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DISSERTATION ABSTRACT

Brian Joseph Dombeck

Doctor of Philosophy

Department of Economics

June 2017

Title: The Effects of News Shocks and Bounded Rationality on Macroeconomic Volatility

This dissertation studies the impact embedding boundedly rational agents in real

business cycle-type news-shock models may have on a variety of model predictions,

from simulated moments to structural parameter estimates. In particular, I analyze the

qualitative and quantitative effects of assuming agents are boundedly rational in a class of

DSGE models which attempt to explain the observed volatility and comovements in key

aggregate measures of U.S. economic performance as the result of endogenous responses

to information in the form of “news shocks”. The first chapter explores the theoretical

feasibility of relaxing the rational expectations hypothesis in a three-sector real business

cycle (RBC) model which generates boom-bust cycles as a result of periods of optimism

and pessimism on the part of households. The second chapter determines whether agents

forming linear forecasts of shadow prices in a nonlinear framework can lead to behavior

approximately consistent with fully informed individuals in a one-sector real business cycle

model. The third chapter analyzes whether empirical estimates of the relative importance

of anticipated shocks may be biased by assuming rational expectations.

By merging the two hitherto separate but complementary strands of literature

related to bounded rationality and news shocks I am able to conduct in-depth analysis

of the importance of both the information agents have and what they choose to do with it.

At its core, the study of news in macroeconomics is a study of the specific role alternative
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information sets play in generating macroeconomic volatility. Adaptive learning on the

other hand is concerned with the behavior of agents given an information set. Taken

together, these fields jointly describe the input and the “black box” which produce model

predictions from DSGE models. While previous research has been conducted on the effects

of bounded rationality or news shocks in isolation, this dissertation marks the first set of

research explicitly focused on the interaction of these two model features.
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CHAPTER I

INTRODUCTION

A primary objective of applied structural macroeconomics is to identify the

determinants of business cycles and create empirically relevant dynamic stochastic

general equilibrium (DSGE) models. While most modern DSGE models assume agents

have rational expectations and restrict attention to the effect of unanticipated shocks as

drivers of the business cycle, my dissertation studies the theoretic and empirical effects

of embedding boundedly rational agents in real business cycle-type news-shock models to

determine whether and when these assumptions influence the predictions generated by our

models.

News-shock models seek to generate positive comovement between consumption,

investment, total labor supply, and output - which is consistent with postwar U.S.

macroeconomic data - in response to news about the future state of the economy. In

Chapter II I examine whether such models are compatible with a relaxation of the RE

assumption in the context of the three-sector RBC model introduced in Beaudry and

Portier (2004) by endowing agents with a perceived law of motion (PLM) for the evolution

of the economy. Given their beliefs about the economy’s transitional path, agents take

actions which result in an actual law of motion (ALM) for the economy. Forecasting errors

as captured by differences between agents’ PLM and the ALM are then used to update

their forecasting model via recursive least squares. This process of adaptive learning

about the laws of motion for the economy plays out each period. If agents acting in this

way eventually learn to behave in the same way as fully rational agents, the rational

expectations equilibrium (REE) is said to be expectationally stable (E-stable). I find that
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the RE solution for this specific news shock model is E-Stable, and that this finding is

robust to a variety of alternative parameterizations and timing assumptions. Furthermore

I show that under certain assumptions regarding agents’ information sets, if the REE is

E-stable in any model without news shocks it will remain E-stable when news shocks

are included. This implies the effects of news shocks on model predictions can be safely

considered in a wide variety of existing models whose REE have been shown to be E-

stable.

In Chapter III I explore the qualitative and quantitative effects of allowing agents

to be boundedly optimal in the sense of Evans and McGough (2015) in the well-known

news-shock model of Jaimovich and Rebelo (2009). Boundedly optimal agents are similar

to their boundedly rational counterparts in that they are not endowed with knowledge

of the conditional distribution of all variables in the model. However, instead of merely

learning about the laws of motion for endogenous variables they are also endowed with

forecasting models for the shadow prices of endogenous state variables. Forecasts of

shadow prices are updated recursively which gives rise to a rich set of behavior as agents

incorporate news shocks into their forecasts. By embedding this behavioral process in

a nonlinear DSGE model, I am able to show through simulations that agents’ behavior

will converge close to that of fully rational agents, a remarkable feat considering how

simplistic the process is. Furthermore I compare actual US business cycle statistics with

those obtained by calibrating and simulating the model with shadow-price learning agents

and find that bounded optimality has a significant effect on the properties of simulated

data as compared to that generated under RE.

Finally, in Chapter IV I utilize Bayesian estimation techniques to determine whether

the estimated relative importance of news in the news-shock model of Schmitt-Grohe

and Uribe (2012) is robust to the inclusion of adaptive learning. News shocks and
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adaptive learning both act as expectations-based sources of business cycle activity in

macroeconomic dynamic stochastic general equilibrium (DSGE) models. This chapter

explores whether these sources act as complements or substitutes to each other by

comparing estimates of the relative importance of news shocks obtained across expectation

formation mechanisms. I find the relative importance of news shocks is amplified by up to

35% for key macroeconomic variables under learning as compared to rational expectations,

implying that news shocks may be more important for driving business cycles than

existing estimates would otherwise suggest. The chapters primary contributions are to

clarify which assumptions the importance of news is robust to and to produce a new

estimate of the constant-gain learning parameter from a novel joint news-and-learning

estimation routine.
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CHAPTER II

EXPECTATIONAL STABILITY AND THE “COMOVEMENT PROBLEM”

Introduction

Starting with Kydland and Prescott (1982) the economic literature seeking to

explain stylized facts and comovements observed in postwar macroeconomic U.S. data

through supply-side innovations has flourished. So-called real business cycle (RBC) theory

maintains innovations to productivity are responsible for the booms and busts which

comprise the business cycle. This implies a peculiar interpretation of cyclical activity:

while expansions are driven by technological progress, recessions must be caused by

technological regress.1 In recent years a subset of RBC literature has begun exploring

alternate mechanisms through which the economy might experience business cycles,

focusing in particular on the potential role of information and expectations. For example

in Beaudry and Portier (2004), the model of which is the focus for this chapter, news

about the future generates expectationally driven business cycles of the sort described

in Pigou (1927) in which the economy experiences boom-bust periods resulting from

the actions of forward-looking agents responding to noisy signals of future technological

innovation.

As noted in Krusell and McKay (2010), business cycles are characterized by positive

comovement in aggregate consumption, investment, employment, and output. While

standard RBC models generate positive pro-cyclical comovements in key variables in

1 Stiglitz (2014) points out that “... by implication, the Great Depression was marked by an episode of
acute amnesia, where in large parts of the world, people got less productive!”
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response to contemporaneous productivity shocks, they are unable to generate these

positive comovements in response to anticipated productivity shocks. Such models

typically imply news about future total factor productivity (TFP) will cause consumption

to move opposite investment, employment, and output. For example, the baseline

calibration of Kydland and Prescott’s original model suggests households will substitute

investment for consumption in anticipation of higher future marginal factor productivity

stemming from anticipated future technological growth. Because leisure is a normal good,

households also reducing employment, causing a drop in the level of output. Thus, good

news about the future state of the economy causes a recession today.

Several dynamic stochastic general equilibrium (DSGE) models have arisen in

an effort to fix this “comovement problem”.2Beaudry and Portier (2004) show that

standard one and two sector RBC models are incapable of generating qualitatively

realistic expectationally driven business cycles, that is, business cycles featuring positive

comovement amongst key macroeconomic variables in response to news about the future.

They propose a three-sector RBC model which utilizes a CES production function for

consumption and short-term substitutability constraints on consumption and investment.

Jaimovich and Rebelo (2009) augment the canonical RBC model to include variable

capital utilization, investment adjustment costs, and a novel preference specification

which allows the modeler to manipulate the strength of the wealth effect on labor

supply. Lorenzoni (2009) studies a version of the Phelps-Lucas “island model” capable

of generating empirically realistic comovements in response to anticipated demand

shocks where firms receive a noisy public signal of future aggregate productivity and a

private signal of their own productivity. Krusell and McKay (2010) modify a version of

2DSGE models are fully microfounded models of agent-level behavior in an economy. In addition to
describing the decision making and expectation formation processes for households, firms, governments,
central banks, and other economic agents.
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the Diamond-Mortensen-Pissarides search-and-matching model to allow the number of

firms, which is endogenous and interpreted as investment, to react to news about future

productivity. Guo et al. (2015) show variable capital utilization and increasing returns to

scale production are sufficient modifications to allow a standard RBC model to produce

qualitatively and quantitatively realistic expectationally driven business cycles in response

to news about future aggregate demand shocks.

Each of these approaches to fixing the comovement problem do so by changing the

structure of the economy considered. But these departures from canon have not been

accompanied by an analysis of whether the resulting rational expectations equilibrium

(REE) are expectationally stable (E-stable); that is, whether the REE is “learnable”.

E-stability of an REE can be seen as a measure of the model’s reliance on the rational

expectations hypothesis. This paper proceeds by analyzing the expectational stability

properties of the (unique) RE solution to the three-sector RBC model presented in

Beaudry and Portier (2004). The goal is to discover whether news shock models can

deliever REE which are simultaneously E-stable and capable of generating qualitatively

realistic expectationally driven business cycles. My main results suggest that E-stability

properties are robust to the inclusion of news shocks.

To this point the news-shock literature has exclusively relied on the assumption

championed by Muth (1961) that agents have model consistent or rational expectations

(RE). In other words, agents are perfectly informed as to the precise laws of motion

governing the evolution of the economy. Critically, this implies their forecasts will be

correct on average. This assumption elegantly addresses the critique of Lucas (1976) that

changes in policy may naturally result in changes to the behavior of agents. While Lucas

and Muth both carefully pointed out RE is not meant to be taken as a realistic description

of the way in which individual agents behave, it is natural to ask whether weaker
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assumptions about the capabilities of agents could result in similar model predictions.3

In particular, it is worth asking if an alternative expectation formation mechanism can be

both a behavioral description and a useful tool for analyzing economic models.

One attractive alternative proposed in Marcet and Sargent (1989a,b,c) is to assume

agents are engaged in “adaptive learning”. The literature on boundedly rational agents4

supposes agents are endowed with a perceived law of motion(PLM) about the true

structure of the economy, but are unsure of the precise coefficients governing the laws

of motion. Regarding their PLM as true the agents make optimal choices given their

information set. Since the actions of agents today influence the state of the economy

tomorrow, this gives rise to the actual law of motion (ALM) for the economy. Agents

behave as econometricians and update their estimates of the laws of motion using a

learning algorithm based on the observed forecast errors each period. A REE is said to

be E-Stable if the PLM converges (asymptotically) to the REE, that is, if agents can

eventually learn the true dynamics of the economy. Learning thus provides one way of

checking the sensitivity of models to the standard rational expectations assumption: if a

3Specifically, Muth (1961) states

“[Rational Expectations] does not assert that the scratch work of entrepreneurs resembles

the system of equations in any way; nor does it state that predictions of entrepreneurs are

perfect or that their expectations are all the same”

while Lucas (1978) states

“...[Rational Expectations] does not describe the way agents think about their environment,

how they learn, process information, and so forth. It is rather a property likely to be

(approximately) possessed by the outcome of this unspecified process of learning and

adapting.”

4See Evans and Honkapohja (2001) for a comprehensive guide to the theory.
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particular REE is not E-stable, then the predictions of the model may be perceived as less

robust than a similar model featuring a learnable REE.

Given the rich set of behavior observed in models which contemplate changes to

information sets and/or expectations formation mechanisms, it is natural to check whether

the innovations necessary to generate expectationally driven business cycles are consistent

with relaxing the assumption of rational expectations. This is particularly important in

the context of new-shock models, as stability results have been shown to be quite sensitive

to specific assumptions regarding the information sets of agents. For example, Bullard and

Eusepi (2014) show that excluding the value of contemporaneous endogenous variables

from agents’ information sets breaks the link between determinacy and E-stability found

in McCallum (2007). Since by construction news-shock models consider novel assumptions

regarding agents’ information sets while simultaneously altering modifying well-known

DSGE models, an exploration of the E-stability properties in this class of models appears

called for.

I begin by describing news shocks and how they are implemented into

macroeconomic DSGE models. Next I introduce adaptive learning and demonstrate the

procedure for determining whether a given REE is E-stable in the presence of news shocks.

Finally, I apply the learning analysis to the 3-sector RBC model of Beaudry and Portier

(2004). The chapter concludes with a brief discussion of the main results.
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Incorporating News Shocks into DSGE Models

Consider an economy with temporary equilibria described by the stationary system

of non-linear expectational difference equations

Êt [f (Xt+1, Xt, Xt−1, νt)] = 0

where X a vector of endogenous and exogenous variables and ν a vector of anticipated and

unanticipated exogenous white-noise shocks. While non-linear solutions to these types of

problems are increasingly being computed numerically, typically the system is linearized

via a first-order Taylor-series expansion about the steady state X̄. The model now takes

the form

xt = A+BÊtxt+1 + Cxt−1 +Dνt

where x a vector of endogenous variables in terms of deviation from steady-state.

Partitioning xt into endogenous variables yt and auxiliary state variables wt, the model

can be rewritten

yt = α + βyt−1 + χwt + δÊtyt+1 (2.1)

wt = ϕwt−1 +Mνt (2.2)

News shocks are exogenous stochastic shocks which are realized today but do not impact

economic fundamentals until some time in the future. Unanticipated or “surprise” shocks

thus can be thought of as a particular form of news shocks in which the realization and

impact occur contemporaneously. In either case, the shocks are incorporated easily into

9



the model by adding new auxiliary variables to the vector wt, and appropriately defining

the matrices ϕ and M .5

Adaptive Learning

E-Stability: Contemporaneous Expectations

I focus on the minimum state variable (MSV) solutions to the system given by (2.1)

and (2.2), which corresponds to a solution with the same set of variables obtained by

solving the model under rational expectations. Restricting attention to the MSV solutions

helps facilitate a direct comparison of solutions obtained under different expectation

formation assumptions.

Before continuing it is worth noting that under rational expectations it is irrelevant

whether agents time t information sets include the values of the contemporaneous

endogenous variables yt or if they observe only lagged endogenous variables yt−1 and must

instead forecast them: because the expectations are model consistent, the forecast will not

be systematically incorrect. When considering bounded rationality, however, this is no

longer the case; differences between the PLM and the ALM will drive a wedge between

expected and realized values and these residuals may well be serially correlated. This

5For example, suppose agents receives news zero and one periods in advance. Then we can write
equation (2.2) as (

ε0t
ε1t

)
=

(
0 1
0 0

)(
ε0t−1
ε1t−1

)
+

(
1 0
0 1

)(
ν0t
ν1t

)
where wt =

(
ε0t , ε

1
t

)
and νt =

(
ν0t , ν

1
t

)
. In this case the total time t innovation to the exogenous variables

in equation (2.1) is given by ε0t = ν0t + ε1t−1 = ν0t + ν1t−1. Agents receive the information about the partial
innovation ν1t−1 in period t−1, but it does not impact the economy until period t; the partial innovation ν0t
is a surprise shock learned about in period t which affects fundamentals contemporaneously.
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wedge can significantly impact the E-stability property of REE, and thus I consider both

cases in what follows.

Regardless of the specific assumptions on the information set of agents, the MSV

solutions of the system above have the form

yt = a+ byt−1 + cwt (2.3)

wt = ϕwt−1 +Mνt (2.4)

Suppose agents are endowed with the form of the solution given in equation (2.3) as their

PLM. Then given the information assumptions above, expectations are given by

Êtyt = yt

Êtyt+1 = a+ bÊtyt + cϕwt

= a+ byt + cϕwt

which can be substituted into equation (2.1) to yield the ALM

(I − δb) yt = (α + δa) + βyt−1 + (χ+ δcϕ)wt (2.5)

This provides a mapping from beliefs captured by the PLM to the ALM. This “T-map” is

given by

T (a, b, c) =
{

(I − δb)−1 (α + δa) , (I − δb)−1 β, (I − δb)−1 (χ+ δcϕ)
}

11



E-stability of a solution is determined by the matrix differential equation

d

dτ
(a, b, c) = T (a, b, c)− (a, b, c) (2.6)

It is worth noting that a REE
(
ā, b̄, c̄

)
can be interpreted as the solution to the fixed point

problem

0 = T
(
ā, b̄, c̄

)
−
(
ā, b̄, c̄

)
i.e. a set of beliefs which are self-fulfilling and coincide on average with realizations such

that

(
I − δ

(
I + b̄

))
ā = α (2.7a)

δb̄2 − b̄+ β = 0 (2.7b)(
I − δb̄

)
c̄− δc̄ϕ = χ (2.7c)

Inspection of equation (2.7b) shows the coefficient matrix b is independent of the assumed

structure for anticipated and unanticipated shocks; that is, the coefficient matrix b is

independent of ϕ and M from (2.2). Furthermore, for a given b equations (2.7a) and

(2.7c) uniquely determine the coefficient matrices a and c. However, b is the solution of

a matrix-quadratic which is not in general unique, and hence solution techniques such as

the well-known methods of Blanchard and Kahn, Uhlig, Klein, or Sims, must be employed

to obtain the REE.
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The Jacobian of the vectorized matrix differential equation (2.6) evaluated at the

REE ā, b̄, c̄ can be shown to be comprised of three blocks6

DTa(ā, b̄) = I ⊗
(
I − δb̄

)−1
δ (2.8a)

DTb(b) =
[(
I − δb̄

)−1
β
]′
⊗
[(
I − δb̄

)−1
δ
]

(2.8b)

DTc(b̄, c̄) = ϕ′ ⊗
(
I − δb̄

)−1
δ (2.8c)

Proposition 10.3 of Evans and Honkapohja (2001) suggests the REE is E-Stable if all

eigenvalues of the matrices DTa(ā, b̄), DTb(b̄), and DTC(b̄, c̄) have real parts less than 1.

This can be easily established given a particular model, but the objective of this paper

is to determine what effect - if any - the inclusion of anticipated shocks has on the E-

stability of a given REE. This is established by Proposition 2.3.1

Proposition 2.3.1. If agents’ information sets include the value of contemporaneous

endogenous variables and the REE corresponding to the core of a model featuring news

shocks, defined as the system of equations which exists when news shocks are shut down,

is E-stable, then the REE corresponding to the model with news shocks included is also

E-stable.

6For example, since the equation governing the evolution of b is independent of a and c we may start
with the equation

Tb(b) = (I − δb)−1 β

the matrix differential of this equation with respect to b is obtained by applying the rule dF−1 =
−F−1(dF )F−1, and hence

dTb(b) = (I − δb)−1 δ(db) (I − δb)−1 β

Since dvecx = vecdx and vec(ABC) = (C ′ ⊗ A)vecB the vectorized Jacobian DTb = ∂vecTb/∂(vecb)′-
which determines local stability of this equation evaluated at a particular b- is given by

DTb(b) =
[
(I − δb)−1 β

]′
⊗
[
(I − δb)−1 δ

]
Similar operations can be employed to obtain DTa and DTc.
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Proof. Suppose the REE is E-stable without anticipated shocks included in the model.

Then since the value of b̄ is independent of ϕ and M (which define the structure of

exogenous shocks), and since a is uniquely determined for given b, it follows the structural

modifications necessary to incorporate news shocks will have no effect on the eigenvalues

of the matrices DTa and DTb. Furthermore, these modifications can always be done such

that ϕ a block-upper triangular matrix with upper-left block corresponding to the no-

news model and lower-right block a nilpotent lower-shift matrix. Since the eigenvalues of

DTc are the set of pairwise-products of eigenvalues of ϕ′ and
(
I − δb̄

)−1
δ, the inclusion of

the nilpotent sub-matrix implies DTc will acquire a set of zero eigenvalues in addition to

exactly the same eigenvalues as in the no-news model, thereby preserving E-stability of the

REE.

Proposition 2.3.1 suggests that to check whether an REE for a particular model is

E-stable it will be sufficient to consider the model without news shocks. If it is E-stable

without news then it will continue to be E-stable in the presence of news. One immediate

implication of this is that any models with well known unique and E-stable REE can be

modified to include news. However, the conditions which imply a REE is E-stable depend

critically on the information assumed to be known to agents at the time of making their

forecast. In the next section I consider the effect of introducing an informational friction

to the decision making process of agents.

E-Stability: Delayed Information Assumption

In contrast to the preceding subsection, I now assume the values of contemporaneous

endogenous variables are unknown to agents at the time they must make their

decisions. Instead, agents must form forecasts of these values using their PLM. This
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approach emphasizes the (possible) distinction between individual and aggregate-level

endogenous variables in macroeconomic models; for example, individual households

consumption/savings decisions are typically functions of future real interest rates, which

are themselves determined by the aggregate consumption/savings decision of the economy

as a whole. Thus each household must form a forecast of the future aggregate action.

I again consider the model given by equations (2.1) and (2.2). The PLM is again

assumed to take the form of the MSV solution, which is still

yt = a+ byt−1 + cwt (2.9)

wt = ϕwt−1 +Mνt (2.10)

However, the information assumptions now imply that expectations are given by

Êtyt = a+ byt−1 + cwt

and Êtyt+1 = a+ bÊtyt + cϕwt

= (I + b)a+ b2yt−1 + (bc+ cϕ)wt

As before these can be inserted into equation (2.1) to obtain the ALM

yt = [α + δ (I + b) a] +
[
β + δb2

]
yt−1 + [χ+ δ (bc+ cϕ)]wt (2.11)

Thus the mapping of beliefs from the PLM to the ALM is given by

T (a, b, c) =
{
α + δ (I + b) a, β + δb2, χ+ δ (bc+ cϕ)

}
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and expectational stability of a solution is determined by the matrix differential equation

d

dτ
(a, b, c) = T (a, b, c)− (a, b, c) (2.12)

where again an REE can be seen as the solution to the fixed point problem

0 = T
(
ā, b̄, c̄

)
−
(
ā, b̄, c̄

)
It is simple to verify the solution to this problem is identical to that implied by equations

(2.7a), (2.7b), and (2.7c), establishing that the specific informational assumptions are

equivalent under RE: when agents are perfectly informed to the true ALM for the

economy it matters not whether they know the values of contemporaneous endogenous

variables or forecast them, as their forecasts will by assumption be correct on average.

However, the additional complication for boundedly rational households can have

non-trivial effects on the conditions necessary to ensure asymptotic convergence to

the REE. In particular, Proposition 10.1 in Evans and Honkapohja (2001) states the

RE solution (ā, b̄, c̄) is E-Stable if all eigenvalues of the Jacobian of the vectorized T-

map, which again is comprised of three blocks, have real parts less than 1. Under this
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alternative timing regime, the blocks are given by7

DTa(ā, b̄) = I ⊗ δ + I ⊗ δb̄

DTb(b̄) = b̄′ ⊗ δ + I ⊗ δb̄

DTc(b̄, c̄) = ϕ′ ⊗ δ + I ⊗ δb̄

As with the contemporaneous timing assumption, the matrices DTa and DTb are

unaffected by the modifications to ϕ and M necessary to include news shocks, and hence

their eigenvalues are similarly unaffected. However, DTc is clearly affected; furthermore,

this matrix is the sum of two matrices. Very little can be said of the eigenvalues of the

sum of matrices in general, and thus analysis of E-stability under this delayed information

set must rely on numerical exercises. In what follows I apply the analytic E-stability

results from this section to the model of Beaudry and Portier (2004), and find that the

REE are E-stable under both informational assumptions for a wide range of parameter

constellations and informational structures

Application to Beaudry and Portier (2004)

Any solution to the comovement problem must address two issues. First, good news

about the future must lead to increased demand for investment when the information is

obtained as opposed to when the shock actually materialize. And second, the increased

investment must be financed by increasing employment as opposed to decreasing

7Since the Kronecker product is a bilinear map, we have

DTa
(
ā, b̄
)

= I ⊗ δ
(
I + b̄

)
= I ⊗ δ + I ⊗ δb̄
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consumption. There are a variety of methods available for achieving these desired

results. In what follows I will apply the E-stability analysis of the previous section to the

news-shock model of Beaudry and Portier (2004), in which good news about the future

generates a boom in the current period: all major macroeconomic variables - consumption,

investment, labor supply, and output - rise upon receipt of the positive information

regarding future economic fundamentals.

The economy of Beaudry and Portier (2004) is comprised of three sectors:

investment or “durable” goods, intermediate “nondurable” goods, and final composite

consumption goods. Households make a consumption/savings decision using income

earned by supplying labor to the durable and nondurable good markets and renting

capital to the consumption good market; this decision is partially informed the arrival

of information about a future technological innovation i.e. a news shock. All markets are

competitive. The durable and nondurable goods are produced using CRTS technology

from household labor and a fixed factor, and production is augmented by sector-specific

technology. The consumption good is produced from the capital stock and the nondurable

good using CES technology featuring complementarity between the inputs.

The keys to generating positive comovement in this model are twofold. Because

the nondurable good and capital are complements in production of the consumption

good, news about the technology used in producing the nondurable good causes a

contemporaneous change to the demand for investment. And because the consumption

and investment decisions are essentially decoupled from each other - the value of

investment is directly related only to the loss of leisure by increasing labor in the durable

good sector, as opposed to the loss of utility from reducing consumption - the increased

investment is purchased by households working more rather than less. Thus, the model

18



produces qualitatively realistic expectationally driven business cycles in which good news

about the future generates a boom in all key macroeconomic variables today.

The Model

Formally, the composite consumption good Ct is produced from the nondurable good

Xt and the (predetermined) capital stock Kt−1 according to

Ct =
(
aXν

t + (1− a)Kν
t−1

) 1
ν (2.13)

where ν ≤ 0 to ensure the inputs are complements in production. The nondurable good is

produced from household labor lx,t, a fixed factor Fx, and technology θx,t according to the

constant returns to scale (CRTS) production function

Xt = θx,tl
αx
x,tF

1−αx
x (2.14)

where 0 ≤ αx ≤ 1 captures labor’s share of nondurable-good production. The law of

motion for the aggregate capital stock is

Kt = (1− δ)Kt−1 + It (2.15)

where 0 ≤ δ ≤ 1 the depreciation rate and It gross private investment produced by

the durable goods sector from household labor lk,t, a fixed factor Fk, and technology θk,t

according to the CRTS production function

It = θk,tl
αk
k,tF

1−αk
k (2.16)
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where 0 ≤ αk ≤ 1 captures labor’s share of durable-good production. The fixed factors are

inelastically supplied by households and have the effect of introducing diminishing returns

in labor supply while maintaining CRTS in overall production. These fixed factors can be

thought of as any scarce resource that constrains production such as privately held land or

managerial capital.

Households are infinitely lived and receive utility from consumption and disutility

from supplying labor. The lifetime utility function is assumed separable in consumption

and labor, and is given by

U = Ê0

[
∞∑
t=0

βt
{

log(Ct)− v0

(
l̄ − lx,t − lk,t

)}]
(2.17)

where 0 < β < 1 the discount factor, v0 > 0 scales the disutility of supplying labor, and l̄

total disposable time. Êt denotes the subjective expectations of the household given their

time t information set. The flow budget constraint is

Ct + PtIt ≤ Wx,tlx,t +Wk,tlk,t +RtKt−1 + Πx,t + Πk,t (2.18)

where Pt the price of the investment good in terms of the consumption good and Πx,t and

Πk,t the returns to renting the fixed factor in the nondurable and durable goods sectors,

respectively. The aggregate resource constraint is defined to be

Yt = Ct + PtIt (2.19)
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where Yt the total output of the economy. Technology of the durable good exhibits a

deterministic trend such that

θk,t = g0,ke
g1t (2.20)

while the technology of the nondurable grows stochastically according to

θx,t = g0,xe
g1tθ̂x,t (2.21)

θ̂x,t = θ̂λx,t−1e
ε0t (2.22)

where 0 < λ < 1. One may interpret innovations to nondurable good-specific technology

as capturing the process of product differentiation e.g. the creation of higher quality or

entirely new products. New goods will require a higher stock of infrastructure, and this

complementarity between nondurable TFP and the capital stock is key to the model’s

ability to generate qualitatively realistic expectationally driven business cycles.

News itself is assumed to take the form of an anticipated shock to the growth

of nondurable technology. In particular, ε0
t = ν0

t + νnt−n where n is the horizon for

which the shock is anticipated. This is in contrast to the “noisy news” view, which

models news shocks as noisy signals of future innovations. Both formulations in some

sense support the notion of revisions and agents being surprised by realizations which

differ from their expectations. But the anticipated shocks version has the advantage of

being straightforward to incorporate into the systems of equations comprising modern

macroeconomic models; furthermore, it is simple to consider alternative assumptions for

the information flows e.g. the length and/or density of the anticipated shock structure.
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E-Stability

Solving this model for a particular parameterization involves detrending the non-

stationary variables, calculating the non-stochastic steady state, and then log-linearizing

the system around this non-stochastic steady state; see Appendix A for details. Abusing

notation, the (linear) system of expectational difference equations can be put in standard

form

yt = α + βyt−1 + χwt + δÊtyt+1 (2.23)

wt = ϕwt−1 +Mνt (2.24)

where yt =
(
C̃t, l̃x,t, l̃k,t, Ĩt, K̃t, X̃t, Ỹt, P̃t, R̃t, W̃x,t, W̃k,t, Λ̃t, Q̃t, θ̃k,t, θ̃x,t,

˜̂
θx,t

)′
the endogenous

variables, wt = (ε0
t , ε

1
t , · · · , εnt )

′
a vector of auxiliary state variables designed to pass news

shocks through time, and νt = (ν0
t , ν

1
t , · · · , νnt )

′
a vector of anticipated and unanticipated

exogenous stochastic shocks.8 The elements of the matrices α, β, χ, and δ correspond to

the log-linearized equations which describe a temporary equilibrium and are functions of

the structural parameters; the non-zero elements of ϕ, and M are selected to imply the

desired structure for the arrival of anticipated and unanticipated shocks.

Beaudry and Portier (2004) calibrate the model parameters using results from

previous studies or to achieve specific steady-state values. My analysis of the E-stability

of their news-shock model begins with their baseline calibrations, which are summarized in

Table 1.

8Technology for the durable good is assumed to be deterministic. Incorporating a stochastic element
would simply require modifying wt and νt to include the appropriate auxiliary and exogenous variables
and making the corresponding revisions to the filtering matrices ϕ and M .
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Baseline Parameterization
Parameter Values

β 0.98
δ 0.05
αx 0.60
αk 0.97
l̄ 2
v0 1
Fx 1
Fk 1
λ 0.999
ν -3.78

TABLE 1. Calibrated Parameters for Three-sector Model

Inclusion of News Shocks

Putting the model in standard form allows an immediate application of the E-

stability results from the section which introduced adaptive learning. In particular, it

is simple for any given parameterization to calculate the eigenvalues of the T-map’s

vectorized Jacobian which indicate whether or not the system is E-stable. I begin by

setting n = 0, that is, the case where there is no news and all shocks are completely

unanticipated. The largest real roots of DTa(ā, b̄), DTb(b̄), and DTc(b̄, c̄) under the

contemporaneous information assumption are 0.5199, 0.51947, and 0 respectively, while

the corresponding numbers are 0.1547, 0.1538, and 0 under the delayed information

assumption. Thus the RE solution for this model is E-Stable under both informational

assumptions without news.

Proposition 2.3.1 implies that the eigenvalues should be unaffected by the inclusion

of news shocks under the contemporaneous timing assumption. Indeed, setting n = 1 so

that households receive information about the technological innovation 1-period ahead

and keeping all other parameters fixed at their baseline levels results in no change to the

23



eigenvalues for DTa(ā, b̄), DTb(b̄), or DTc(b̄, c̄), as expected. Furthermore, while there is

no corollary for the delayed timing assumption, numerical results suggest the E-stability

of the REE is similarly unaffected by the inclusion of news under the delayed timing

assumption.

The main contribution of this chapter is the finding that news shocks do not alter

the E-stability properties for REE. This is important because E-stability results are,

in general, sensitive to the assumptions regarding the timing and flow of information.

While news shocks are essentially a modification of the exogenous driving forces for

the economy which would not in general be expected to alter E-stability results, their

impact is felt through the revision of expectations and subsequent behavioral changes

on the part of households from the arrival of new information. This informational

feedback effect is responsible for the fact that some REE which are E-stable under the

contemporaneous timing assumption may fail to be E-stable under the delayed timing

assumption. The main results of this chapter affirm the robustness of REE to news shocks

and suggest modelers wishing to incorporate anticipated shocks into their models may do

so without sacrificing on the robustness of their REE to alternate expectations formations

assumptions.

Robustness

In what follows I seek to characterize what role, if any, the specific calibration

choices for structural parameters and the new shock structure play in determining

whether the REE is E-stable. I proceed by first considering alternate calibrations for

the structural parameters and then exploring the effect of lengthier forecasting horizons

and denser informational structures. I find that the E-stability of the REE is robust to
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all constellations consistent with the model being able to generate qualitatively realistic

expectationally driven business cycles, with and without news shocks.9

To analyze whether alternative parameterizations may impact the E-stability results,

I adopt the following strategy: I change the value of structural parameters one at a time

while holding all others at their baseline calibration, searching only within the parameter

space consistent with the model generating qualitatively realistic expectationally driven

business cycles. The REE is E-stable for all parameterizations considered and under both

informational timing assumptions. Table 2 displays the smallest and largest considered for

each parameter.

Robustness Checks
Parameter Smallest Value Largest Value

β 0.001 1
δ 0 1
αx 0.001 0.999
αk 0.001 0.999
ν -100 -0.001
a 0.001 0.999

TABLE 2. Alternate Parameterizations

In general, the largest real parts of eigenvalues are larger when households discount

the future less (smaller β), when the depreciation rate of capital is smaller (smaller δ),

when the decreasing returns to producing the nondurable good are smaller (larger αx),

when the decreasing returns to producing the durable good are larger (smaller αk), when

the complementarity between capital and nondurable goods in producing the consumption

good is weaker (larger ν), and as the relative importance of the nondurable good to capital

in producing consumption decreases (smaller a). Even so, setting these parameters jointly

9The ability of the model to solve the comovement problem is dependent only the value of ν,
which governs the substitutability between capital and the nondurable good in the production of the
consumption good. As long as these factors are complements in production of the consumption good i.e.
ν ≤ 0, the model will be capable of generating qualitatively realistic expectationally driven business cycles.
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to values which on their own would tend to imply relatively large eigenvalues does not

cause the REE to become expectationally unstable.

One might also be concerned about assumed structure for news shocks themselves,

that is, the length and density of the forecasting horizon. To analyze what role this

structure plays in the E-stability of the REE I proceed as follow. First, I extend the

forecasting horizon while keeping the structural parameters at their baseline levels by

considering n = 1, 2, ..., 10. Second, I allow for multiple anticipated shocks, that is,

households receive multiple pieces of information for the eventual innovation. For example,

households may receive news about the innovation four and eight periods ahead. Neither

changes to the length of the forecasting horizon nor its density have any impact on the

largest real parts of eigenvalues of DTa(ā, b̄), DTb(b̄), or DTc(b̄, c̄) under either timing

assumption.

Conclusion

That the three-sector news-shock model of Beaudry and Portier (2004) can generate

qualitatively realistic expectationally driven business cycles while the RE solution is E-

stable suggest there is nothing fundamental about news shocks per se to imply models

incorporating them will be expectationally unstable. In fact, Proposition 2.3.1 shows

that the REE of any model be E-stable when news shocks are included in the time t

information set as long as it is E-stable when news shocks are not included. While no

analytic result exists for alternative timing specifications, numerical experimentation

suggests this may be true more generally, as alternate informational structures did not

impact the largest eigenvalues of the associated T-map’s vectorized Jacobian.
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This is a particularly important finding given the well-known sensitivity of E-

stability of REE to specific assumptions regarding agents information sets. Since news-

shock models rely critically on novel changes to agent’s information sets, and since no

other studies have examined E-stability in the context of a news-shock model, this study

suggests a potential justification for RE on the grounds that boundedly rational reduced-

form learning agents can learn the RE coefficients over time. More work will need to

be done to examine whether the REE of such news-shock models demonstrate similar

learnability properties under alternative forms of bounded rationality, such as Euler-

equation learning, infinite-horizon learning, or shadow-price learning.
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CHAPTER III

SHADOW PRICE LEARNING IN A NEWS-SHOCK MODEL

Introduction

The relatively recent interest in using news to explain macroeconomic fluctuations

began largely from the asset-price bubbles experienced in the late 1990s with the tech-

boom. The “irrational exuberance” exhibited by the market was difficult to generate in

most standard macroeconomic DSGE models, and it is this gap which the original news-

shock model of Beaudry and Portier (2004) attempted to fill. As shown in Chapter II,

by modifying the structure of a RBC model in a particular way the authors were able to

generate boom-bust cycles fueled by households experiencing periods of optimism and

pessimism which created liquidation cycles in the capital stock. Yet this is just one way of

solving the “comovement problem” found in RBC models, and it comes at the expense of

making significant changes to the standard RBC model. In particular, it requires three

sectors and very strong complementarity of inputs to final goods production, both of

which are somewhat unusual in the broader context of typical workhorse macroeconomic

models.

Jaimovich and Rebelo (2009) on the other hand provide a news-shock model capable

of solving the comovement problem while remaining approachable to researchers familiar

with standard RBC models. The core of the model is essentially a discrete-time Ramsey

model with elastic labor supply. Savings are converted to investment according to some

technological process, and investment is used to create a depreciating capital stock. This

textbook structure is augmented by assuming variable capacity utilization of capital, a
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cost to adjusting investment from its previous level, and a novel preference specification

nesting the well known specifications of Greenwood et al. (1988) and King et al. (1988).

While these features taken together represent a significant departure from standard RBC

models, the individual elements are fairly standard.

The relative simplicity of the model makes it an excellent candidate for exploring

the qualitative and quantitative effects of relaxing the RE assumption in favor of a weaker

assumption. Furthermore, since it is quite similar to well-known RBC models, the results

of such an experiment exist in an environment in which some context has already been

provided. While many alternatives to RE exist, I ultimately choose to consider bounded

optimality of the sort described in Evans and McGough (2015). To place this decision in a

broader context, I begin by describing the two benchmark theories of bounded rationality:

Euler-equation learning and infinite-horizon learning.

Under Euler-equation learning, found e.g. in Evans and Honkapohja (2006) and

Honkapohja et al. (2012), agents behave in accordance with their Euler equations

which relate control decisions today with the forecasted values of decisions tomorrow.

This approach eliminates the reliance on RE in deriving the equilibrium dynamics of

the economy found in the reduced-form learning approach of Chapter II. Rather than

assuming agents are rational, solving their dynamic programming problem, and then

relaxing the RE assumption, Euler-equation learning studies the evolution of agent’s

beliefs and the path of the economy when their expectations are boundedly rational even

when solving their dynamic programming problem. One of the benefits of Euler-equation

learning is its simplicity: agents need only make one-period ahead forecasts to determine

their optimal control decisions.
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However, a possible shortcoming is this approach requires agents to forecast the

future value of control variables, a somewhat strange exercise in a representative agent

model where these are completely under the control of the agents. The infinite-horizon

approach to learning of Preston (2005) avoids this by formally expressing decisions today

as being determined by agent’s expectations of their future lifetime budget constraint

and transversality conditions. Behavior is thus based on the relationship between future

wealth and the implied control decisions. One of the main benefits of the infinite-horizon

approach is the strict adherence to microfoundations which implies behavior is truly

optimal given beliefs.

In Branch et al. (2012a) a “hybrid” of the infinite-horizon and Euler-equation

approaches called N-step optimal learning is developed. N-step optimal learning assumes

agents explicitly take current and future expected values of wealth over a finite range

into account when making their control decisions, which are themselves anchored to

the Euler equation as a behavioral primitive. This learning mechanism has the infinite-

horizon approach as a limiting case, and may be viewed as its finite-horizon version. N-

step optimal learning captures both the simplicity of Euler-equation learning and the

rigorous adherence to fully optimal behavior imparted by infinite-horizon learning, but

it still requires considerable sophistication on the part of agents in the model.

A recent alternative similar in spirit but requiring less agent-level sophistication is

the shadow-price learning (SP-learning) approach of Evans and McGough (2015). Rather

than taking the behavioral primitive to be the Euler equations, which often embody

complicated nonlinear relations between contemporaneous control decisions and the

evolution of the determinants of future income, SP-learning assumes agents base their

decisions on the standard first-order necessary conditions (FONCs) derived from the

intertemporal Lagrangian. These FONCs describe a set of conditions which must be
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satisfied by the agents control decisions in order to be considered optimal, and they are

functions of the expected present value of shadow prices for endogenous state variables.

SP-learners form forecasts of these shadow prices using a linear PLM and update their

beliefs over time using recursive least squares; thus the behavior is by definition optimal

given beliefs.

SP-learning is an attractive alternative to RE for many reasons. First, the

informational assumptions are quite natural: agents need understand little more than

their preferences and budget constraint and take as given many of the same variables that

real households do e.g. wages and interest rates. Second, the behavior of agents is quite

intuitive: they simply contemplate how changing their behavior today would impact key

variables tomorrow based on their beliefs and take action accordingly. Third, the updating

of beliefs occurs via recursive least squares, an exercise which any student of introductory

econometrics could conduct. Finally, it lends itself to considering heterogeneity of agents

along some dimension such as information or initial wealth, as these differences will cause

different transition paths under learning for different households.

While much attention in the bounded rationality literature has focused on

determining whether agents endowed with boundedly rational expectations may learn

to behave rationally, there is a somewhat smaller literature which examines the effect

of relaxing RE on the quantitative predictions generated by a given DSGE model. For

example, Williams (2003a) compares data generated by simulations of an RBC and a

NK model under RE and reduced-form learning. He finds that reduced-form learning

has an extremely small effect on generated moments. He then considers an alternative

learning approach where agents’ decisions incorporate uncertainty about the structure

of the economy into their decision rules. This “structural learning” approach is shown

to substantially increase the volatility and persistence of key macroeconomic variables
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generated by an otherwise standard RBC model. Given the discussion above this is not

too surprising: the “structural learning” approach embodies to varying degrees the same

core idea behind Euler-equation and infinite-horizon learning, namely that agents should

try to act optimally given their beliefs, and that these beliefs may be quite different from

those prescribed by RE.

This chapter proceeds in the spirit of Williams (2003a) by trying to determine the

quantitative effects on business cycle statistics generated by the Jaimovich and Rebelo

(2009) news-shock model when agents are assumed to be SP-learners. The central goal

of this chapter is to address what effect relaxing the assumption of RE in favor of SP-

learning has on the empirical relevance of this particular news-shock model, and whether

the behavior of SP-learning households will come to approximate that of their fully

rational counterparts. I first describe the economic environment, including the calibration

for the model, the equations governing a temporary equilibrium, and the way in which

news shocks are modeled. I then present the results of simulation exercises to generate and

compare data on business cycles within the model to those found in US data. The chapter

concludes by reviewing the main results and discussing paths for future research.

The Model

The representative household chooses consumption Ct and hours worked ht to

maximize the lifetime utility function

Ê0

∞∑
t=0

βtU(Vt) (3.1)
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where 0 < β < 1 the household’s discount factor and U the period utility function which

takes the CRRA form

U(Vt) =
V 1−σ
t − 1

1− σ
(3.2)

where σ > 0 the inverse intertemporal elasticity of substitution and the argument Vt is

given by

Vt = Ct −
ψh

1+ 1
θ

t St
1 + 1

θ

(3.3)

where ψ > 0 scales the disutility of labor supply and θ > 0 governs the Frisch elasticity

of labor supply. St is a geometric average of current and past habit-adjusted consumption

and takes the form

St = Cγ
t S

1−γ
t−1 (3.4)

where 0 ≤ γ ≤ 1 governs the magnitude of the wealth elasticity of labor supply. This

preference specification, often referred to as “JR preferences”, allows the modeler to

calibrate the wealth effect of labor supply to be “small” while permitting a balanced

growth path. The comovement problem in typical RBC models is partially caused by

the wealth effect of labor supply dominating the substitution effect, thereby causing

consumption and hours worked to move in opposite directions upon receipt of good

news, and hence this utility function makes it simple to develop qualitatively realistic

expectationally driven business cycles.

Note this specification nests two well-known and important preference specifications.

γ = 0 corresponds to the preferences of Greenwood et al. (1988) in which labor supply
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depends only on current real wages and is independent of the marginal utility of income,

while γ = 1 corresponds to the preferences of King et al. (1988) which are compatible

with a balanced growth path at the optimal steady state of the economy. Small values for

γ allow the economy to be consistent with a balanced growth path while also implying

a very weak wealth effect of labor supply, both of which are important features for any

dynamic stochastic general equilibrium (DSGE) model hoping to explain movement in key

macroeconomic variables through news shocks.1

Households are assumed to own physical capital Kt and rent it to firms in a

competitive market. Each household’s stock of capital evolves according to the law of

motion

Kt = (1− δ (ut))Kt−1 + It

[
1− Φ

(
It
It−1

)]
(3.5)

where It gross private investment. Note the timing convention: subscripts correspond to

the time period in which the variable is decided, hence in time t the household chooses Kt

and takes as given the predetermined capital stock Kt−1, which was chosen in period t− 1.

Φ
(

It
It−1

)
imposes a cost to adjusting investment from its previous level while δ (ut)

implies capital depreciation is a function of its utilization rate ut. Both functions are

convex in their arguments, and I follow SGU in assuming the quadratic functional forms

δ(ut) = δ0 + δ1(ut − 1) +
δ2

2
(ut − 1)2 (3.6)

1Note that the case of γ = 0 is not consistent with a balanced growth path: along a steady state the
real interest rate must be growing at a constant rate, and thus the marginal utility of income will also be
growing. A balanced growth path requires the wealth and substitution effects from the constantly growing
real wage to cancel, but γ = 0 ensures that only the substitution effect exists, and hence labor supply will
be changing at a rate inconsistent with the rest of the economy.
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where δ0 > 0 the steady-state depreciation rate, δ1 > 0 determines the steady-state value

of ut, and δ2 > 0 captures the rental rate elasticity of capacity utilization and

Φ
(
µIt
)

=
κ

2

(
µIt − µI

)2
(3.7)

where µIt ≡ It
It−1

the growth rate of investment, κ > 0 a scaling parameter, and µI the

steady-state growth rate of gross private investment. This specification implies Φ
(
µI
)

=

Φ′
(
µI
)

= 0 and Φ′′
(
µI
)
> 0, i.e. there are no investment-adjustment costs on a balanced

growth path.

Each period the household receives labor income from working ht hours at rate Wt,

rental income from from renting utKt−1 units of effective capital at gross rental rate Rt,

and lump sum firm-profits of Πt. The household uses this income to purchase consumption

and investment goods. The flow budget constraint is given by

Ct + AtIt ≤ Wtht +Rt (utKt−1) + Πt (3.8)

where At is an exogenous process representing the current state of technology for

producing investment goods from consumption goods with stationary growth rate µAt ≡
At
At−1

and steady-state value µA. In a decentralized equilibrium At may be interpreted as

the relative price of investment goods in terms of consumption goods, that is a unit of the

investment good may be exchanged for At units of the consumption good.

Households are assumed to make their choices to maximize their expected lifetime

utility, and hence each period they solve a constrained optimization problem to maximize

expected discounted utility. Formally, households choose a set of stochastic processes
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{Ct, ht, ut, It, Kt, St}∞t=0 to maximize 3.1 subject to the constraints given by equations

3.2-3.8 and initial conditions for the endogenous state variables I−1, K−1, and S−1. This

can be written as a standard dynamic constrained maximization problem:

max
Ct,ut,ht,It,Kt,St

Êt

∞∑
t=0

βtU (Vt)

subject to U (Vt) =
V 1−σ
t − 1

1− σ

Vt = Ct −
ψh

1+ 1
θ

t St
1 + 1

θ

St = Cγ
t S

1−γ
t−1

Ct + AtIt ≤ Wtht +Rt (utKt−1) + Πt

Kt = (1− δ(ut))Kt−1 + It

[
1− Φ

(
It
It−1

)]

The household’s time t control decisions ût = (Ct, ut, ht, It, Kt, St)
′ will depend

on their expectations of the future shadow price of the endogenous state variables

x1
t = (It−1, Kt−1, St−1)′, which are variables the household can directly affect in the

future through their actions today.2 Under RE all agents within the economy know the

conditional distributions of all variables, and hence the laws of motion for the endogenous

and exogenous state variables are known and the expected future value of these shadow

prices is straightforward to compute. Standard solution techniques under RE involve

deriving Euler equations relating today’s control decisions to those of tomorrow to describe

the behavior of households and combining these and other optimality conditions, resource

constraints, and laws of motion to arrive a system of expectational difference equations.

2While agents will also use their expectations of future realizations of the exogenous state variables
in their decision making process, their actions do not affect the marginal values of these variables; hence,
they need not concern themselves with the expected future shadow prices of these exogenous states.
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Typically this system is nonlinear, and hence the solution to the first-order approximation

is considered.

In what follows I will replace RE with a version of bounded rationality based

on shadow prices called SP-learning. Under SP-learning, households do not know the

conditional distribution of all variables, and in particular they do not know the precise

way in which shadow prices depend on their behavior. Instead they estimate the value of

these shadow prices using a linear forecasting rule which is a function of observables.

The solution technique under SP-learning stands in stark contrast to that of RE.

A major difference is that while agents are endowed with linear forecasting rules, their

behavior is embedded within the nonlinear specification of the model. This implies

except for special cases, the relevant equilibrium notion is that of a restricted-perceptions

equilibrium (RPE) as opposed to a REE. A RPE can be thought of as an equilibrium

arising from agents’ optimally misspecified beliefs which are consistent with the stochastic

processes realized in the economy. Given their forecasting model agents are unable to

detect a misspecification. The first task of this chapter is determining how similar this

RPE is to the implied REE.

Denote the shadow prices of investment, capital, and habit-adjustment by λIt , λ
K
t and

λSt , respectively. These have the simple interpretation as the time t value of an additional

unit of their corresponding endogenous state in time t. For example, λKt is the marginal

value of an additional unit of preinstalled capital Kt−1 in time t. With this interpretation

the FONCs describing optimal household choices of Ct, ht, and ut given beliefs about the

future values of these shadow prices can be obtained via simple variational arguments.3

3Note that given optimal decisions for consumption, labor supply, and capacity utilization the choices
for the geometric average of habit-adjusted consumption St, gross investment It, and hence next period’s
capital stock Kt+1 are pinned down by equations (3.4), (3.8), and (3.5) respectively.
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The details of this derivation are presented in Appendix B. The end result is the following

three FONCs in the controls

UCt(Vt) +
∂St
∂Ct

βÊtλ
S
t+1 =

∂It
∂Ct

(
βÊtλ

I
t+1 +

∂Kt

∂It
βÊtλ

K
t+1

)
−Uht(Vt) =

∂It
∂ht

(
βÊtλ

I
t+1 +

∂Kt

∂It
βÊtλ

K
t+1

)
∂Kt

∂ut
βÊtλ

K
t+1 =

∂It
∂ut

(
βÊtλ

I
t+1 +

∂Kt

∂It
βÊtλ

K
t+1

)

and the following three FONCs in the endogenous state variables

λIt =
∂Kt

∂It−1

βÊtλ
K
t+1

λKt =
∂It

∂Kt−1

(
βÊtλ

I
t+1 +

∂Kt

∂It
βÊtλ

K
t+1

)
+

∂Kt

∂Kt−1

βÊtλ
K
t+1

λSt = USt−1(Vt) +
∂St
∂St−1

βÊtλ
S
t+1

It can be shown that the endogenous shadow prices can be expressed in terms of the

contemporaneous controls and states, and hence their actual value is determined as a

function of the contemporaneous decisions of the household. However, the household

makes these decisions based on their expectations of the value of future shadow prices

without knowing the nonlinear way in which the actual values are determined. Given a

set of beliefs and a linear PLM for the evolution of these shadow prices, SP-learners take

optimal actions given their forecasts of future shadow prices. This behavior results in the

ALM for the shadow prices. Beliefs are updated as weighted averages of current beliefs

and forecast errors via the recursive least squares algorithm as is standard in the adaptive

learning literature. A crucial question addressed by studying household behavior under
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this less stringent specification for expectation formation is whether the household’s beliefs

will (approximately) converge to those of a rational agent.

The model is closed by describing the production side of the economy. It is

important to keep in mind that the only agents operating as SP-learners are the

households; firms behave in a manner consistent with rational expectations. One possible

justification for this discrepancy in assumptions about expectations formation is that these

types of agents may be more likely to have the means to act in a highly sophisticated

manner, whereas the average household likely does not.

The representative firm pays for ht worker-hours and rents utKt−1 units of effective

capital to produce output Yt using CRT technology according to the production function

Yt = zt (utKt−1)1−α hαt (3.9)

where α ∈ (0, 1) governs the labor share of output in steady state. As is typical in RBC-

type models, the supply side of the economy is subjected to exogenous stochastic shocks,

given here by a transitory shock zt. Factor markets are competitive and hence the gross

rental rate equals the value of the marginal product of effective capital

Rt = (1− α)
Yt

utKt−1

(3.10)

and the wage paid is equal to the value of the marginal product of labor

Wt = α
Yt
ht

(3.11)
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Output is fungible and may be used for private consumption or gross investment. Total

demand is thus given by

Yt = Ct + AtIt (3.12)

Equilibrium

A temporary equilibrium for all periods t ≥ 0 is described collectively by the optimal

behavior of households given beliefs:

UCt(Vt) +
∂St
∂Ct

βÊtλ
S
t+1 =

∂It
∂Ct

(
βÊtλ

I
t+1 +

∂Kt

∂It
βÊtλ

K
t+1

)
(3.13a)

−Uht(Vt) =
∂It
∂ht

(
βÊtλ

I
t+1 +

∂Kt

∂It
βÊtλ

K
t+1

)
(3.13b)

∂Kt

∂ut
βÊtλ

K
t+1 =

∂It
∂ut

(
βÊtλ

I
t+1 +

∂Kt

∂It
βÊtλ

K
t+1

)
(3.13c)

Kt = (1− δ (ut))Kt−1 + It

[
1− Φ

(
It
It−1

)]
(3.13d)

Ct + AtIt ≤ Wtht +Rt (utKt−1) (3.13e)

St = Cγ
t S

1−γ
t−1 (3.13f)

I−1,K−1, S−1 given (3.13g)

where the utility function, its argument, and the functional forms for δ(ut) and Φ
(

It
It−1

)
are given by equations (3.2), (3.3), (3.6), and (3.7), respectively. Appendix B expresses

these equations in terms of the underlying variables as opposed to derivatives, which I

present here for the sake of expositional clarity. The market clearing conditions, aggregate
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resource constraint, production function, and factor-market prices are given by

Yt = Ct + AtIt (3.14a)

Yt = zt (utKt−1)1−α (ht)
α (3.14b)

Wt = α
Yt
ht

(3.14c)

Rt = (1− α)
Yt

utKt−1

(3.14d)

The laws of motion for the exogenous stochastic processes At and zt along with the precise

way in which news shocks are included in the model are described below.

News Shocks and Expectations Formation

It remains to describe the particular way in which shadow price learning agents

form their expectations. The variables relevant to household decision making but

outside of their control in time t - that is, the predetermined control variables, factor

prices, and the exogenous state variables (plus a constant) - are collected into xt =

(1, It−1, Kt−1, St−1,Wt, Rt, At, zt)
′, and households are assumed to have a PLM for the

endogenous-state shadow prices given by λt = Htxt, where λt =
(
λIt , λ

K
t , λ

S
t

)′
and

Ht denotes the household’s time t estimates of the coefficient-matrix relating the state

variables to the value of the shadow price.

There is one issue that must be addressed: Wt and Rt are exact functions of ht,

utKt−1, and the exogenous processes zt and At, and hence including all of these variables

in the regression will lead to perfect multicollinearity. To avoid this I drop Wt and Rt from

41



the set of regressors utilized by the household and denote this subset of state variables as

x̃t = (1, It−1, Kt−1, St−1, At, zt)
′.4

The household’s PLM for the shadow prices is thus given by the linear model

λt = H ′tx̃t (3.15)

where Ht is updated via recursive least squares according to the dynamic system

RH,t = RH
t−1 + gt

(
x̃t−1x̃

′
t−1 −RH

t−1

)
(3.16)

Ht = Ht−1 + gtR
−1
H,tx̃t−1

(
λt−1 −H ′t−1x̃t−1

)′
(3.17)

RH,t is the household’s time t estimate of the second-moment matrix for the regressors

while the “gain” parameter gt controls how much weight households put on new

information. Much of the theoretical work exploring whether agents can learn the

coefficient-matrix of an economy’s REE, such as Evans and Honkapohja (2001) assumes

a decreasing gain such as gt = t−1 , which implies the household response to forecast

errors vanishes asymptotically. Alternatively, studies focused on simulation or estimation

of DSGE models under learning, such as Williams (2003b) and Milani (2007), employ

a constant gain where gt = ḡ, which implies the household is a lifelong learner and

continually revises its coefficient estimates placing the most weight on the most recent

observations. I will simulate the model under both assumptions. Under constant-gain

4One could also consider assuming the household does not observe some of the exogenous processes
and instead uses wages and the gross rental rate in their forecasts. This would require specifying a PLM
and dynamic system for updating beliefs for these price variables. It can also lead to serious issue with
asymptotic multicollinearity as household’s beliefs converge to those of rational agents, because as the
residuals in the dynamic system for updating beliefs go to zero the actions of the household become
perfectly collinear with market prices.
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learning I calibrate the gain to be 0.0152, which is in line with recent estimates from the

empirical adaptive learning literature.

The value of shadow prices in time t is not known ex-ante to the household, and is

determined as a result of their control choices. Hence, time t beliefs are updated using

information available through time t − 1. This clarifies the central idea of shadow price

learning: households make optimal decisions given their (misspecified) beliefs and the

information available to them in the moment. That beliefs may be misspecified highlights

a particularly salient feature of SP-learning in particular and bounded rationality in

general by embracing the notion that agents in the economy may certainly fail to fully

understand the dynamics governing its evolution and yet an equilibrium may still exist.

Taking expectations of equation (3.15) we have Êtλt+1 = HtÊtx̃t+1, and hence

households must forecast the future values of regressors.5. The values of the time t + 1

endogenous state variables It, Kt, and St are pinned down by the time t flow budget

constraint, capital accumulation equation, and geometric-average identity respectively,

and it is natural to assume the household knows these values. In addition the transition

equations for the exogenous processes zt and At are assumed to be known to the

household.6

5I have assumed certainty equivalence on the parts of households; that is, they believe their time
t estimate of the coefficient matrix is the correct estimate now and in the future, and hence behave
accordingly. Thus household’s do not need to attempt to forecast the way in which their estimates will
change in the future.

6Since there is no feedback between the household’s decisions and the evolution of these processes this
is a very simple estimation exercise from an econometric standpoint if the households actually observe
all of this data. An alternative approach would carefully consider the variables a household seems likely
to observe. Exogenous variables that directly influence the household, such as the technology available
for converting consumption goods into investment goods At in the flow budget constraint seem quite
natural; however it is less obvious that households would directly observe productivity zt. As mentioned
previously, one could drop these as regressors in favor of e.g. wages and/or the rental rate of capital, but
this may cause the coefficient estimation routine to suffer from asymptotic multicollinearity and/or bias
from sampling error present in using estimated data as an explanatory variable.
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These expectations are augmented by the inclusion of news shocks to the information

set. A news shock can be thought of as information which arrives exogenously to the

household about the value of some future innovation to an exogenous process, but

(importantly) does not impact any economic fundamentals contemporaneously. The action

generated by news shocks is therefore entirely in the response of agents to this information

about the future. News is modeled as an anticipated shock to the exogenous processes and

hence has the interpretation of imparting incomplete (but accurate) information to the

household about future economic fundamentals.

In particular let the law of motion for the exogenous processes, indexed by w =

(A, z), take the form

ln(wt) = ρw ln(wt−1) + ε0
w,t

ε0
w,t = ε1

w,t−1 + ν0
w,t

[
ν0
w,t ∈ It

]
ε1
w,t = ε2

w,t−1 + ν1
w,t

[
ν1
w,t−1 ∈ It

]
... =

...

εnw,t = εn−1
w,t−1 + νnw,t

[
νnw,t−n ∈ It

]
where It the time t information set of the representative household, νkw,t−k the k-period

ahead anticipated shock, and
[
νkw,t−k ∈ It

]
= 1 if νkw,t−k ∈ It and 0 otherwise. This

specification allows the modeler to easily and parsimoniously consider a variety of

assumptions regarding the precise details of informational acquisition by households.7

7In fact, this requires the creation of only as many auxiliary state variables as the lengthiest forecasting
horizon. For example, if a household receives information four and eight periods in advance the longest
forecasting horizon is eight periods, and thus eight auxiliary state variables must be generated. An
alternative but equivalent specification would generate a set of k state variables for each signal vkw,t−k so
that e.g. if a household received information four and eight periods in advance one would need to generate
12 additional state variables.
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The system above makes clear the sense in which news shocks here are being

modeled as partial information about the total value of the innovation. This permits a

compact autoregressive representation

ln(wt) = ρw ln(wt−1) + ε0
w,t (3.18)

εw,t = ϕwεw,t−1 +Mwνw,t (3.19)

where νw,t =
(
ν0
w,t, ν

1
w,t, ..., ν

n
w,t

)′
distributes i.i.d normal with mean zero and variance-

covariance matrix equal to the identity matrix. The matrix ϕw and vectors εw,t, νw,t, and

Mw are given in Appendix B.

To see how introducing news as anticipated shocks can have real effects, suppose

households were to receive information four and eight periods in advance about the time

t + 1 shock, and that the exogenous process is subjected to an unanticipated shock which

arrives in time t+1. Then the time t expectations about the evolution of process w in time

t+ 1 would forecast its value to be

Êt ln(wt+1) = ρw ln(wt) + ν4
w,t+1−4 + ν8

w,t+1−8

while the actual value realized in time t+ 1 would be

ln(wt+1) = ρw ln(wt) + ν0
w,t+1 + ν4

w,t+1−4 + ν8
w,t+1−8

This enables the consideration of a variety of interesting behavior as households revise

their expectations in response to new information. For example, the expected value

for the innovation prior to time t + 1 could fail to materialize, that is, ν0
w,t+1 =

−
(
ν4
w,t+1−4 + ν8

w,t+1−8

)
, or could materialize exactly as expected i.e. ν0

w,t+1 = 0. More
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generally one may think of the household continually adjusting expectations throughout

time in response to the receipt of new information, and this information being descriptive

of the innovation’s final value to a varying degree in any given period.

Recall the household’s PLM for shadow prices is a linear function of the time t + 1

endogenous state variables and exogenous processes. Since households are assumed to

know the law of motion for all exogenous processes they will incorporate the anticipated

shocks directly into their decision rules for time t controls via their forecast of future

shadow prices. That is, the time t expectation of future shadow prices based on the PLM

λt = H ′tx̃t is

Êtλt+1 = H ′tÊtx̃t+1

where Êtx̃t+1 =



1

ÊtIt

ÊtKt

ÊtSt

ÊtAt+1

Êtzt+1


=



1

It

Kt

St

ρAAt + Êtε
0
A,t+1

ρzzt + Êtε
0
z,t+1


where the household’s expectation of the future shock conditional on all information

received up to time t, Êtε
0
w,t+1, is described above.

Calibration

The model is calibrated using a combination of commonly used values in the

literature, estimates obtained from Schmitt-Grohe and Uribe (2012), and steady-state

targets for some endogenous variables. σ = 1 which corresponds to logarithmic utility, θ =
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Parameter Value Description
σ 1 Intertemporal Elasticity of Substitution
θ 1.4 Frisch-labor Supply Elasticity
γ 0.001 Wealth Elasticity of Labor Supply
β 0.985 Subjective Discount Factor
α 0.64 Steady-state Labor Share
δ0 0.025 Steady-state Depreciation Rate
u 1 Steady-state Capacity Utilization Rate
h 0.2 Steady-state Labor Supply
κ 1.3 Adjustment Cost Acceleration
ρz 0.5 Persistence of Investment-specific TFP Growth
ρA 0.9 Persistence of TFP Growth

TABLE 3. Calibrated Parameters for One-sector Model

1.4 so that the wage elasticity of labor supply is 2.5 when the wealth effect of labor supply

is shut off, and γ is set to 0.001 which is simultaneously consistent with an extremely

small wealth effect of labor supply and a balanced growth path. β is assumed to be 0.985

so that the steady-state gross real interest rate is 1.5 percent, and α is set to 0.64 so that

labor’s share of output in steady-state is 64 percent. Steady state quarterly depreciation δ0

is set to 2.5 percent and δ2 is chosen so that the elasticity of δ(ut) is 0.15. δ1 is calibrated

to ensure steady-state capacity utilization equals 1, while the disutility-scale parameter

ψ is chosen so that household’s spent 20% of their time working. The second derivative

of the investment adjustment cost function κ is set to 1.3, though this is subjected

to robustness checks since the literature has little to say about this parameter. The

autoregressive parameters for growth rates of zt and At are set to 0.5 and 0.9, respectively,

which are consistent with the estimated values obtained in Schmitt-Grohe and Uribe

(2012). This is summarized in Table ?? The relative importance of anticipated vs surprise

shocks for each exogenous process is set consistent with estimates from Schmitt-Grohe

and Uribe (2012). In particular, the standard deviations for the surprise components of zt

and At are set to 0.21 and 0.65, respectively, while the corresponding standard deviations
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for the (cumulative) anticipated components are 0.32 and 0.2. This implies the majority

(60%) of variation in the growth rate of investment-specific technology is anticipated,

while just under 25% of variation in TFP is anticipated.

To develop a benchmark against which to compare the results from SP-learning, I

linearize the temporary equilibrium around the non-stochastic steady state. The resulting

system of first order expectational difference equations can be easily solved under rational

expectations, and the resulting equilibrium is the REE.

The Response to News

I turn now to an exploration of the response to news shocks by key macroeconomic

variables in the model. Figure 1 shows the responses by consumption, investment, hours

worked, and output when a fully rational household learns at time t = 0 that there will

be a 1 unit increase in the value of investment-specific or total factor productivity in time

t = 3, and the expected innovation arrives as expected. In both cases the model generates

positive comovement amongst all variables at the time the news is received: good news

about the future causes all aggregate variables to rise.

The total response to news about a shock to investment-specific technology zt is

more subdued than that regarding a shock to TFP At, because the price of investment

affects output only through its effect on capital accumulation while an increase in TFP

directly increases output and factor prices everything else held constant. Interestingly this

gives rise to a discrepancy in the relative impact of news on the overall response: most

of the movement in key variables stemming from news about zt occurs in the period the

news is received, while most of the movement from news about At occurs in the period

the shock occurs. Clearly including additional exogenous processes will lead to a richer set
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FIGURE 1. IRF for Accurate News

of possible reactions to news of each; indeed Schmitt-Grohe and Uribe (2012) include five

additional exogenous disturbances and allow agents to receive information of their future

values, in which case one should no longer speak generically of “news”.

Now suppose the news received by households turns out to be completely false. That

is, at t = 0 households come to expect a 1 unit increase in the exogenous processes will

occur in t = 3 which does not materialize. Figure 2 plots the IRF resulting from this

thought experiment on rational households. Again, the receipt of news generates positive

comovement in the key macroeconomic variables. However, once the news is shown to

have been erroneously optimistic all variables tend back towards their initial steady

state values. Contrary to the prediction of Beaudry and Portier (2004), in this model

all variables remain above their steady-state levels for an extended period of time. Thus

even in the face of incorrect news the positive comovement amongst variables remains is

preserved.
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FIGURE 2. IRF for Inaccurate News

Simulation and Model Performance

Having demonstrated the ability of the model to generate qualitatively realistic

expectationally driven business cycles in response to news about the future I now turn to

an evaluation of the model’s ability to generate quantitatively realistic empirical moments

under SP-learning. I begin by determining whether the behavior of SP-learners will cause

the economy to converge (approximately) to the REE. Figure 3 shows a simulation in

which the initial beliefs of agents are perturbations of the linearized RE solution, the

economy begins in steady state, and agents update their beliefs with a constant gain. For

each variable the solid red line is the RE steady-state value, while the dashed line is the

average of the actual variable realizations.
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FIGURE 3. Model Simulation Under SP-learning

Since households employ a linear forecasting model in a nonlinear environment,

convergence to the rational expectations equilibrium is not to be expected. Indeed,

Figure 3 provides strong evidence that the economy converges to some RPE - the key

macroeconomic variables all fluctuate around some stationary value - but the implied

RPE seems quite far from the REE as judged by the respective central tendencies of the

variables.

Tables 4 and 5 perform tests for equality of means for key model variables from

simulating the model 1000 times each for 230 periods under varying assumptions regarding

households expectations formation mechanism and their access to news. Table 4 displays

the cross-sectional means of consumption, investment, hours worked, output, and the

endogenous shadow prices under RE and SP-learning when agents receive news. Generally

the cross-sectional means are higher under SP-learning than under RE, and the difference
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RE Mean SPL Mean pval 95% Low 95% High
Consumption 0.533 0.568 0.000 -0.036 -0.032
Labor Supply 0.200 0.212 0.000 -0.013 -0.012

Investment 0.154 0.172 0.000 -0.019 -0.018
Output 0.687 0.736 0.000 -0.052 -0.046

Investment SP 0.000 0.060 0.000 -0.061 -0.059
Capital SP 4.250 4.043 0.000 0.193 0.219

Habit-adjustment SP -154.107 -155.120 0.000 0.704 1.321

TABLE 4. t-tests for Data Generating Process, News, 230 Periods

RE Mean SPL Mean pval 95% Low 95% High
Consumption 0.534 0.563 0.000 -0.031 -0.027
Labor Supply 0.200 0.210 0.000 -0.011 -0.010

Investment 0.154 0.169 0.000 -0.016 -0.014
Output 0.688 0.728 0.000 -0.043 -0.038

Investment SP -0.000 0.034 0.000 -0.035 -0.034
Capital SP 4.248 4.068 0.000 0.167 0.192

Habit-adjustment SP -154.085 -154.949 0.000 0.558 1.170

TABLE 5. t-tests for Data Generating Process, No News, 230 Periods

is highly statistically significant: the p-value for the t-test of mean equality across

expectations formation mechanisms imply rejection of the null hypothesis that the means

are equal at any reasonable level of significance. Put another way, I am able to reject

the null hypothesis that the data comes from the same data generating process, which

of course is true. Similar findings are found for the case where households do not receive

news in Table 5. Again the null hypothesis that the simulated data came from the same

data generating process can be rejected at any meaningful level of significance.

While the discussion above suggests the rejection of mean equality should not be

surprising, it is is worth noting each simulation is run for a relatively short amount of

time. In Tables 6 and 7 I increase the simulation length to 1000 periods in order to allow

the learning algorithm more time to converge. No significant changes arise: the RPE is

statistically quite distinct from the REE.
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A deeper inspection of the exact mechanisms driving this wedge between the RPE

and REE may proceed from several points of observation. First, the data-generating

process under SP-learning is inherently nonlinear. This contrasts with the REE which

is obtained via a first-order approximation to the equilibrium dynamics of the model.

Exploring higher-order approximations may shed light on precisely how important the

nonlinearities are to the data-generating processes. Second, comparing tables 4 and 5

suggest that including anticipated shocks in agents’ information sets increases the size of

the wedge between the RPE and REE. While the cross-sectional mean values under REE

are the same whether news is included or not, those obtained under SP-learning are closer

to that of REE when there is no news. This suggest something about the news pushes

SP-learning household behavior away from that of their ration counterparts, which is

especially interesting given the results of the previous chapter showing news shocks should

not matter to the learnability of an REE.

Finally, it appears that SP-learning agents systematically behave in such a way as to

cause the shadow price of investment to be positive. This will occur if household behavior

is such that the gross level of investment is increasing (It > It−1) and capital is being

utilized at a rate above the rational expectations steady state (ut > 1), or if the opposite

cases are true. It is telling that this is exactly the behavior prescribed by the model in

the event that the household receives news about future productivity, and likely explains

why news drives a wedge between RE and NRE: under NRE households may go through

periods in which they respond too strongly (relative to RE) to news of the future.

In contrast to Williams (2003a), where reduced-form learning converged to the REE

and simulated data did not differ meaningfully whether agents were rational or boundedly

rational, these results suggest that the convergence to the RPE should cause simulated

business cycle statistics to differ from those obtained under RE. To explore this further,
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RE Mean SPL Mean pval 95% Low 95% High
Consumption 0.533 0.635 0.000 -0.103 -0.101
Labor Supply 0.200 0.238 0.000 -0.038 -0.037

Investment 0.154 0.192 0.000 -0.039 -0.039
Output 0.687 0.824 0.000 -0.138 -0.136

Investment SP -0.000 0.117 0.000 -0.118 -0.116
Capital SP 4.251 3.620 0.000 0.625 0.638

Habit-adjustment SP -154.125 -162.404 0.000 8.017 8.542

TABLE 6. t-tests for Data Generating Process, News, 1000 Periods

RE Mean SPL Mean pval 95% Low 95% High
Consumption 0.533 0.600 0.000 -0.068 -0.066
Labor Supply 0.200 0.223 0.000 -0.024 -0.023

Investment 0.153 0.177 0.000 -0.023 -0.023
Output 0.686 0.774 0.000 -0.088 -0.087

Investment SP -0.000 0.038 0.000 -0.038 -0.038
Capital SP 4.251 3.797 0.000 0.449 0.460

Habit-adjustment SP -154.070 -158.385 0.000 4.056 4.573

TABLE 7. t-tests for Data Generating Process, No News, 1000 Periods

Figure 8 compares simulated data from the model with and without news under the

assumption of RE and SP-learning against that of actual quarterly U.S. data. The data is

from Jaimovich and Rebelo (2009) and covers the range 1944:Q1-2004:Q4. The logarithm

of the simulated data is detrended by the Hodrick-Prescott (HP) filter using a smoothing

parameter of 1600, consistent with quarterly data. I conducted 1000 simulations of 230

periods each, which is the length of the US data sample. I report the statistics for the

cross-sectional average standard deviations of hours worked, investment, and consumption

relative to that of output across all simulations along with the correlations between output

and hours worked, investment, and consumption.

US data suggests investment is the most volatile, while hours worked tends to be

roughly as volatile as output and consumption is much smoother. Significant differences

exist in the volatility of simulated data between RE and SP-learning, whether news
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US Data RE (News) SPL (News) RE (No News) SPL (No News)
σh/σY 0.968 0.714 0.716 0.714 0.715
σI/σY 3.103 2.386 2.167 2.282 2.023
σC/σY 0.712 0.737 0.706 0.746 0.725

corr(Y, h) 0.860 1.000 1.000 1.000 1.000
corr(Y, I) 0.890 0.850 0.879 0.922 0.912
corr(Y,C) 0.770 0.969 0.969 0.977 0.986

TABLE 8. Predicted Business Cycle Statistics

shocks are included or not. All model simulations except SP-learning with news shocks

suggest hours worked are much too smooth, and relative volatility of consumption under

SP-learning is extremely close to the data. Only the specification with SP-learning and

news shocks matches the stylized facts pertaining to the ordering of relative volatilities

of investment, hours worked, and consumption. The simulated correlation between hours

worked and output is unit, which does not match the data, but is expected: output and

hours worked are perfectly correlated by assumption in the RBC model. The correlation

between output and investment under SP-learning is closer to that of the data than under

RE regardless of whether news is included or not, while both expectations formations

mechanisms do a poor job capturing the correlation between output and consumption.

Conclusion

The analysis of this paper has shown the behavior implied by SP-learning households

is quite distinct from that of their rational counterparts. While agents in this news-shock

model can not converge to the exact REE, the process of making decisions based on linear

forecasting rules of shadow prices and updating these forecasts via adaptive least squares

leads agents to converge to an RPE. The difference between the implied RPE and the

REE seem to be exacerbated by the inclusion of anticipated shocks in agents’ information

sets. Furthermore, this behavior causes the model to generate simulated moments for key
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business cycle statistics which are quite distinct from those obtained under RE. In some

cases the model under SP-learning appears to better approximate US data, while in others

the RE approach is more accurate.

One interesting extension would be to consider informational heterogeneity in this

environment. Angeletos and La’O (2010) considers the qualitative and quantitative effects

of informational heterogeneity in a Lucas-Phelps “island” model where households on a

continuum of islands receive public and private signals about the productivity of aggregate

and island-specific productivity. They are somewhat surprised to find that information

heterogeneity does not have any serious effect on welfare or quantitative features of the

model. But Hellwig (2010) observes this goes back to an insight going back to Hayek

(1945) suggesting that markets parsimoniously convey all relevant information through

prices, and thus heterogeneity by itself is not likely to represent a significant source

of amplification or persistence in simulated data. However, SP-learning introduces a

behavioral friction in the way agents utilize information which is likely to be exacerbated

by informational frictions stemming from heterogeneity. While it is purely speculative, I

suspect SP-learning (and potentially other forms of bounded rationality) may provide a

simple means of making informational heterogeneity matter in DSGE models.
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CHAPTER IV

LEARNING VS NEWS: WHAT DRIVES BUSINESS CYCLES?

Introduction

Having established in Chapter II that news shocks do not necessarily impinge

upon the E-stability properties of a REE, and having conducted a calibrate and simulate

exercise in Chapter III to understand the interaction between information flows, bounded

rationality, and restricted perceptions equilibrium, I turn now to an empirical exploration

of the relationship between news shocks and expectation formation. The central goal

of this chapter is to determine whether the estimated importance of news - measured

as the relative contribution of anticipated shocks versus surprise shocks in generating

macroeconomic volatility - is affected by the way in which agents are assumed to form

their expectations.

In what is widely regarded to be the seminal work in the modern empirical news

shock literature, Beaudry and Portier (2006) explores the relationship between stock

prices, the growth rate of technology, and business cycles using several specifications

of VARs. They find evidence that innovations to total factor productivity (TFP) are

often anticipated, and further that responses to this anticipation are responsible for a

large fraction of business cycle fluctuations. This contrasts with the typical RBC view

of technological innovation by surprise which had begun to be questioned as early as

Basu et al. (2004) in which improvements to technology are shown to typically have no

contemporaneous impact on output.
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Beaudry and Lucke (2010) allows news shocks to compete with more traditional

sources of volatility in a VAR identified using short-run and long-run timing assumptions

and find that surprise shocks play little role in economic volatility compared to news

shocks. Barsky and Sims (2012) allow traditional news shocks to compete with “animal

spirit shocks” a la Lorenzoni (2009). The authors conclude that much of the innovation

in measured consumer confidence is due to traditional news shocks and that most of the

relation between changes in consumer confidence and economic activity are due to news.

In Beaudry et al. (2011) the focus is on what the authors refer to as “optimism shocks”

which are essentially sunspots that exogenously shift expectations. These shocks are

identified using sign restrictions and are shown to permanently affect current and future

economic activity in a way strongly resembling news shocks. The narrative approaches of

Alexopoulos (2011) and Ramey (2011) have similarly found support for the notion that

news is an important determinant of volatility in aggregate economic variables.

Schmitt-Grohe and Uribe (2012) modifies the well-known RBC-type news-shock

model of Jaimovich and Rebelo (2009) to include seven exogenous variables which are

subjected to both anticipated and unanticipated shocks. Using likelihood-based classical

and Bayesian estimation techniques they find anticipated shocks account for about half of

observed volatility in output and consumption. Conversely, Khan and Tsoukalas (2012)

allow news shocks to compete against traditional sources of macroeconomic volatility in a

small-scale monetary RBC model similar to that considered in Smets and Wouters (2007).

Their results imply anticipated shocks are responsible for only 15% of volatility in output.

These strongly contrasting results highlight the preeminent role of model specification in

DSGE estimation.

While much of the empirical news shock literature has approached the topic from

a reduced form or structural VAR perspective, Blanchard et al. (2013) and Beaudry and
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Portier (2014) point out estimation via VARs in news-rich environments may suffer from a

nonfundamentalness problem. Alternatively, one may estimate the relative importance of

anticipated shocks in a news-rich dynamic stochastic general equilibrium (DSGE) model.

However, the construction of such a model requires the modeler to make a number of

assumptions. One of the most important is the way in which agents’ expectations are

formed, and all previous authors on the subject have utilized the rational expectations

hypothesis.

While much early work on adaptive learning focuses on whether particular rational

expectations equilibrium (REE) are expectationally stable (E-stable), Williams (2003a) and

Adam (2005) each explores the impact of adaptive learning on macroeconomic volatility

and persistence in calibrated and simulated DSGE models.1 Their results suggest that

relaxing rational expectations (RE) in favor of an adaptive learning approach not only

increases persistence and volatility in key macroeconomic variables, but may also provide a

better fit to the data than models based on RE.

More recently, adaptive learning has been used in estimated DSGE models. Milani

(2007) estimates a monetary-NK DSGE model in which agents are assumed to have

what he refers to as “near-rational expectations” (NRE), that is, they form expectations

using a correctly specified forecasting model but are unsure of the precise coefficients

governing the laws of motion of the economy.2 In stark contrast to the results obtained

under RE, the model under NRE simultaneously fits the data better and ascribes little

importance to mechanical sources of volatility and persistence such as habit formation

1A REE is said to be E-stable if the beliefs of boundedly rational agents converge (asymptotically)
to those of fully rational agents. Besides reflecting the sensitivity of models to the specific assumptions
placed on agents’ expectation formation mechanisms and serving as an asymptotic justification for the use
of RE, E-stability has been proposed as a selection criterion for indeterminate models.

2This is also referred to as “Euler equation learning” because agents are learning about endogenous
variables which appear in the Euler equations of otherwise rational agents.
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and inflation indexation. Similar results obtain in e.g. Milani and Rajbhandari (2012)

and Slobodyan and Wouters (2012) in various DSGE models and under various forms of

bounded rationality.

Relatedly, Eusepi and Preston (2011) show that periods of optimism and pessimism

arising from the erroneous forecasts (and subsequent updating of beliefs) of boundedly

rational agents in an otherwise standard stochastic growth model generate the same

type of expectationally driven business cycles as those found in news-shock models. This

observation presents a natural question: to what extent are estimates of the importance

of anticipated shocks impacted by the specific assumptions governing agents’ expectation

formation mechanism? Do news shocks serve as proxies for an underlying learning process

in the data? Or could it be that the combination of news shocks and adaptive learning

could actually enhance the relative importance of anticipated shocks by exacerbating the

waves of optimism and pessimism?

My main results from this chapter suggest the importance of news is robust to the

inclusion of adaptive learning. In particular, the relative importance of news is estimated

to be up to thirty-five percent greater for key macroeconomic variables such as output,

consumption, investment, and hours worked under NRE than under RE. However, these

differences arise from movement in endogenous variables caused by the arrival of the

anticipated event as opposed to movement caused by the anticipation itself, what Sims

(2016) refers to as the impact of “realized news” and “pure news”, respectively.

These findings speak to current differences in structural estimates of the importance

of news, which appear to be sensitive to the structure of the model considered. Since

parameter estimates obtained from DSGE models under learning often attenuate the

importance of specific mechanical sources of volatility and persistence relative to RE, this
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study will clarify whether the importance of news is also sensitive to specific assumptions

governing expectation formations.

Furthermore, it provides additional evidence regarding the merits of using adaptive

learning in empirical applications. Despite a preponderance of evidence suggesting its

implausibility as a description of individual or aggregate behavior, RE is still the paradigm

for describing expectations in dynamic macroeconomic models.3 It is noteworthy that

while the present study suggests the model under learning and RE produce similar

model predictions for volatility and persistence, the models produce dissimilar estimates

regarding the relative importance of news, implying forecasts generated from the

underlying models may be quite different.

The chapter proceeds as follows. I first describe the news-shock RBC-type model

which is to be estimated. Next, I describe the specific assumptions made for agent-

level expectation formation. This is followed by a detailed description of the estimation

methodology and the presentation of the main results for the chapter. The chapter

concludes with a discussion of the main results which attempts to place them in the

context of recent empirical macroeconomic literature.

The Model

The economy considered is that of Schmitt-Grohe and Uribe (2012) which itself

augments the news-shock RBC model of Jaimovich and Rebelo (2009) considered in

the previous chapter. Aggregate demand consists of a government which levies lump-

sum taxes to finance expenditure and a representative household making the usual

3See e.g. Assenza et al. (2014) for a summary of the state of learning-to-forecast and learning-to-
optimize laboratory experiments, which have largely failed to find support for RE as a description of
aggregate behavior.
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consumption/savings and labor supply decisions while also choosing the rate at which

to utilize their existing capital stock. Adjustments to gross investment are assumed to be

costly. In addition, household preferences incorporate direct and indirect internal habit-

formation.

Aggregate supply consists of competitive firms which produce a fungible final good

from labor supplied through monopolistically-competitive labor unions and physical

capital rented from the household. The model features seven exogenous variables which

have been shown in the literature to be empirically important mechanical sources of

volatility and persistence. Finally, each of the exogenous variables are subjected to

disturbances in the form of anticipated and unanticipated exogenous stochastic white-noise

shocks, that is, news and surprise shocks.

Households

The representative household maximizes lifetime utility which is given by

E0

∞∑
t=0

βtζtU(Vt) (4.1)

where β ∈ (0, 1) the household’s discount factor, ζt a stationary exogenous stochastic time-

preference shock, and U the period utility function which takes the CRRA form

U(Vt) =
V 1−σ
t − 1

1− σ
(4.2)

62



where σ > 0 the inverse intertemporal elasticity of substitution. The argument of the

utility function is given by

Vt = Ct − bCt−1 − ψhθtSt (4.3)

where Ct and ht are private consumption and hours worked, respectively. b ∈ [0, 1)

controls the degree of internal habit formation, ψ > 0 scales the disutility of labor supply,

and θ > 1 governs the Frisch elasticity of labor supply.4 St is a geometric average of

current and past habit-adjusted consumption and evolves according to

St = (Ct − bCt−1)γ S1−γ
t−1 (4.4)

where γ ∈ (0, 1] governs the magnitude of the wealth elasticity of labor supply.

This preference specification was first used in Jaimovich and Rebelo (2009). The

comovement problem in RBC models is partially caused by the wealth effect of labor

supply dominating the substitution effect, thereby causing consumption and hours worked

to move in opposite directions upon receipt of good news about the future. The JR

specification for utility allows the modeler to change the strength of the wealth effect of

labor supply by calibrating γ.

Households are assumed to own and rent physical capital to firms in a competitive

market. The capital stock accumulates according to

Kt = (1− δ (ut))Kt−1 + zIt It

[
1− Φ

(
It
It−1

)]
(4.5)

4In the special case where there is no internal or external habit formation i.e. b = γ = 0, the Frisch
labor supply is ηλ = 1

θ−1 , hence the restriction that θ > 1
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where Kt−1 the predetermined capital stock determined in period t − 1, It gross

private investment, and zIt a stationary exogenous stochastic shock to the technology for

converting investment into installed capital.

The function Φ (·) imposes an investment-adjustment cost on households while δ (·)

implies capital depreciation is a function of the current-period capital utilization rate ut.

Both functions are increasing, convex and take quadratic functional forms. In particular

we have

δ(ut) = δ0 + δ1(ut − 1) +
δ2

2
(ut − 1)2 (4.6)

where δ0 > 0 the steady-state depreciation rate, δ1 > 0 determines the steady-state value

of ut, and δ2 > 0 captures the rental rate elasticity of capacity utilization. The time-

varying investment-adjustment cost function is given by

Φ
(
µIt
)

=
κ

2

(
µIt − µI

)2
(4.7)

consistent with Christiano et al. (2005), where µIt ≡ It
It−1

the growth rate of investment

with steady state µI and κ > 0 a scaling parameter which implies the growth rates of

investment and output are autocorrelated. This specification implies Φ
(
µI
)

= Φ′
(
µI
)

= 0,

i.e. there are no investment-adjustment costs on a balanced growth path, and κ = Φ′′
(
µI
)
.

The household receives labor income from supplying ht hours at rate W ∗
t , rental

income from from renting utKt−1 units of effective capital at gross rental rate Rt, and

lump-sum dividends from labor-union membership and firm-profits of Πt. The household

uses this income to pay lump-sum taxes Tt and purchase private consumption and gross
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private investment. The flow budget constraint is thus given by

Ct + AtIt + Tt ≤ W ∗
t ht +Rt (utKt−1) + Πt (4.8)

where At a difference-stationary exogenous stochastic process representing the current

state of technology for producing investment goods from consumption goods with growth

rate µAt ≡ At
At−1

. In a decentralized equilibrium At may be interpreted as the relative price

of investment goods in terms of consumption goods; that is, a unit of the investment good

may be exchanged for At units of the consumption good.

Labor Market

Households are assumed to have market power, albeit in an indirect way. There is

a continuum of monopolistically competitive labor unions which households supply labor

to, and these unions negotiate wages with final goods producers. The market power of

these unions is captured by a stationary exogenous stochastic process ωt, which can be

interpreted simply as a time-varying markup in wages. The solutions to the final-good

producers’ cost-minimization and unions’ profit-maximization problems together imply

all unions charge the same price for labor services and pay the same wage to member-

households, and hence the wage received by households is given by W ∗
t = Wt/ωt where

Wt the price charged by unions to firms for labor services and µWt ≥ 1 the exogenously

time-varying wage markup which controls the level of market power the labor unions

have with steady-state value µW . This friction drives a wedge between the wage paid by

firms and that received by workers. Profits of the labor unions are remitted to all member

households as a lump-sum dividend. Details of the solution to the optimization problems

of firms and unions are presented in Appendix C.
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Firms, Government, and Market Clearing

The representative firm contracts ht worker-hours and rents utKt−1 units of effective

capital to produce a final good Y out
t using CRTS technology according to

Y out
t = zt (utKt−1)αk (Xtht)

αh (XtF )1−αk−αh (4.9)

where the parameters αk, αh ∈ (0, 1) govern the steady-state output shares of effective

capital and effective labor, respectively, and satisfy αk + αh ≤ 1. F is a fixed factor

(e.g land or managerial capital) which introduces production exhibits diminishing returns

to scale in effective capital and labor while ensuring production exhibits overall CRTS.

Production is augmented by a stationary exogenous stochastic Hicks-neutral productivity

shock zt and a difference-stationary exogenous stochastic Harrod-neutral (i.e. labor-

augmenting) productivity shock Xt with growth rate µXt = Xt
Xt−1

and steady-state growth

µX .

The market for effective capital is competitive and hence the gross rental rate equals

the value of the marginal product of effective capital

Rt = αk
Y out
t

utKt−1

(4.10)

and the wage paid by firms to labor unions is similarly equal to the value of the marginal

product of labor

Wt = αh
Y out
t

ht
(4.11)
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The final good is fungible and may be used for private consumption, private investment, or

government spending Gt, and hence the aggregate resource constraint is

Y out
t = Ct + AtIt +Gt (4.12)

where Y out
t is total output. Because At and Xt are non-stationary, output displays a

stochastic trend which can be shown to be XY
t = XtA

αk/(αk−1)
t . The government maintains

a balanced budget such that Gt = Tt. Furthermore, government spending exhibits a

stochastic trend XG
t =

(
XG
t−1

)ρxg (
XY
t−1

)1−ρxg
which co-integrated with the trend in output

so that the share of government spending in output is stationary; however ρxg ∈ [0, 1)

allows the trend to be smoother than that of output. Detrended government spending

gt ≡ Gt/X
G
t is a stationary exogenous stochastic process with steady state g. Since XG

t is

predetermined, and since detrended government spending is stationary, the current level of

government spending is independent of contemporaneous changes to exogenous variables;

however, these may affect government spending with a lag via corresponding changes to

the trend path of output.

Temporary Equilibrium

The temporary equilibrium for this economy obtains where all households maximize

utility given expectations, all firms maximize profits, and all markets clear. This can be
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described the nonlinear system of expectational difference equations

Kt = (1− δ (ut))Kt−1 + zIt It

[
1− Φ

(
It
It−1

)]
(4.13a)

Y out
t = Ct + AtIt +Gt (4.13b)

Y out
t = zt (utKt−1)αk (Xtht)

αh (XtF )1−αk−αh (4.13c)

St = (Ct − bCt−1)γ S1−γ
t−1 (4.13d)

Vt = Ct − bCt−1 − ψhθtSt (4.13e)

Λt =

(
ζtV

−σ
t − γSt

Ct − bCt−1

Πt

)
− bβÊt

[(
ζt+1V

−σ
t+1 −

γSt+1

Ct+1 − bCt
Πt+1

)]
(4.13f)

Λt =
θζtV

−σ
t ψhθ−1

t St
Wt/ωt

(4.13g)

Πt = ζtV
−σ
t ψhθt + βÊt

[
(1− γ)

St+1

St
Πt+1

]
(4.13h)

QtΛt = βÊtΛt+1 [(Rt+1ut+1 +Qt+1(1− δ(ut+1)))] (4.13i)

Rt = δ′(ut)Qt (4.13j)

AtΛt = QtΛtz
I
t

(
1− Φ

(
It
It−1

)
− Φ′

(
It
It−1

)(
It
It−1

))
(4.13k)

+ βÊt

[
Qt+1Λt+1z

I
t+1Φ′

(
It+1

It

)(
It+1

It

)2
]

(4.13l)

Wt = αh
Y out
t

ht
(4.13m)

Rt = αh
Y out
t

utKt−1

(4.13n)

where Λt the marginal value of income, Πt the marginal value of household’s stock of

current and past habit-adjusted consumption (i.e. the Lagrange multiplier from relaxing

the constraint on St), and ΛtQt the marginal value of pre-installed capital. Qt can thus be

interpreted as marginal Tobin’s Q. Êt denotes the (possibly non-rational) expectations of

the household given their time t beliefs and information set. The temporary equilibrium
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can be concisely described by

Êt [f (Yt+1, Yt, Yt−1, νt)] = 0 (4.14)

where Yt and νt are collections of endogenous and exogenous variables and exogenous

stochastic white-noise shocks, respectively.

Stationarity, Information Flows, and the Log-linearized System

Because At and Xt are non-stationary the system (4.14) must be transformed to

be in terms of stationary variables. The details of this transformation and the resulting

stationary nonlinear system of expectational difference are presented in Appendix C.

Letting Ŷt be a collection of (detrended) endogenous and exogenous variables, the resulting

stationary system can be concisely describe as

Êt

[
f
(
Ŷt+1, Ŷt, Ŷt−1, νt

)]
= 0 (4.15)

Ŷt includes the seven stationary exogenous variables x =
{
z, ζ, zI , g, ω, µA, µX

}
which are

assumed to follow AR(1) processes such that

lnxt = ρx lnxt−1 + ε0x,t

where ρx ∈ (0, 1). In addition to an unanticipated or “surprise” shock, households receive

information about each of the exogenous variables 4 and 8 periods in advance. These

news shocks can be parsimoniously modeled by introducing auxiliary variables εnx,t for
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n = 0, 1, ..., q where q the longest forecasting horizon and

ε0
x,t = ε1

x,t−1 + σ0
xν

0
x,t

ε1
x,t = ε2

x,t−1

ε2
x,t = ε3

x,t−1

ε3
x,t = ε4

x,t−1

ε4
x,t = ε5

x,t−1 + σ4
xν

4
x,t

ε5
x,t = ε6

x,t−1

ε6
x,t = ε7

x,t−1

ε7
x,t = ε8

x,t−1

ε8
x,t = σ8

xν
8
x,t

where νkx,t for k = 0, 4, 8 are assumed to be Gaussian white-noise shocks with unit variance

and effective standard deviation σkx. Repeated substitution of the auxiliary variables

implies ε0
x,t = σ0

xν
0
x,t + σ4

xν
4
x,t−4 + σ8

xν
8
x,t−8, and hence household expectations are given

by

Êtε
0
x,t+n =


0 if n > 8

σ8
xν

8
x,t+n−8 if 8 ≥ n > 4

σ4
xν

4
x,t+n−4 + σ8

xν
8
x,t+n−8 if 4 ≥ n > 1

i.e. household’s expectations of future exogenous variables are constantly updated as news

shocks flow into their information sets.
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While the anticipated components do not affect contemporaneous economic

fundamentals, the information reveals something about the future state of the economy.

Households incorporate this information into their decision rules, and it is precisely

the fact that news shocks affect various endogenous variables in different ways at

different times which allows the econometrician to identify the effect of a particular news

shock.5 Note that the inclusion of such news shocks implies no departure from rational

expectations: The anticipated shocks are fundamental to the model, and hence rational

households must incorporate them into their forecasts of the future.

The system describing the informational flow structure can be represented by

collecting auxiliary variables into vectors εxt =
(
ε0
x,t, ε

1
x,t, ..., ε

8
x,t

)′
, the Gaussian white-noise

shocks into vectors νxt =
(
ν0
x,t, ν

1
x,t, ..., ν

8
x,t

)′
, and writing

wt = ϕwt−1 +Mνt (4.16)

where wt =
(
εzt , ε

ζ
t , ε

zI

t , ε
g
t , ε

ω
t , ε

µA

t , εµ
X

t

)′
and νt =

(
νzt , ν

ζ
t , ν

zI

t , ν
g
t , ν

ω
t , ν

µA

t , νµ
X

t

)′
. Given the

assumed structure of information flows, ϕ is an upper-shift matrix with 1’s on the super-

diagonal and zeros elsewhere while M is simply a sparse matrix containing the effective

standard deviations of the anticipated and unanticipated shocks.6

Following the majority of applied structural macroeconomic literature, I log-linearize

the stationary system (4.15) around its non-stochastic steady state. Denote by ỹt the

collection of endogenous and exogenous variables in terms of their percent-deviation from

5See Schmitt-Grohe and Uribe (2012) or Beaudry and Portier (2014) for more on the issue of
identification in news-shock DSGE models.

6In what follows I assume the exogenous stochastic shocks are pure white-noise and hence are
uncorrelated across forecasting horizons and across exogenous variables. It would be simply to modify
these assumptions, however, and would amount to appropriately changing ϕ and M to capture the new
relationships.
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non-stochastic steady state. Then the log-linearized system of equations, including those

defining the information flow structure, can be written compactly as

ỹt = α + βỹt−1 + χwt + δÊtỹt+1 (4.17a)

wt = ϕwt−1 +Mνt (4.17b)

A variety of well-known solution techniques exist for obtaining the solution to a linear

system of first-order expectational difference equations like that defined by equations

(4.17a) and (4.17b) under the assumption of rational expectations e.g. Blanchard and

Kahn (1980), Uhlig et al. (1995), Klein (2000), or Sims (2002). However, the objective of

this chapter is to compare and contrast the estimated importance of anticipated shocks

when agents are assumed to be rational versus when the rational expectations hypothesis

is slightly relaxed. Thus, the next section describes the assumed expectation formation

mechanism and adaptive learning process for the boundedly rational agents.

Adaptive Learning

As is clear from the temporary equilibrium described by (4.17a), household actions

are conditional on their expectations of the future state of the economy. I depart from RE

by assuming households behave as econometricians equipped with a forecasting model.

Their beliefs, referred to as the perceived law of motion (PLM), take the form of the

minimum-state variable (MSV) solution obtained under rational expectations; that is,

agents form forecasts according to

ỹt = at−1 + bt−1ỹt−1 + ct−1wt

wt = ϕwt−1 +Mνt

(4.18)
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This model is “correct” in the sense that its structure is consistent with the REE; there

are no omitted or included irrelevant explanatory variables.7 However, the exact values

may be different from those implied by the REE. The model is closed by assuming

households update their beliefs over time according to the constant-gain least squares

(CGLS) algorithm. Denoting household beliefs as ξ′t = (at, bt, ct) we have

ξt = ξt−1 + ḡR̂−1
t Zt−1

(
ỹt − ξ′t−1Zt−1

)′
(4.19)

R̂t = R̂t−1 + ḡ
(
Zt−1Z

′
t−1 − R̂t−1

)
(4.20)

where the data used to forecast is captured by Z ′t−1 =
(
1, ỹ′t−1, w

′
t

)
and ḡ the “constant-

gain” parameter which describes the relative importance of recent forecast errors. The

system (4.19)-(4.20) defines a household’s time t estimate of the coefficients ξt and the

matrix of second-moments R̂t as a weighted average of their previous estimates and the

new information contained in the forecast error εt = ỹt − ξ′t−1Zt−1. Note that setting ḡ =

t−1 would result in agents using the well-known recursive least squares (RLS) algorithm

for updating beliefs; furthermore, if the REE is expectationally stable (E-stable) then it

obtains as a special limiting case where t→∞ and ḡ→ 0.

7I am implicitly assuming household’s understand the informational flow structure; that is, they
understand which news is relevant for which exogenous variables and that they receive news 0, 4, and 8
periods in advance. This is an intuitively appealing assumption, and also a weak one, given that the lack
of a feedback-loop implies agents would very quickly learn the true laws of motion governing the evolution
of this exogenous system.
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Given the PLM described by equation (4.18) and assuming agents do not observe the

contemporaneous value of endogenous variables i.e. Êtỹt 6= ỹt
8, expectations are given by

Êtỹt = at−1 + bt−1ỹt−1 + ct−1wt (4.21)

Êtỹt+1 = at−1 + bt−1Êtỹt + ct−1ϕwt

= [(I + bt−1) at−1] + b2
t−1ỹt−1 + [bt−1ct−1 + ct−1ϕ]wt (4.22)

which can be substituted into the system (4.17a) to yield the actual law of motion (ALM)

for the economy

ỹt = [α + δ (I + bt−1) at−1] +
[
β + δb2

t−1

]
ỹt−1 + [χ+ δ (bt−1ct−1 + ct−1ϕ)]wt

wt = ϕwt−1 +Mνt

(4.23)

Equation (4.23) emphasizes the feedback mechanism implied by adaptive learning:

household perceptions of the economy - captured by at−1, bt−1, and ct−1 - directly impact

the actual state of the economy through their influence over household decision making.

Collecting the endogenous, exogenous, and auxiliary variables into a vector St = (ỹt, wt)
′,

the ALM for the economy can be written

St = At + FtSt−1 +Gtνt (4.24)

where νt
i.i.d∼ N (0, I) and At, Ft, and Gt are time-varying coefficient matrices formed from

deep structural parameters of the economy and household beliefs. The central goal of this

chapter is to compare estimates of the deep parameters obtained under RE against those

8This distinction does not matter under RE as all agents are endowed with model-consistent
expectations, and at first blush may appear strange in the context of a representative agent model.
However, it is a natural assumption to make in general equilibrium settings where individual agents must
forecast the aggregate behavior of all other agents to determine their individual behavior.
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obtained under near-rational expectations, specifically those corresponding to the effective

standard deviation of the anticipated and unanticipated shocks.

Estimation Methodology

Following the recent literature in estimating DSGE models with learning e.g. Milani

(2007), Slobodyan and Wouters (2012), and Milani and Rajbhandari (2012), I choose to

estimate the parameters of (4.27) using Bayesian Markov Chain Monte Carlo (MCMC)

methods. In the present context there are three main advantages to Bayesian versus

classical maximum likelihood estimation.

First, as described in An and Schorfheide (2007), maximum likelihood procedures

do not allow an econometrician to avoid estimates which are known to be unlikely

given previously acquired institutional knowledge. Bayesian estimation allows for

the augmentation of the data through a joint prior distribution which re-weights the

likelihood. In this way the econometrician can easily and transparently allow information

which is not contained in the data to have an impact on the estimated results.

Second, Bayesian methods result in an entire posterior distribution, as opposed to

point estimates obtained under maximum likelihood. This emphasizes the fact that our

models merely approximate the economy by allowing the econometrician to report results

in terms of probabilities rather than a single “true” parameter value. This facilitates an

honest communication of results in line with the norms in a variety of disciplines ranging

from political science to meteorology.

Finally, the likelihood functions associated with DSGE models can present major

problems for optimization routines. Because these models are approximations of a data
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generating process, the corresponding likelihood functions often feature many peaks

and cliffs. MCMC approaches such as the Random-Walk Metropolis Hastings (RWMH)

algorithm are robust to these topographic challenges as their success derives precisely

because they explore the entire parameter space, thereby eliminating the well-known

problem of Newtonian optimizers getting stuck in inappropriate spaces due to initial

starting values.

The object of interest is the posterior distribution p(Θ|Y T ) which describes the

probability of a particular parameter constellation Θ given data Y T . The posterior

distribution is obtained through Bayes’ Law as

p(Θ|Y T ) ∝ p(Y T |Θ)p(Θ) (4.25)

where the likelihood function p(Y T |Θ) captures the probability of observing the data in

Y T given Θ and the prior distribution p(Θ) summarizes the econometrician’s a priori

knowledge of the parameters Θ. In general the posterior distribution does not take

any known form, and hence I utilize the RWMH algorithm to sample from the target

distribution.

Because the resulting sequence of random samples is a Markov chain, the proposal

distribution should be chosen to ensure proposals are accepted neither too often nor

too infrequently. If samples are accepted too frequently then the sequence will be highly

serially correlated; if samples are accepted too infrequently than the algorithm will fail to

explore the entirety of parameter space. But choosing a proposal distribution to yield an

acceptance rate which satisfies this criteria can be extremely difficult, especially in high-

dimensional settings, because the various elements may behave in strikingly different ways.
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To overcome this challenge I utilize the Log Adaptive Metropolis (LAP) procedure

of Shaby and Wells (2010). In addition to recursively updating the variance-covariance

matrix of the proposal distribution vis-a-vis the adaptive Metropolis algorithm of Haario

et al. (2001), LAP multiplicatively updates the tuning parameter proportionally to

the deviation of the actual acceptance rate from its target. This results in a proposal

distribution which quickly establishes an acceptance rate in close proximity to the desired

one, while also respecting the relationships between estimated parameters revealed by the

history of draws.

The Observables

To estimate the DSGE model given by (4.24) I must specify a link between the

unobserved state-variables of the model and their observed empirical counterparts. I

utilize quarterly U.S. data provided by Schmitt-Grohe and Uribe (2012) on the demeaned

growth rates of real per-capita output, consumption, investment, government expenditure,

and hours worked along with the growth rates of total factor productivity (TFP) and

the relative price of investment denoted gYt , gCt , gIt , g
G
t , ght , gTFPt , and gPIt , respectively.

I use this data to facilitate comparisons between my results and previous estimates of the

relative importance of anticipated shocks.

The data runs from 1955:Q2 to 2006:Q4 which corresponds to 207 observations.9

The growth rate of real per-capita output is assumed to be measured with error, which is

required by the fact that the RBC model implies a linear restriction between these seven

9Because the model does not feature structural change I am implicitly assuming the nature of “news”
has remained the same over the entire period. This may not be an entirely satisfying assumption,
and future work will examine the impact of splitting the sample a la Beaudry et al. (2011) in which
optimism shocks are found to be much more important in their post-1983 subsample than in their pre-
1983 subsample.
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observables which is not satisfied by the data.10 Formally, the observable variables are

linked to the non-stationary variables from (4.13a)-(4.13n) by



gYt

gCt

gIt

ggt

ght

gTFPt

gPIt



=



∆ log (Yt)

∆ log (Ct)

∆ log (AtIt)

∆ log (Gt)

∆ log (ht)

∆ log
(
ztX

1−αk
t

)
∆ log (At)



+



σYme 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





eYt

eCt

eIt

egt

eht

eTFPt

ePIt


or concisely as

Yt = HSt +Det (4.26)

where et
i.i.d∼ N (0, I) a vector of white-noise measurement error shocks and σYme the

effective standard deviation of measurement error in output growth. H is a selection

matrix of which defines the observed variables in terms of the unobserved states. The

system of transition equations (4.24) together with the system of measurement equations

(4.26) imply estimation can be conducted by analyzing the (potentially time-varying)

state-space model

St = At + FtSt−1 +Gtνt

Yt = HSt +Det

(4.27)

10This is the well-known stochastic singularity problem in estimating linearized DSGE models is called.
See e.g. Ruge-Murcia (2007) for more on this and its impact on estimation.
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which is a linear-Gaussian system in the econometric-state variables St and variables with

directly observed counterparts Yt.

The Likelihood Function

Given the state-space model in (4.27), the value of the likelihood function evaluated

at a given parameter constellation Θ can be easily calculated using the Kalman Filter.

The introduction of adaptive learning requires the coefficient-matrices of the transition

equations to be updated using estimates of the state variables based on the CGLS

algorithm. I follow Slobodyan and Wouters (2008) and use the simple filtered estimates

for the states rather than the smoothed estimates.

The additional updating step presents two potential computational difficulties. First,

agents updated estimates may imply the system is non-stationary; thus I incorporate a

projection facility as in Marcet and Sargent (1989a) which causes agents to skip their

updating step when they realize their new estimates are non-nonsensical. Second, MSV

learning in linearized-DSGE models can produce estimated second-moment matrices with

very small minimum eigenvalues due to perfect-multicollinearity from the models’ implied

linear restrictions; hence, I incorporate a ridge correction mechanism as in Slobodyan and

Wouters (2012) which conditionally adds an arbitrarily small constant to the diagonal of

the estimated second-moment matrix.11

Provided initial values for the states S0|0, the estimated mean square error (MSE)

matrix P0|0, beliefs for the second moment matrix R̂0, and beliefs for the coefficient

matrices x0 = (a0, b0, c0), the Kalman Filtering routine proceeds by repeating 5 steps

11I set the value of this small ridge to be 1e− 6 times a conformable identity matrix.
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1. Calculate the a priori estimates of the time t states St|t−1 and MSE matrix Pt|t−1

2. Use these estimates to produce a priori estimates of the time t observables Yt|t−1

and corresponding variance-covariance matrix Ωt|t−1

3. Calculate the a posteriori time t value of the (log) likelihood function

4. Update the estimated coefficient matrices At, Ft, and Gt implied by agents updating

their beliefs R̂t and ξt according to the CGLS algorithm

5. Calculate the a posteriori estimates of the time t states St|t and MSE matrix Pt|t

for t = 1, 2, ...T . The projection facility and ridge-correction mechanism are conditionally

applied during step 4, which does not exist under RE. Initial values for the states and

estimated MSE matrix are set to the unconditional mean and variance-covariance matrix

of the states, respectively, while initial beliefs are assumed to be equal to the REE. Since

the REE is E-stable, this implies agents’ estimates will fluctuate around the REE, thereby

facilitating a simple comparison between the estimated posterior densities.

The Prior

The parameter vector Θ contains all of the parameters of the model, some of which

are calibrated. In particular, the discount factor β is set to 0.99 implying a steady-state

quarterly real-interest rate of 1% if δ1 = δ2 = 0. σ is set to 1 to yield logarithmic utility

while αk and αh are set to 0.225 and 0.675, respectively, implying mild decreasing returns

to scale. δ0 is the steady-state depreciation rate and is set to 2.5 percent. The fixed factor

F and steady-state values for the Hicks-neutral technology shock z, preference shock ζ,

and investment-specific technology shock zI are normalized to 1. The steady-state value
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Calibrated Parameters
Parameter Values Description

β 0.99 Discount factor
σ 1 Logarithmic Utility
αk 0.225 Effective Capital Share of Output
αh 0.675 Effective Labor Share of Output
δ0 0.025 Steady-state Depreciation Rate
F 1 Fixed Factor
z 1 Hicks-neutral technology shock
ζ 1 Preference shock
zI 1 Investment-specific technology shock
ω 1.15 Wage-markup shock
µA 0.9972 Growth rate, Relative Price of Investment shock
µX 1.0032 Growth rate, Harrod-neutral technology shock
h 0.2 Steady-state Hours Worked
u 1 Steady-state Capacity Utilization Rate

TABLE 9. Calibrated Parameters for Estimated One-sector Model

for the wage-markup shock ω is set to 1.15 and g is set such that government’s share of

output is 0.20 in steady state. The steady-state values of the growth of Harrod-neutral

technology µX and the relative price of investment µA are set to 1.0032 and 0.9957,

respectively, to match the long-run averages implied by the data. Finally, δ1 and ψ are

calibrated to ensure capacity utilization and hours worked in steady state are 1 and 0.2,

respectively. This information is summarized in Table 9.

Each of the remaining parameters which are to be estimated require an prior

distribution. These priors may reflect knowledge about the parameters obtained from

previous studies, and often help ensure the estimation routine focuses on “sensible”

values e.g. ensuring standard deviations are non-negative. I choose my priors to be

consistent with those in Schmitt-Grohe and Uribe (2012). In particular, the parameter

θ governing the Frisch elasticity of labor supply is distributed Gamma with mean 5 and

standard deviation 2, the curvature of the depreciation function δ2 is distributed inverse-

Gamma with mean 0.01 and standard deviation 0.05, and the curvature of the investment
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adjustment cost function κ is distributed Gamma with mean 10 and standard deviation

2. These correspond to rather loose priors, and the inverse-Gamma on κ ensures it will

be strictly positive. The standard deviations for the structural shocks are assumed to

follow Gamma distributions to allow for the possibility that some shocks are completely

unimportant i.e. have standard deviations equal to zero. The surprise shocks and output’s

measurement error have mean and standard deviation equal to 0.1, and the anticipated

shocks have mean and standard deviation such that surprise shocks account for 50% of

total variance in each exogenous variables at the prior.

The internal habit adjustment parameter b as well as the autoregressive parameters

for each shock ρx are assumed to follow Beta distributions with mean 0.5 and standard

deviation 0.2 which correspond to hump-shaped prior distributions over the unit interval.

The habit-adjustment term γ from the JR preferences is uniformly distributed over the

unit interval. Finally, the constant-gain parameter ḡ is distributed Gamma with mean and

standard deviation 0.035, which is consistent with priors used in recent learning-estimation

literature while placing non-trivial probability at near-zero values.

Main Results

Table 10 reports the median and 95% highest posterior distribution interval (HPDI)

implied by the priors and 500,000 draws from the estimated posterior distribution under

RE and NRE. The most notable differences between models occur with respect to the

estimated standard deviations for the wage-markup shock (σ0
ω,σ4

ω,σ8
ω) and the growth

rate of the relative price of investment (σ0
µA ,σ4

µA ,σ8
µA). Under RE, surprise shocks are

responsible for about half of the variance in the wage-markup shock at the posterior

median, while under NRE they are responsible for almost none. A similar shift occurs
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Prior and Posterior Distribution for Estimated Parameters
Prior Posterior - RE Posterior - Learning

Param. Distr. 95% Low Med. 95% High 95% Low Med. 95% High 95% Low Med. 95% High
σ0
z Gamma 0.000 0.069 0.303 0.649 0.730 0.814 0.639 0.733 0.824
σ4
z Gamma 0.000 0.049 0.214 0.000 0.057 0.252 0.000 0.062 0.283
σ8
z Gamma 0.000 0.049 0.212 0.000 0.051 0.194 0.000 0.051 0.249
σ0
ζ Gamma 0.000 0.069 0.300 2.795 3.398 4.081 2.741 3.352 4.043
σ4
ζ Gamma 0.000 0.049 0.214 0.000 0.051 0.215 0.000 0.049 0.219
σ8
ζ Gamma 0.000 0.049 0.215 0.000 0.050 0.219 0.000 0.051 0.205

σ0
zI Gamma 0.000 0.069 0.302 4.701 5.599 6.563 4.634 5.602 6.560
σ4
zI Gamma 0.000 0.049 0.214 0.000 0.051 0.230 0.000 0.047 0.215
σ8
zI Gamma 0.000 0.049 0.214 0.000 0.051 0.211 0.000 0.047 0.207
σ0
ω Gamma 0.000 0.069 0.302 0.000 0.206 1.115 0.000 0.079 0.410
σ4
ω Gamma 0.000 0.049 0.212 0.000 0.153 1.103 0.000 0.054 0.245
σ8
ω Gamma 0.000 0.049 0.215 0.000 0.133 1.091 0.917 1.038 1.169
σ0
g Gamma 0.000 0.069 0.302 0.000 0.073 0.309 0.000 0.067 0.279
σ4
g Gamma 0.000 0.049 0.214 3.686 4.236 4.816 3.718 4.289 4.900
σ8
g Gamma 0.000 0.049 0.212 0.000 0.051 0.223 0.000 0.053 0.246

σ0
µA Gamma 0.000 0.069 0.303 0.015 0.277 0.372 0.001 0.214 0.352

σ4
µA Gamma 0.000 0.049 0.212 0.000 0.115 0.341 0.000 0.180 0.352

σ8
µA Gamma 0.000 0.049 0.213 0.000 0.083 0.306 0.000 0.096 0.337

σ0
µX Gamma 0.000 0.069 0.304 0.032 0.078 0.149 0.024 0.076 0.148

σ4
µX Gamma 0.000 0.049 0.214 0.000 0.021 0.065 0.000 0.024 0.074

σ8
µX Gamma 0.000 0.049 0.215 0.000 0.044 0.124 0.000 0.044 0.125

σYme Gamma 0.000 0.069 0.305 0.541 0.594 0.651 0.542 0.594 0.652
ρx,g Beta 0.125 0.500 0.871 0.117 0.420 0.733 0.131 0.439 0.738
ρz Beta 0.131 0.501 0.873 0.797 0.858 0.914 0.798 0.861 0.920
ρζ Beta 0.129 0.502 0.869 0.015 0.109 0.231 0.013 0.103 0.225
ρzI Beta 0.127 0.499 0.868 0.729 0.798 0.868 0.724 0.796 0.864
ρω Beta 0.115 0.500 0.858 0.917 0.950 0.980 0.923 0.955 0.985
ρg Beta 0.132 0.499 0.873 0.903 0.942 0.979 0.906 0.944 0.979
ρµA Beta 0.128 0.500 0.869 0.351 0.465 0.575 0.359 0.469 0.580
ρµX Beta 0.132 0.500 0.873 0.889 0.951 0.990 0.877 0.950 0.988
θ Gamma 1.503 4.760 8.961 2.936 3.696 4.490 3.057 3.803 4.645
κ Gamma 3.171 9.479 18.048 4.709 5.889 7.203 4.625 5.713 7.017
δ2 InvGamma 0.000 0.000 0.002 0.030 0.035 0.042 0.029 0.035 0.041
γ Unif 0.001 0.499 0.951 0.000 0.001 0.008 0.000 0.001 0.006
b Beta 0.503 0.707 0.885 0.813 0.841 0.867 0.812 0.840 0.865
ḡ Gamma 0.000 0.024 0.106 0 0 0 0.000 0.007 0.025

TABLE 10. Estimated Parameters
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in the implied variance for the growth rate of the relative price of investment: under RE

the surprise shock is responsible for about 80% of total variance, while it is responsible

for only about 50% under NRE. Thus, the learning model ascribes greater importance to

anticipated shocks for driving exogenous variables than the model with RE.

That the values for mechanical sources of volatility and persistence such as the habit

formation parameter b and the rental rate elasticity of capacity utilization δ2 are so similar

across models is somewhat surprising. Previous estimation-with-learning exercises as in

Milani and Rajbhandari (2012) and Slobodyan and Wouters (2012) found that mechanical

sources of volatility and persistence failed to maintain their importance when agents were

assumed to be boundedly rational. However, my results are consistent with the earlier

finding from Slobodyan and Wouters (2007) that differences in estimates between RE and

models with learning are to a large extent driven by differences in the information sets of

agents. Because agents’ initial beliefs correspond to the REE the information set of agents

under NRE is quite similar to that of their rational counterparts.

To assess the quantitative importance of anticipated shocks versus surprise shocks,

I conduct a forecast-error variance decomposition (FEVD) exercise on the implied growth

rates of output, consumption, investment, hours worked, and government spending. For

surprise shocks typical FEVDs have a simple interpretation: because the shock is realized

in the same period it is announced, the induced volatility can be directly attributed to the

change in fundamentals.

Anticipated shocks, however, have two separate impacts on the system. Sims

(2016) refers to these impacts as “pure news’ and “realized news”, respectively. Pure

news captures volatility resulting from the change in agents’ expectations of future

fundamentals before those fundamentals have actually changed. Realized news captures
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volatility resulting from the actual arrival of the anticipated event. For instance, if news

arrives four periods in advance, horizons up to four periods will represent pure news, while

horizons after four periods will represent both pure and realized news.

Since an unconditional FEVD is an asymptotic result, it will mix these two effects.

If we are interested in the relative importance of anticipated versus surprise shocks then

we should look at FEVDs conducted on shorter horizons. Figure 4 shows the 95% HPDI of

the estimated variance for the growth rates of output, consumption, investment, and hours

worked explained by anticipated shocks across models and FEVD horizons from 7500

draws from the posterior distributions, while Figure 5 displays the same information for

the growth rate of government expenditure.12 The vertical axis gives the median percent

of volatility explained by anticipated shocks, while the horizontal axis gives the FEVD

horizon. The light-shaded (dark-shaded) region corresponds to the 95% HPDI from the

model under NRE (RE).

In all cases the importance of news is greater under the learning model. Furthermore

the HPDIs are larger under NRE than under RE. This suggests that news is not merely

a proxy for the endogenous learning process, but that in fact the combination of news

and learning leads to additional volatility than would otherwise be implied. However it is

worth noting that the entirety of this difference occurs from the realized news component:

consistent with the results from Sims (2016), the relative importance of pure news is

similarly low under both models.

Given the observed differences in the relative importance of anticipated vs

unanticipated shocks across expectation formation mechanisms, it is natural to wonder

12I calculate FEVDs for horizons h = {0, 1, 2, 3, 4, 5, 6, 7, 8, 16}. Technically an unconditional FEVD is
taken in the limit as the forecasting horizon goes to infinity. In practice this convergence occurs relatively
quickly. Horizons longer than 16 result in variance shares which are nearly identical to those generated at
16.
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FIGURE 4. Relative Importance of News: Key Macroeconomic Variables, RE vs NRE

whether there are differences in each model’s ability to fit the data. Table 11 compares

the standard deviation (relative to output), correlation with output, and first-order

autocorrelation coefficients for the growth rates of output, consumption, investment, hours

worked, government expenditure, TFP, and the relative price of investment obtained from

the actual data to that obtained from 7500 simulations of each model. The deep structural

parameters for each simulation were generated via a random draw of the respective

model’s posterior distribution. The summary statistics are the median value across these

simulations. The variables Y,C, I, h, g, TFP and A refer to the growth rates of output,

consumption, investment, hours worked, government expenditure, TFP, and the relative
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FIGURE 5. Relative Importance of News: Government Spending, RE vs NRE

price of investment, respectively, and relative standard deviations are the ratio of the

standard deviation of the variable to that of the growth rate of output.

The summary statistics produced by both models are extremely similar to each

other and are broadly consistent with the data. The growth rates of consumption and

investment are estimated to be overly volatile, while the growth rate of the relative price

of investment is somewhat less volatile; however, the underlying standard deviation of

output growth is almost identical to that of the data. Furthermore the relative standard

deviations of growth in hours worked, government spending, and TFP are all quite

accurate compared to the data. The estimated correlations with the data are weaker than

those observed in the data for the growth rates of investment, hours worked, and TFP,

but match quite well for consumption and government spending. Finally, the estimated
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Model Predictions: Volatility and Persistence, Data vs NRE vs RE

Y C I h g TFP A
Relative Standard Deviation

Data 1.00 0.56 2.52 0.92 1.25 0.83 0.45
Model - NRE 1.00 0.70 3.06 0.97 1.15 0.85 0.35
Model -RE 1.00 0.70 3.05 0.98 1.18 0.88 0.37

Correlation with Output
Data 1.00 0.50 0.69 0.72 0.25 0.40 -0.12
Model - NRE 1.00 0.51 0.57 0.40 0.26 0.27 0.01
Model -RE 1.00 0.49 0.55 0.37 0.27 0.29 0.01

Autocorrelation
Data 0.28 0.20 0.53 0.60 0.05 -0.01 0.49
Model - NRE 0.32 0.46 0.63 0.18 0.03 -0.01 0.46
Model -RE 0.34 0.48 0.65 0.19 0.03 -0.00 0.46

TABLE 11. Model Predictions: Volatility and Persistence, Data vs NRE vs RE

persistence of consumption is too high, while the estimated persistence of hours worked is

too low.13

Conclusion

This chapter has demonstrated that the estimated relative importance of anticipated

news versus unanticipated news, as interpreted by the previous literature, is robust to the

inclusion of learning. In particular it appears that news and learning serve to augment

each other: in general, the estimated macroeconomic volatility in key variables is more a

function of news under NRE than under RE. This is especially interesting given that both

models produce quantitatively similar predictions for overall volatility and persistence.

13My estimates are broadly similar but generally closer to the data than those produced in Schmitt-
Grohe and Uribe (2012). For example, the sum of squared deviations of data vs estimated relative
standard deviation is around 0.33 under both NRE and RE under my estimates compared to 1.6 under
theirs. This is driven to a large extent to the relative standard deviation of investment to output growth
which is much greater under their estimates due to a much lower estimated standard deviation of output
(0.91 in the data and my estimates, 0.73 under their estimates).
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However, pure news is responsible for almost none of the estimated volatility in

either model; it is only once the anticipated shock materializes that news begins to be

important. It is possible that this finding is sensitive to the particular form of learning

assumed. The NRE approach undertaken in this chapter represents a relatively small

departure from RE.

Future research will look at the relative impact on model predictions and estimates

across a variety of bounded rationality assumptions. Departures from RE such as the

infinite-horizon learning of Preston (2005), finite-horizon learning of Branch et al. (2012a),

and shadow-price learning of Evans and McGough (2015) all reflect larger departures from

RE, and provide a natural avenue for future projects studying the empirical importance of

both news shocks and adaptive learning in DSGE model estimation. It will be particularly

interesting to observe whether differences emerge between between bounded rationality of

the “learning-to-forecast” and “learning-to-optimize” types emerge.
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APPENDIX A

APPENDIX FOR CHAPTER II

Competitive Equilibrium

Firms

The representative firm in the competitive durable goods sector solves

max
lk,t

PtIt −Wk,tlk,t −Rk,tl̃x

s.t. It = exp (θk,t)l
αk
k,t l̃

1−αk
k

where Pt the price of the investment good in terms of the consumption good, Wk,t and

Rk,t the rents paid to labor lk,t and the fixed factor l̃k, respectively, and θk,t is a measure of

technology.1 The FONCs are given by

Wk,t = αkPt
It
lk,t

(A.1)

Rk,t = (1− αk)pt
It

l̃k
(A.2)

Thus labor and the fixed factor in this sector are paid their marginal products in terms of

the numeraire good.

1 Technology in the durable goods sector evolves deterministically according to

log θk,t = g0,k + g1 ∗ t
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Consumption Good

The representative firm solves

max
Xt,Kt−1

Ct − Px,tXt −RtKt−1

s.t Ct = (aXv
t + (1− a)Kv

t−1)
1
v

where Px,t the price of the nondurable good Xt in terms of the consumption good and Rt

the gross real interest rate. The FONCs are given by

Rt = (1− a)C1−v
t Kv−1

t−1 (A.3)

Px,t = aC1−v
t Xv−1

t (A.4)

This will be used below to determine the value of labor and the fixed factor in the non-

durable goods sector Xt.

The nondurable good is an intermediate good in production, and hence is only

consumed by final goods producers. The representative firm in the competitive nondurable

goods sector solves

max
lx,t,l̃x

Px,tXt −Wx,tlx,t −Rx,tl̃x

s.t Xt = exp (θx,t)l
αx
x,t l̃

1−αx
x
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where Wx,t and Rx,t the rents paid to labor lx,t and the fixed factor l̃x, respectively, and

θx,t is a measure of technology.2

The FONCs are given by

Wx,t = αxXt/lx,t (A.5)

Rx,t =
rx,t

(1− αx)Xt/l̃x
(A.6)

(A.7)

We can use the demand from the representative final good producer to determine the

wage and rental rates. Equations (A.5) and (A.4) together imply

Wx,t = aC1−v
t αx

Xv
t

lx,t
(A.8)

and equations (A.6) and (A.4) together imply

rx,t = aC1−v
t (1− αx)

Xv
t

l̃x
(A.9)

2 Technology in the nondurable goods sector evolves according to

log θx,t = g0,x + g1 ∗ t+ log θ̂x,t

log θ̂x,t = λ log θ̂x,t−1 + εt

where εt an i.i.d mean zero shock which is known to the firms when making their production decision and
vt−n is the news shock revealed to households.

92



Households

The household problem is given by

max
Ct,lx,t,lk,t,It,Kt

logCt + v0(l̄ − lx,t − lk,t) (A.10)

subject to the law of motion for capital and the flow budget constraint

Kt = (1− δ)Kt−1 + It (A.11)

Ct + PtIt = Wx,tlx,t +Wk,tlk,t +RtKt−1 + Πt (A.12)

The LaGrangian is thus

L = Ê0

∞∑
t=0

βt
{

logCt + v0(l̄ − lx,t − lk,t)
}

+ Λt {Wx,tlx,t +Wk,tlk,t +RtKt−1 + Πt − Ct − PtIt}

+ ΛtQt {(1− δ)Kt−1 + It −Kt}

where Λt the marginal value of income, Qt Tobin’s marginal Q, and hence ΛtQt the

marginal value of capital in terms of consumption. The first-order necessary conditions
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for an interior solution to the household’s problem are given by

∂L
∂Ct

= 0 ⇐⇒ Λt =
1

Ct
(A.13a)

∂L
∂lx,t

= 0 ⇐⇒ v0 = ΛtWx,t (A.13b)

∂L
∂lk,t

= 0 ⇐⇒ v0 = ΛtWk,t (A.13c)

∂L
∂It

= 0 ⇐⇒ Pt = Qt (A.13d)

∂L
∂Kt

= 0 ⇐⇒ ΛtQt = βÊt [Λt+1 (Rt+1 +Qt+1(1− δ))] (A.13e)
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Equilibrium

A temporary equilibrium is a set
{
Ct, lx,t, lk,t, It, Kt, Xt, Yt, Pt, Rt,Wx,t,Wk,t,Λt, Qt, θk,t, θx,t, θ̃x,t

}
such that consumers and firms are utility maximizing and markets clear:

Yt = Ct + PtIt (A.14a)

Ct =
(
aXν

t + (1− a)Kν
t−1

) 1
ν (A.14b)

Xt = θx,tl
αx
x,tF

1−αx
x (A.14c)

It = θk,tl
αk
k,tF

1−αk
k (A.14d)

Kt = (1− δ)Kt−1 + It (A.14e)

Λt =
1

Ct
(A.14f)

v0 = ΛtWx,t (A.14g)

v0 = ΛtWk,t (A.14h)

Pt = Qt (A.14i)

ΛtQt = βÊt [Λt+1Rt+1 + Λt+1Qt+1(1− δ)] (A.14j)

Rt = (1− a)

(
Ct
Kt−1

)1−v

(A.14k)

Wx,t = aαxC
1−v
t

Xv
t

lx,t
(A.14l)

Wk,t = Ptαk
It
lk,t

(A.14m)

θk,t = g0,ke
g1t (A.14n)

θx,t = g0,xe
g1tθ̃x,t (A.14o)

θ̃x,t = θ̃λx,t−1e
εt (A.14p)

(A.14q)
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where Λt and ΛtQt the marginal value (or shadow price) of income and installed capital,

respectively. Qt is the ratio of these marginal values and can be interpreted as the relative

price of installed capital in terms of the consumption good, i.e. marginal Tobin’s Q.

Equation (A.14a) is the economy’s aggregate resource constraint and equations

(A.14b)-(A.14d) are the production functions for the consumption, nondurable, and

durable goods respectively. Equation (A.14e) is the capital accumulation equation.

Optimal household decision making for consumption, nondurable good labor supply,

durable good labor supply, investment, and capital yields equations (A.14f)-(A.14j),

respectively. Markets are competitive and hence factors of production are paid the value of

their marginal products, as specified by equations (A.14k)-(A.14m). Finally, technology for

producing the durable and nondurable goods is given by equations (A.14n)-(A.14p).
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Detrending

Define the for any non-stationary variable x the stationary counterpart xt = x̂te
g1t.

The temporary equilibrium in terms of detrended variables is

Ŷt = Ĉt + PtÎt (A.15a)

Ĉt =

(
aX̂ν

t + (1− a)

(
K̂t−1

eg1

)ν) 1
ν

(A.15b)

X̂t = θ̂x,tl
αx
x,tF

1−αx
x (A.15c)

Ît = θ̂k,tl
αk
k,tF

1−αk
k (A.15d)

K̂t = (1− δ)K̂t−1

eg1
+ Ît (A.15e)

Λ̂t =
1

Ĉt
(A.15f)

v0 = Λ̂tŴx,t (A.15g)

v0 = Λ̂tŴk,t (A.15h)

Pt = Qt (A.15i)

eg1Λ̂tQt = βÊt

[
Λ̂t+1Rt+1 + Λ̂t+1Qt+1(1− δ)

]
(A.15j)

Rt = (1− a)

(
Ĉt

K̂t−1

eg1

)1−v

(A.15k)

Ŵx,t = aαxĈ
1−v
t

X̂v
t

lx,t
(A.15l)

Ŵk,t = Ptαk
Ît
lk,t

(A.15m)

θ̂k,t = g0,k (A.15n)

θ̂x,t = g0,xθ̃x,t (A.15o)

θ̌x,t = θ̌λx,t−1e
εt (A.15p)
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Log-Linearization

The entire detrended, log-linearized system of equilibrium conditions is given by

Ỹt −
(
C

Y

)
C̃t −

(
PI

Y

)
P̃t −

(
PI

Y

)
Ĩt = 0 (A.16)

C̃t − a
(
X

C

)v
X̃t = (1− a)

(
K

C

)v
K̃t−1 (A.17)

X̃t − θ̃x,t − αxl̃x,t = 0 (A.18)

Ĩt − θ̃k,t − αk l̃k,t = 0 (A.19)

K̃t −
(
I

K

)
Ĩt =

(
1− δ
eg1

)
K̃t−1 (A.20)

Λ̃t + C̃t = 0 (A.21)

Λ̃t + W̃x,t = 0 (A.22)

Λ̃t + W̃k,t = 0 (A.23)

Q̃t − P̃t = 0 (A.24)

Λ̃t + Q̃t = ÊtΛ̃t+1 +

(
1

R +Q(1− δ)

)
ÊtR̃t+1 +

(
Q(1− δ)

R +Q(1− δ)

)
ÊtQ̃t+1 (A.25)

R̃t + (R(v − 1)) C̃t = (R(v − 1)) K̃t−1 (A.26)

l̃x,t + W̃x,t − (1− v) C̃t − vX̃t = 0 (A.27)

l̃k,t + W̃k,t − P̃t − Ĩt = 0 (A.28)

θ̃k,t = 0 (A.29)

θ̃x,t − ˜̌θx,t = 0 (A.30)

˜̌θx,t = λ ˜̌θx,t−1 + εt (A.31)
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where a ˜tilde over a variable indicates the percent deviation from steady state and

variables without a time subscript indicate their steady state value.3

3Note that the gross interest rate is expressed in “deviation from steady state” rather than “percent
deviation from steady state”, since the variable is already expressed in percentage terms.
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APPENDIX B

APPENDIX FOR CHAPTER III

Solving the Model

Suppose the household was acting optimally and contemplated reallocating a small

amount of consumption for investment. The marginal cost of the reduction in consumption

is the direct loss of utility today as well as the expected discounted value of changing the

geometric average of habit-adjusted consumption. The marginal benefit is the expected

discounted value of the additional investment, which affects future investment adjustment

costs and increases tomorrow’s capital stock. Hence the household’s first-order necessary

condition for Ct is

UCt(Vt) +
∂St
∂Ct

βÊtλ
S
t+1 =

∂It
∂Ct

(
βÊtλ

I
t+1 +

∂Kt

∂It
βÊtλ

K
t+1

)
(B.1)

Now suppose the household considered a small increase in their labor supply. The

additional labor income could be used to increase investment, and hence the marginal

benefit is the expected discounted value of the additional investment they can afford,

which again affects future investment adjustment costs and increases tomorrow’s capital

stock. The marginal cost is the disutility associated with higher labor supply, and hence

the household’s first-order necessary condition for ht is

−Uht(Vt) =
∂It
∂ht

(
βÊtλ

I
t+1 +

∂Kt

∂It
βÊtλ

K
t+1

)
(B.2)
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If the household were to utilize more of their predetermined capital stock they would

receive rental income which could be used to finance additional investment, again affecting

tomorrow’s capital stock and investment adjustment costs. However working capital more

intensely also increase the rate of depreciation, and thus the first-order necessary condition

for ut is

∂Kt

∂ut
βÊtλ

K
t+1 =

∂It
∂ut

(
βÊtλ

I
t+1 +

∂Kt

∂It
βÊtλ

K
t+1

)
(B.3)

The optimal choices of Ct, ht, and ut pin down the value for It through the flow

budget constraint, which pins down the value for Kt through the capital accumulation

equation. Likewise, the optimal choice of Ct generically determines the value of St. Thus

equations (B.1), (B.2), and (B.3) fully describe the optimal behavior of the household as a

function of their beliefs about the future shadow prices.

The expected value of these shadow prices may also be derived using variational

arguments. The time t value of additional It−1 in time t holding everything else constant is

the resulting change to investment adjustment costs which changes the size of tomorrow’s

capital stock, that is

λIt =
∂Kt

∂It−1

βÊtλ
K
t+1 (B.4)

The time t value of additional preinstalled capital in time t is the expected discounted

value of the additional rental income (which could be invested) plus the value of directly

increasing tomorrow’s capital stock, that is

λKt =
∂It

∂Kt−1

(
βÊtλ

I
t+1 +

∂Kt

∂It
βÊtλ

K
t+1

)
+

∂Kt

∂Kt−1

βÊtλ
K
t+1 (B.5)
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Finally, the time t value of a small change to the predetermined level of habit-adjusted

consumption in time t is the direct change to utility today, as well as the expected

discounted value of the resulting change in the level of habit-adjusted consumption, that is

λSt = USt−1(Vt) +
∂St
∂St−1

βÊtλ
S
t+1 (B.6)

The solution to the household’s optimization problem satisfies the FONCs for the controls

given by

(
Ct − ψhθtSt

)−σ (
1−

γψhθtSt

Ct

)
+
γSt

Ct
βÊtλ

S
t+1 =

1

At
βÊt

(
λIt+1 +

(
1− Φ

(
It

It−1

)
− Φ′

(
It

It−1

)(
It

It−1

))
λKt+1

)
(B.7a)

(
Ct − ψhθtSt

)−σ ( θψhθ−1
t St

Wt

)
=

1

At
βÊt

(
λIt+1 +

(
1− Φ

(
It

It−1

)
− Φ′

(
It

It−1

)(
It

It−1

))
λKt+1

)
(B.7b)

δ′(ut)

Rt
βÊtλ

K
t+1 =

1

At
βÊt

(
λIt+1 +

(
1− Φ

(
It

It−1

)
− Φ′

(
It

It−1

)(
It

It−1

))
λKt+1

)
(B.7c)

λIt = Φ′
(

It

It−1

)(
It

It−1

)2

βÊtλ
K
t+1 (B.7d)

λKt = (Rtut)
1

At
βÊt

(
λIt+1 +

(
1− Φ

(
It

It−1

)
− Φ′

(
It

It−1

)(
It

It−1

))
λKt+1

)
+ (1− δ(ut))βÊtλKt+1 (B.7e)

λSt =
(
Ct − ψhθtSt

)−σ (
−

(1− γ)ψhθtSt

St−1

)
+ β

(1− γ)St

St−1
Êtλ

S
t+1 (B.7f)

It can be shown that the shadow prices can be calculated as

λIt = Φ′
(

It
It−1

)(
It
It−1

)2(
Rt

δ′(ut)

)(
Ct − ψhθtSt

)−σ (θψhθ−1
t St
Wt

)
(B.8a)

λKt = (1 + utδ
′(ut)− δ(ut))

(
Rt

δ′(ut)

)(
Ct − ψhθtSt

)−σ (θψhθ−1
t St
Wt

)
(B.8b)

λSt =

[(
Ct − ψhθtSt

)−σ ((1− γ)St
St−1

)][(
−Ct
γSt

)(
1− γψhθtSt

Ct
− θψhθ−1

t St
Wt

)
− ψhθt

]
(B.8c)

The full dynamic system under SP-learning is described by the following equations,

comprised of the optimality conditions for households and firms, resource constraints, and
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identities:

(
Ct − ψhθtSt

)−σ (
1−

γψhθtSt

Ct

)
+
γSt

Ct
βÊtλ

S
t+1 =

1

At
βÊt

(
λIt+1 +

(
1− Φ

(
It

It−1

)
− Φ′

(
It

It−1

)(
It

It−1

))
λKt+1

)
(
Ct − ψhθtSt

)−σ (
−
θψhθ−1

t St

Wt

)
=

1

At
βÊt

(
λIt+1 +

(
1− Φ

(
It

It−1

)
− Φ′

(
It

It−1

)(
It

It−1

))
λKt+1

)
δ′(ut)

Rt
βÊtλ

K
t+1 =

1

At
βÊt

(
λIt+1 +

(
1− Φ

(
It

It−1

)
− Φ′

(
It

It−1

)(
It

It−1

))
λKt+1

)
λIt = Φ′

(
It

It−1

)(
It

It−1

)2 ( Rt

δ′(ut)

)(
Ct − ψhθtSt

)−σ ( θψhθ−1
t St

Wt

)

λKt =
(
1 + utδ

′(ut)− δ(ut)
)( Rt

δ′(ut)

)(
Ct − ψhθtSt

)−σ ( θψhθ−1
t St

Wt

)

λSt =

[(
Ct − ψhθtSt

)−σ ( (1− γ)St

St−1

)]
×[(

−Ct
γSt

)(
1−

γψhθtSt

Ct
−
θψhθ−1

t St

Wt

)
− ψhθt

]

Kt = (1− δ (ut))Kt−1 + It

[
1− Φ

(
It

It−1

)]
Ct +AtIt ≤Wtht +Rt (utKt−1)

St = Cγt S
1−γ
t−1

Yt = Ct +AtIt

Yt = zt (utKt−1)1−α (ht)
α

Wt = α
Yt

ht

Rt = (1− α)
Yt

utKt−1

Êtλ
I
t = HI

t x̃t

Êtλ
K
t = HK

t x̃t

Êtλ
S
t = HS

t x̃t

RH,t = RH,t−1 + gt
(
x̃t−1x̃

′
t−1 −RH,t−1

)
Ht = Ht−1 + gtR

−1
H,tx̃t−1

(
λt−1 −H′t−1x̃t−1

)′
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Recursive Representation of News-Shocks

We can write the evolution of any exogenous variable indexed by w as

ln(wt) = ρw ln(wt−1) + ε0
w,t (B.9)

εw,t = ϕwεw,t−1 +Mwνw,t (B.10)

where εw,t =
(
ε0
w,t, ε

1
w,t, .., ε

n
w,t

)
a vector of auxiliary state variables which carry the

news shocks through time, ϕ a lower-shift matrix with 1’s on the super-diagonal and

zeros elsewhere, νw,t =
(
ν0
w,t, ν

1
w,t, ..., ν

n
w,t

)′
a vector of (anticipated and unanticipated)

shocks, and Mw =
([
ν0
w,t ∈ It

]
,
[
ν1
w,t−1 ∈ It

]
, ...,

[
νnw,t−n ∈ It

])
a row-vector of 1’s and 0’s

respecting the specific assumptions regarding the information obtained by households.
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APPENDIX C

APPENDIX FOR CHAPTER IV

The Labor Market

Final-goods producers demand a composite labor good hct =
[∫ 1

0
ht(j)

1
1+µt dj

]1+µt

where ht(j) denotes labor of type j ∈ [0, 1] and µt ≥ 0 is the exogenous stochastic wage

markup. The cost minimization problem for a final-goods producer is

min
ht(j)

∫ 1

0

Wt(j)ht(j)dj

subject to hct ≤
[∫ 1

0

ht(j)
1

1+µt dj

]1+µt

the solution to which yields the conditional factor demand functions h∗t (j) =

hct

(
Wt(j)
W c
t

)− (1+µt)
µt where W c

t =
[∫ 1

0
Wt(j)

− 1
µt dj

]−µt
the cost of a single unit of the composite

labor input.

Labor ht(j) is provided by monopolistically competitive unions. Since labor is freely

mobile all unions pay their members the same wage rate Wt and charge firms Wt(j). The

profit maximization problem for these unions is

max
Wt(j)

(Wt(j)−Wt)ht(j)

subject to ht(j) = h∗t (j)

the solution to which is W ∗
t (j) = (1 + µt)Wt. It is clear from this expression all unions will

charge firms the same price denoted W ∗
t , and that this wage is marked up in accordance
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with the value of market power captured by µt. This implies firms will demand identical

quantities of each type of labor, that is ht(j) = hct for all j.

The profits of each union j are thus Πt(j) = µtWth
c
t , which is the same for all

unions. These profits are rebated to member-households as a lump sum. Since the unions

determine the hours of labor allocated, firms choose their labor demand, and households

choose how much labor to provide, an equilibrium requires
∫ 1

0
ht(j)dj = hct =

∫
ht(ω)dω.
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Inducing Stationarity

Many of the endogenous variables inherit the non-stationarity of At and Xt. In

particular, it can be shown that

– Ct, St, Y
out
t , and Wt grow at rate µYt =

XY
t

XY
t−1

– Kt and It grow at rate µKt =
XK
t

XK
t−1

where XK
t = At

XY
t

– Gt grows at rate µGt =
XG
t

XG
t−1

– Rt and Qt grow at rate µAt

– Πt and Λt grow at rate
(
µYt
)−σ

Thus we define the stationary variables Ŷ out
t =

Y outt

XY
t

, Ĉt = Ct
XY
t

, Ŵt = Wt

XY
t

, Ît = AtIt
XY
t

,

K̂t = AtKt
XY
t

, gt = Gt
XG
t

, R̂t = Rt
At

, Q̂t = Qt
At

, Π̂t =
(
XY
t

)σ
Πt, and Λ̂t =

(
XY
t

)σ
Λt. ut and ht

are already stationary variables. By manipulating the equations defining a non-stationary

temporary equilibrium one can express the system in terms of the stationary variables. In

particular, one can show the stationarized dynamic system of equilibrium conditions to be
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given by

K̂t = (1− δ (ut))
K̂t−1

µKt
+ zIt Ît

[
1− Φ

(
Ît

Ît−1

µKt

)]

Ŷt = Ĉt + Ît + gtX
G,Y
t

Ŷt = zt

(
ut
K̂t−1

µKt

)αk

(ht)
αh (F )1−αk−αh

V̂t = Ĉt − b
Ĉt−1

µYt
− ψhθt Ŝt

Ŝt =

(
Ĉt − b

Ĉt−1

µYt

)γ (
Ŝt−1

µYt

)1−γ

Λ̂t =

ζtV̂ −σt − γŜt

Ĉt − b Ĉt−1

µYt

Π̂t

− bβÊt
(µYt+1

)−σζt+1V̂
−σ
t+1 −

γŜt+1

Ĉt+1 − b Ĉt
µYt+1

Π̂t+1


Λ̂t =

θζtV̂
−σ
t ψhθ−1

t Ŝt

Ŵt/ωt

Π̂t = ζtV̂
−σ
t ψhθt + β(1− γ)Êt

[
Ŝt+1

Ŝt
Π̂t+1

(
µYt+1

)1−σ
]

Q̂tΛ̂t = βÊt

[
µAt+1

(
µYt+1

)−σ
Λ̂t+1

(
R̂t+1ut+1 + Q̂t+1(1− δ(ut+1))

)]
R̂t = δ′(ut)Q̂t

Λ̂t = Q̂tΛ̂tz
I
t

(
1− Φ

(
Ît

Ît−1

µKt

)
− Φ′

(
Ît

Ît−1

µKt

)(
Ît

Ît−1

µKt

))

+ βÊt

Q̂t+1Λ̂t+1z
I
t+1µ

A
t+1

(
µYt+1

)−σ
Φ′

(
Ît+1

Ît
µKt+1

)(
Ît+1

Ît
µKt+1

)2


Ŵt = αh
Ŷt
ht

R̂t = αk
Ŷt

ut
K̂t−1

µKt
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where the functional forms for the depreciation rate and investment-adjustment costs are

given by

δ (ut) = δ0 + δ1 (ut − 1) +
δ2

2
(ut − 1)2

Φ

(
Ît

Ît−1

µKt

)
=
κ

2

(
Ît

Ît−1

µKt − µI
)2

The laws of motion for the exogenous stochastic processes can be written

ln (zt/z) = ρz ln (zt−1/z) + ε0z,t

ln (ζt/ζ) = ρζ ln (ζt−1/ζ) + ε0ζ,t

ln
(
zIt /z

I
)

= ρzI ln
(
zIt−1/z

I
)

+ ε0zI ,t

ln (gt/g) = +ρg ln (gt−1/g) + ε0g,t

ln (ωt/ω) = ρω ln (ωt−1/ω) + ε0ω,t

ln
(
µAt /µ

A
)

= ρµA ln
(
µAt−1/µ

A
)

+ ε0µA,t

ln
(
µXt /µ

X
)

= ρµX ln
(
µXt−1/µ

X
)

+ ε0µX ,t

µYt = µXt
(
µAt
)αk/(αk−1)

µKt = µXt
(
µAt
)1/(αk−1)

XG,Y
t =

(
XG,Y
t−1

)ρx,g
µYt

=
XG
t

XY
t
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where the shock structure for any stochastic process x =
{
z, ζ, zI , g, ω, µA, µX

}
is given by

ε0x,t = ε1x,t−1 + ν0
x,t

ε1x,t = ε2x,t−1

ε2x,t = ε3x,t−1

ε3x,t = ε4x,t−1

ε4x,t = ε5x,t−1 + ν4
x,t

ε5x,t = ε6x,t−1

ε6x,t = ε7x,t−1

ε7x,t = ε8x,t−1

ε8x,t = ν8
x,t

Finally, the growth rates of the seven key macroeconomic variables considered in terms of

the stationary variables is

gYt =
Yt
Yt−1

=
Ŷt

Ŷt−1

XY
t

XY
t−1

=
Ŷt

Ŷt−1

µYt

gCt =
Ct
Ct−1

=
Ĉt

Ĉt−1

XY
t

XY
t−1

=
Ĉt

Ĉt−1

µYt

gIt =
AtIt

At−1It−1

=
Ît

Ît−1

XY
t

XY
t−1

=
Ît

Ît−1

µYt

ght =
ht
ht−1

gGt =
Gt

Gt−1

=
gt
gt−1

(
XG,Y
t−1

)ρxg−1

gTFPt =
zt
zt−1

(
µXt
)1−αk

gAt = µAt
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Steady State Computation and Calibration

Let x be the steady-state value of the stationary random variable x̂t. The steady

states for z, ζ, and zI are normalized to 1, g is set such that the output share of

government spending is 0.20, ω is set to 1.15, and µY and µA are set to the mean

gross growth rate of per capita output and relative price of investment observed in the

data which, given the stochastic trends in output and government spending, implies

µX = µY µA
αk

1−αk and XG,Y =
(
µY
)1/(ρx,g−1)

. The parameter µI is set to µK so that

investment-adjustment costs (and their derivative) are zero in steady state, while δ1 is set

to 1

βµA µY −σ
− (1− δ0) to ensure the steady-state capacity utilization rate u is 1. The scale

parameter ψ governing the disutility of labor in the utility function is calibrated to ensure

the steady-state value of h is 0.20. With these calibrations for the steady-state values of

exogenous processes and free parameters, the non-stochastic steady state can be easily

computed from the equilibrium conditions and constraints given above. In particular, the
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steady state can be shown to be

R = δ1

h = 0.2

u = 1

Q = 1

K =

αkz
(
µK

u

)1−αk
hαh

R


1

1−αk

I =

(
1− 1− δ0

µK

)
K

Y =
RuK

αkµK

W = αh
Y

h

g = 0.2

C = Y − I − gXGY

S = C(1− b/µY )
(
µY
) γ−1

γ

ψ =

[(
θhθ−1S

W/ω

)(
1− bβ

(
µY
)−σ)−1

+

(
γS

(C − bC/µY )

)(
hθ

1− β(1− γ) (µY )1−σ

)]−1

V =

(
C − bC

µY

)
− ψhθS

Π =
(
ζV −σψhθ

) (
1− β(1− γ)

(
µY
)1−σ

)−1

Λ =
θζV −σψhθ−1S

W/ω
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Log-Linearization

The stationarized system can be log-linearized around its non-stochastic steady state.

Denote by a t̃ilde the deviation from steady state, that is, for any variable x we have x̃t =

log
(
xt
x

)
.

1. The capital accumulation equation is

K̂t = (1− δ (ut))
K̂t−1

µKt
+ zIt Ît

[
1− Φ

(
Ît

Ît−1

µKt

)]

Taking logs of both sides we have

log K̂t = log

(
(1− δ (ut))

K̂t−1

µKt
+ zIt Ît

[
1− Φ

(
Ît

Ît−1

µKt

)])

Noting that logK = log
(

(1− δ(u)) K
µK

+ zII
(
1− Φ

(
I
I
µK
)))

, the first-order Taylor

series expansion around the steady state can be shown to be

K̃t =

(
1− δ(u)

µK

)
K̃t−1 −

(
δ′(u)u

µK

)
ũt −

(
1− δ(u)

µK

)
µ̃Kt +

(
zII

K

)
z̃It +

(
zII

K

)
Ĩt

2. The aggregate resource constraint is

Ŷt = Ĉt + Ît + gtX
G,Y
t

Taking logs of both sides we have

log Ŷt = log
(
Ĉt + Ît + gtX

G,Y
t

)
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Noting that log Ŷ = log
(
Ĉ + Î + gXG,Y

)
, the first-order Taylor series expansion

around the steady state can be shown to be

Ỹt =

(
C

Y

)
C̃t +

(
I

Y

)
Ĩt +

(
gXG,Y

Y

)
X̃G,Y
t +

(
gXG,Y

Y

)
g̃t

3. The production function is

Ŷt = zt

(
ut
K̂t−1

µKt

)αk

(ht)
αh (F )1−αk−αh

Taking logs on both sides yields

log Ŷt = log zt + αk log ut + αk log K̂t−1 − αk log µKt + αh log ht + (1− αk − αh) logF

Since the equation is log-linear, subtracting each side by log Y = log z + αk log u +

αk log K̂ − αk log µK + αh log h + (1− αk − αh) logF , the log-linearized production

function can be shown to be

Ỹt = z̃t + αkũt + αkK̃t−1 − αkµ̃Kt + αhh̃t

4. The utility function’s argument is

V̂t = Ĉt − b
Ĉt−1

µYt
− ψhθt Ŝt

Taking logs of both sides yields

log V̂t = log

(
Ĉt − b

Ĉt−1

µYt
− ψhθt Ŝt

)
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Noting that log V̂ = log
(
Ĉ − b Ĉ

µY
− ψhθŜ

)
, the first-order Taylor series expansion

around the steady state can be shown to be

Ṽt =

(
C

V

)
C̃t −

(
bC/µY

V

)
C̃t−1 +

(
bC/µY

V

)
µ̃Yt −

(
ψhθSθ

V

)
h̃t −

(
ψhθS

V

)
S̃t

5. The identity for the geometric average of current and past habit-adjusted

consumption is

Ŝt =

(
Ĉt − b

Ĉt−1

µYt

)γ (
Ŝt−1

µYt

)1−γ

Taking logs of both sides yields

log Ŝt = γ log

(
Ĉt − b

Ĉt−1

µYt

)
+ (1− γ) log

(
Ŝt−1

µYt

)

Noting that log Ŝ = γ log
(
Ĉ − b Ĉ

µY

)
+ (1− γ) log

(
Ŝ
µY

)
, the first-order Taylor series

expansion around the steady state can be shown to be

S̃t =

(
γ

1− b/µY

)
C̃t −

(
γb/µY

1− b/µY

)
C̃t−1 + (1− γ)S̃t−1 +

(
γb/µY

1− b/µY
− (1− γ)

)
µ̃Yt

6. The FONC for consumption is

Λ̂t =

ζtV̂ −σt − γŜt

Ĉt − b Ĉt−1

µYt

Π̂t

− bβÊt
ζt+1V̂

−σ
t+1 −

γŜt+1

Ĉt+1 − b Ĉt
µYt+1

Π̂t+1

(µYt+1

)−σ
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Taking logs of both sides yields

log Λ̂t = log

ζtV̂ −σt − γŜt

Ĉt − b Ĉt−1

µYt

Π̂t

− bβÊt
ζt+1V̂

−σ
t+1 −

γŜt+1

Ĉt+1 − b Ĉt
µYt+1

Π̂t+1

(µYt+1

)−σ

Noting that log Λ̂ = log

((
ζV̂ −σ − γŜ

Ĉ−b Ĉ
µY

Π̂

)
− bβÊ

[(
ζV̂ −σ − γŜ

Ĉ−b Ĉ
µY

Π̂

)(
µY
)−σ])

,

the first-order Taylor series expansion around the steady state can be shown to be

Λ̃t = φ1

(
ζ̃t − σṼt − φ3

(
Êtζ̃t+1 − σÊtṼt+1

))
− φ2

{
S̃t + Π̃t +

(
b/µY

1− b/µY

)
C̃t−1 −

(
b/µY

1− b/µY

)
µ̃Yt −

(
1 + b2β

(
µY
)−σ−1

1− b/µY

)
C̃t

−φ3

(
ÊtS̃t+1 + ÊtΠ̃t+1 −

(
1

1− b/µY

)
ÊtC̃t+1

)}
+

[
φ3

(
σ (φ1 − φ2)− φ2b/µ

Y

1− b/µY

)]
Êt+1µ

Y
t+1

where φ1 = ζV −σ

Λ
, φ2 = γSΠ

ΛC(1−b/µY )
, and φ3 = bβ

(
µY
)−σ

.

7. The FONC for labor supply is

Λ̂t =
θζtV̂

−σ
t ψhθ−1

t Ŝt

Ŵt/ωt

Taking logs of both sides yields

log Λ̂t = log

(
θζtV̂

−σ
t ψhθ−1

t Ŝt

Ŵt/ωt

)

This equation is linear in logs; subtracting log Λ̂ = log
(
θζV̂ −σψhθ−1Ŝ

Ŵ /ω

)
directly yields

Λ̃t = ζ̃t − σṼt + (θ − 1) h̃t + S̃t − W̃t + ω̃t
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8. The FONC for the geometric average of current and past habit-adjusted

consumption is

Π̂t = ζtV̂
−σ
t ψhθt + βÊt

[
(1− γ)

Ŝt+1

Ŝt
Π̂t+1

(
µYt+1

)1−σ
]

Taking logs of both sides yields

log Π̂t = log

(
ζtV̂

−σ
t ψhθt + βÊt

[
(1− γ)

Ŝt+1

Ŝt
Π̂t+1

(
µYt+1

)1−σ
])

Noting that log Π̂ = log
(
ζV̂ −σψhθ + β

[
(1− γ) Ŝ

Ŝ
Π̂
(
µY
)1−σ

])
, the first-order Taylor

series expansion around the steady state can be shown to be

ΠΠ̃t =
(
ζV −σψhθ

) (
ζ̃t − σṼt + θh̃t

)
+
(
β(1− γ)Π

(
µY
)1−σ

)(
ÊtS̃t+1 − S̃t + ÊtΠ̃t+1 + (1− σ)Êtµ̃

Y
t+1

)

9. The FONC for capital is

Q̂tΛ̂t = βÊt

[
Λ̂t+1

(
R̂t+1ut+1 + Q̂t+1(1− δ(ut+1))

)(
µAt+1

(
µYt+1

)−σ)]

Taking logs of both sides yields

log Q̂t + log Λ̂t = log
(
βÊt

[
Λ̂t+1

(
R̂t+1ut+1 + Q̂t+1(1− δ(ut+1))

)(
µAt+1

(
µYt+1

)−σ)])
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Noting that log Q̂ + log Λ̂ = log
(
β
[
Λ̂
(
R̂u+ Q̂(1− δ(u))

)(
µA
(
µY
)−σ)])

, the

first-order Taylor series expansion around the steady state can be shown to be

Q̃t + Λ̃t =

(
βµA

(
µY
)−σ

Q

){
(Ru+Q(1− δ(u)))

(
ÊtΛ̃t+1 + Êtµ̃

A
t+1 − σÊtµ̃Yt+1

)
+ (Ru)ÊtR̃t+1

+ ((R−Qδ′(u))u) Êtũt+1 + (Q(1− δ(u))) ÊtQ̃t+1

}

10. The FONC for the capacity utilization rate of capital is

R̂t = δ′(ut)Q̂t

Taking logs of both sides yields

log R̂t = log (δ′(ut)) + log Q̂t

Thus the first-order Taylor series expansion around the steady state can be shown to

be

R̃t =
δ′′(u)u

δ′(u)
ũt + Q̃t

11. The FONC for investment is

Λ̂t = zIt

(
1− Φ

(
Ît

Ît−1

µKt

)
− Φ′

(
Ît

Ît−1

µKt

)(
Ît

Ît−1

µKt

))
Q̂tΛ̂t

+ βÊt

[(
zIt+1Φ′

(
It+1

It
µKt+1

)(
It+1

It
µKt+1

)2

Q̂t+1Λ̂t+1

)(
µAt+1

(
µYt+1

)−σ)]
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Taking logs of both sides yields

log Λ̂t = log

(
zIt

(
1− Φ

(
Ît

Ît−1

µKt

)
− Φ′

(
Ît

Ît−1

µKt

)(
Ît

Ît−1

µKt

))
Q̂tΛ̂t

+βÊt

[(
zIt+1Φ′

(
It+1

It
µKt+1

)(
It+1

It
µKt+1

)2

Q̂t+1Λ̂t+1

)(
µAt+1

(
µYt+1

)−σ)])

Noting that at steady state

log Λ̂ = log

(
zI

(
1− Φ

(
Î

Î
µK

)
− Φ′

(
Î

Î
µK

)(
Î

Î
µK

))
Q̂Λ̂

+βÊ

[(
zIΦ′

(
I

I
µK
)(

I

I
µK
)2

Q̂Λ̂

)(
µA
(
µY
)−σ)])

the first-order Taylor series expansion around the steady state can be shown to be

Λ̃t = zIQ
{
z̃It + Q̃t + Λ̃t

+ Φ′′
(
µK
) (
µK
)2
[
Ĩt−1 − µ̃Kt − Ĩt

+βµA
(
µY
)−σ

µK
(
ÊtĨt+1 + Êtµ̃

K
t+1 − Ĩt

)]}

12. The wage valuation equation is

Ŵt = αh
Ŷt
ht

Taking logs of both sides yields

log Ŵt = logαh + log Ŷt − log ht
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This is linear in logs. Subtracting both sides by log Ŵ = logαh + log Ŷ + log h the

log-linearized equation can be shown to be

W̃t = Ỹt − h̃t

13. The effective-capital valuation equation is

R̂t = αk
Ŷt

ut
K̂t−1

µKt

Taking logs of both sides yields

log R̂t = logαk + log Ŷt − log ut − log K̂t−1 + log µKt

This is linear in logs. Subtracting both sides by log R̂ = logαk + log Ŷ − log u −

log K̂t−1 + log µK the log-linearized equation can be shown to be

R̃t = Ỹt − ũt − K̃t−1 + µ̃Kt

14. Output growth is given by

µYt = µXt
(
µAt
)αk/(αk−1)

Taking logs of both sides yields

log µYt = log µXt −
(

αk
1− αk

)
log µAt
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This is linear in logs. Subtracting both sides by log µY = log µX −
(

αk
1−αk

)
log µA the

log-linearized equation can be shown to be

µ̃Yt = µ̃Xt −
(

αk
1− αk

)
µ̃At

15. Capital (and investment) growth is given by

µKt =
µYt
µAt

Taking logs of both sides yields

log µKt = log µYt − log µAt

This is linear in logs. Subtracting both sides by log µK = log µY − log µA the log-

linearized equation can be shown to be

µ̃Kt = µ̃Yt − µ̃At

16. The stochastic trend for government spending is

XG,Y
t =

(
XG,Y
t−1

)ρx,g
µYt

Taking logs of both sides yields

logXG,Y
t = ρx,g logXG,Y

t−1 − log µYt
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This is linear in logs. Subtracting both sides by logXG,Y = ρx,g logXG,Y − log µY the

log-linearized equation can be shown to be

X̃G,Y
t = ρx,gX̃

G,Y
t−1 − µ̃Yt

17. The stationary exogenous stochastic processes x =
{
z, ζ, zI , g, ω, µA, µX

}
all evolve

according to

xt = x1−ρxxρxt−1ε
0
x,t

Taking logs of both sides yields

lnxt = (1− ρx)x+ ρx lnxt−1 + ε0
x,t

where ε0
x,t = ln ε0x,t. This is linear in logs. Subtracting both sides by lnx =

(1− ρx)x+ ρx lnx the log-linearized equation can be shown to be

x̃t = ρxx̃t−1 + ε0
x,t
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