Γ(ω̄t+1) =
∫ ω̄t+1
0 ωf(ω)dω + ω̄t+1

∫∞
ω̄t+1

f(ω)dω and G(ω̄t+1) =
∫ ω̄t+1
0 ωf(ω)dω.

7Vt = Pt−1RktQt−1Kt −Rt−1Bt − µtG(ω̄t)Pt−1RktQt−1Kt
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Government spending is allowed to change over time and is defined by Gt =
(

1
1+g̃gt

)
Yt where the

government spending shock follows

log(gt) = ρg log(gt−1) + σg,tεg,t (3.16)

where the standard deviation of the innovation follows the process

log σg,t = (1− ρσg ) log σg + ρσg log σg,t + ηgug,t. (3.17)

The central bank sets the interest rate using a Taylor rule with drifting parameters. The

rule is defined as

Rt
R

=

(
Rt−1

R

)1−γR
(Πt

Π

)ψ1,t
(

Yt
Yt−1

ΥA

)ψ2,t
1−γR

mt. (3.18)

The Taylor coefficients drift according to the processes

log(ψ1,t) = ρψ1
log(ψ1,t−1) + (1− ρψ1

) log(ψ1) + ηψ1εψ1,t (3.19)

log(ψ2,t) = ρψ2 log(ψ2,t−1) + (1− ρψ2) log(ψ2) + ηψ2εψ2,t. (3.20)

The monetary policy shock is defined as logmt = σm,tεm,t and σm,t follows the process

log σm,t = (1− ρσm) log σm + ρσm log σm,t + ηmum,t. (3.21)

Market clearing

The market clearing condition for the goods market is defined by

Yt = Ct + It +Gt + a(ut)Kt + µtG(ω̄t)R
k
tQt−1Kt. (3.22)

Credit market clearing is defined by

Dt+1

Pt
=
Bt+1

Pt
= QtKt+1 −Nt+1. (3.23)
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Equilibrium

The equilibrium can be characterized by the first order conditions, the Taylor rule

monetary policy and market clearing conditions. The equilibrium is not stationary due to the unit

root in the process for technology, so some variables must be normalized. To do this let c̃t = ct
At

,

Ĩt = It
At

, K̃t = Kt
At

, B̃t+1 = Bt+1

At
, ÑBt+1 = NBt+1

At
, Ñt+1 = Nt+1

At
, d̃ivt = divt

At
, T̃t = Tt

At
, and

Ãt = At
exp(ΥA)At−1

.

Data

The data used to estimate the model spans from 1954.Q4 to 2006.Q4.8 Seven data series

are used: growth rate of real output, growth rate of real per capita investment, growth rate of real

per capita consumption, the log of inflation (measured as the ratio of the price level this period

and last period), the log of the gross federal funds rate, the log of the Moody’s Baa corporate

bond interest rate divided by the federal funds rate, and the growth rate of net worth.9 The data

is incorporated into the model by creating a vector of observables defined as

Ydatat =



̂̃yt − ̂̃yt−1 + ΥẪ
It −

̂̃
It−1 + ΥẪct − ̂̃ct−1 + ΥA

Π̂t + ΥA

R̂t +R

R̂Baat − R̂t +RBaa −R̂̃
N t −

̂̃
N t−1 + ΥA



.10 (3.24)

To simplify notation, terms that are expressed as the log deviation from their steady state are

denoted as v̂art = log vart − log var.

8More recent data is not used in order to avoid problems that arise at the zero lower bound.

9For more details on how the data is calculated, see Appendix B.

10ΥA represents the drift term in the random walk process for the productivity shock.
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Model Solution and Estimation Strategy

Based on the complexity, size and nonlinearities of the model, estimation is difficult. The

model does not have a closed-form solution and the likelihood function cannot be analytically

solved, so numerical approximations must be used. To achieve this, I first do a second-order

approximation of the model around the steady state using perturbation methods and then

approximate the likelihood using a particle filter. This is then used in a Metropolis-Hastings

algorithm to estimate the posterior.11 This process is described in more detail below.

Following Fernández-Villaverde et al. (2010), the endogenous states of the economy

are stacked into a vector St =

(
R̂t−1, ̂̃ct−1,

̂̃
It−1, ̂̃yt−1, R̂

k
t−1,

̂̃
N t−1,

̂̃
Kt−1, q̂t−1, Π̂t−1

)′
. In

addition to the endogenous states are the exogenous states which are stacked in three different

vectors. The exogenous states regulating the parameter drift are stacked into a vector Dt =(
µ̂t−1, ψ̂1t−1, ψ̂2t−1

)′
. The exogenous states for the underlying structural shocks and stochastic

volatility are stacked in two separate vectors, Zt =

(
x̂t−1, d̂t−1, ĝt−1, ζ̂t−1, m̂t−1,

̂̃
At−1

)′
and

Σt = (σ̂x,t−1, σ̂d,t−1, σ̂g,t−1, σ̂ζ,t−1, σ̂m,t−1, σ̂A,t−1, )
′
.

There are three sources of variation in the model: structural shocks, parameter drift,

and volatility shocks. The innovations to structural shocks are stacked in a vector Et =

(εx,t, εd,t, εg,t, εA,t, εζ,t, εm,t)
′
. The innovations to the parameter drift are stacked in a vector

Vt =
(
εµ,t, εψ1,t , εψ1,t

)′
. The innovations to the volatility shocks are stacked in a vector defined as

Ut = (ux,t, ud,t, ug,t, uA,t, uζt , um,t)
′
. All three vectors of shocks are then stacked into one vector,

Wt = (E ′t,V ′t,U ′t)
′
.

The model does not have a closed-form solution, so the solution must be approximated.

Due to the large size of the model and the inherent nonlinearity of the model introduced by

the stochastic volatility terms, a second order approximation of the model is done around the

deterministic steady state using perturbation methods.12 The model is not linearized since the

stochastic volatility terms would disappear and the solution would exhibit certainty equivalence.

11This process is standard in the literature and closely follows the process described in Fernández-Villaverde et al.
(2010).

12For more information on second order perturbation techniques see Kim et al. (2005), Schmitt-Grohe and
Uribe (2004) and Klein and Gomme (2011). Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006) show that
perturbation methods are both fast and accurate.
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To approximate the model, it must first be put into state space form. The solution can be

written, for a vector of parameters θ, as

St+1 = h (St,Λ; θ) + ΞWt+1 (3.25)

where St = (St, Dt, Zt,Σt,Wt)
′
, Λ represents the perturbation parameter and h maps from R40 to

R39. In addition to the state transition equations, the observation equation is defined as

Yt = g (St,Λ; θ) . (3.26)

The second order perturbation gives an approximate solution that is defined by transition

equations

St+1 = Ψc +


Ψ1
s1S
′
t

...

Ψ1
s39S

′
t

+
1

2


StΨ

1
s1S
′
t

...

StΨ
1
s39S

′
t

+ ΞWt+1 (3.27)

and an observation equation

Yt = C +


Ψ1
Y 1S

′
t

...

Ψ1
Y 7S

′
t

+
1

2


StΨ

2
Y 1S

′
t

...

StΨ
2
Y 7S

′
t

 (3.28)

where Yt represents a vector of observables, which may contain a subset or all of the vector Yt

from the observation equation. In the equations Ψ1
ij is a 1× 39 matrix and Ψ2

ij is a 39× 39 matrix,

while Ξ is a 39 × 5. Ψc is a vector containing the correction for risk in the state equation and C

is a vector containing the sum of the means of the observables and the correction for risk for the

observation equation.

The approximate solution described in equation (3.28) can be used to evaluate the

likelihood by using the particle filter, even if some observables are not considered to have

measurement error. Define Y1,t as a vector 6 × 1 of observations that are assumed to have no

measurement error and Y2,t as the observation with measurment error, which are stacked to

make the 7 × 1 vector Yt = (Y1,t,Y2,t)
′
. As is shown in Fernández-Villaverde et al. (2010),

the second derivatives from h and g show that the cross-derivative for Ut is always equal to zero
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for all variables except Et. Based on this, the measurement equation can be rewritten as

Yt = C+


Ψ1
Y 1S

′
t

...

Ψ1
Y 7S

′
t

+
1

2


(S′t, D

′
t, Z
′
t,Σ
′
t, E ′t,V ′t) Ψ2,1

Y 1 (S′t, D
′
t, Z
′
t,Σ
′
t, E ′t,V ′t)

′

...

(S′t, D
′
t, Z
′
t,Σ
′
t, E ′t,V ′t) Ψ2,1

Y 7 (S′t, D
′
t, Z
′
t,Σ
′
t, E ′t,V ′t)

′

+


E ′tΨ

2,2
Y 1

...

E ′tΨ
2,2
Y 7

Ut.
(3.29)

This can be used to evaluate the likelihood function using the particle filter. Unlike in Fernández-

Villaverde et al. (2010), there are more observables, 7, than volatility shocks, 6. So, I assume that

there is measurement error, met on the growth of net worth observations, which is likely to be the

most difficult to accurately measure.13 To ease notation, define Ht = (S′t, D
′
t, Z
′
t,Σ
′
t, E ′t,V ′t)

′
. To

aid with the evaluation, define

At (H′t) = Ydatat − C−


Ψ1
Y 1S

′
t

...

Ψ1
Y 7S

′
t

− 1

2


(Ht) Ψ2,1

Y 1 (Ht)′

...

(Ht) Ψ2,1
Y 7 (Ht)′


and

B (Et) =



EtΨ2,2
Y 1, 0

...

EtΨ2,2
Y 6, 0

EtΨ2,2
Y 7, 1


.

The entry of 1 in the seventh row of B (Et) picks up the measurement error. Using N draws of

{sit, hit}Ni=1 from p
(
St,Ht|Ydata,t−1; θ

)
, this equation can be used to directly calculate

p
(
Yt = Ydatat |Ydata,t−1; θ

)
' 1

N

N∑
i=1

∣∣∣det
(
B−1

(
ei
′

t

))∣∣∣ p((Ut,met) = B−1
(
ei
′

t

)
At

(
hi
′

t

))
.

13The measurement error is assumed to be i.i.d. with a mean zero normal distribution with a standard deviation
of 0.003. This value is chosen because the measurement error is not well identified in estimation and it assumes
only a small measurement error.
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From this, importance weights of each draw can be calculated for use in the particle filter:

qit =

∣∣∣det
(
B−1

(
ei
′

t

))∣∣∣ p((Ut,met) = B−1
(
ei
′

t

)
At

(
hi
′

t

))
∑N
i=1

∣∣det
(
B−1

(
ei
′
t

))∣∣ p ((Ut,met) = B−1
(
ei
′
t

)
At
(
hi
′
t

)) .
The particle filter used follows Fernández-Villaverde et al. (2010) and Fernández-Villaverde

and Rubio-Ramı́rez (2007). The steps followed are:

1. Set t; 1 and sample N values {sit−1|t−1, h
i
t−1|t−1}

N
i=1 from p

(
St,Ht|Ydata,t−1; θ

)
.

2. Sample N values {sit|t−1, h
i
t|t−1}

N
i=1 from p

(
St,Ht|Ydata,t−1; θ

)
by using

{sit−1|t−1, h
i
t−1|t−1}

N
i=1, the law of motion for the states and the distribution of the shocks

{Ht|θ}.

3. Assign the weight qit to each draw
(
sit|t−1, h

i
t|t−1

)
.

4. Sample N times with replacement from {sit|t−1, h
i
t|t−1}

N
i=1 using the weights qit. Call each

draw
(
sit|t, h

i
t|t

)
. If t < T set t; t+ 1 and go to step 2, otherwise stop.

Using the output of the particle filter the likelihood can be calculated as

P
(
YT |θ

)
'

T∏
t=1

p
(
Yt = Ydatat |Ydata,t−1; θ

)
. (3.30)

In order to feasibly estimate the model when there is no stochastic volatility, I must assume

measurement error for all observables. I also estimate the model with stochastic volatility and

measurement error for all observables to have a more fair comparison for the two models. In

these specifications, I assume the measurement error is defined as a 7 × 1 vector Mt. With

slight modifications, the particle filter can be used to approximate the likelihood function for

this specification as well. The particle filter proceeds as follows

1. Set t; 1 and sample N values {sit−1|t−1, w
i
t−1|t−1}

N
i=1 from p

(
St,Wt|Ydata,t−1; θ

)
.

2. Sample N values {sit|t−1, w
i
t|t−1}

N
i=1 from p

(
St,Wt|Ydata,t−1; θ

)
by using

{st−1|t−1, wt−1|t−1}Ni=1, the law of motion for the states and the distribution of Wt.

3. Assign the weight qit =
p(Mt=Yt−Ydatat |Yt−1,sit|t−1,w

i
t|t−1)∑N

i=1 p
(
Mt=Yt−Ydatat |Yt−1,si

t|t−1
,wi
t|t−1

) to each draw
(
sit, h

i
t

)
.

4. Sample N times with replacement from {st|t−1, wt|t−1}Ni=1 using the weights qit. Call each

draw
(
sit|t, w

i
t|t

)
. If t < T set t; t+ 1 and go to step 2, otherwise stop.
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The output of the particle filter can be used to calculate the likelihood as

P
(
YT |θ

)
'

T∏
t=1

1

N

N∑
i=1

p
(
Mt = Yt −Ydatat |Yt−1, sit|t−1, w

i
t|t−1

)
. (3.31)

Once the likelihood is approximated, it can be combined with a prior distribution and

used to estimate the model. To do so, I use a random walk Metropolis-Hastings algorithm.14 The

algorithm proceeds as follows:

1. Choose a starting vector, θ(0), of size nθ of coefficients and set s; 1

2. Take a candidate draw, θ∗ = θ(s−1) + ξ, where ξ is a random normal vector of dimension nθ.

3. Set θ(s) = θ∗ with probability min

[
p(YT |θ∗)p(θ∗)

p(YT |θ(s−1))p(θ(s−1))
, 1

]
4. If s < S, set s; s+ 1 and go to step 2, otherwise stop.

In this paper, I set S=20,000 in the Metropolis-Hastings algorithm and discard the first 5,000

draws as a burn-in sampling.

Priors and Estimation Results

Priors

The model is estimated using flat priors, which are described in Table B.1 in Appendix

B. Flat priors are chosen in order to minimize the impact of pre-sample information. While

this differs from some previous studies, it is difficult to know what reasonable priors are for

the stochastic volatility terms. Flat priors do not come without concerns, as they can make

identification difficult. To avoid potential identification issues and ease the computational burden,

some parameters are fixed to certain values. As is common in the literature, I fix δ = 0.25, ψ = 8,

F (ω̄ss) = 0.0075, σ2
ω = 0.24, β = 0.998, and ν = 0.9762.15 In addition to this, I also fix the

persistence terms, ρ, for the stochastic volatility and parameter drift processes to 0.95. While

this is quite restrictive, it helps with identification and imparts a large degree of persistence,

which would be expected of changes that caused the Great Moderation.16 While I am fixing

14Bayesian methods are used instead of maximum likelihood estimation in order to be consistent with other
studies and to restrict the model to parameterizations that are reasonable.

15These numbers are used by either Fernández-Villaverde et al. (2010) or Christiano et al. (2010) in similar
studies.

16This is not very different from specifying that a process follows a unit root, which is frequently done in
empirical studies.

37



the persistence, the standard deviation of the exogenous shocks to the stochastic volatility and

parameter drifting is freely estimated. If there is little movement in the parameters or if there

is little stochastic volatility, this can still be determined in the estimation and would show the

estimated standard deviation of the innovations to be near zero.

Results

The posteriors of many key variables from the partial measurement error estimation will be

described here, while all results can be found in Appendix B in Tables B.2 to B.5. The results are

presented with the means of the posterior distribution along with their standard deviation.

The posterior results for the coefficients controlling the parameter drift of the bankruptcy

cost, which can be considered a measure of financial frictions, are shown in Table 11. The steady

state marginal bankruptcy cost is estimated to be around 0.28, which would mean that 28% of an

entrepreneur’s assets would be lost due to auditing costs if the entrepreneur went bankrupt. This

estimate is much lower than the calibration used by Christiano et al. (2010), but is slightly higher

than the findings in Fuentes-Albero (2010). The bankruptcy cost does not appear to be constant,

as the mean posterior of σµ is 0.11, so financial frictions do appear to be changing during the

sample.

TABLE 11. Posterior, Bankruptcy Cost Parameters

µss σµ

0.279 0.11
(0.043) (0.027)

The posterior results for the monetary policy parameters are shown in Table 12. The

steady-state Taylor rule parameter governing the response to inflation in much larger than in

Fernández-Villaverde et al. (2010) which does not have financial frictions, but is in line with the

estimates from similar models with financial frictions. Policy is quite responsive to deviations

of inflation from the Fed’s target, as is shown by the posterior distribution of ψ1. Based on the

distributions of σψ1
and σψ2

, it appears that policy has not be constant throughout the sample.

The posterior results for the stochastic volatility parameters are shown in Table 13. Similar

to the findings in Fernández-Villaverde et al. (2010)., there appears to be a large degree of
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TABLE 12. Posterior, Monetary Policy

ψ1 ψ2 Π

2.370 0.279 1.010
(0.026) (0.043) (0.005)

σψ1
σψ2

γR

0.070 0.293 0.027
(0.029) (0.020) (0.016)

stochastic volatility, as all of the standard deviations to the innovation are significantly above

zero.

TABLE 13. Posterior, Stochastic Volatility

σm σd σx σζ σz σg

0.105 0.080 0.195 0.063 0.003 0.144
(0.009) (0.006) (0.013) (0.012) (0.001) (0.008)

σσm σσd σσx σσζ σσz σσg

0.637 0.120 0.825 0.978 0.257 0.470
(0.120) (0.021) (0.037) (0.023) (0.020) (0.040)

Based on the posterior distributions from the estimation, I find that financial frictions,

monetary policy and the standard deviation of the exogenous shocks are not constant over time.

These results show that any of these model features could play a large role in explaining the Great

Moderation.

Model Fit

To better understand the role that stochastic volatility and parameter drifting play, I will

first study the fit of the model by comparing log marginal data densities, which are shown in

Table 14.17 There are four models that are compared. The “Full Model” and “Constant µ” both

have no measurement error, except in the log growth of net worth, but one model allows µt to

drift as described above and the other fixes µt. The model listed as “ No s.v., w/full measurement

error” holds estimates a variation of the model described above where the standard deviation

of all shocks is held constant (i.e. no stochastic volatility) and all observables are assumed to

have measurement error. To best compare the importance of stochastic volatility, the model

17The log marginal data densities are calculated using the method presented by Chib and Jeliazkov (2001).
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called “Full Model, w/full measurement error” estimates the full model described above with

measurement error for all observables and includes stochastic volatility.18

TABLE 14. Model Fit

Model log p
(
YT = Ydata,T |mi

)
Full Model 2,156
Constant µ 1,861
Full Model, w/full measurement error -3,897
No s.v., w/full measurement error -5,640

Based on Table 14, allowing for µ to drift over time greatly improves model fit, the

log Bayes Factor comparing the “Full Model” and the “Constant µ” model is 295. This is

overwhelming evidence in favor of the model with changing financial frictions. Both of these

specifications fit the data much better than either of the models with measurement error for all

observables. However, when comparing the models with and without stochastic volatility, there

is overwhelming evidence that stochastic volatility improves model fit as the log Bayes Factor

comparing the two models is 1,743.

Underlying States

In order to get a better understanding of how parameters have changed over time, the

smoothed shocks are presented in this section. There is considerable movement in the marginal

bankruptcy cost term as well as the monetary policy parameters. There also is a significant

amount of stochastic volatility, especially when looking at the standard deviation of productivity

shocks.

Based on Figure 1, there is substantial movement in the marginal bankruptcy cost term,

µt, over time. This is a measure of financial frictions, as it plays a role in determining how many

entrepreneurs receive loans and what the credit spread is. It falls from a high around 0.3 to a low

around 0.12, which represents a fall in auditing costs of about 40%. The fall began in the early to

mid-1980s, around the start of the Great Moderation. The lowering of µt would allow freer access

18The inclusion of measurement error decreases the marginal data densities, so it is difficult to compare models if
one contains measurement error and the other does not.
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FIGURE 1. Bankruptcy Cost: µt

to credit by entrepreneurs and a lowering of the credit spread. This would lower macroeconomic

volatility, since investment would be more stable throughout the business cycle.19

The underlying states of ψ1,t and ψ2,t, which represent Federal Reserve interest rate policy

regarding inflation and output, are shown in Figure 2. The Fed’s reaction to inflation becomes

much stronger, as shown by the increase in ψ1,t starting in the mid-1980s, around the time of the

beginning of the Great Moderation. The response to the output growth gap is relatively constant

throughout much of the sample. Based on the movements of ψ1,t and ψ2,t, it does appear that

changes in the Fed’s response to inflation might play a role in the Great Moderation, but it does

not appear that changes in the response to output growth could play a role.

The underlying states of the stochastic volatility parameters are shown in Figure 3. In each

series there is substantial variation; however, none of the movements appear to be supportive

of good luck causing the Great Moderation. The only stochastic volatility terms that show

a pattern to their drift are the standard deviations of the monetary policy shock, σm,t, and

the government spending shock, σg,t. However, both of these show that the underlying shocks

became more volatile starting in the 1980s, rather than less. This would actually cause more

macroeconomic volatility to increase and is the opposite of the good luck story. These findings

differ from Fernández-Villaverde et al. (2010), who find that the standard deviations of some

19As can be seen below in Table 15, investment did indeed become more stable during the Great Moderation.
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FIGURE 2. Monetary Policy Parameters: ψ1,t, ψ2,t

shocks fall, specifically the intertemporal shock which is similar to the shock described above as

dt, during the 1980s and this a key contributor to the Great Moderation.20

Counterfactuals

In order to study the role that changing financial frictions and stochastic volatility play

in reducing macroeconomic volatility, counterfactual studies must be done. To do this, some

variables in the model are constrained and then the model is simulated using the same underlying

shocks that are pulled out from the original estimation. One variation holds the marginal

bankruptcy/auditing cost parameter, µ, constant throughout the sample to judge it’s role in

the change in volatility. Another counterfactual study is done by holding the monetary policy

parameters constant. If the drifting of financial frictions or the changing of monetary policy is

important to decreasing the volatility of the observed data, I would expect there to be a smaller

drop in the standard deviations of the simulated data when these features are removed from the

model.

20It is important to note that not all of the shocks are shared across the model described above and the model
used by Fernández-Villaverde et al. (2010), which may account for some of the differences in the findings regarding
stochastic volatility.
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FIGURE 3. Stochastic Volatility (Log Deviation from S.S) of: Weath Shock (σx,t), Intertemporal
Shock (σd,t), Monetary Policy Shock(σm,t), Governemtne Spending Shock (σg,t), Capital
Production Shock (σζ,t), Technology Shock (σA,t)
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The results of these countefactuals can be found in Table 15. The first section of the table

shows how the standard deviation of the annualized growth rate of output, inflation and the

annualized growth rate of investment, the annual credit spread, measured as RBaa

R , the annual

federal funds rate, the annualized growth rate of net worth, as well as the annualized growth

rate of consumption changed before and after the first quarter of 1984, which is considered to be

the approximate start of the Great Moderation.21 The data shows a clear drop in the standard

deviation across all data types, except net worth which actually becomes more volatile.

TABLE 15. Standard Deviation of Data from Counterfactuals

Standard Deviation

Y Π I RBaa

R R N C

Data, pre 1984Q1 6.14 3.42 18.6 0.0042 4.01 2.89 3.14
Data, post 1984Q1 3.17 1.16 9.79 0.0035 2.47 8.55 2.36
Data, post/pre 0.52 0.34 0.53 0.83 0.62 2.96 0.75

Constant µ, pre 1984Q1 6.92 3.65 29.5 0.0065 4.34 4.79 3.69
Constant µ, post 1984Q1 7.52 2.95 36.1 0.0080 3.21 9.89 4.19
Constant µ, post/pre 1.09 0.81 1.22 1.23 0.74 2.07 1.14

Constant ψ1, ψ2, pre 1984Q1 6.14 12.1 19.0 0.0288 4.30 4.40 3.18
Constant ψ1, ψ2, post 1984Q1 4.08 14.5 17.8 0.0355 3.19 8.58 2.67
Constant ψ1, ψ2, post/pre 0.66 1.20 0.94 1.23 0.74 1.95 0.84

The second section of Table 15 shows the counterfactual data’s standard deviations that

would have been observed if µt was constant throughout the sample. For all data types, except

net worth, if financial frictions were constant then the decrease in volatility observed during

the Great Moderation would have been much smaller or nonexistent. The standard deviation of

output growth, investment growth, consumption growth and the credit spread would have actually

increased after 1984 if financial frictions were constant, instead of decreasing as is observed in the

data. With financial frictions held constant, the decrease in the variability of inflation would have

been much smaller than the observed drop, with the standard deviation only falling by about 19%

instead of falling by 66%.

The third section of Table 15 shows the counterfactual data’s standard deviations that

would have been observed had monetary policy been constant throughout the sample. Not

21The simulated data pulled from the estimation, with no constraints added, perfectly matches all the observed
data except for the net worth observations. The net worth data does not match due to measurement error and the
estimated data, with no constraints, finds the standard deviation of the growth of net worth to increase from 4.01
to 8.28, which is similar to the actual data.
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surprisingly, the standard deviation of inflation changes greatly when monetary policy is held

constant. The standard deviation of the credit spread is also greatly affected. Based on the

results presented above, it appears that changing monetary policy is important for explaining

the moderation in inflation and investment. It also appears that changing monetary policy is

important for explaining the change in the volatility of the federal funds rate and the credit

spread. When holding monetary policy constant, there is still a decrease in the standard deviation

of output and consumption growth. This decrease in standard deviations is similar to that

observed in the data, so it does not appear that changing monetary policy is an important driver

of the moderation of output and consumption. Based on this counterfactual study, changing

monetary policy played a role in the Great Moderation, but it was a much smaller role than the

role played by changing financial frictions.22

Conclusion

In this paper I estimate a medium-scale DSGE model featuring financial frictions,

parameter drifting and stochastic volatility. The model is estimated using Bayesian techniques

and the particle filter. To understand the importance of the features of the model, I study the

underlying states and run counterfactual tests, in addition to analyzing model fit. I find that

changing financial frictions play a large role in explaining the reduction in volatility observed

during the Great Moderation. I also find that changing monetary policy played a limited role

in the Great Moderation. While stochastic volatility is important to fitting the data, good luck

does not appear to be an important cause of the Great Moderation. This differs from Fernández-

Villaverde et al. (2010), who point to decreases in the variance of shocks and good luck as being

the main cause of the Great Moderation. Part of the differing importance of stochastic volatility

may be due to the inclusion of financial frictions.

While this paper finds support for changing financial frictions contributing to the Great

Moderation, it is important to remember that the model does not feature sticky wage or sticky

price mechanisms found in New-Keynesian models. In future research, I plan to augment this

model with sticky wages and sticky prices. This should further clarify the role that financial

22It is important to remember that there are no price and no wage rigidities. I plan to study a similar model
featuring these in future work.
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frictions played in the Great Moderation. Another extension to this paper would be to add

learning to the model to further study the role that changing parameters can have on dynamics.
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CHAPTER IV

CHANGING MACROECONOMIC VOLATILITY IN A NEW KEYNESIAN MODEL WITH

FINANCIAL FRICTIONS

Introduction

A key feature of the post-war US economy is the Great Moderation, where there was a

dramatic reduction in volatility of real and nominal macroeconomic variables starting in the

1980s.1 The causes of the Great Moderation have been greatly debated and there is no definitive

answer as to what brought about the reduction in volatility. Much of the research has focused

on changing monetary policy and good luck. Chapter III finds that reductions in financial

frictions played a key role in the Great Moderation using a Real Business Cycle (RBC) model

with changing financial frictions and stochastic volatility. I further that work by using Bayesian

techniques to estimate a New Keynesian model featuring aspects of the financial accelerator model

of Bernanke, Gertler and Gilchrist (1999). The model features stochastic volatility, changing

financial frictions and changing monetary policy. This model is used to study whether changing

financial frictions, good monetary policy or good luck with shocks caused the Great Moderation.

A major focus of macroeconomics is understanding the causes of business cycle fluctuations

and macroeconomic volatility. Macroeconomic volatility can have large welfare effects and may

even impact economic growth.2 A great deal of research has focused on the Great Moderation

since it provides a natural setting to study the causes of macroeconomic volatility. Some have

argued that the Great Moderation was brought about by improved monetary policy that was

more responsive to inflation.3 The other main explanation for the Great Moderation was “good

luck,” where the exogenous shocks became less volatile.4 Another explanation is provided by

1Kim and Nelson (1999), McConnell and Perez-Quiros (2000), and Stock and Watson (2003) provide an
empirical analysis of the change in volatility associated with the Great Moderation.

2For estimates of the welfare cost of volatility, see Reis (2009). For an estimate of the effect on growth, see
Barlevy(2004).

3For example, see Clarida, Gaĺı, and Gertler (1999).

4For examples, see Sims and Zha (2006), McConnell and Perez-Quiros (2000), and Fernández-Villaverde,
Guerrón-Quintana, and Rubio-Ramı́rez (2010).
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Dynan, Elmendorf and Sichel (2006), who find that financial innovation may be an important

factor in explaining the decrease in volatility during the Great Moderation.5

A reduction of financial frictions may also explain the Great Moderation. Bernanke et

al. (1999) showed that financial frictions could affect the size of business cycle fluctuations

by developing the financial accelerator model, so a reduction in financial frictions could lower

macroeconomic volatility. There is reason to believe that financial frictions may have fallen during

the 1980s as this was a time of financial innovation and deregulation.6 Fuentes-Albero (2011) and

Chapter III find evidence that financial frictions fell during the 1980s and this drop in frictions

was a key driver in moderating the business cycle.

This paper studies the causes of the Great Moderation by estimating a large structural

model that allows for changing monetary policy, stochastic volatility, and changing financial

frictions. The estimated model is based on a New Keynesian model that features a financial

accelerator mechanism. The model allows for financial frictions and monetary policy to drift

over time. This model differs from Chapter III since it includes nominal rigidities and differs

from Fuentes-Albero (2011) since it includes stochastic volatility. The inclusion of stochastic

volatility lets the standard deviation of the exogenous shocks in the model change over time.

These features allow the model to be used to study the importance of good luck, good policy and

changing financial frictions in the Great Moderation.7

In order to study observed changes in macroeconomic volatility, the model is estimated

using a particle filter and Bayesian econometric methods. To understand the importance of

the different features of the model, I do three exercises. First, the fit of models with different

specifications are compared to determine the importance of certain features for matching the data.

Second, to get an understanding of how unobserved variables have changed over time, a particle

filter is used along with the estimation results to pull out the underlying state variables from

the model. This shows how the financial frictions, monetary policy and the standard deviation

5These findings were also supported by Guerrón-Quintana (2007).

6Examples of changes in regulation include the Bankruptcy Reform Act of 1978, Depository Deregulations and
Monetary Control Act of 1980, Garn-St. Germain Depository Institutions Act in 1982, the Financial Institutions
Reform Act in 1989, the Riegle-Neal Interstate Banking and Branching Efficiency Act in 1994 and the Gramm-
Leach-Bliley Act in 1999. For an overview of financial deregulation in the US in recent decades, see Sherman
(2009).

7It is important to study these explanations from within the same model as this will make for a more fair
comparison.
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of exogenous shocks have changed over time. The underlying state variables allow for a final

exercise, where the importance of drifting parameters can be studied by doing a counterfactaul

experiment. This is done by simulating data using the underlying states and holding the financial

frictions constant or setting them equal to the pre-1984 levels during the Great Moderation. The

counterfactual data is then compared with the actual data.

I find strong evidence that financial frictions fell during the early 1980s and this reduction

in financial frictions was an important reason for the reduction in volatility observed during the

Great Moderation. This supports the findings of Fuentes-Albero (2011) and Chapter III. Based

on a study of the underlying states there appears to be some changes in monetary policy during

the time studied, but there doesn’t appear to be any systematic change in policy. Specifically,

there does not appear to an increase in responsiveness to inflation during the 1980s like the

“good policy” story suggests. I find mixed support of “good luck” during the Great Moderation.

There does not appear to be a reduction in the standard deviation of the exogenous shocks

during the 1980s as is found in Fernández-Villaverde et al. (2010). However, when studying the

underlying shocks that hit the economy, there do appear to be some changes in the way the

economy behaved. It appears that the shocks facing households systematically changed during the

1980s. These shocks appear to be important in explaining the reduction in consumption volatility

observed during the Great Moderation. Based on these findings, it appears that changing financial

frictions and good luck were both important in bringing about the Great Moderation. This

differs from the third chapter, which found no rle for good luck. This is may be attributed to

the inclusion of habit persistance and intratemporal shocks into the model

The rest of the paper is organized as follows. Section 2 presents the model to be estimated.

Sections 3 and 4 describe the data sources and present the estimation strategy. Section 5 presents

the priors and estimation results, while section 6 describes the model fit. Sections 7 and 8 show

the underlying states and results from counterfactual experiments. Finally, section 9 provides

some concluding remarks and describes some potential future related research.

Model

The model economy is populated by a continuum of households, financial intermediaries,

entrepreneurs, capital producers, final good producers, and a government. A New Keynsian model
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serves as the basis for the model, with aspects of the financial accelerator model that Bernanke

et al. (1999) added. Stochastic volatility is incorporated into the model so the standard deviation

of the underlying shocks are allowed to drift over time. The monetary policy rule parameters

and the term measuring financial frictions are allowed to drift over time. The model is based on

the models of Smets and Wouters (2007), Christiano, Motto and Rostagno (2010), Fernández-

Villaverde et al. (2010), and Fuentes-Albero (2012). This model is unique since it combines

stochastic volatility, parameter drifting and the financial accelerator in a DSGE model.

The main departure from a standard New-Keynesian or RBC model is the inclusion of

a financial accelerator. The financial accelerator introduces entrepreneurs who use their own

funds and borrow funds in order to purchase capital at the end of every period. After capital

is purchased, entrepreneurs are hit with a productivity shock that the entrepreneur costlessly

observes, but the financial intermediary must pay a fee in order to observe the entrepreneurs

productivity. This asymmetric information introduces new dynamics into the model and can

amplify business cycles. In this paper, the monitoring cost paid by banks will be allowed to

change over time, which will pick up changes in financial frictions.

Household

There is a continuum of households indexed by j who maximize expected utility

represented by

EtΣ
∞
s=0β

sdt+s

[
log (cj,t+s − hcj,t+s−1) + log

Mj,t+s

Pt+s
− ϕtψ

l1+ϑ
j,t+s

1 + ϑ

]
(4.1)

subject to the budget constraint

cj,t+s +
Dj,t+s+1

Pt+s
+
NBj,t+s+1

Pt+s
+
Mj,t+s+1

Pt+s
≤

wj,t+slt+s +Rt+s−1
Dj,t+s

Pt+s
+RNt+s−1

NBj,t+s
Pt+s

+
Mj,t+s

Pt+s
+ divt+s − Tt+s − Transt+s, ∀s.

The utility function is separable in consumption, cj,t, real money balances,
Mj,t

Pt
, and hours

worked, lj,t. β is the discount factor, Rt is the risk-free, gross nominal interest rate paid on

deposits, Rnt is the risk-free nominal interest rate paid on government bonds, NBj,t is the

nominal value of government bonds held, Dj,t is the nominal value of deposits at the financial
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intermediary, divt is the real value of dividends obtained from ownership of firms, Tt are taxes

paid, and Transt is the real value of wealth transfers to/from the entrepreneurial sector. The

household faces an intertemporal preference shock, dt, and an intratemporal preference shock, ϕt,

that evolves as

log dt = ρd log dt−1 + σd,tεd,t (4.2)

logϕt = ρϕ logϕt−1 + σϕ,tεϕ,t. (4.3)

The standard deviation of the innovation is allowed to change over time and follows the process

log σd,t = (1− ρσd) log σd + ρσd log σd,t−1 + ηdud,t (4.4)

log σϕ,t = (1− ρσϕ) log σϕ + ρσϕ log σϕ,t−1 + ηϕuϕ,t. (4.5)

The exogenous innovations, εd,t, εϕ,t, ud,t, and uϕ,t, and all other innovations described in the

model are i.i.d. N(0, 1). Allowing for σd,t and σϕ,t to drift through time will allow the model

to pick up changes in the nature of underlying shocks over time as in Fernández-Villaverde et

al. (2010), if such changes exist. This specification of stochastic volatility will be present for all

shocks in the model.

Households provide differentiated labor to a labor packer in a monopolistically competitive

market. The perfectly competitive labor packer aggregates labor using the following production

function

ldt =

(∫ 1

0

l
η−1
η

j,t dj

) η
η−1

. (4.6)

The labor packer maximizes profits given the wage, wt, and the differentiated wage, wj,t using the

following equation

max
lj,t

wtl
d
t −

∫ 1

0

wj,tlj,tdj. (4.7)

Households face a Calvo pricing mechanism for their wages. Each period, a fraction 1 −

θw, of households are able to optimize their prices. Households that are not able to optimize

their wages partially index wages based on previous inflation using the indexation parameter χw,

setting prices as wi,t = Πχw
t−1wi,t−1.
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Final Good Production

A perfectly competitive final good producer aggregates a continuum of intermediate goods

using the production function

ydt =

(∫ 1

0

y
ε−1
ε

i,t di

) ε
ε−1

(4.8)

where ε is the elasticity of substitution for the intermediate goods. The final goods producer

minimizes costs given this production function, the price of intermediate goods, pi,t, and the price

of the final good, pt. This minimization leads to the following demand function

yi,t =

(
pi,t
pt

)−ε
ydt ∀i

where the price of the final good is defined by

pt =

(∫ 1

0

p1−ε
i,t di

) 1
1−ε

.

Intermediate Good Production

Intermediate goods are produced by a monopolistic competitor with a Cobb-Douglas

production function defined as

yi,t = Atk
α
i,t

(
ldi,t
)1−α

(4.9)

where ki,t is the capital rented and ldi,t is the “packed” labor rented by firm i. The log of the

productivity term, At, follows a random walk and features stochastic volatility. The process is

defined as

logAt = logAt−1 + ΥA + σA,tεA,t (4.10)

where the standard deviation of the innovation follows the process

log σA,t = (1− ρσA) log σA + ρσA log σA,t−1 + ηduA,t. (4.11)

Intermediate good producers face a Calvo pricing mechanism. Each period, a fraction 1−θp,

of firms are able to optimize their prices. Firms that are not able to optimize their prices partially
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index their prices based on previous inflation using the indexation parameter χ, setting prices as

pj,t = Πχ
t−1pj,t−1.

Capital Producers

Capital producers are perfectly competitive, infinitely lived agents who produce new capital

and purchase capital from entrepreneurs. Capital is produced using a linear production function,

where one unit of investment in period t produces ζt units of time t+1 physical capital. The log of

the productivity of capital production, ζt, follows a random walk with drift defined by the process

log ζt = log ζt−1 + Υζ + σζ,tεζ,t (4.12)

where the standard deviation of the innovation follows the process

log σζ,t = (1− ρσζ ) log σζ + ρσζ log σζ,t−1 + ηζuζ,t.
8 (4.13)

Financial Intermediaries and Entrepreneurs

Entrepreneurs are risk-neutral, finitely lived agents who can borrow funds from financial

intermediates. Entrepreneurs survive from one period to the next with probability ν. Financial

intermediaries attain funds from households. At the end of period t, entrepreneurs purchase

physical capital. At the beginning of period t + 1, entrepreneurs observe an idiosyncratic shock

that affects the productivity of their capital. Entrepreneurs then determine how much of their

capital to rent. At the end of the period entrepreneurs sell off undepreciated capital and pay of

debts to the financial intermediary.

Each entrepreneur faces an idiosyncratic productivity shock, ωjt , at the beginning of each

period which is only observed by the entrepreneur and affects the productivity of his capital

holdings. This shock is assumed to have a lognormal distribution with c.d.f. F (ω) with parameters

µω and σω satisfying E
(
ωj
)

= 1 . Entrepreneurs maximize profits by determining the fraction of

8To ease notation later, define zt = A
1

1−α
t ζ

α
1−α
t and Υz =

ΥA+Υζ
1−α .
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capital to utilize, ujt , to solve

max
ujt

[
ujtr

j,k
t − ζ−1

t a
(
ujt

)]
ωjtK

j
t . (4.14)

The rental rate of capital is denoted rj,kt . a(·) represents the cost of utilizing capital and is defined

as a (ut) = γ1 (ut − 1) + 1
2γ2 (ut − 1)

2
.

Capital demand for entrepreneur j is determined by the gross nominal returns on holding

capital

Rj,kt+1 =


(
ujt+1r

j,k
t+1 − ζta

(
ujt+1

))
+ ωjt+1(1− δ)Qt+1

Qt

 Pt+1

Pt
. (4.15)

The gross return on capital is denoted Rj,kt+1 and ωjt+1(1 − δ)Qt+1 is the return from selling

undepreciated capital.

An entrepreneur can use his own net worth, N j
t+1, or external financing to purchase new

physical capital. Lenders are unable to observe the returns of entrepreneurs unless they pay an

auditing cost. Due to cost minimization, lenders will only audit entrepreneurs when the loan is

not fully repaid. The auditing cost is represented by a fraction, µt+1, being lost in the process of

liquidation leaving (1−µt+1)Ptω
j
t+1R

k
t+1QtK

j
t+1. The auditing cost is allowed to change over time,

which is intended to pick up changes in financial frictions. When the auditing cost falls, this is

interpreted as a lowering of financial frictions since more entrepreneurs can get access to credit.

Since the auditing cost must be between 0 and 1, it is defined as µt = 1
1−µµ̌t . The process that µ̌t

follows is defined by

log µ̌t = ρµ log µ̌t−1 + σµεµ,t. (4.16)

The debt contract is set to maximize expected entrepreneurial profits subject to a

participation constraint. The maximization problem is defined as

max
ω̄t+1,kt+1

Et

{
[1− Γ(ω̄t+1)]

Rkt+1

Rt
(Bt+1 +Nt+1)

}
(4.17)

subject to the constraint

Et
Rkt+1

Rt
[Γ(ω̄t+1)− µt+1G(ω̄t+1)] =

QtKt+1 −Nt+1

QtKt+1
(4.18)
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where Γ(ω̄t+1) is the expected share of gross entrepreneurial earnings going to the lender and

µt+1G(ω̄t+1) is the expected monitoring cost.9 The size of the loan is defined as Bt+1, the net

worth of the borrower is defined as Nt+1, Qt is the shadow cost of capital, and ω̄t+1 represents

the productivity that must be drawn in order for the borrower to be able to repay the loan. This

results in an external finance premium defined by E
Rkt+1

Rt
.

The net worth of entrepreneurs evolves as

PtNt+1 = xtνVt + PtW
e
t (4.19)

where xt represents a wealth shock, Vt represents entrepreneurial equity, and W e
t is the value

of wealth transfers made by exiting firms.10 The wealth shock changes over time according to

log xt = (1− ρx) log x+ ρx log xt−1 + σx,tεx,t and log σx,t = (1− ρσx) log σx + ρσx log σx,t + ηxux,t.

The entrepreneurial sector provides transfers to/from the private sector equal to Transt = Nt+1 −

νVt −W e
t .

Government

The government finances spending by issuing government bonds to households and

collecting lump-sum taxes. The government’s finances are defined by

NBt+1 + PtTt +Mt+1 = PtGt +Rt−1NBt +Mt. (4.20)

Government spending is allowed to change over time and is defined by Gt =
(

1
1+g̃gt

)
Yt where the

government spending shock follows

log(gt) = ρg log(gt−1) + σg,tεg,t (4.21)

where the standard deviation of the innovation follows the process

log σg,t = (1− ρσg ) log σg + ρσg log σg,t + ηgug,t. (4.22)

9Γ(ω̄t+1) =
∫ ω̄t+1
0 ωf(ω)dω + ω̄t+1

∫∞
ω̄t+1

f(ω)dω and G(ω̄t+1) =
∫ ω̄t+1
0 ωf(ω)dω.

10Vt = Pt−1RktQt−1Kt −Rt−1Bt − µtG(ω̄t)Pt−1RktQt−1Kt
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The central bank sets the interest rate using a Taylor rule with drifting parameters. The

rule is defined as

Rt
R

=

(
Rt−1

R

)1−γR
(Πt

Π

)ψ1,t
(

Yt
Yt−1

ΥA

)ψ2
1−γR

mt (4.23)

where Πt = Pt
Pt−1

. The Taylor coefficient on inflation drifts according to the processes

log(ψ1,t) = ρψ1 log(ψ1,t−1) + (1− ρψ1) log(ψ1) + ηψ1εψ1,t (4.24)

The monetary policy shock is defined as logmt = σm,tεm,t and σm,t follows the process

log σm,t = (1− ρσm) log σm + ρσm log σm,t + ηmum,t. (4.25)

Market clearing

The market clearing condition for the goods market is defined by

Yt = Ct + It +Gt + a(ut)Kt + µtG(ω̄t)R
k
tQt−1Kt. (4.26)

Credit market clearing is defined by

Dt+1

Pt
=
Bt+1

Pt
= QtKt+1 −Nt+1. (4.27)

Equilibrium

The equilibrium can be characterized by the first order conditions, the Taylor rule

monetary policy and market clearing conditions. The equilibrium is not stationary due to the unit

root in the process for technology, so some variables must be normalized. To do this let c̃t = ct
zt

,

Ĩt = It
zt

, K̃t = Kt
ztζt

, B̃t+1 = Bt+1

zt
, ÑBt+1 = NBt+1

zt
, Ñt+1 = Nt+1

zt
, d̃ivt = divt

zt
, T̃t = Tt

zt
, λ̃t = λtzt,

r̃t = rtζt, Q̃t = Qtζt, w̃t = wt
zt

, w̃∗t =
w∗t
zt

, and ỹt = yt
zt

.11

11The first order conditions can be found in the supplementary materials.
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Data

The data used to estimate the model spans from 1954.Q4 to 2006.Q4.12 Eight data series

are used: growth rate of real output, growth rate of real per capita investment, growth rate of real

per capita consumption, the growth rate of real wages, inflation (measured as the logged ratio of

the price level this period and last period), the gross federal funds rate, the spread between the

Moody’s Baa corporate bond interest rate and the 10 year treasury yield, and the growth rate of

net worth.13 All observables, except the growth rate of net worth, are assumed to be measured

without measurement error. While measurement error may be a feature of the data, not using

measurement error sharpens the estimation strategy and makes for cleaner counterfactual studies.

Estimation Strategy

Based on the complexity, size and nonlinearities of the model, estimation is difficult. The

model does not have a closed-form solution and the likelihood function cannot be analytically

solved, so numerical approximations must be used. To achieve this, I do a second-order

approximation of the model around the steady state using perturbation methods. Aruoba,

Fernández-Villaverde, and Rubio-Ramı́rez (2006) show that perturbation methods are both fast

and accurate.14 A second order approximation is necessary since a first order approximation

would be certainty equivalent and the stochastic volatility terms would disappear.

After the approximation is done, the model is estimated using Bayesian techniques.

After an initial grid search, the model is estimated using a random walk Metropolis-Hastings

algorithm.15 The algorithm is run over 14,000 draws and discard the first 5,000 draws.16 In

order to run the Metropolis-Hastings algorithm, the likelihood must be calculated. Due to

the nonlinearities of the model, the Kalman filter cannot be accurately used. Therefore, the

likelihood is approximated using a particle filter using 10,000 particles. The methodology of both

12More recent data is not used in order to avoid problems that arise at the zero lower bound.

13For more details on how the data is calculated, see the supplementary materials.

14For more information on second order perturbation techniques see Kim et al. (2005), Schmitt-Grohe and Uribe
(2004) and Klein and Gomme (2011).

15The grid search is necessary in order to find an area of the model where the likelihood is numerically different
from zero.

16See Chapter III for more details on the estimation strategy, as the strategy is very similar to the one used in
this paper.
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the particle filter used the Metropolis-Hastings algorithm are very similar to those described in

Chapter III.

Priors and Estimation Results

Priors

The model is estimated using flat priors in order to minimize the impact of pre-sample

information.17 Flat priors are also chosen since it is difficult to know what reasonable priors are

for the stochastic volatility terms. Flat priors do not come without concerns, as they can make

identification difficult. To avoid potential identification issues and ease the computational burden,

some parameters are fixed to certain values. As is common in the literature, I fix δ = 0.25, ψ = 8,

F (ω̄ss) = 0.003, σ2
ω = 0.24, β = 0.99, ψ = 8, h = 0.9, α = 0.3, ε = 10, η = 10, ϑ = 1.17,

γ2 = 0.001, and ν = 0.974.18 In addition to this, I also fix the persistence terms, ρ, for the

stochastic volatility and parameter drift processes to 0.95. While this is quite restrictive, it helps

with identification and imparts a large degree of persistence, which would be expected of changes

that caused the Great Moderation.19 While I am fixing the persistence, the standard deviation

of the exogenous shocks to the stochastic volatility and parameter drifting is freely estimated. If

there is little movement in the parameters or if there is little stochastic volatility, this can still be

determined in the estimation and would show the estimated standard deviation of the innovations

to be near zero.

Results

The posteriors of many key variables from the partial measurement error estimation will

be described here, while all results can be found in the Table C.2 in Appendix C. The results are

presented with the means of the posterior distribution along with their standard deviation.

17The priors are described in Appendix C and can be seen in Table C.1.

18These numbers are similar to those used by either Fernández-Villaverde et al. (2010) or Christiano et al. (2010)
in similar studies. Based on some preliminary studies, selecting different calibrations results in changes in the levels
of the parameter drifting and stochastic volatility terms, but do not change the general pattern of their underlying
time series.

19This is not very different from specifying that a process follows a unit root, which is frequently done in
empirical studies.
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The posterior results for the coefficients controlling the parameter drift of the bankruptcy

cost, which can be considered a measure of financial frictions, are shown in Table 16. The steady

state marginal bankruptcy cost is estimated to be around 0.51, which would mean that 51% of an

entrepreneur’s assets would be lost due to auditing costs if the entrepreneur went bankrupt. This

estimate is higher than the estimate from Chapter III, but is still below than the calibration used

by Christiano et al. (2010). The bankruptcy cost does not appear to be constant, as the mean

posterior of σµ is 0.41, so financial frictions do appear to be changing during the sample.

TABLE 16. Posterior, Bankruptcy Cost Parameters

µss σµ

0.51 0.41
(0.088) (0.064)

The posterior results for the monetary policy parameters are shown in Table 17. The

steady state Taylor rule parameter governing the response to inflation is much larger than in

Fernández-Villaverde et al. (2010) which does not have financial frictions, but is in line with the

estimates from similar models with financial frictions. Policy is quite responsive to deviations

of inflation from the Fed’s target, as is shown by the posterior distribution of ψ1. Based on the

distributions of σψ1
and σψ2

, it appears that policy has not be constant throughout the sample.

TABLE 17. Posterior, Monetary Policy

ψ1 ψ2 Π

1.95 0.47 1.021
(0.34) (0.013) (0.004)

σψ1
γR

0.510 0.54
(0.20) (0.12)

The posterior results for the stochastic volatility parameters are shown in Table 18. Similar

to the findings in Fernández-Villaverde et al. (2010)., there appears to be a large degree of

stochastic volatility, as all of the standard deviations to the innovation are significantly above

zero.

Based on the posterior distributions from the estimation, I find that financial frictions,

monetary policy and the standard deviation of the exogenous shocks are not constant over
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TABLE 18. Posterior, Stochastic Volatility

σm σd σx σζ σz σg σϕ

0.052 0.155 0.042 0.037 0.022 0.015 0.111
(0.023) (0.033) (0.021) (0.017) (0.004) (0.043) (0.053)

σσm σσd σσx σσζ σσz σσg σσϕ

0.297 0.582 0.445 0.48 0.571 0.595 0.58
(0.107) (0.245) (0.105) (0.158) (0.316) (0.203) (0.2)

time. These results show that any of these model features could potentially play a large role in

explaining the Great Moderation.

Model Fit

In this section I will discuss model fit and the log marginal data densities (log MDD) of the

different models estimated. The log MDD of the model with a constant and a drifting marginal

bankruptcy cost parameter, µ, are shown in Table 19. Comparing these results with those found

in Chapter III, it is clear that the inclusion of nominal rigidities greatly improves model fit.

Based on the the results in Table 19, allowing µ to drift greatly improves model fit as the log

Bayes Factor comparing the models is 156. This is overwhelming evidence that changing financial

frictions are important for fitting the data.

TABLE 19. Model Fit

Model log p
(
YT = Ydata,T |mi

)
Full Model 3,270
Constant µ 3,114

Underlying States

In order to get a better understanding of how parameters have changed over time, the

smoothed shocks are presented in this section. There is considerable movement in the marginal

bankruptcy cost term as well as the monetary policy parameters. There also is a significant

amount of stochastic volatility, especially when looking at the standard deviation of productivity

shocks.
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Based on Figure 4, there is substantial movement in the marginal bankruptcy cost term,

µt, over time. This is a measure of financial frictions, as it plays a role in determining how many

entrepreneurs receive loans and what the credit spread is. It falls from a high around 0.55 to a low

around 0.2, which represents a fall in auditing costs of about 35%. The fall began in the early to

mid-1980s around the start of the Great Moderation. The lowering of µt would allow freer access

to credit by entrepreneurs and a lowering of the credit spread. This would lower macroeconomic

volatility, since investment would be more stable throughout the business cycle.20

FIGURE 4. Bankruptcy Cost: µt

The underlying states of ψ1,t, which represents the Federal Reserve interest rate policy

regarding inflation, is shown in Figure 5. Unlike in Chapter III and Fernández-Villaverde et al.

(2010), there does not appear to be any distinctive change in monetary policy during the 1980s.

Therefore, it does not appear that a stronger stance against inflation is a possible explanation for

the Great Moderation.

20As can be seen below in Table 20, investment did indeed become more stable during the Great Moderation.
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FIGURE 5. Monetary Policy Parameter: ψ1,t

The underlying states of the stochastic volatility parameters are shown in Figure 6. In each

series there is substantial variation; however, none of the movements appear to be supportive

of good luck causing the Great Moderation. The standard deviation of the capital productivity

shock, (σϕ,t), appears to jump during the 1970s, but this appears to be a temporary movement. It

also appears that there is an increase in the standard deviation of the wealth shock, (σx,t), during

the 1970s that lasts for much of the remainder of the sample. However, increased variability in

wealth would run counter to the good luck story, but is not surprising given the immoderation

of financial markets and net worth during this time. As a whole, Figure 6 lends no support to

the idea that the exogenous shocks faced by the economy became less volatile during the Great

Moderation.
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FIGURE 6. Stochastic Volatility (Log Deviation from S.S) of: Weath Shock (σx,t), Intertemporal
Shock (σd,t), Monetary Policy Shock(σm,t), Governemtne Spending Shock (σg,t), Capital
Production Shock (σζ,t), Technology Shock (σA,t), Intratemmporal Shock (σϕ,t)

The underlying exogenous shocks are shown in Figure 7. There appears to be a series

of positive intertemporal shocks and negative intratemporal shocks starting in the 1980s and

continuing to the end of the sample. These shocks point to a change in household behavior and

are likely important in explaining changes in consumption overtime. The other set of shocks

that show patterns over time are the government spending and technology shocks. During the

1990s and into the the 2000s, there is a string of positive government spending shocks. During the

1990s, there is also a string of negative technology shocks and positive capital productivity shocks.

While these are noteworthy, it is unlikely that they would be important factors in reducing

macroeconomic volatility.
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FIGURE 7. Innovations to Shocks (Log Deviation from S.S) of: Weath Shock (εx,t), Intertemporal
Shock (εd,t), Monetary Policy Shock(εm,t), Governemtne Spending Shock (εg,t), Capital
Production Shock (εζ,t), Technology Shock (εA,t), Intratemmporal Shock (εϕ,t)

Counterfactuals

To get a better understanding of the role that changing financial frictions played in

reducing macroeconomic volatility, two counterfactual studies are done. The first counterfactual

study holds µ at its steady state level throughout the sample. The second counterfactual study

lets µ change until 1984. After 1984, in the counterfactual study µ is set equal to the mean level

of µ from the sample before 1984. In both counterfactual studies, the model is simulated using

the underlying shocks, except for those affecting µ, pulled from the data using the particle filter.

If the drifting financial frictions were important in decreasing financial frictions during the Great

Moderation, we wouldn’t expect to observe a reduction in the standard deviation of the simulated

data for the post 1984 time period.

The results of these counterfactual studies can be found in Table 20. The first section of

the table shows the actual standard deviations of the annualized growth rate of output, annualized
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TABLE 20. Counterfactual Studies

Standard Deviation
Output Inflation Investment Net Worth Consumption

Data, pre 1984Q1 6.14 3.42 18.60 2.89 3.14
Data, post 1984Q1 3.17 1.16 9.79 8.55 2.36
Data, post/pre 0.52 0.34 0.53 2.96 0.75

Constant µ, pre 1984Q1 7.68 3.12 28.24 4.46 3.12
Constant µ, post 1984Q1 11.41 2.92 58.66 14.40 2.41
Constant µ, post/pre 1.49 0.94 2.08 3.23 0.77

Pre 1984Q1 µ, pre 1984Q1 6.14 3.42 18.60 3.74 3.14
Pre 1984Q1 µ, post 1984Q1 11.80 5.05 59.77 14.20 2.39
Pre 1984Q1 µ, post/pre 1.92 1.47 3.21 3.80 0.76

quarterly inflation, the annualized growth rate of investment, the annualized growth rate of net

worth, as well as the annualized growth rate of consumption. The data shows a clear drop in the

standard deviation across all data types, except net worth which actually becomes more volatile.

The second section of Table 20 shows the counterfactual data’s standard deviations that

would have been observed if µt was constant throughout the sample. Based on these results,

it appears that if µ was held constant throughout the sample there would only have been a

moderation in consumption. The third section of the table shows what would happen had µ been

held constant after 1984 at the mean level of the underlying µ from before 1984.21 The results

are similar, with a moderation only being observed in consumption. Based on these findings,

the observed fall in financial frictions was a key factor in reducing volatility for most of the key

observables except consumption.

Conclusion

In this chapter I estimate a New Keynesian model featuring financial frictions, parameter

drifting and stochastic volatility. The model is estimated using Bayesian techniques and the

particle filter. To understand the importance of the features of the model, I study the underlying

states and run counterfactual tests. I find that changing financial frictions played a large role in

explaining the reduction in volatility observed during the Great Moderation. However, changing

financial frictions cannot explain the reduction in observed consumption volatility. Based on a

21Since µ and all of the underlying shocks are pulled from the data, the simulations exactly match the data for all
observables except net worth, which is assumed to have measurement error.
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study of the underlying states, there appears to be a change in household behavior during the

1980s. This change in household behavior is shown by changes in intertemporal and intratemporal

shocks. These changes likely explains the reduction in consumption volatility observed during the

Great Moderation.

While this paper finds support for changing financial frictions contributing to the Great

Moderation, it is important to remember that the model does not explain why financial frictions

fell. It is important to understand why financial frictions fell and to study which policies might

reduce financial frictions. It is possible that financial markets may also play a role in describing

why household behavior changed. While it does not feature into the model, access to credit for

households may have improved during the Great Moderation. This is a potential explanation for

why a reduction in consumption volatility. In future work I plan to study these questions.
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CHAPTER V

CONCLUSION

Understanding the causes of time variation in macroeconomic volatility is an important

area of study. Most research on this topic has focused on the causes of the Great Moderation.

I further the literature in this dissertation in two different ways. First, I provide evidence

about the importance of specification during the estimation of DSGE models designed to study

macroeconomic volatility. Second, I provide empirical evidence about the drivers of the Great

Moderation.

The first contribution of this dissertation is to provide some practical evidence for

researchers using structural models to study changing macroeconomic volatility. For a variety

of reasons, large DSGE models are often estimated for these studies. These models often study

the importance of changing variance exogenous shocks and changing monetary policy. Due to

technical limitations, these changes are typically modeled to drift smoothly over time. However, it

is possible that these changes are actually discrete, especially considering how discretely volatility

changed during the Great Moderation. This might make results from models with parameter

drift misleading. To study this, I run multiple estimations of simulated data that feature this

misspecification. I find that the inclusion of stochastic volatility can give misleading results

when studying model fit. Therefore, it is important for researchers to look beyond model fit to

understand what is causing changes in volatility. One way to do this is to look at the underlying

states of the model. Based on the results from this dissertation, the underlying states can be

accurately estimated using a model with parameter drifting, even if it is misspecified.

The second contribution of this dissertation is evidence about the causes of the Great

Moderation. The two most widely studied explanations of the Great Moderation are “good

luck” and “good policy.” I study these explanations and look at a third explanation: changing

financial frictions. I find that changing financial frictions was the key driver in causing the Great

Moderation. Financial frictions fell during the 1980s and without this drop in financial frictions,

there would not have been a fall in volatility like the one observed during the Great Moderation.

While the fall in financial frictions does appear to be the main driver in moderating the business

cycle, there also appears to be a role for luck. During the Great Moderation, household behavior
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changed, which is shown by the intratemporal and intertemporal shocks. This change in household

behavior is important for explaining the observed reduction in consumption volatility.

This dissertation also provides some interesting avenues for future research. I find that

a reduction in financial frictions is important to explain the Great Moderation; however this

dissertation cannot explain why financial frictions fell. In future research I plan to study why

financial frictions fell. It is also not clear why household behavior changed in the 1980s. It would

be interesting to further study why this is the case. Understanding what is causing these changes

is important since it might be relevant for policymakers trying to reduce volatility.
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APPENDIX A

SUPPLEMENTARY MATERIALS FOR CHAPTER II

FIGURE A.1. Smoothed Taylor rule parameters ψ1 and ψ2, for first baseline data set

FIGURE A.2. Smoothed Taylor rule parameters ψ1 and ψ2, for second baseline data set
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FIGURE A.3. Smoothed Taylor rule parameters ψ1 and ψ2, for third baseline data set

FIGURE A.4. Smoothed Taylor rule parameters ψ1 and ψ2, for fourth baseline data set
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FIGURE A.5. Smoothed Taylor rule parameters ψ1 and ψ2, for fifth baseline data set

FIGURE A.6. Smoothed Taylor rule parameters ψ1 and ψ2, for sixth baseline data set
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FIGURE A.7. Smoothed Taylor rule parameters ψ1 and ψ2, for seventh baseline data set

FIGURE A.8. Smoothed Taylor rule parameters ψ1 and ψ2, for eighth baseline data set
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FIGURE A.9. Smoothed Taylor rule parameters ψ1 and ψ2, for ninth baseline data set

FIGURE A.10. Smoothed Taylor rule parameters ψ1 and ψ2, for tenth baseline data sets
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FIGURE A.11. Smoothed Taylor rule parameters ψ1 and ψ2, for eleventh baseline data sets

FIGURE A.12. Smoothed Taylor rule parameters ψ1 and ψ2, for twelfth baseline data sets
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FIGURE A.13. Smoothed logged deviation from mean of standard deviation of shocks for first
baseline data set: σR, σg, σz

FIGURE A.14. Smoothed logged deviation from mean of standard deviation of shocks for second
baseline data set: σR, σg, σz
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FIGURE A.15. Smoothed logged deviation from mean of standard deviation of shocks for third
baseline data set: σR, σg, σz

FIGURE A.16. Smoothed logged deviation from mean of standard deviation of shocks for fourth
baseline data set: σR, σg, σz
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FIGURE A.17. Smoothed logged deviation from mean of standard deviation of shocks for fifth
baseline data set: σR, σg, σz

FIGURE A.18. Smoothed logged deviation from mean of standard deviation of shocks for sixth
baseline data set: σR, σg, σz
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FIGURE A.19. Smoothed logged deviation from mean of standard deviation of shocks for seventh
baseline data set: σR, σg, σz

FIGURE A.20. Smoothed logged deviation from mean of standard deviation of shocks for eighth
baseline data set: σR, σg, σz
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FIGURE A.21. Smoothed logged deviation from mean of standard deviation of shocks for ninth
baseline data set: σR, σg, σz

FIGURE A.22. Smoothed logged deviation from mean of standard deviation of shocks for tenth
baseline data set: σR, σg, σz
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FIGURE A.23. Smoothed logged deviation from mean of standard deviation of shocks for eleventh
baseline data set: σR, σg, σz

FIGURE A.24. Smoothed logged deviation from mean of standard deviation of shocks for twelfth
baseline data set: σR, σg, σz
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FIGURE A.25. Smoothed Taylor rule parameters ψ1 and ψ2, for first alternative data set

FIGURE A.26. Smoothed Taylor rule parameters ψ1 and ψ2, for second alternative data set
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FIGURE A.27. Smoothed Taylor rule parameters ψ1 and ψ2, for third alternative data set

FIGURE A.28. Smoothed Taylor rule parameters ψ1 and ψ2, for fourth alternative data set
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FIGURE A.29. Smoothed Taylor rule parameters ψ1 and ψ2, for fifth alternative data set

FIGURE A.30. Smoothed Taylor rule parameters ψ1 and ψ2, for sixth alternative data set
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FIGURE A.31. Smoothed Taylor rule parameters ψ1 and ψ2, for seventh alternative data set

FIGURE A.32. Smoothed Taylor rule parameters ψ1 and ψ2, for eighth alternative data set
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FIGURE A.33. Smoothed Taylor rule parameters ψ1 and ψ2, for ninth alternative data set

FIGURE A.34. Smoothed Taylor rule parameters ψ1 and ψ2, for tenth alternative data sets
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FIGURE A.35. Smoothed Taylor rule parameters ψ1 and ψ2, for eleventh alternative data sets

FIGURE A.36. Smoothed Taylor rule parameters ψ1 and ψ2, for twelfth alternative data sets
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FIGURE A.37. Smoothed logged deviation from mean of standard deviation of shocks for first
alternative data set: σR, σg, σz

FIGURE A.38. Smoothed logged deviation from mean of standard deviation of shocks for second
alternative data set: σR, σg, σz
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FIGURE A.39. Smoothed logged deviation from mean of standard deviation of shocks for third
alternative data set: σR, σg, σz

FIGURE A.40. Smoothed logged deviation from mean of standard deviation of shocks for fourth
alternative data set: σR, σg, σz
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FIGURE A.41. Smoothed logged deviation from mean of standard deviation of shocks for fifth
alternative data set: σR, σg, σz

FIGURE A.42. Smoothed logged deviation from mean of standard deviation of shocks for sixth
alternative data set: σR, σg, σz
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FIGURE A.43. Smoothed logged deviation from mean of standard deviation of shocks for seventh
alternative data set: σR, σg, σz

FIGURE A.44. Smoothed logged deviation from mean of standard deviation of shocks for eighth
alternative data set: σR, σg, σz
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FIGURE A.45. Smoothed logged deviation from mean of standard deviation of shocks for ninth
alternative data set: σR, σg, σz

FIGURE A.46. Smoothed logged deviation from mean of standard deviation of shocks for tenth
alternative data set: σR, σg, σz
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FIGURE A.47. Smoothed logged deviation from mean of standard deviation of shocks for eleventh
alternative data set: σR, σg, σz

FIGURE A.48. Smoothed logged deviation from mean of standard deviation of shocks for twelfth
alternative data set: σR, σg, σz
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TABLE A.1. Log Marginal Likelihood

Data Set SV, No Meas. SV No SV
Error

Baseline Regime Switching
1 -673.9 -699.9 -688.1
2 -644.6 -673.3 -705.2
3 -648.3 -657.0 -684.3
4 -618.9 -703.3 -690.2
5 -629.9 -657.9 -760.0
6 -672.3 -755.9 -996.3
7 -653.3 -707.0 -744.4
8 -588.3 -680.2 -706.8
9 -648.5 -742.1 -787.4
10 -634.6 -692.9 -710.1
11 -633.2 -658.6 -725.7
12 -633.7 -690.7 -678.0
Alternate Regime Switching
1 -641.9 -700.2 -679.0
2 -621.9 -655.6 -657.6
3 -635.7 -692.8 -656.9
4 -597.1 -664.6 -643.3
5 -625.4 -637.0 -665.7
6 -606.7 -677.8 -666.8
7 -588.5 -660.1 -735.5
8 -638.0 -708.7 -668.1
9 -611.1 -667.9 -665.3
10 -671.0 -714.8 -726.6
11 -654.8 -705.4 -682.6
12 -680.3 -718.8 -731.1

93



TABLE A.2. Log Marginal Likelihood

Data Set SV, No Meas. SV No SV
Error

Parameter Drifting
1 -446.9 -552.2 -534.6
2 -388.0 -441.9 -401.3
3 -486.6 -542.6 -545.1
4 -525.9 -582.0 -585.3
5 -433.0 -493.2 -490.8
6 -521.5 -557.3 -631.9
7 -438.4 -438.4 -546.2
8 -448.3 -504.3 -510.3
9 -612.3 -675.2 -627.2
10 -518.4 -535.6 -542.4
11 -525.9 -565.6 -582.8
12 -394.7 -505.7 -627.8
Constant Parameter
1 -392.4 -447.3 -410.0
2 -431.0 -441.0 -423.0
3 -417.0 -470.6 -432.2
4 -429.3 -498.6 -457.0
5 -431.3 -455.2 -435.8
6 -429.1 -473.4 -460.7
7 -382.2 -524.0 -448.2
8 -382.2 -414.4 -415.9
9 -436.4 -535.2 -466.6
10 -406.8 -472.2 -446.9
11 -421.2 -451.6 -430.3
12 -384.5 -441.3 -407.4
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TABLE A.3. Posterior for Baseline Regime Switching Data, Part 1

Data Set 1 2 3 4 5 6

τ 0.37 0.64 0.44 0.32 0.32 0.75
(0.30) (0.18) (0.23) (0.14) (0.19) (0.12)

κ 0.35 0.69 0.64 0.67 0.74 0.76
(0.32) (0.19) (0.20) (0.19) (0.21) (0.19)

ψ1 1.59 1.92 1.36 2.55 2.20 1.29
(0.48) (0.50) (0.38) (0.51) (0.57) (0.17)

ψ2 0.13 0.16 0.23 0.39 0.22 0.17
(0.08) (0.12) (0.12) (0.11) (0.10) (0.11)

ρψ1
0.94 0.90 0.63 0.96 0.98 0.30

(0.05) (0.12) (0.25) (0.05) (0.02) (0.20)
ρψ2

0.67 0.43 0.32 0.72 0.50 0.67
(0.25) (0.31) (0.22) (0.21) (0.28) (0.34)

ηψ1 0.23 0.36 0.35 0.34 0.31 0.42
(0.12) (0.06) (0.10) (0.10) (0.08) (0.08)

ηψ2
0.37 0.30 0.20 0.34 0.17 0.39

(0.10) (0.12) (0.14) (0.12) (0.12) (0.10)
σR 0.40 0.30 0.45 0.31 0.18 0.44

(0.12) (0.10) (0.19) (0.08) (0.06) (0.15)
σg 0.16 0.15 0.22 0.27 0.46 0.16

(0.08) (0.10) (0.09) (0.14) (0.11) (0.06)
σz 1.82 0.91 0.73 0.69 0.61 0.81

(0.64) (0.17) (0.13) (0.17) (0.10) (0.21)
ρR 0.65 0.57 0.63 0.89 0.90 0.56

(0.10) (0.11) (0.09) (0.05) (0.03) (0.09)
ρg 0.75 0.77 0.74 0.77 0.59 0.89

(0.09) (0.09) (0.10) (0.08) (0.11) (0.06)
ρz 0.70 0.65 0.87 0.82 0.75 0.75

(0.12) (0.09) (0.06) (0.07) (0.05) (0.09)
ησR 0.47 0.98 0.50 0.76 1.27 0.70

(0.18) (0.50) (0.24) (0.15) (0.31) (0.31)
ησg 1.09 1.68 0.66 0.61 0.28 0.53

(0.35) (0.75) (0.18) (0.52) (0.11) (0.22)
ησz 0.33 0.44 0.34 0.65 0.63 0.60

(0.09) (0.08) (0.10) (0.05) (0.08) (0.12)

Accept. Rate 24% 26% 28% 18% 20% 23%

Note: Posteriors from stochastic volatility with no measurement
error estimation. Standard deviations in parentheses.
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TABLE A.4. Posterior for Baseline Regime Switching Data, Part 2

Data Set 7 8 9 10 11 12

τ 0.37 0.44 0.45 0.29 0.57 0.78
(0.13) (0.19) (0.27) (0.11) (0.23) (0.14)

κ 0.81 0.87 0.51 0.73 0.68 0.84
(0.18) (0.13) (0.26) (0.18) (0.23) (0.11)

ψ1 1.29 3.21 1.37 3.21 1.30 1.35
(0.15) (0.55) (0.24) (0.51) (0.20) (0.22)

ψ2 0.19 0.17 0.38 0.20 0.14 0.28
(0.09) (0.10) (0.08) (0.11) (0.09) (0.15)

ρψ1
0.68 0.98 0.92 0.97 0.84 0.90

(0.13) (0.02) (0.08) (0.03) (0.17) (0.06)
ρψ2

0.70 0.66 0.55 0.44 0.32 0.53
(0.26) (0.30) (0.27) (0.26) (0.20) (0.30)

ηψ1 0.30 0.31 0.32 0.33 0.26 0.27
(0.07) (0.06) (0.09) (0.10) (0.13) (0.11)

ηψ2
0.26 0.24 0.11 0.29 0.31 0.25

(0.12) (0.19) (0.08) (0.11) (0.13) (0.15)
σR 0.20 0.43 0.26 0.35 0.37 0.32

(0.05) (0.11) (0.06) (0.11) (0.09) (0.07)
σg 0.14 0.38 0.27 0.39 0.24 0.27

(0.06) (0.14) (0.10) (0.13) (0.08) (0.07)
σz 0.68 0.62 0.95 0.67 0.79 0.60

(0.14) (0.15) (0.27) (0.16) (0.16) (0.10)
ρR 0.56 0.91 0.61 0.92 0.56 0.49

(0.08) (0.02) (0.07) (0.02) (0.09) (0.08)
ρg 0.81 0.68 0.70 0.61 0.72 0.76

(0.08) (0.10) (0.07) (0.11) (0.09) (0.06)
ρz 0.89 0.80 0.76 0.80 0.83 0.83

(0.08) (0.08) (0.07) (0.06) (0.06) (0.06)
ησR 2.25 0.49 1.56 0.70 0.72 1.37

(0.42) (0.14) (0.33) (0.16) (0.25) (0.30)
ησg 0.46 0.36 0.60 0.45 0.44 0.44

(0.25) (0.13) (0.25) (0.21) (0.15) (0.14)
ησz 0.38 0.43 0.20 0.32 0.21 0.63

(0.09) (0.04) (0.07) (0.05) (0.04) (0.08)

Accept. Rate 22% 21% 30% 22% 34% 29%

Note: Posteriors from stochastic volatility with no measurement
error estimation. Standard deviations in parentheses.

96



TABLE A.5. Posterior for Alternative Regime Switching Data, Part 1

Data Set 1 2 3 4 5 6

τ 0.49 0.61 0.52 0.81 0.86 0.61
(0.30) (0.18) (0.23) (0.14) (0.11) (0.19)

κ 0.77 0.80 0.86 0.90 0.88 0.88
(0.16) (0.18) (0.09) (0.09) (0.09) (0.12)

ψ1 2.74 1.49 1.20 1.48 1.36 1.32
(0.86) (0.17) (0.12) (0.17) (0.16) (0.15)

ψ2 0.24 0.20 0.18 0.35 0.22 0.33
(0.13) (0.12) (0.13) (0.10) (0.13) (0.11)

ρψ1
0.97 0.71 0.43 0.53 0.63 0.47

(0.03) (0.14) (0.17) (0.23) (0.21) (0.17)
ρψ2

0.79 0.83 0.53 0.51 0.36 0.61
(0.17) (0.12) (0.23) (0.30) (0.20) (0.24)

ηψ1 0.34 0.35 0.30 0.35 0.28 0.38
(0.12) (0.10) (0.09) (0.12) (0.11) (0.08)

ηψ2
0.20 0.20 0.16 0.26 0.24 0.18

(0.12) (0.10) (0.16) (0.13) (0.13) (0.11)
σR 0.25 0.22 0.21 0.37 0.32 0.23

(0.08) (0.05) (0.06) (0.07) (0.07) (0.05)
σg 0.51 0.17 0.08 0.18 0.18 0.23

(0.12) (0.06) (0.04) (0.06) (0.06) (0.07)
σz 0.69 0.76 0.60 0.74 0.79 0.72

(0.14) (0.10) (0.12) (0.10) (0.10) (0.10)
ρR 0.89 0.62 0.67 0.58 0.55 0.53

(0.04) (0.05) (0.07) (0.08) (0.08) (0.06)
ρg 0.61 0.82 0.90 0.83 0.82 0.74

(0.10) (0.07) (0.04) (0.07) (0.07) (0.08)
ρz 0.73 0.84 0.96 0.88 0.80 0.85

(0.08) (0.07) (0.05) (0.05) (0.07) (0.06)
ησR 1.05 1.53 1.67 0.82 1.14 2.43

(0.19) (0.09) (0.33) (0.39) (0.16) (0.52)
ησg 0.33 0.86 1.05 0.85 0.94 0.41

(0.14) (0.13) (0.25) (0.19) (0.19) (0.14)
ησz 0.36 0.28 0.57 0.28 0.26 0.29

(0.12) (0.08) (0.18) (0.14) (0.11) (0.09)

Accept. Rate 24% 26% 28% 18% 20% 23%

Note: Posteriors from stochastic volatility with no measurement
error estimation. Standard deviations in parentheses.
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TABLE A.6. Posterior for Alternative Regime Switching Data, Part 2

Data Set 7 8 9 10 11 12

τ 0.62 0.07 0.59 0.68 0.62 0.33
(0.24) (0.06) (0.33) (0.18) (0.18) (0.15)

κ 0.78 0.30 0.62 0.88 0.78 0.74
(0.18) (0.12) (0.31) (0.10) (0.19) (0.18)

ψ1 1.27 1.54 1.45 1.14 1.31 1.27
(0.17) (0.32) (0.28) (0.10) (0.16) (0.20)

ψ2 0.38 0.11 0.14 0.17 0.12 0.26
(0.10) (0.09) (0.12) (0.14) (0.09) (0.07)

ρψ1
0.59 0.30 0.49 0.47 0.43 0.96

(0.23) (0.19) (0.26) (0.21) (0.26) (0.03)
ρψ2

0.47 0.47 0.56 0.68 0.60 0.70
(0.29) (0.22) (0.24) (0.24) (0.24) (0.23)

ηψ1 0.40 0.22 0.34 0.28 0.41 0.37
(0.07) (0.12) (0.14) (0.15) (0.06) (0.08)

ηψ2
0.20 0.32 0.23 0.14 0.17 0.12

(0.14) (0.11) (0.15) (0.11) (0.12) (0.09)
σR 0.38 0.39 0.36 0.43 0.33 0.24

(0.10) (0.09) (0.12) (0.11) (0.06) (0.10)
σg 0.28 0.24 0.23 0.40 0.09 0.38

(0.07) (0.08) (0.06) (0.09) (0.03) (0.08)
σz 0.79 0.56 0.96 0.78 0.76 0.65

(0.17) (0.18) (0.31) (0.13) (0.18) (0.15)
ρR 0.52 0.87 0.64 0.52 0.62 0.87

(0.09) (0.07) (0.09) (0.08) (0.07) (0.03)
ρg 0.70 0.68 0.79 0.61 0.86 0.68

(0.08) (0.10) (0.10) (0.09) (0.07) (0.08)
ρz 0.76 0.88 0.75 0.76 0.82 0.73

(0.12) (0.05) (0.07) (0.09) (0.07) (0.04)
ησR 1.14 0.37 0.84 0.85 0.66 1.05

(0.26) (0.18) (0.38) (0.32) (0.16) (0.29)
ησg 0.26 0.32 0.49 0.34 1.77 0.26

(0.11) (0.11) (0.12) (0.15) (0.16) (0.08)
ησz 0.33 0.83 0.38 0.31 0.31 0.75

(0.10) (0.11) (0.11) (0.09) (0.08) (0.22)

Accept. Rate 22% 21% 30% 22% 34% 29%

Note: Posteriors from stochastic volatility with no measurement
error estimation. Standard deviations in parentheses.
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TABLE A.7. Posterior for Parameter Drift Data, Part 1

Data Set 1 2 3 4 5 6

τ 0.50 0.83 0.37 0.59 0.70 0.45
(0.10) (0.08) (0.14) (0.20) (0.18) (0.17)

κ 0.52 0.62 0.57 0.71 0.42 0.54
(0.12) (0.16) (0.17) (0.16) (0.10) (0.20)

ψ1 1.71 2.65 1.55 1.14 2.24 1.28
(0.45) (0.45) (0.41) (0.11) (0.34) (0.22)

ψ2 0.36 0.08 0.42 0.38 0.16 0.31
(0.08) (0.06) (0.06) (0.09) (0.07) (0.10)

ρψ1
0.81 0.93 0.92 0.45 0.88 0.80

(0.10) (0.04) (0.06) (0.23) (0.07) (0.21)
ρψ2

0.29 0.65 0.48 0.50 0.37 0.47
(0.22) (0.23) (0.24) (0.28) (0.18) (0.27)

ηψ1 0.43 0.38 0.35 0.31 0.32 0.29
(0.05) (0.06) (0.09) (0.13) (0.09) (0.08)

ηψ2
0.33 0.29 0.27 0.18 0.32 0.11

(0.13) (0.17) (0.11) (0.07) (0.08) (0.06)
σR 0.18 0.17 0.18 0.18 0.22 0.17

(0.05) (0.05) (0.05) (0.04) (0.05) (0.04)
σg 0.19 0.25 0.16 0.23 0.23 0.16

(0.05) (0.04) (0.05) (0.08) (0.06) (0.07)
σz 0.87 0.84 0.82 0.66 1.17 0.75

(0.15) (0.16) (0.15) (0.10) (0.32) (0.23)
ρR 0.68 0.62 0.70 0.69 0.65 0.70

(0.05) (0.05) (0.05) (0.03) (0.04) (0.04)
ρg 0.80 0.83 0.82 0.83 0.84 0.81

(0.07) (0.04) (0.05) (0.06) (0.06) (0.08)
ρz 0.78 0.70 0.77 0.82 0.61 0.80

(0.06) (0.04) (0.07) (0.08) (0.11) (0.08)
ησR 0.89 1.03 0.76 0.51 0.55 0.58

(0.17) (0.24) (0.16) (0.22) (0.20) (0.25)
ησg 0.36 0.30 0.43 0.33 0.36 0.94

(0.15) (0.14) (0.14) (0.10) (0.15) (0.46)
ησz 0.34 0.34 0.34 0.41 0.35 0.49

(0.13) (0.11) (0.09) (0.10) (0.11) (0.08)

Accept. Rate 24% 26% 28% 18% 20% 23%

Note: Posteriors from stochastic volatility with no measurement
error estimation. Standard deviations in parentheses.
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TABLE A.8. Posterior for Parameter Drift Data, Part 2

Data Set 7 8 9 10 11 12

τ 0.62 0.07 0.59 0.68 0.62 0.33
(0.24) (0.06) (0.33) (0.18) (0.18) (0.15)

κ 0.78 0.30 0.62 0.88 0.78 0.74
(0.18) (0.12) (0.31) (0.10) (0.19) (0.18)

ψ1 1.27 1.54 1.45 1.14 1.31 1.27
(0.17) (0.32) (0.28) (0.10) (0.16) (0.20)

ψ2 0.38 0.11 0.14 0.17 0.12 0.26
(0.10) (0.09) (0.12) (0.14) (0.09) (0.07)

ρψ1
0.59 0.30 0.49 0.47 0.43 0.96

(0.23) (0.19) (0.26) (0.21) (0.26) (0.03)
ρψ2

0.47 0.47 0.56 0.68 0.60 0.70
(0.29) (0.22) (0.24) (0.24) (0.24) (0.23)

ηψ1 0.40 0.22 0.34 0.28 0.41 0.37
(0.07) (0.12) (0.14) (0.15) (0.06) (0.08)

ηψ2
0.20 0.32 0.23 0.14 0.17 0.12

(0.14) (0.11) (0.15) (0.11) (0.12) (0.09)
σR 0.38 0.39 0.36 0.43 0.33 0.24

(0.10) (0.09) (0.12) (0.11) (0.06) (0.10)
σg 0.28 0.24 0.23 0.40 0.09 0.38

(0.07) (0.08) (0.06) (0.09) (0.03) (0.08)
σz 0.79 0.56 0.96 0.78 0.76 0.65

(0.17) (0.18) (0.31) (0.13) (0.18) (0.15)
ρR 0.52 0.87 0.64 0.52 0.62 0.87

(0.09) (0.07) (0.09) (0.08) (0.07) (0.03)
ρg 0.70 0.68 0.79 0.61 0.86 0.68

(0.08) (0.10) (0.10) (0.09) (0.07) (0.08)
ρz 0.76 0.88 0.75 0.76 0.82 0.73

(0.12) (0.05) (0.07) (0.09) (0.07) (0.04)
ησR 1.14 0.37 0.84 0.85 0.66 1.05

(0.26) (0.18) (0.38) (0.32) (0.16) (0.29)
ησg 0.26 0.32 0.49 0.34 1.77 0.26

(0.11) (0.11) (0.12) (0.15) (0.16) (0.08)
ησz 0.33 0.83 0.38 0.31 0.31 0.75

(0.10) (0.11) (0.11) (0.09) (0.08) (0.22)

Accept. Rate 22% 21% 30% 22% 34% 29%

Note: Posteriors from stochastic volatility with no measurement
error estimation. Standard deviations in parentheses.
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TABLE A.9. Posterior for Constant Parameter Data, Part 1

Data Set 1 2 3 4 5 6

τ 0.29 0.56 0.51 0.63 0.54 0.46
(0.08) (0.18) (0.12) (0.10) (0.19) (0.15)

κ 0.45 0.63 0.75 0.82 0.68 0.54
(0.14) (0.16) (0.20) (0.17) (0.16) (0.09)

ψ1 1.33 1.46 1.57 1.72 1.58 1.26
(0.18) (0.20) (0.21) (0.48) (0.15) (0.13)

ψ2 0.15 0.38 0.29 0.16 0.25 0.29
(0.10) (0.08) (0.10) (0.13) (0.10) (0.12)

ρψ1
0.75 0.18 0.39 0.58 0.33 0.28

(0.15) (0.13) (0.23) (0.17) (0.20) (0.20)
ρψ2

0.51 0.46 0.53 0.76 0.36 0.32
(0.26) (0.18) (0.30) (0.16) (0.25) (0.25)

ηψ1 0.09 0.27 0.13 0.13 0.10 0.15
(0.07) (0.10) (0.09) (0.11) (0.08) (0.12)

ηψ2
0.14 0.28 0.42 0.21 0.39 0.20

(0.10) (0.09) (0.04) (0.13) (0.07) (0.14)
σR 0.16 0.15 0.15 0.19 0.13 0.16

(0.03) (0.04) (0.10) (0.04) (0.03) (0.04)
σg 0.25 0.23 0.21 0.31 0.20 0.22

(0.07) (0.07) (0.05) (0.13) (0.04) (0.08)
σz 0.94 0.56 0.82 0.80 0.73 0.96

(0.18) (0.14) (0.17) (0.17) (0.13) (0.16)
ρR 0.67 0.66 0.68 0.67 0.69 0.65

(0.03) (0.04) (0.03) (0.05) (0.03) (0.03)
ρg 0.59 0.81 0.82 0.71 0.84 0.73

(0.09) (0.08) (0.06) (0.12) (0.07) (0.14)
ρz 0.74 0.80 0.79 0.74 0.74 0.67

(0.06) (0.07) (0.08) (0.08) (0.08) (0.07)
ησR 0.48 0.67 0.69 0.55 0.76 0.84

(0.20) (0.26) (0.31) (0.19) (0.22) (0.40)
ησg 0.39 0.21 0.33 0.31 0.37 0.32

(0.15) (0.12) (0.11) (0.11) (0.15) (0.13)
ησz 0.28 0.87 0.31 0.34 0.47 0.21

(0.09) (0.22) (0.09) (0.10) (0.18) (0.09)

Accept. Rate 21% 22% 22% 21% 28% 30%

Note: Posteriors from stochastic volatility with no measurement
error estimation. Standard deviations in parentheses.
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TABLE A.10. Posterior for Constant Parameter Data, Part 2

Data Set 7 8 9 10 11 12

τ 0.47 0.60 0.51 0.57 0.27 0.51
(0.15) (0.17) (0.19) (0.17) (0.11) (0.20)

κ 0.76 0.53 0.79 0.60 0.30 0.53
(0.20) (0.12) (0.13) (0.14) (0.21) (0.17)

ψ1 1.46 1.31 1.57 1.58 1.48 1.48
(0.18) (0.15) (0.23) (0.24) (0.28) (0.15)

ψ2 0.16 0.24 0.22 0.16 0.14 0.31
(0.10) (0.10) (0.11) (0.14) (0.09) (0.15)

ρψ1
0.83 0.24 0.68 0.78 0.83 0.38

(0.11) (0.12) (0.28) (0.12) (0.10) (0.27)
ρψ2

0.61 0.28 0.62 0.38 0.30 0.59
(0.24) (0.18) (0.33) (0.21) (0.16) (0.23)

ηψ1 0.09 0.15 0.09 0.13 0.08 0.08
(0.06) (0.09) (0.10) (0.07) (0.06) (0.06)

ηψ2
0.25 0.18 0.31 0.23 0.20 0.09

(0.16) (0.12) (0.12) (0.11) (0.06) (0.06)
σR 0.14 0.10 0.12 0.15 0.19 0.09

(0.03) (0.03) (0.04) (0.04) (0.09) (0.03)
σg 0.21 0.18 0.25 0.20 0.14 0.19

(0.05) (0.04) (0.07) (0.05) (0.06) (0.05)
σz 0.75 0.80 0.74 0.87 1.56 0.83

(0.13) (0.14) (0.14) (0.18) (0.68) (0.18)
ρR 0.65 0.67 0.68 0.69 0.65 0.68

(0.03) (0.03) (0.03) (0.03) (0.04) (0.03)
ρg 0.75 0.83 0.77 0.83 0.79 0.84

(0.08) (0.06) (0.08) (0.10) (0.11) (0.06)
ρz 0.74 0.74 0.80 0.67 0.73 0.76

(0.07) (0.07) (0.07) (0.09) (0.09) (0.09)
ησR 1.08 1.40 0.96 0.76 0.42 1.38

(0.19) (0.34) (0.28) (0.22) (0.17) (0.30)
ησg 0.38 0.35 0.25 0.29 0.50 0.28

(0.18) (0.17) (0.10) (0.14) (0.21) (0.12)
ησz 0.28 0.34 0.41 0.32 0.30 0.32

(0.11) (0.12) (0.14) (0.10) (0.14) (0.12)

Accept. Rate 22% 21% 30% 22% 34% 29%

Note: Posteriors from stochastic volatility with no measurement
error estimation. Standard deviations in parentheses.
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR CHAPTER III

Data

Data is from NIPA-BEA,CPS-BLS, the FRED database, and the Flow of Funds accounts

from the Federal Reserve Board for the period 1954.Q4 to 2006.Q4. Data is chosen to conform

with the literature and is similar to the data used in Fuentes-Albero (2011). The data used is:

– Real output: data from NIPA table 1.3.5 on nominal gross value added by the nonfarm

business sector is deflated the implicit price deflator from table 1.3.4. This data is

annualized, so these are divided by four. This is divided by the civilian noninstitutional

population aged 16 and over from the BLS.

– Real investment: the sum of personal consumption expenditures of durables and gross

private domestic investment from NIPA table 1.1.5 is deflated using the GDP deflator from

table 1.1.4. This is weighted by the relative significance in total GDP and divided by the

civilian noninstitutional population aged 16 and over from the BLS.

– Real net worth: the weighted average of net worth for corporate and noncorporate

nonfarm business sectors. It is defined as tangible assets minus credit market instruments

at market value. Tangible assets are defined as the weighted (based on the sector’s

contribution to gross value added) sum of series FL102010005.Q from Table B.102 and series

FL112010005.Q from table B.103 of the Flow of Funds account. Liabilities are the defined

as the weighted sum of series FL1041014005.Q from Table B.102 and series FL114102005.Q

from Table B.103 from the Flow of Funds account. The data is converted to real and per

capita data the same way output is converted.

– Real consumption: the sum of personal consumption expenditures of nondurables and

services from NIPA table 1.1.5 deflated by the GDP deflator from table 1.14. This weighted

and corrected to per capita terms the same way as investment.

– Inflation: the log difference of the price index for gross value added by the nonfarm business

sector from NIPA table (1.3.4).
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– Federal funds rate: this is from the FRED database and is converted to quarterly rates.

– Credit spread: the log difference between the gross Moody’s Seasoned Baa Corporate Bond

Yield found on FRED and the federal funds rate (both rates are converted to quarterly

rates).
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Estimation Results

TABLE B.1. Priors

Parameter Distribution Lower Bound Upper Bound

χ Uniform 0 2
γ Uniform 0 1
γ2 Uniform 0 1
α Uniform 0 1

Πss Uniform 1 1.03
µss Uniform 0 1

ψ1,ss Uniform 1 3
ψ2,ss Uniform 0 1
υA Uniform 0 0.03
ρd Uniform 0 1
ρm Uniform 0 1
ρx Uniform 0 1
ρζ Uniform 0 1
σµ Uniform 0 1.5
σψ1 Uniform 0 1.5
σψ2 Uniform 0 1.5
σd,ss Uniform 0 1
σm,ss Uniform 0 1
σx,ss Uniform 0 1
σζ,ss Uniform 0 1
σg,ss Uniform 0 1
σA,ss Uniform 0 1
σσd Uniform 0 1.5
σσm Uniform 0 1.5
σσx Uniform 0 1.5
σσζ Uniform 0 1.5
σσA Uniform 0 1.5
σσg Uniform 0 1.5
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TABLE B.2. Posterior, Full Model

Mean Standard Deviation

χ 0.8304 0.0932
γ 0.0568 0.0062
γ2 0.7106 0.0305
Πss 1.01 0.0049
µss 0.279 0.0425
ψ1 2.3704 0.0264
ψ2 0.0268 0.0163
γR 0.4808 0.0409
ρd 0.9451 0.0079
ρx 0.3731 0.0522
ρζ 0.9548 0.0183
ρg 0.5052 0.0406
σµ 0.1102 0.0271
σψ1 0.0702 0.0292
σψ2

0.2929 0.02
σm 0.1047 0.0089
σd 0.0797 0.0063
σx 0.195 0.0128
σζ 0.0633 0.0124
σz 0.0027 0.0009
σg 0.1436 0.0084
σσd 0.1202 0.0207
σσm 0.6366 0.1198
σσx 0.8251 0.0366
σσζ 0.9776 0.0233
σσz 0.2572 0.0198
σσg 0.4698 0.0401
ΥA 0.02 0.0058

Acceptance Rate 27.6%
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TABLE B.3. Posterior, Constant µ

Mean Standard Deviation

χ 0.7169 0.0263
γ 0.0621 0.0019
γ2 0.6903 0.0178
Πss 1.0109 0.002
µss 0.2668 0.0246
ψ1 2.3108 0.0514
ψ2 0.0897 0.0084
γR 0.4972 0.0052
ΥA 0.0211 0.0065
ρd 0.9432 0.0041
ρx 0.3874 0.0084
ρζ 0.8889 0.0313
ρg 0.4761 0.0377
σµ 0 0
σψ1

0.0703 0.0128
σψ2

0.3255 0.0064
σm 0.0924 0.0046
σd 0.0767 0.003
σx 0.192 0.0022
σζ 0.0451 0.0035
σz 0.0032 0.0011
σg 0.1367 0.0033
σσd 0.2067 0.0097
σσm 0.724 0.0316
σσx 0.7907 0.0078
σσζ 1.0605 0.0265
σσz 0.2866 0.0118
σσg 0.535 0.0151

Acceptance Rate 27.8%
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TABLE B.4. Posterior, Full Measurement Error

Mean Standard Deviation

χ 0.1343 0.0504
γ 0.4036 0.0478
γ2 0.3496 0.0614
Πss 1.0062 0.004
µss 0.2447 0.0088
ψ1 1.68 0.0493
ψ2 0.3759 0.0116
γR 0.0475 0.025
ρd 0.4442 0.0407
ρx 0.1798 0.0539
ρζ 0.7684 0.1383
ρg 0.9157 0.0367
σµ 0.1145 0.0697
σψ1

0.537 0.1227
σψ2

0.2743 0.0428
σm 0.143 0.0101
σd 0.0098 0.0089
σx 0.118 0.0107
σζ 0.088 0.0146
σz 0.0011 0.0008
σg 0.0071 0.005
σσd 0.191 0.0264
σσm 0.3441 0.0885
σσx 0.5134 0.0436
σσζ 0.2296 0.1148
σσz 0.1529 0.0603
σσg 0.3016 0.0595
ΥA 0.0051 0.0025

Acceptance Rate 17.8%
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TABLE B.5. Posterior, No Stochastic Volatility

Mean Standard Deviation

χ 0.7651 0.0935
γ 0.4426 0.0818
γ2 0.6215 0.048
Πss 1.0074 0.0033
µss 0.2271 0.0069
ψ1 1.8403 0.0495
ψ2 0.329 0.0136
γR 0.1158 0.0426
ΥA 0.0072 0.0022
ρd 0.6727 0.0311
ρx 0.6814 0.0347
ρζ 0.4976 0.0733
ρg 0.3781 0.0752
σµ 0.3805 0.0082
σψ1

0.6666 0.0335
σψ2

0.353 0.0568
σm 0.2069 0.0158
σd 0.0153 0.0056
σx 0.0789 0.0077
σζ 0.0125 0.0058
σz 0.0014 0.0011
σg 0.0268 0.0132
ΥA 0.0072 0.0022

Acceptance Rate 27.3%
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APPENDIX C

SUPPLEMENTARY MATERIALS FOR CHAPTER IV

Data

Data is from NIPA-BEA,CPS-BLS, the FRED database, and the Flow of Funds accounts

from the Federal Reserve Board for the period 1954.Q4 to 2006.Q4. Data is chosen to conform

with the literature and is similar to the data used in Fuentes-Albero (2011). The data used is:

– Real output: data from NIPA table 1.3.5 on nominal gross value added by the nonfarm

business sector is deflated the implicit price deflator from table 1.3.4. This data is

annualized, so these are divided by four. This is divided by the civilian noninstitutional

population aged 16 and over from the BLS.

– Real investment: the sum of personal consumption expenditures of durables and gross

private domestic investment from NIPA table 1.1.5 is deflated using the GDP deflator from

table 1.1.4. This is weighted by the relative significance in total GDP and divided by the

civilian noninstitutional population aged 16 and over from the BLS.

– Real net worth: the weighted average of net worth for corporate and noncorporate

nonfarm business sectors. It is defined as tangible assets minus credit market instruments

at market value. Tangible assets are defined as the weighted (based on the sector’s

contribution to gross value added) sum of series FL102010005.Q from Table B.102 and series

FL112010005.Q from table B.103 of the Flow of Funds account. Liabilities are the defined

as the weighted sum of series FL1041014005.Q from Table B.102 and series FL114102005.Q

from Table B.103 from the Flow of Funds account. The data is converted to real and per

capita data the same way output is converted.

– Real consumption: the sum of personal consumption expenditures of nondurables and

services from NIPA table 1.1.5 deflated by the GDP deflator from table 1.14. This weighted

and corrected to per capita terms the same way as investment.

– Real wages: real compensation per hour in the nonfarm business sector (COMPRNFB)

provided by the BLS
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– Inflation: the log difference of the price index for gross value added by the nonfarm business

sector from NIPA table (1.3.4).

– Federal funds rate: this is from the FRED database and is converted to quarterly rates.

– Credit spread: the difference between the gross Moody’s Seasoned Baa Corporate Bond

Yield found on FRED and the federal funds rate (both rates are converted to quarterly

rates).

First Order Conditions

λ̃t =
dt

c̃t − hc̃t−1
zt−1

zt
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− Ñt+1

zt
zt+1

Q̃tK̃t+1
ζt+1

ζt

(C.17)

Et

{
[1− Γ (ω̄t+1)]

Rkt+1

Rt+1
+

Γ′ (ω̄t+1)

Γ′ (ω̄t+1)− µt+1G′ (ω̄t+1)

[
Rkt+1

Rt+1
(Γ (ω̄t+1)− µt+1G (ω̄t+1))− 1

]}
= 0 (C.18)

spreadt =
µtG (ω̄t) K̃tQ̃t

ζt
ζt−1

K̃tQ̃t−1
ζt
ζt−1
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TABLE C.1. Priors

Distribution Lower Bound Upper Bound

ΥA Uniform 0 0.03
Υζ Uniform 0 0.03
Π Uniform 1 1.03
χ Uniform 0 1
χ1 Uniform 0 1
γR Uniform 0 1
ψ2 Uniform 0 0.5
ξ Uniform 0 5
µ Uniform 0 1
ψ1 Uniform 1 3
θp Uniform 0 1
θw Uniform 0 1
ρd Uniform 0 1
ρϕ Uniform 0 1
ρg Uniform 0 1
ρx Uniform 0 1
σd Uniform 0 1
σϕ Uniform 0 1
σg Uniform 0 1
σm Uniform 0 1
σx Uniform 0 1
σζ Uniform 0 1
σz Uniform 0 1
ηd Uniform 0 1
ηϕ Uniform 0 1
ηg Uniform 0 1
ηm Uniform 0 1
ηx Uniform 0 1
ηζ Uniform 0 1
ηz Uniform 0 1
ηµ Uniform 0 1
ηψ1 Uniform 0 1
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TABLE C.2. Posterior

Mean Std. Dev.

ΥA 0.001 (0.001)
Υζ 0.002 (0.001)
Π 1.022 (0.004)
χ 0.239 (0.160)
χ1 0.778 (0.119)
γR 0.545 (0.124)
ψ2 0.472 (0.013)
ξ 4.136 (0.658)
µ 0.515 (0.088)
ψ1 1.951 (0.335)
θp 0.277 (0.256)
θw 0.162 (0.065)
ρd 0.417 (0.177)
ρϕ 0.539 (0.173)
ρg 0.582 (0.253)
ρx 0.694 (0.201)
σd 0.155 (0.033)
σϕ 0.111 (0.053)
σg 0.143 (0.043)
σm 0.052 (0.023)
σx 0.042 (0.021)
σζ 0.037 (0.017)
σz 0.022 (0.004)
ηd 0.582 (0.245)
ηϕ 0.580 (0.201)
ηg 0.595 (0.203)
ηm 0.297 (0.107)
ηx 0.445 (0.105)
ηζ 0.571 (0.316)
ηz 0.480 (0.158)
ηµ 0.407 (0.064)
ηψ1 0.508 (0.201)

Acceptance Rate 35.9%
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