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DISSERTATION ABSTRACT

Taylor Klages McKenzie

Doctor of Philosophy

Department of Economics

June 2017

Title: Railroads, Their Regulation, and Its Effect on Efficiency and Competition

Railroads have been subject to federal regulation since 1887. Due to the development

of competing modes of transportation and changes in types of products being shipped,

regulation began to impede efficiency and viability of firms, leading to partial deregulation

of the industry in 1980. Partial deregulation allowed railroads to reduce costs, notably

through mergers and line abandonment, which were aggressively pursued following

deregulation and led to dramatic efficiency gains. However, concerns remain over increased

consolidation, lack of competition in the industry, and the ability of firms to continue to

realize efficiency gains. This dissertation investigates more recent developments in the rail

industry with an eye towards regulation’s effect and role.

I begin with a study into the markups of price over marginal cost and elasticities

of scale in the rail industry. Scale elasticities provide information on where firms are

operating on their average cost curves, and markups provide a more theoretically

appealing method of examining pricing behavior than the revenue-to-variable-cost measure

currently used by regulators. I extend previously developed methods to identify markups

and scales for each firm and in each year. I find prices well in excess of marginal cost, and

evidence firms are operating near minimum efficient scale, indicating efficiency gains from

deregulation may be fully realized.
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I then present a study that examines productivity changes in the rail industry

and the role of technological change. I extend stochastic frontier frameworks to allow

productivity and the state of technology to evolve flexibly through time and vary across

firms. I find firms turn towards technological innovation to realize productivity gains when

other channels previously offered by deregulation are not available.

I finish with a study of allocative errors in the rail industry. I again extend a

stochastic frontier model to include differences in production across firms and allow

allocative errors to be correlated with competitive pressures. I find that incorporating

flexibility into the description of firm production is crucial for obtaining unbiased

estimates of allocative errors, overcapitalization is prevalent in the rate-regulated rail

industry, and additional competition does not appear to reduce inefficiency.

This dissertation includes unpublished co-authored material.
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CHAPTER I

INTRODUCTION

The railroad industry has had a long history of regulation that once promoted

competition but over time, changes in the types of products being shipped and

development of competing modes of transportation came to impede efficiency and

innovation. Eventually, this led to bankruptcies and concerns about economic viability.

While deregulation of the industry has certainly resulted in efficiency gains and the

survival of the industry, massive consolidation and abandonment of unprofitable routes

has resulted in less competition between firms and has left many shippers with few

transportation options. This dissertation investigates the railroad industry in the context

of its regulation to determine the gains earned through partial deregulation as well as

negative effects caused by reduced competition.

This dissertation begins with an analysis of markups and scale elasticities for

railroads that have differentiated networks that was co-authored with University of

Oregon professor Dr. Wesley Wilson. Using a random coefficients framework, I extend

the model of Klette (1999) to allow markups and scales to vary flexibly both across firms

and through time and estimate the model using Bayesian methods. I find evidence that

price significantly exceeds marginal costs and scale estimates that point to constant or

increasing returns to scale. Further, I find that there are important differences in markups

and scales both across firms and over time. Increases in track investment created excess

capacity and increased returns to scale for Burlington Northern Santa Fe (BNSF) and

CSX; while BNSF has maintained investment and its excess capacity, CSX appears to

have filled its excess capacity by 2012.
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I then present a study analyzing productivity changes in the railroad industry and

decompose them into changes due to technological change and those due to other factors

such as rail line abandonment. I extend the stochastic frontier framework to include time-

varying parameters to both allow productivity to follow a flexible process unique to each

railroad and to capture changes in the production technology over time and again estimate

the model from a Bayesian approach. I first find that productivity has shown little growth

in the industry since 1999, with the exception of the Canadian National railway (CN)

and the Kansas City Southern railway (KCS), which both experienced sizable increases in

productivity. The source of productivity growth varies across firms. On the one hand,

BNSF, the Soo Line railway, and Union Pacific (UP) were all able to realize growth

through innovations in production, but had little ability to increase productivity through

other channels. On the other hand, firms like CN and KCS that still had the ability to

abandon lines found large increases in productivity due to factors other than innovation,

but tended to stagnate or even experience losses with respect to changes in the production

technology.

Finally, in the third essay, I examine whether there are allocative inefficiencies and

the effects of competitive pressures on allocative errors. As noted by Tsionas (2002),

it is important to control for differences in productive capabilities across firms when

estimating technical inefficiency because those differences would otherwise be attributed

to how efficiently firms can transform inputs into output. Similarly, differences in input

productivity across firms will have an impact on how errors in allocation of inputs are

estimated; however, I am not aware of any published research that investigates the

importance of incorporating differences in production across firms in obtaining unbiased

estimated of allocative inefficiency. Next, as noted by Leibenstein (1966), firms that don’t

face sufficient competition may not only lack the incentive to keep prices low but also to
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minimize costs, resulting in so-called “X-inefficiencies.” Precise allocation of inputs can

reduce production costs, which can be important when firms face competition; however,

firms that don’t face competitive pressure don’t need to rely on low costs of production

to attract customers and may invest less in the allocative process. After conducting a

review of the history of the industry and the literature relevant to study of inefficiency

and its application to the railroad industry, I also develop and present my models that

test for the importance of controlling for differences in production and for the existence

of X-inefficiencies. I find that it is crucial to allow production to vary flexibly across firms

to obtain consistent estimates of inefficiency, and that increased market power appears

to decrease allocative errors on average, providing evidence against the existence of X-

inefficiencies in the rail industry.
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CHAPTER II

MARKUPS AND SCALE ELASTICITIES FOR DIFFERENTIATED RAIL

NETWORKS

This chapter was co-authored with University of Oregon professor Dr. Wesley Wilson. Dr.
Wilson provided initial motivation for this project and was instrumental with his in-depth
institutional knowledge of the rail industry. From this impetus I extended the theoretical
and empirical methodology to provide more granular analysis of markups and scales than
any published of which I’m aware. I also carried out statistical estimation and wrote this
chapter using those results.

Abstract

In this chapter, I develop and estimate a model that provides both markups and scale
elasticities that vary across railroads and through time for the traffic on their networks.
My model is based on a framework provided by Hall (1988) and Klette (1999) wherein
markups and scale elasticities are estimated from production relations. In my model, I
aggregate the shipments over each firm’s network, which provides a mapping from inputs
and network and shipment characteristics to aggregate outputs over the network. Markups
and scale elasticities are taken to follow a multivariate distribution. This allows for
differences in markups and scale across firms and through time, but also for covariances
across firms in markups and scale. I estimate the model with Bayesian methods to find
markups that are generally well in excess of marginal costs and scale elasticities that
generally point to increasing or constant returns in the industry.
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“With 90% of U.S. rail freight now controlled by only four
companies, shippers claim the giants have unfairly banded

together. Unapologetic railroads refuse to back down. An epic
battle of business vs. business.” (Fortune, March 16, 2015)

Introduction

The rail industry was in financial ruin in the 1970s, which led to partial deregulation

of the industry in 1980. Since then, there have been tremendous declines in railroad costs

and prices and increases in productivity. Indeed, the reversal over the last 35 years has

been so successful that many are now concerned that the industry charges rates larger

than what is necessary to recoup costs and that firms are earning excessive profits. While

there have been a considerable number of studies that examine costs and prices, there are

few, if any, studies that examine railroad markups.

Railroads each operate over massive and differentiated networks that each have

different shippers, products, and operating characteristics. Over the network, they serve a

multitude of markets, making standard empirical models of markups intractable. Instead,

I develop a model of markups and scale elasticities based on the seminal work of Hall

(1988) and Klette (1999) and introduce Bayesian methods to estimate the model. This

model estimates rail specific markups, which can be interpreted as the average markup

generated from traffic for each firm’s network.1 It also provides direct estimates of scale

elasticities. In both cases, the Bayesian estimation provides distributions of markups and

scales that are allowed to drift over time and vary across railroads. Further, this approach

also allows for the correlation of markups and scale elasticities across firms that provide

insight into industry structure. I find that railroad markups are well in excess of marginal

1These methods use a local mean value theorem approximation centered around the representative
firm in each year, which can provide more accurate results than methods that assume a global functional
form such as a Cobb-Douglas production function. However, this approximation is only accurate locally
and thus cannot be used to evaluate total costs or examine minimum rates needed for firm viability.

5



costs and that most firms are operating with near constant returns to scale at most points

in time.

The railroad industry has been federally regulated since 1887 and was partially

deregulated in 1980. In the 1800s, there was high demand for rail transportation and

few substitutes. During this period, the rail network grew reaching a maximum size

in the early 1900s. Much of the existing network today is the result of this growth.

However, due to the nature of railroad production and costs that include large fixed

factor investments, the market has a tendency to be highly concentrated, especially on a

local level (MacDonald and Cavalluzzo, 1996). The effects of concentrated transportation

markets have long been a focus of regulators, and emphasis has been put on balancing

efficiency advantage of large railroads with the harm caused by non-competitive pricing

and shipper captivity (Boyer, 1987).

As the industry evolved and competing forms of transportation such as barges and

trucks were introduced, there were dramatic changes to the structure of the industry

and the regulations that govern it. In particular, innovations in transportation and

changes in the types of goods being shipped led to a significant decrease in the demand

for railroad transportation. Further, under regulation firms were slow to adjust and were

unproductive. By the 1970s, the industry was failing financially and there were many

highly publicized bankruptcies. The economic viability of the industry along with a failed

regulatory regime led to partial deregulation of the industry with passage of the Railroad

Revitalization and Regulatory Reform Act in 1976 and the Staggers Rail Act in 1980.

The number of firms has fallen dramatically following deregulation, the rail network

held by the Class I carriers has shrunk, shipments are traveling longer distances, and

more shippers find themselves with few shipping options. These changes have certainly

improved the efficiency and viability of railroads, but there remain many concerns that
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firms are price discriminating and charging excessive rates to many shippers (Wilson and

Bitzan, 2003). While the remaining regulation over the industry has the power to limit

excessive prices and non-competitive behavior, many sources have pointed to regulatory

efficacy that is lacking both in its theoretical basis and in its execution.2

There are many studies that evaluate competition and structure in the railroad

industry. These studies have highlighted the shortcomings of regulatory tools currently

in use and have had success in determining important factors in production, modeling

costs, and describing railroad operations. The most recent studies have continued

with estimating costs of specific shipments and beginning to examine markers of non-

competitive behavior and firm viability. Many studies have also looked towards precisely

explaining differences in prices using detailed data describing costs and competitiveness.3

Still, to my knowledge, there are few, if any, published studies that evaluate and

consistently estimate both pricing behavior and scale of production; such research

would provide insight into the structure of production and competition as well as non-

competitive pricing.

This paper begins by covering the history of the railroad industry, its growth and

regulation, the effects of partial deregulation, and the current state of the industry

and regulation. I then highlight several methods from the industrial organization

literature that look to evaluate structure, efficiency, and competition within an industry

and consider the strengths and shortcomings of each. Among these methods are the

2Specifically, current regulatory practices compare revenue to variable costs to evaluate firm viability
and excessive rates, but the methods used to estimate variable costs have been subject to significant
criticism. Many studies have identified both broad and specific shortcomings in regulation, for further
reading see Boyer (1987), MacDonald and Cavalluzzo (1996), Burton (1993), Winston et al. (1990).

3Most of these studies use waybill data and reduced form models to describe prices; unfortunately,
these reduced form models fail to estimate parameters that are fundamental to firm behavior and can
therefore produce inconsistent estimates and results. For further reading, see Casavant et al. (2012),
Schmidt (2001), and Barnekov and Kleit (1990).
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production-focused models developed by Solow (1957), Hall (1988), and Klette (1999),

which I draw on and extend in this analysis. I continue on to describe how production

and costs of railroads have been modeled in the literature and determine factors that are

important to describing railroad operations.

This research goes on to derive a theoretical model of railroad production beginning

with a commonly used specification of production. I then obtain an expression for firm

output that involves firms’ markups of price over marginal cost, scale elasticities, and

network characteristics. Using this model and data from the United States Surface

Transportation Board, I estimate two empirical models. The first, which replicates the

methods of Hall (1988) and Klette (1999), assumes that markups and scales to production

are constant across railroads and time. The results of this model give some evidence of

deviations of price from marginal cost and production beyond minimum efficient scale in

the industry.

I then propose a random-coefficients version of this model that allows for firm- and

year-specific markups and scales, correlation among markups and scales across firms,

and a central tendency for these parameters that varies flexibly through time.4 Using

Bayesian methods, I estimate this model and obtain density estimates of markups and

scale elasticities. This method allows me to evaluate pricing behavior and scale economies

for each firm and in each year and additionally provides information about the structure

of the industry and the nature of competition between railroads through correlations in

markups and scales. The results from this model provide evidence of significant markups

of price over marginal cost and production near minimum efficient scale for most Class I

railroads.

4Due to stark differences in the scope and scale of operations across railroads, it would not be
surprising to find significant heterogeneity in pricing and returns to scale across firms. Further, though
the industry has been relatively stable since 2001, investment in infrastructure and other operational
changes could lead to variability in markups and scale elasticities across time.
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Background

This section provides a brief history of the railroad industry, its regulation and

partial deregulation, and how the industry has responded to these changes. The first

subsection describes the beginning of the industry, the movement for its regulation, and

the regulatory policies that were introduced. The second subsection describes how the

industry changed over the 20th century as new forms of transportation were introduced,

the impetus for deregulation of the industry, and how the it has changed after its partial

deregulation. I also describe current regulatory practices, concerns over their efficacy, and

worries that partial deregulation has made discriminatory pricing more common.

A Brief History of Railroads and Their Regulation

The railroad industry is one of the nation’s oldest, and as the industry has grown

and evolved, so has our understanding of how these firms compete and how to best

regulate them. At the industry’s beginning, railroads were massively successful. Not

only was rail transportation much faster and more comfortable than previously existing

modes, but it was effectively the only option for traveling long distances in a reasonable

amount of time (Brown, 2013). Further, the ability to quickly transport goods and raw

materials across the country allowed for rapid expansion of other industries like agriculture

and energy production. As a result, railroads faced large demand for their service and the

industry thrived.

At the same time, economic theory describing firm competition was growing

and shifting as economists began considering failures in perfect competition and the

consequences thereof (Brown, 2013). Leading thinkers in the area realized the extent of

social damage that monopolies and other forms of imperfect competition can cause and

began to seek regulation in industries where competition was evidently less prevalent.
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Additionally, economists also began to recognize that firms in some industries might be

able to realize economies of scale and increase efficiency by increasing their size. Given

the large sunk capital investments in the industry and the vast amount of overlapping

rail networks that resulted from decades of fierce competition, railroads were able to

supply their service at a lower cost by combining or cooperating. This consolidation led

to increased local market concentration and seller captivity, which allowed firms to more

easily charge non-competitive rates.

Following this discussion, ideas about railroad regulation began to shift. As Brown

(2013) states, prior to these realizations, “laissez-faire doctrines held that monopoly as an

economic problem originated with explicit grants by governments to firms or individuals.”

The solution to these types of monopolies is clearly to reduce government involvement

and purge the source of monopoly. However, in the case of the rail industry where local

monopolies were more likely to emerge naturally, solutions had not been fully examined.

At the same time, many shippers were exceedingly concerned about discriminatory and

unfair pricing for railroad services. The Granger movement to regulate railroad operations

began in Iowa and was the result of excessive rates being charged to less serviced shippers

(Miller, 1954). Many farmers subsequently found that their operations were no longer

viable under high shipping rates and it became necessary to control the prices charged by

railroads. Many regulators like Cooley (1884) recognized the need to balance efficiency

gains that would be realized from a natural monopoly and the social harm that can be

inflicted by excessive rates and discriminatory pricing.

Regulation of railroads began with the passage of the Interstate Commerce Act

(ICA) of 1887. This act and its successors allowed for significant oversight of railroad

operations, including authority over rates charged, entry into and exit from the industry,

and mergers. Specifically, the ICA made it explicit that railroads were legally bound
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to providing services at reasonable rates and without undue discrimination in prices or

availability of services. The ICA also established the Interstate Commerce Commission

(ICC), which provided regulatory oversight of railroads, and the Elkins Act, Hepburn Act,

and Mann-Elkins Act of the early 1900s further strengthened regulation and the abilities

of the ICC to enforce those regulations; by 1920, the ICC was able to set minimum and

maximum rates, preside over and even encourage mergers, and control and punish collusive

behavior (Keeler, 1983). These regulations improved outcomes for shippers and railroads

alike; excessive rates were abolished, shipper coverage increased, rate wars and excessive

competition between firms diminished, and railroad profits tended to improve.

Partial Deregulation and Its Effect on the Industry

As the 20th century progressed, rail transportation waned in popularity with the

introduction and improvement of competing forms of transportation such as barges,

trucks, and airplanes. As these new technologies were adopted, competition in the rail

industry changed dramatically; demand for rail transportation fell,5 the market became

much less viable for firms, and the regulations put in place in the early part of the

century became less relevant and arguably hindered efficiency in the industry (Keeler,

1983). There were not only many concerns about the difficulty and cost of implementing

regulation but also about how those regulations made it difficult for firms to remain viable

by, for example, forcing railroads to continue operating on routes that were massively

unprofitable (Waters, 2007). In response to worries about the future of firms and stability

of the industry, the government began to deregulate the railroads, primarily with the

passage of the Railroad Revitalization and Regulatory Reform (4R) Act of 1976, which

5This drop in demand can be attributed both to shippers substituting other modes of transportation
for rail shipments and a change in the types of products being shipped. With the introduction of plastics
came shipments that were lighter on average, resulting in fewer revenue ton miles.
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reduced price regulation and made it easier for firms to enter and exit the market, and

the passage of the Staggers Act of 1980, which further reduced regulations on pricing and

mergers.

The major effect of partial deregulation of the railroad industry was allowing firms

to set their own rates with minimal ICC control for most commodities. Instead, the ICC

exercises control over movements it deems to be market dominant, defined as a movement

where the ratio of revenue to variable costs exceeded a given threshold.6 Movements that

fit this criterion are then investigated by the ICC to determine if competition among

railroads is present and if the rates charged are “reasonable”. The prices charged to a

given shipper are determined to be unreasonable if they exceed the stand-alone cost of

servicing only that shipper. The ICC rests the burden of proof on shippers; in order to

demonstrate unfair rates, the shipper must construct a hypothetical railroad and show

that the cost of servicing the shipper is greater than the rate charged. While stand-

alone costs exclude the variable and separable fixed costs of servicing other shippers, they

include the common costs of supporting an entire railroad network, which decrease as the

railroad services more shippers. As a result, rates charged by a stand-alone railroad would

necessarily be “absurdly high” because they largely ignore economies of scope and scale,

and very few shippers would be able to demonstrate that rates are unreasonable (Roberts,

1983). While this regulatory policy has been heavily scrutinized and criticized, it remains

today as the primary tool for identifying and penalizing non-competitive pricing.

The Staggers Act further set minimum rates at average variable cost and allowed

railroads to more easily abandon routes and merge with one another (Winston et al.,

1990). These regulatory changes had a dramatic effect on the structure and operations

of the industry; massive consolidation resulted in the number of firms decreasing from 40

6This threshold began at 1.6 but is currently 1.8.
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in 1980 to seven in 1999, abandonment of routes led to a 57.8% decrease in miles of road

between 1980 and 2013, and the average length of haul increased appreciably from 615

miles in 1980 to 973 in 2013 (AAR, 2013). The effects of these changes are clearly seen

in the time series of output and network size, as shown in Figures 1, 2, and 3. Following

partial deregulation in 1980, railroads began abandoning unprofitable routes, leading

to a massive decrease in the total amount of network operated by Class I railroads. At

the same time, due to efficiency gains, the total output of Class I railroads grew as costs

fell. Given the massive consolidation in the industry, the average railroad’s network grew

sizeably through 1999, by which time all major consolidations had occurred. Since 1999,

network size has remained relatively constant, illustrating a stabilization of the industry.

These regulatory changes not only had a large effect on the industry but also achieved

many of their goals; operating costs per ton mile fell by 60% between 1980 and 1998,

return on equity increased from 3% to 10.7%, and shippers have benefited from lower

rates, more reliable service, and faster shipment times (Peltzman and Winston, 2000).7

While it initially appears that partial deregulation has provided an improvement

for railroads and shippers alike, there are still many concerns about non-competitive

pricing behavior, especially in captive markets. Anecdotal evidence of harm to captive

shippers is compelling, with shippers noting that “when you’re captive to one of these

railroads, the idea of negotiating a contract is pretty laughable” (Bowman, 2013). Recent

research has found similar trends; the number of captive shippers has been increasing since

deregulation, and railroads appear to be exerting market power to charge higher rates,

especially when shippers have few transportation options to choose from. Henrickson and

Wilson (2014) find that rates can be as much as 13.9% lower when shippers have access to

7Winston et al. (1990) found that the benefit to shippers from changes in regulatory policy was
approximately $12 billion annually in 1999.
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multiple methods of transportation, pointing to the market dominance and discriminatory

pricing policies of many railroads.

There have also been many concerns over regulatory efficacy. The Christensen

report, a study commissioned by the United States Surface Transportation Board (STB),

examined competition in the rail markets in the period that followed partial deregulation

of the industry. Laurits R. Christensen Associates, Inc. (2009) first found major flaws in

the methods regulators use to identify non-competitive behavior. The report found that

the STB’s policy of using the ratio of revenue to variable costs of individual movements

as an indicator of market dominance was flawed for two reasons. First, the study found

evidence that methods used to estimate variable cost for a given movement were not

theoretically sound and produced poor results; estimates of the ratio of revenue to variable

cost ranged anywhere from over 300% to paradoxically below 100%. Additionally, the

Christensen report found that the constructed ratio of revenue to variable costs was only
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weakly correlated with more preferred measures of market captivity and dominance. As a

result, the report recommended an overhaul in the methods used by the STB to identify

non-competitive behavior, noting that “more appropriate measures of captivity should

focus on the effects of the transportation market structure on rail rates and, by extension,

markups” (Laurits R. Christensen Associates, Inc., 2009). While many studies have

estimated cost functions that are used to obtain markup estimates, I am not aware of any

published work that directly estimates markups and scale elasticities through estimation of

the production technology.

Literature Review

This section highlights existing literature related to modeling railroad operations and

evaluating structure and competition. Since there is little research that directly evaluates

the competitive behavior of railroads, this review separately focuses on methods used

to evaluate structure and identify non-competitive behavior and those used to model

railroad operations and production. The first subsection examines the extensive literature

in industrial organization that has developed many tools to evaluate the structure of

industries and the conduct of firms and identifies a model that is appropriate for the

study of railroads. The second subsection focuses on research that has modeled railroad

operations and determines which factors are important to describing costs and production

of railroads.

Identifying Non-competitive Behavior

The field of industrial organization has had a long history of evaluating competition

between firms, beginning with Mason’s industry studies, continuing with many inter-

industry studies of the 1950s and 1960s, and culminating in the development of methods
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used to evaluate competition and pricing behavior within an industry (Schmalensee, 2012).

As the field has matured, theory describing competition between firms and more robust

statistical methods needed to consistently estimate these models have been developed and

successfully used. These studies tend to either investigate the type of competition between

firms or estimate observable markers of competition, such as the ratio of price to marginal

costs. Several of these models have been criticized for their lack of theoretical basis or

difficulty in estimation. Other methods, however, have been shown to produce consistent

and credible estimates when applied appropriately.

Kadiyahi et al. (2001) provides a broad exposition into several methods of estimating

the form of competition and highlights the successes and failures of each. One method,

colloquially known as the menu approach, estimates a statistical model that nests several

theoretical competitive models and performs statistical tests on parameters that coincide

with each type of competition. Unfortunately, the conclusions of this method were often

seemingly paradoxical; it is possible that one might either fail to reject hypotheses of

exclusive forms of competition or, in a more troubling circumstance, one might reject

hypotheses of all types of competition built into the model. In either case, the result is

not particularly illuminative, and it can be difficult to make policy recommendations based

on these conclusions.

Another more frequently used method, which includes the conjectural variations

approach, focuses on estimating parameters that will provide indications of competition.

Corts (1999) uses a conduct parameter in his analysis that describes the extent to

which firms set prices above marginal cost. The theoretical value of this conjectural

variation can be calculated for several forms of competition and compared to actual

estimates. Unfortunately, this approach suffers from the same blight that affected the

menu approach; it’s entirely possible that one could fail to reject multiple hypotheses of
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conflicting types of competition, and it’s also possible that one could reject hypotheses

of all forms of competition built into the model. Further, this approach typically

requires estimating both demand and supply functions, raising possible concerns over

specification errors as well as any problems associated with estimating of systems of

equations like endogeneity and instrument choice. However, since this approach treats

firm conduct as a continuous variable, the results of these models can offer some idea of

how “uncompetitively” firms behave; still, this interpretation has faced criticism because it

fails to accurately model the exact form of competition between firms.

Current research has began to favor estimating an indicator of competition, as in

the conduct parameter approach, but has focused on making that analysis more robust.

Specifically, attention has turned towards estimating the ratio of price to marginal cost,

commonly referred to as the markup and focuses less on describing the exact form of

competition. Since perfectly competitive firms set price equal to marginal cost, one can

establish a competitive benchmark and compare this with estimates of firm markups;

markups significantly greater than one indicate deviation from competitive behavior.

There have been several methods developed to estimate markups; these models either

estimate models of cost and demand or consumer preferences directly, or estimate

production functions to find marginal costs and use an assumption of profit maximization

to obtain markup estimates.

Berry et al. (1995) examines markups by estimating a model of costs and a flexible

model of consumer preferences. The authors develop a model of consumer preferences

that allows for preference heterogeneity and aggregate decisions to the market level. Using

product characteristics and time series for sales, the authors estimate the distribution

of individual consumer preferences and derive a measure of aggregate demand for each

product as well as hypothetical products. The authors additionally develop a model of

18



costs for multiproduct firms and pair it with their model of aggregate demands to obtain

markup estimates. It is important to note that this model requires well-defined definitions

of markets and an assumption of Bertrand competition in each market to obtain consistent

estimates. The authors apply their model to automobile markets; not only do estimates

provide information about demand such as preferences for certain characteristics and cross

price elasticities, but they also provide reasonable markup estimates, ranging from 18.4%

for the Nissan Sentra to 48.4% for the Lexus LS400 (Berry et al., 1995).

Rather than relying on estimating a cost function and model of demand directly,

many studies have looked towards using variability in productivity to explain costs, which

can then be used to obtain more robust estimates of the ratio of price to marginal cost by

limiting problems that can occur in demand estimation. Solow (1957) set the groundwork

for this type of analysis by noting that given the assumption that firms have Hicks neutral

demand, output can be expressed in terms of input prices, technological growth, and

productivity of the various inputs. Solow used his results for a macroeconomic analysis

of how technological change and labor productivity has evolved over time in the United

States and was able to determine the average rate of technological change and how much

of the growth in aggregate output was due to these technological improvements. Hall

(1988) recognized that this type of analysis would be enormously valuable if carried out

at the industry level; he extends Solow’s theory to describe individual firms and estimates

the relationship between input usage and output separately for a number of industries.

Hall further derives a method of estimating the markup of price over marginal cost

using Solow’s estimation framework. Hall (1988) found markup estimates that generally

matched expectations. For example, the markup on non-durable goods was estimated to

be approximately 104% greater than the markup on durable goods, likely because of the

relatively low elasticity of demand for the former.
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Klette (1999) further extended and solidified Hall’s contributions. Klette follows

Solow and Hall by assuming a Hicks neutral production process for firms. However, Klette

goes on to make several important original contributions. First, rather than using a Taylor

approximation as in Solow and Hall, Klette uses a mean value theorem approximation.

Since variables in this analysis include individual firm output and input usage, which

can vary wildly across an industry, linear Taylor approximations, which are accurate

around the point they are centered but less so away from that point, tend to perform

poorly. The mean value theorem approximation, on the other hand, is “a priori suitable

for samples with any magnitude of cross sectional differences in output, productivity, and

inputs” (Klette, 1999). Next, it is possible that firms might experience different input

qualities and therefore different input prices; capturing this variation in input quality

and prices is important to properly identify productivity differences across firms. Finally,

while Klette measures average parameter values and markups and scale elasticities for

various industries similar to Hall’s results, he also develops and utilizes a framework

to estimate the distribution of firm markups, a result that would enormously useful in

regulating industries. Additionally, Klette’s econometric approach appears to produce

more reasonable estimates of markups than did Hall’s; Klette’s markup estimates were

generally between 1 and 1.1, while many of Hall’s estimates were greater than 2 and many

exceeded 3.

Modeling Railroad Operations

Describing the functions, costs, and operations of railroads is difficult for a number

of reasons. First, unlike many other extensively studied industries, railroads produce

many types of outputs; not only are there many different commodities that railroads

ship, but firms also serve many shippers that want their goods transported to many
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different locations. Modeling railroad operations for each of these outputs would be

onerous even with complete data; unfortunately, only aggregate measures of output are

typically observed, such as the total number of tons shipped. Further, given the scope

of railroad operations, it can be arduous to accurately describe the cost of transporting

goods.8 Not only do costs depend on direct factors like use of a locomotive or consumption

of fuel, but also on indirect factors that control operation and coordination of movements

along a railroad’s network. Finally, since railroads serve many geographically separated

points on their networks and since many inputs to production aren’t sufficiently divisible,

many markets experience varying amounts of excess capacity, giving rise to very complex

pricing behavior to cover the cost of excess capacity. Many techniques and methods have

been developed and refined to more accurately describe railroad operations, costs, and

productive capabilities.

Describing output of railroads, especially aggregated output, has been a long

standing problem in the study of the industry. Given the many outputs that firms

produce that depend on both the commodity shipped and the origin and destination of

the shipment, one would ideally use completely disaggregated data that contain amounts

of each commodity shipped, rates charged, and complete information for each movement

across the network to identify all factors that influence costs. However, given the difficulty

in obtaining this data, few studies investigating individual movements across railroad

networks have been conducted. Notably, Wilson and Bitzan (2003) use disaggregated

industry data to investigate the costs of individual rail movements and had success in

using this data to estimate shipment specific costs over time. Using properties about

shipments, these methods can be used to find, for example, marginal shipping costs for

various commodity groups that depend on location and other shipment characteristics.

8This is made even more difficult when working with aggregated data since shipment specific
characteristics can’t be directly controlled for.
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However, complete disaggregated data concerning railroad operations has not been

available historically and is currently confidential, so most studies have relied on using

aggregated data instead.

Given the complexity of outputs that railroads produce, identifying an appropriate

measure of aggregate output was a focal concern in early studies. Studies have used many

different measurements of railroad output, but eventually researchers, recognizing the

importance of both weight and distance traveled, predominantly began using revenue

ton-miles, defined as one ton that generates revenue shipped one mile, as a measure of

output (Waters, 2007). Collapsing rich data describing highly specific measures of output

into this aggregate measure of output discards a wealth of information, making it difficult

to accurately describe the relationship of costs and aggregate output and necessary to

consider many factors when modeling costs and production. Specifically, total revenue

ton miles reflect flows of shipments over the railroad’s network, but due to the nature of

its aggregation, its effect on costs is clearly correlated with other characteristics of the

railroad’s network. For example, since coordination of movements necessarily becomes

more difficult as a railroad’s network size increases, the marginal cost of revenue ton miles

will depend on network size. Friedlaender and Spady (1981) identified major factors

of railroad costs and labeled them as fixed inputs, variable inputs, and technological

conditions. Variable inputs include labor as well as use of equipment and fuel, the fixed

input was total value of track, measured using replacement costs, was used as the fixed

input, and technological conditions were described with characteristics of the railroad’s

network such as network size, average length of haul, and the mix of various commodities

being shipped. It is crucial to include these factors as well as properly specify how each

works together to produce output in order to obtain consistent estimates of production

and costs.
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In addition to determining the factors that affect output and costs, researchers

have struggled with describing the shape and functional form of costs and production.

Researchers began by using familiar functional forms that are relatively easy to work

with; for example, Keeler (1974) uses Cobb-Douglas production function that accounts

for both inputs used and network characteristics to estimate returns to scale and density

of railroads. Recognizing the restrictiveness of assuming particular functional forms,

many researchers have had success in estimating more flexible cost function forms

such as the translog form; these studies have generally found that using flexible forms

that relax important assumptions like subadditivity yield more accurate results and

predictions (Waters, 2007). Overall, researchers have seen success in using more flexible

functional approximations to describe production and costs, and, fundamentally, many

approximations such as higher order Taylor approximations, log-linearization, and mean

value theorem approximations could also be used.

Running parallel to the field of industrial organization, research of railroad

operations and competition has focused on estimating the markup of price over marginal

cost as an indicator of competitive behavior. In order to identify railroad markups,

researchers must fundamentally have a model of costs to derive an estimate of marginal

costs and a model of market demand to identify equilibrium prices.9 Railroad studies have

largely focused on simultaneously estimating cost functions and demand relations (Waters,

2007). To my knowledge, no production based methods for estimating markups like those

found in Hall (1988) and Klette (1999) have been applied to the railroad industry.

Notably, researchers have used conduct parameter approaches like those proposed in

Corts (1999), and some have focused on more robust demand estimation like that found

9While costs must generally be estimated to obtain estimates of markups, assumptions about
demand can range from complex specifications that estimate preferences to simple assumptions like profit
maximization.

23



in Berry et al. (1995). Specifically, Ivaldi and McCullough (2005) assumes heterogeneous

preferences amongst shippers and receivers and models aggregate demand for a number

of markets10 using a random coefficients framework. The authors pair these estimates

of demand with a model of costs and the assumption that firms engage in Bertrand

competition to obtain estimates of efficiency and market power. Using this framework,

the authors examine the effect of mergers on efficiency and consumer surplus. The authors

find strong evidence of scale economies and conclude that efficiency gains from mergers

outweigh the costs of increased market power and non-competitive pricing; the authors

estimate that over the period from 1986 to 2001, consumer surplus increased by about

30%. Further, the authors estimate that the ratio of price over marginal cost ranged

from 1.378 for freight services to 1.85 for intermodal services. Finally, the authors find

that returns to density for railroads were approximately 1.08, indicating that firms

are operating near their minimum efficient density. However, as previously noted, the

methods used in Berry et al. (1995) require a clear definition of markets in which the

firms compete, which can be difficult in the railroad industry where firms not only provide

different types of outputs but also service many distinct geographic areas.

Several other studies have also looked towards estimating returns to scale for

railroads. Keeler (1974) estimates a cost function for railroads and finds that average

returns to scale were approximately 0.993 in the period from 1968 to 1970. Caves et al.

(1981b) estimates an extensive translog cost function for railroads and found that returns

to scale remained relatively constant and near one over the period from 1955 to 1974.11

More recently, Bereskin (2009) estimates a model of costs and technological variation to

10These markets were defined over three different types of rail services: Bulk, general freight, and
intermodal transportation.

11Specifically, the authors estimate that scale elasticities of 1.012 for 1955 and 1963 and an elasticity of
1.036 in 1974.
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explain economies of scope, density, and scale and finds that the average railroad operates

at minimum efficient scale. Overall, the literature finds overwhelming evidence that

railroads are no longer able to realize economies of scale and are operating at capacity.

While many studies have examined railroad scales, few have looked towards estimating the

markup of price over marginal cost.12

Finally, research in railroads and other network industries has attempted to draw a

clear distinction between returns to scale and returns to density. While returns to scale

measures the degree to which output is affected by an increase in the overall scale of a

firm’s operations including the size of its network, returns to density holds network size

constant and measures the effect of increased concentration of input use. Since returns to

scale considers an increase in all inputs and network size while returns to density considers

an increase to all inputs other than network size, these returns can be markedly different

depending on how much of an effect network size has on output. Caves et al. (1984)

separate returns to density from returns to scale by estimating a trans-log cost function

that directly controls for network size and apply their model to the airline industry. Since

airline costs increase considerably as network size increases, the authors estimate that

returns to density significantly exceeded returns to scale, with elasticities of 1.18 and 0.99,

respectively. The cost literature regarding railroads similarly finds that larger networks are

associated with higher average costs; Wilson (1994) estimates that the cost elasticity of

network size is 0.22, and thus finds a significant difference in returns to scale and returns

to density, with estimates of 0.99 and 1.34, respectively.13 As a result, it is important to

draw the distinction between these measures and clearly identify which is being used.

12Notable exceptions are Ivaldi and McCullough (2005), as previously mentioned, and Bitzan (2000),
which simulates polar Ramsey markups for different levels of shipper captivity.

13Wilson (1997) estimates the cost elasticity of network size is even higher at 0.74, leading to an even
greater gap between scale and density estimates.
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Theory

I begin with a production technology that has been used in a plethora of previous

studies and specifically assume that production follows a Hicks-neutral process. In this

specification, I characterize production with a mapping of inputs into an aggregate output.

I also, however, recognize that the mapping depends on a set of operating characteristics

that vary across outputs and networks. Hence, I condition on the variable ϕ to reflect

these differences.14 Overall, I let the output of firm i in year t depend on a productivity

factor Ait, input use {Xj
it}j∈M , where M is the set of inputs, and network characteristics

ϕit = {ϕξit}ξ∈Ξ, where Ξ is the set of network characteristics:

Qit = AitFt({Xj
it};ϕit).

Now, I wish to make minimal assumptions on the shape or exact form of Ft, so I log-

linearize the production technology around the representative firm in each year. Letting

variables with t subscripts denote values for the representative firm (e.g., Qt is aggregate

output for the representative firm in year t), firm i’s output can be approximated with

ln(Qit)− ln(Qt) ≈ (ln(Ait)− ln(At))

+
∑
j∈M

∂ lnFt

∂ lnXj
it

Ä
ln(Xj

it)− ln(Xj
t )
ä

+
∑
ξ∈Ξ

∂ lnFt

∂ lnϕξit

Ä
ln(ϕξit)− ln(ϕξt )

ä
.

Now, for notational convenience, I will use lower case variables with a hat to indicate log-

deviations of that variable from the representative firm in a given year (e.g., q̂it = ln(Qit)−

14Empirically, of course, I have a set of variables for operating characteristics and networks as well as a
set of firm dummies that control for these effects.
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ln(Qt)). Then, this approximation can be rewritten as

q̂it ≈ âit +
∑
j∈M

∂ lnFt

∂ lnXj
it

x̂jit +
∑
ξ∈Ξ

∂ lnFt

∂ lnϕξit
ϕ̂ξit.

Standard log-linearization evaluates the above derivatives at the point centered around

(i.e., around the representative firm at the point (At, Xt, ϕt)). However, the multivariate

version of the mean value theorem tells us that there exists a point (Ait, X it, ϕit) between

(Ait, Xit, ϕit) and (At, Xt, ϕt) such that this is no longer an approximation but is in fact

exact:

q̂it = âit +
∑
j∈M

x̂jit ·
∂ lnFt

∂ lnXj
it

∣∣∣∣∣
(Ait,Xit,ϕit)

+
∑
ξ∈Ξ

ϕ̂ξit ·
∂ lnFt

∂ lnϕξit

∣∣∣∣∣
(Ait,Xit,ϕit)

.

Unfortunately, the mean value theorem only tells us about the existence of this point but

not its exact location. As discussed in the Model section, the best a priori approximation

is likely where the derivatives are evaluated at the midpoint between (Ait, Xit, ϕit) and

(At, Xt, ϕt), but I also investigate evaluating the derivatives at (At, Xt, ϕt) and find little

difference in results. I will continue to use the bar notation to indicate evaluation of these

derivatives at the interior point whose existence is guaranteed by the mean value theorem.

Next, notice that ∂ lnFt
∂ lnXj

it

is the elasticity of output with respect to input j and

∂ lnFt
∂ lnϕξit

is the elasticity of output with respect to network characteristic ξ. For notational

convenience, denote these elasticities with αjit and ζ
ξ

it, where the bar notation indicates

evaluation of these elasticities at the point (Ait, X it, ϕit). One would like to have more

information about the exact form of these elasticities; I begin by noticing that the

elasticity of output with respect to input j can be expressed as

αjit =
Xj
it

Qit

∂Qit

∂Xj
it

.
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Now, if firms are price-takers in input markets, then the first-order condition for profit

maximization with respect to input j is

∂Qit

∂Xj
it

=
W j
it

Pit + (∂Pit/∂Qit)Qit

=
W j
it

(1 + 1/εit)Pit
,

where W j
it is the price of input j, Pit is the price of output, and εit is the elasticity of

demand for using firm i’s network in year t. Notice that, similar to Klette, I aam allowing

railroads to experience different input prices, reflecting the possibility that the quality of

inputs might vary across firms. Then, the elasticity of output with respect to input j can

be written as

αjit =
Xj
it

Qit

∂Qit

∂Xj
it

=

Ç
1

1 + 1/εit

å(
Xj
itW

j
it

QitPit

)
= µit

Xj
itW

j
it

QitPit
,

where µit is the ratio of price to marginal cost, which I will refer to as the markup. For

notational convenience, I denote the cost share of input j to total revenue with

sjit ··=
X
j

itW
j

it

QitP it

.

As a result, the elasticity of output with respect to input j can be expressed as αjit =

µits
j
it. As noted by Klette, due to various rigidities with fixed inputs, this relationship

likely doesn’t hold for capital inputs K; as a remedy, notice that scale to production is

given by

ηit =
∑
j∈M

αjit = αKit +
∑
j 6=K

αjit.

Solving this expression for αKit , one can arrive at the conclusion that

αKit = ηit −
∑
j 6=K

αjit = ηit − µit
∑
j 6=K

sjit.
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Returning to the equation for firm production and using the above work,

q̂it = âit + x̂Kit α
K
it +

∑
j 6=K

x̂jitα
j
it +

∑
ξ∈Ξ

ϕ̂ξitζ
ξ

it

= âit + ηitx̂
K
it + µit

∑
j 6=K

sjit(x̂
j
it − x̂Kit ) +

∑
ξ∈Ξ

ζ
ξ

itϕ̂
ξ
it.

Finally, since input use, input prices, and output are observed, one can be able to

calculate

x̂Vit ··=
∑
j 6=K

sjit(x̂
j
it − x̂Kit ).

Thus, firm i’s output in year t can be described with

q̂it = âit + ηitx̂
K
it + µitx̂

V
it +

∑
ξ∈Ξ

ζ
ξ

itϕ̂
ξ
it.

Data

The data used for this analysis primarily come from R1 forms, which contain various

financial information and operating statistics for each Class 1 Railroad and are published

annually by the United States Surface Transportation Board (STB). These forms contain

aggregate measures of output, input use and prices, measures of capital depreciation, and

statistics describing various network characteristics. I additionally supplement these data

with the annualized version of the Quarterly Freight Commodity Statistics (QCS), also

published by the STB. The QCS describes shipment revenue and tonnages for individual

commodity groups, which are useful for precise measurement of prices and describing

network characteristics. The time span of the sample has been restricted to the period

from 2001 to 2012 for two reasons. First, though my preferred model allows for changing
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parameters over time, it may not accurately capture massive structural changes15 to the

industry that could be present in longer samples; as noted in the Background section,

railroad operations have been relatively stable since 2001.16 Second, all mergers of Class

I railroads occurred prior to 1999,17 no entry or exit occurred after 1999, and firms

were fully consolidated by 2001, meaning that this sample constitutes a balanced panel,

providing less complication in estimation. The Class I Railroads in the sample are the

Burlington Northern and Santa Fe Railway (BNSF), the Canadian National Railway

(CN), CSX Transportation (CSX), the Kansas City Southern Railway (KCS), the Norfolk

Southern Railway (NS), the Soo Line Railroad (SOO), and the Union Pacific Railroad

(UP).

The dependent variable in this analysis is aggregate revenue ton-miles, which is

defined as one ton of product shipped one mile that generates revenue. I explain variation

in output with input usage and variables describing characteristics of the network.

Friedlaender and Spady (1981) find that costs, and by extension production, depend on

way-and-structures capital, variable inputs, and technological conditions. The literature

has used many different way-and-structures and technology variables to describe costs,

but the authors generally find that total miles of road, average length of haul, traffic mix,

and total value of track and other capital are key to modeling costs related to fixed inputs.

Since I wish to measure scale elasticities relative to the value of capital used, I use value of

track as a fixed input and the remaining variables as indicators of technological conditions.

15For example, the industry continued to experience consolidation and significant technological change
through the late 1990s.

16While the industry was certainly more stable in the 2000s than in the period immediately following
partial deregulation, there were still significant changes ranging from shocks in demand to substantial
increases in investment over the course of the sample. Since these changes affected firms in different ways
at different times, I still expect to find heterogeneity in model estimates across both firms and years.

17It is worth noting that while the Canadian Pacific Railway has owned the Soo Line Railroad since
1990, Soo underwent a change of name to Canadian Pacific in the early 2000s; I will still refer to this firm
as the Soo Line Railroad.
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Also, similar to Friedlaender and Spady (1981), I treat labor, equipment, and fuel use as

variable inputs and I use rental rates as the opportunity cost of equipment inputs.

I define variable inputs for railroads to be labor, fuel, and the amounts of cars and

locomotives used. Labor use is measured in hours worked, with the price of labor defined

as the average wage for a railroad in a given year and fuel use is measured in gallons of

diesel; also, while the R1 forms provide the total numbers of cars and locomotives used, it

does not tell directly tell us about the opportunity cost of these inputs. Following Wilson

and Bitzan (2003), I define the annual per unit opportunity cost for an equipment input j

as

Annual Depreciationjit + ROIjit
Xj
it

,

where ROIjit =
Ä
Investmentjit − Accumulated Depreciationjit

ä
×CostKit and CostKit is the cost

of capital for firm i in year t. Investment, depreciation, and input use can all be found in

the R1 forms, and for the cost of capital I use the Rail Cost Adjustment Factor (RCAF)

from the Association of American Railroads. I use total investment in road as the fixed

input in this analysis. Since this variable measures the value of track, estimates of scale

elasticities can best be interpreted as the elasticity of output with respect to the value of

way-and-structures capital, holding network characteristics constant.18 As with equipment

variables, I calculate the opportunity cost of road investment using formulas similar to

those used above.

Finally, I include into my analysis several variables describing network

characteristics. First, as noted in Wilson and Bitzan (2003) and Ivaldi and McCullough

(2005), the type of shipment (i.e., way-, through-, or unit-train shipments) and the type

of product being shipped (e.g., bulk or specialty) could each have a large impact on costs

18As noted in the following paragraph, network size is included as a network characteristic, so this scale
parameter is the elasticity of output given an increase in way-and-structures investment, holding network
size constant. Thus, this elasticity of scale can better interpreted as elasticity of network density.
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and are therefore important in production decisions. To control for these factors, I include

the percentage of total ton-miles that are shipped via unit train and the percentage of ton

miles that ship bulk items19 into my regressions. Further, to capture the effective size of

the network, I also include the average length of haul and total miles of road as controls in

my regressions.

Descriptive statistics for each of the variables used in this regression are given in

Table 1; nominal variables have been adjusted for inflation, and each of these statistics has

been averaged across the time span of the sample.

Many of these variables including output, labor use, fuel use, numbers of

locomotives, and investment in road have remained relatively constant over the course

of the sample, except for a common negative shock induced by the 2009 recession.

The number of cars used by railroads has been steadily decreasing over time due to an

increasing number of shippers owning their own cars in recent years. Real prices of inputs

and output have been increasing since 1999 except during the recession. Measures of

network characteristics have remained largely constant over for each firm over this time

frame, illustrating the stability of the industry since consolidation occurred.

Empirical Models

Common Markups and Scales

Recall the expression for firm i’s output in year t:

q̂it = âit + ηitx̂
K
it + µitx̂

V
it +

∑
ξ∈Ξ

ζ
ξ

itϕ̂
ξ
it.

19Bulk items belong to one of the following commodity groups: Metallic ores, nonmetallic minerals (not
fuels), waste/scrap metals, clay/concrete/glass/stone, farm products.
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I begin by assuming that a firm’s productivity relative to the median firm is constant

across time in expectation, so that âit = âi + uit, where uit is a mean zero error term.

Then, this expression for output can be rewritten as

q̂it = âi + ηitx̂
K
it + µitx̂

V
it +

∑
ξ∈Ξ

ζ
ξ

itϕ̂
ξ
it + uit

= âi + ηx̂Kit + µx̂Vit +
∑
ξ∈Ξ

ζ
ξ
ϕ̂ξit + vit,

where vit = uit+(ηit−η)x̂Kit +(µit−µ)x̂Vit +
∑
ξ(ζ

ξ

it− ζ
ξ
)ϕ̂ξit. Now, I assume that µ and η are

the mean markup and scale for the industry, so vit is also a mean zero error term. Since

q̂it, x̂
K
it , x̂

V
it , and ϕ̂it are all calculable from the data, if vit is assumed to be uncorrelated

with explanatory variables, this equation could potentially be estimated with OLS.

However, if shocks to output could be correlated with changes in input allocation, then my

estimates would suffer from endogeneity bias.20 Similar to Klette (1999), I propose using

an instrumental variables approach to obtain consistent parameter estimates. Fortunately,

I also have a set of relevant instruments that were assumed to be exogenous. In the

Theory section, I assumed firms take input prices as given, meaning that shocks to output

cannot be correlated with changes in input prices. I therefore instrument for x̂Kit and x̂Vit

with input prices. I also assume network characteristics are exogenous to firm output21

and thus do not instrument for those variables.

20In fact, one would expect this to occur since firms will likely adjust input usage to most efficiently
produce a different quantity.

21Given that network characteristics are often difficult, if not impossible, for railroads to control
(e.g., firms might have some control over what proportion of its shipments carry bulk products, but that
characteristic is largely driven by demand for bulk product shipments), and since network characteristics
have remained relatively constant over the sample period, I find this to be a reasonable assumption.
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Firm- and Year-Specific Markups and Scales

Returning again to the equation

q̂it = âi + ηitx̂
K
it + µitx̂

V
it +

∑
ξ∈Ξ

ζ
ξ
ϕ̂ξit + uit.

Given the firm- and year-specific markups and scales that appear in this equation, it is not

identified in its current form; however, if it is assumed that these parameters come from

a common distribution, then this equation can become estimable. A common approach

for random-coefficient methods is to assume these parameters are independent and

identically distributed. However, due to the nature of competition between firms and how

technologies are adopted, I expect that markups and scale elasticities should be correlated,

so that the independence assumption fails to hold. Instead, I assume that markups and

scales have a common central tendency across firms, but allow these parameters to be

correlated in a flexible way. Additionally, since markups and scales have likely changed

over time for the industry as a whole, I allow for a flexible trend in the central tendency of

the distribution over time. Overall, letting the number of firms be denoted by F , I assume

that for each year t,

[µ1t − 1, ..., µFt − 1, η1t, ..., ηFt]
′ ∼ lnN ([µt, ..., µt, ηt, ..., ηt]

′,Σ2F ) ,

where the central tendency [µt, ηt]
′ is assumed to independently and identically distributed

across time and is also allowed to vary for each year. The distributional assumption on

each µit and ηit enforces the theoretical restriction that scale elasticities must be greater

than zero and markups must be greater than one for firms to be profit maximizing. Also,
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Σ2F is a square covariance matrix with dimensions equal to twice the number of firms that

allows for flexible correlation between firm markups and scales.

Results

Common Markups and Scales

I first estimate the model where markups and scales are assumed to be constant

across firms and years. Once again, in order to protect against endogeneity bias of the

parameters µ and η, I instrument the variables x̂V and x̂K with input prices. The first

stage of this regression is given in Table 2.

From these results, the instruments used appear to be relevant; in fact, given the

importance of the instruments in the first stage, one might be concerned about their

excludability. Fortunately, since there are more instruments than endogenous variables, I

can test this identifying assumption with an overidentification test. It is important to note

that if I find that these instruments are endogenous to output, then firms are not price

takers in input markets; since this assumption was used in the derivation of the theoretical

model, it is necessary that I don’t observe contrary effects in the data. The results of the

Sargan-Hansen overidentification test are given in Table 3, along with the second stage

results.

First, the p-value of the Sargan test is greater than 0.05, indicating that there isn’t

significant evidence of instrument endogeneity. Next, I estimate that the average industry

markup is 1.366 and that the average industry scale is 0.718. This indicates that, over

the course of the sample, firms charge prices that are 36.6% greater than marginal cost on

average and that firms are operating beyond minimum efficient scale. I additionally find

that the elasticity of output with respect to average length of haul is negative and that the
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TABLE 2. First Stage Results

Dependent variable:

x̂V x̂K

(1) (2)

Fuel price 0.044∗∗∗ −0.053∗∗∗

(0.010) (0.017)
Labor price 0.009∗∗∗ −0.020∗∗∗

(0.002) (0.004)
Road cost 1.811∗∗∗ −3.354∗∗∗

(0.380) (0.644)
Car cost −0.00003∗ 0.00004∗

(0.00001) (0.00002)
Locomotive cost −0.00000∗∗ 0.00000∗∗

(0.00000) (0.00000)
Average length of haul 0.003∗ −0.005

(0.002) (0.003)
Percent unit −0.045 0.178∗∗

(0.051) (0.087)
Percent bulk −0.006 −0.129∗

(0.041) (0.069)
Network size −0.244∗∗∗ 1.098∗∗∗

(0.045) (0.076)

Observations 84 84
R2 0.853 0.996
Adjusted R2 0.821 0.995
Residual Std. Error (df = 68) 0.049 0.083
F Statistic (df = 15; 68) 26.343∗∗∗ 1,059.620∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

elasticities with respect to other network characteristics are not differentiable from zero at

the 5% level.

Firm- and Year-Specific Markups and Scales

In this section I present results from the model that allows markups and scales

to vary across firms and across time. This model also allows for correlations between
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TABLE 3. Common Parameter Regression

q̂

x̂V 1.366∗

(0.814)
x̂K 0.718

(0.479)
Average length of haul -0.007∗∗∗

(0.002)
Percent unit 0.122∗

(0.072)
Percent bulk 0.065

(0.089)
Network size 0.134

(0.34)
Sargan Test Statistic 8.735
Sargan Test p-value 0.068
Railroad FE Yes
Observations 98
R2 0.998

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

markups and scales across firms, which can shed light on market structure. Rather

than assuming parameters are given and data are random, as in a classical framework,

Bayesian methods assume the data are given and parameters are random. As a result,

these methods will yield probability distributions for each parameter that depend on prior

beliefs and the likelihood of the data.

To conduct this estimation, I used a Metropolis-Hastings sampler with 500,000 burn-

in iterations and 1,000,000 sampling iterations. Moderate autocorrelation of the Monte

Carlo chain makes it necessary to use many samples and independent chains to obtain a

representative sample of the posterior distribution. To ensure each chain has converged, I

have varied initial parameter values and produced trace plots for each chain, ensuring that

draws from the chain appear stationary. Additionally, I have varied prior distributions and

compared results to the specification used in this paper to ensure prior assumptions aren’t
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driving results. The full model and prior assumptions are presented in the Appendix of

this paper.

This model produces a posterior probability distribution for markups and scales

for each firm and in each year; since this constitutes a mass of information, I begin by

examining these parameters for the most recent year for which results are available.

Table 4 contains distribution quantiles for each firm’s markup and scale in 2012 as well

as elasticities with respect to network characteristics. I also present density plots for each

firm’s markup and scale in Figure 2.

TABLE 4. Bayesian Estimation Results

Quantiles:

Mean 5% 25% 50% 75% 95%
2014 Markups

BNSF 1.608 1.219 1.391 1.548 1.748 2.203
CN 1.406 1.238 1.296 1.358 1.466 1.745
CSX 1.558 1.237 1.354 1.49 1.648 2.183
KCS 1.508 1.174 1.304 1.478 1.664 1.998
NS 1.422 1.168 1.257 1.344 1.545 1.896
SOO 1.51 1.185 1.295 1.483 1.657 2.035
UP 1.518 1.245 1.346 1.46 1.572 2.072

2014 Scales
BNSF 1.445 1.265 1.403 1.459 1.504 1.571
CN 0.968 0.865 0.927 0.978 1.012 1.047
CSX 1.136 0.509 0.781 1.034 1.483 1.965
KCS 0.911 0.883 0.902 0.912 0.921 0.939
NS 0.827 0.609 0.701 0.823 0.93 1.089
SOO 0.845 0.766 0.792 0.828 0.895 0.942
UP 1.025 0.888 0.964 1.047 1.087 1.13

Average length of haul 0 -0.008 -0.003 0 0.002 0.006
Percent unit -0.221 -0.419 -0.275 -0.228 -0.142 -0.041
Percent bulk 0.134 0.023 0.091 0.121 0.181 0.263
Network size -0.261 -0.394 -0.323 -0.263 -0.19 -0.159

One can first notice that there is significant heterogeneity in markup estimates

across firms. There also appears to be some connection of markups with firm size and,
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FIGURE 4. Distributions of Markups and Scales in 2012

by extension, market power; for example, BNSF, the largest firm in 2012, has the highest

markup estimate while CN, a much smaller firm, has a lower markup. The posterior

markup densities show that firms are generally pricing in excess and sometimes well in

excess of marginal cost, with median markup estimates between 34.4% and 54.8%.22 I

find even greater heterogeneity in scales among firms. Smaller railroads like CN, KCS,

NS, and SOO appear to be producing beyond their minimum efficient scale, while larger

firms like BNSF, CSX, and UP show evidence of economies of scale. I estimate that BNSF

is operating the furthest below minimum efficient scale in 2012, with mean and median

scale estimates of 1.445 and 1.459, respectively. The heterogeneity observed in these

22It is important to note that markups in excess of one aren’t necessarily indicative of non-competitive
pricing. In particular, firms might charge prices greater than marginal costs in order to remain viable.
Unfortunately, because this model is accurate only local to the median firm, I cannot estimate total costs
and therefore cannot address firm viability.
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parameter densities makes it clear that the assumption of common markups and scales

is not appropriate, even for a given year.

This model allows for variation in markups and scales both across firms and

across time. To show these dynamic results, I present line plots of median markup and

scale estimates for each firm across time in Figure 3. While firm markups in 2012 are

approximately the same as in 2001, there are many industry wide and firm specific

fluctuations that have occurred over the sample. Overall, however, I don’t observe a

significant trend in average markups. Similarly, with the exception of BNSF and CSX,

scale elasticities have remained relatively constant over the sample and tend to be centered

around one, indicating that firms are producing at approximately minimum efficient scale

on average. BNSF has shown a persistent increase in returns to scale that began in 2007,

while CSX temporarily produced well below minimum efficient scale from 2009 to 2011;

both of these increases in returns to scale appear to be driven by greater investment in

these railroads’ networks that led to excess capacity.23 CSX began to fill that capacity in

2012, but BNSF has maintained investment and, thus, its economies of scale.

The United States Surface Transportation Board currently investigates shipments

for which the ratio of price to estimated average variable cost is greater than 1.8; these

shipments are scrutinized by the regulatory agency and the firm faces consequences if

sufficient supplementary evidence is found. The Bayesian estimation framework used

in this analysis allows me to estimate the probability that markups lie in some interval;

thus, these results can be used to obtain the probability that a firm’s markup of the price

for network services in a given year is greater than the STB’s designated threshold. I

23For example, over the period from 2004 to 2008, BNSF’s investment in its network increased by 7.1%
per year on average while the rest of the industry increased investment by only 5.2%. These investments
improved the efficiency of inputs used on BNSF’s network; in the period from 2006 to 2009, BNSF’s
output grew by 10%, yet it used 18.8% less fuel and 19% less labor.
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present these probabilities for each firm in each year in Figure 4.24 While this plot is

similar to the plot of markups, it does not exactly match because of finer intricacies in

the distribution of each parameter not fully described by the median. I observe strong

evidence of excessive markups in the results, with this probability exceeding 0.5 for at

least one year for each firm in the sample. Additionally, 2004 and 2007 appear to have the

highest overall propensity for excessive markups.

As mentioned previously, this model allows markups and scales to be correlated

across firms in each year, which can give information about market structure. I expect

that markups and scales might be correlated across firms because of non-competitive

pricing behavior, overlapping networks, and shared technologies. If two firms have a

positive correlation in markups for a given year, then if one firm realizes a markup above

24It is important to note that these probabilities are not unconditionally independent from one another
and only reflect the probability that a given firm’s markup exceeds 1.8 in a given year.
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its mean for that year, the other firm will tend to as well. While I can’t attribute a cause

to this correlation, it does provide information about the interaction between firms. These

markup and scale correlations have been calculated for the most recent year available and

are presented in Tables 5 and 6.

TABLE 5. Markup Correlations in 2012

BNSF CN CSX KCS NS SOO UP
BNSF 1.0000
CN 0.30235 1.0000
CSX 0.20687 0.37846 1.0000
KCS 0.31561 0.35442 0.34472 1.0000
NS 0.17591 0.22838 0.24227 0.56877 1.0000
SOO 0.0731 0.13855 0.21197 0.37733 0.35825 1.0000
UP 0.35227 0.31953 0.40456 0.39826 0.49082 0.26694 1.0000

First, one will notice that each of the correlations between markups is estimated to

be positive, indicating that a positive shock to any one firm’s markup will tend to increase

every other firm’s markup. This observed correlation could be due to competition between

firms, because as one firm lowers its price others will do the same to remain competitive

and maintain customers, but could also be attributed to various other external causes

that affect all firms in a similar way. For example, a positive shock to fuel prices will
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TABLE 6. Scale Correlations in 2012

BNSF CN CSX KCS NS SOO UP
BNSF 1.0000
CN 0.33768 1.0000
CSX 0.16234 0.19833 1.0000
KCS -0.06246 -0.35413 0.06353 1.0000
NS -0.41378 0.21033 0.20415 -0.29922 1.0000
SOO -0.48628 -0.47378 -0.52418 0.29651 -0.29331 1.0000
UP 0.76765 0.33826 0.17917 -0.13196 -0.22497 -0.69003 1.0000

tend to increase marginal costs for each firm, thereby lowering markups. Given that I

don’t directly control for the effect of fuel prices on markups, this shock would induce an

observed correlation among markups.

I observe even greater heterogeneity in scale correlations among firms. Again, I

are not able to attribute a cause to these correlations, but they do offer some insight on

market structure. There could be positive correlations in returns to scale if, for example,

the adoption of a new technology affects the productivity of inputs in a similar way

for each firm, or if natural disasters or economic conditions affect railroad networks

comparably. A negative correlation in scale elasticities could be the result of some

firms consistently realizing the benefits of new technology before others or if shocks

to production allow some firms to attract more efficient inputs than others. Overall,

since these estimates of correlation are generally large and vary in magnitude, allowing

correlation among these parameters is important to properly describe markups and scales.

Robustness Checks

Table 7 presents estimates of markups, scale elasticities, and elasticities of network

characteristics for four separate specifications. The OLS and 2SLS specifications both

assume that markups and scales are constant across both firms and time, while the

Linear and Flexible Trend specifications allow these parameters to vary by both firm and
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year. The median of the average markup and scale for 2012 are presented in the Linear

and Flexible Trend results. The 2SLS model is the primary common-parameter model

presented in Section 7.1 and the OLS specification simply runs only the second stage

and ignores instrumentation. The Flexible Trend model is my primary model that was

presented in Section 7.2, and the Linear Trend model is similar but allows the central

tendency of markups and scales to drift linearly through time. Further explanation of

the Linear Trend model and complete results can be found in the Appendix. Estimates are

generally similar across specifications but differ in some important ways. First, the OLS

estimates of markups and scales are lower than the 2SLS estimates, indicating the need

for an instrumental variables approach to correct for endogeneity. Second, including firm

heterogeneity in markups and scale elasticities yields higher average markups and scales,

presumably because of skew in the distribution of markups and scales across firms and

because these results only describe average markups in 2012, which showed evidence of

higher than average markups in previous years. Finally, the Linear Trend model produces

higher estimates of markups and scales than the Flexible Trend model because it attempts

to apply a trend to these parameters when no clear trend may exist, forcing more recent

estimates to be higher. Overall, because of its flexibility and theoretical basis, I prefer the

Flexible Trend specification presented earlier in the paper.

TABLE 7. Comparison of Results

OLS 2SLS Linear Flexible
(all years) (2012 only)

µ 1.278 1.366 1.557 1.49
η 0.627 0.718 0.904 1.018
Average length of haul -0.007 -0.007 0.001 0
Percent unit 0.129 0.122 -0.165 -0.228
Percent bulk 0.049 0.065 0.096 0.121
Network size 0.208 0.134 0.063 -0.263
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Conclusion

The railroad industry has undergone massive changes since its partial deregulation.

With the introduction and improvement of competing forms of transportation, regulatory

change was needed to keep firms viable and led to massive consolidation of firms,

abandonment of routes, and increased flexibility over pricing. While these changes lowered

costs and improved the outlook of the industry, there have been many concerns that

railroads are charging excessive rates, especially to captive shippers.

The methods used by railroad regulators to identify evidence of non-competitive

pricing among firms have been heavily scrutinized in recent years. Due both to the lack

of theoretical foundation and practical application of these methods, there has been a

growing need for robust techniques to investigate pricing behavior and market structure.

Many successful studies have been conducted that bring sound theoretical models derived

from economic principles together with robust econometric techniques to investigate

various phenomena in rail markets, but to my knowledge no published work has been able

to successfully obtain consistent estimates of markups and scale elasticities.

This research estimates a model of production to obtain estimates of markups and

scales for each firm and in each year. I first find that these parameters show significant

heterogeneity across firms and time, indicating the need to model this variation. Next, I

find that most firms charge prices well in excess of marginal costs; while recent markups

are lower than for the majority of the 2000s, I still find markup estimates between 34%

and 55% in 2012. Finally, I find that some firms have made efforts to increase capacity,

but most firms have filled excess capacity and are operating near minimum efficient scale.

While these results provide broad insight into the productive capabilities of firms, it would

is useful to know specifics of how those capabilities change and factors that drive that

change. In order to further investigate the production capabilities of railroads and how
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those abilities have evolved over time, I turn to my third chapter, “Decomposing Changes

in Productivity Using Bayesian Methods.”
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CHAPTER III

DECOMPOSING CHANGES IN PRODUCTIVITY USING BAYESIAN METHODS

Abstract

Productivity and its growth are central to the long-term growth, and long-term viability
of firms and industries. Partial deregulation of railroads was led by concerns that
existing regulation and changes to the industry led to stagnation in productivity. Policy
changes made it easier for firms to increase productivity through broad organizational
changes like mergers and abandoning unprofitable routes as well as specific technological
innovation through the 1980s and early 1990s. However, as the industry has become
increasingly consolidated and as more lines have been abandoned, firms may need to rely
on technological change to increase productivity. I develop and estimate a model that
separates changes in productivity due to innovation and those caused by non-innovative
factors and use Bayesian estimation. This allows productivity and technology to evolve
flexibly across firms and through time, allowing an examination of changes in railroad
productivity and identification of its driving component. I find that every Class I railroad
has experienced growth in productivity since 1999. Improvements in technology were the
driving factor in the growth of BNSF, KCS, Soo Line, and UP, while CN, CSX, and NS
saw significant growth due to broad organizational changes. Finally, I develop a metric
that determines whether firms substitute inputs towards factors that innovation makes
more productive. I estimate the probability that each firm takes that action to be around
50% with no discernible pattern over time, providing evidence that firms don’t anticipate
technological change or don’t adjust input allocation to take advantage of innovations.
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Introduction

The productivity of firms is the amount of real output that can be produced with

a marginal increase in real inputs. It has long been of interest to researchers, regulators,

and industry analysts alike. Productivity allows firms to produce their products at lower

cost and is also the source of long-term economic growth. Further, the level and growth

of productivity informs regulators and is central in their regulatory mandate. Prior to

its partial deregulation, the railroad industry was faced with many concerns of viability

and low levels of productivity. While productivity growth was rapid through the mid-

1900s, it had slowed dramatically by the mid-1970s due to the rise of competing modes

of transportation and changes to the types of products being shipped. With the goal of

reducing costs and increasing productivity, the industry was partially deregulated in 1980.

The immediate effects of this policy have been studied extensively,1 and it is clear that

there has been rapid productivity growth since partial deregulation (Wilson, 1994).

The more recent effects of partial deregulation have not been examined. Immediately

following partial deregulation, it was relatively easy for firms to merge (thereby taking

advantage of economies of scale) and ceasing service on unprofitable routes (Bitzan and

Wilson, 2007). The number of Class I railroads fell from 40 in 1980 to just 7 in 1999, and

the total size of the network controlled by these carriers dropped from 164,822 miles in

1980 to 95,391 miles in 2013 (United States Surface Transportation Board, 2015). While

these changes have dramatically reduced costs in the industry and improved its viability,

there is relatively little room for to continue realizing productivity growth through these

broad changes (Bitzan and Keeler, 2007). Instead, firms may need to improve their

production technologies through innovation and substitute towards more productive

1For further reading, see Bitzan and Keeler (2007), Winston et al. (1990), and Barnekov and Kleit
(1990).
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inputs in order to realize continued growth, which is vital to the sustained viability of the

industry.

In order to separately identify changes in productivity, I develop a model that

incorporates inefficiency and also allows productivity and technology to vary across

firms and evolve in a flexible way over time. Using a theoretical framework, I decompose

changes in production into increased use of inputs, input substitution, increased

productivity due to technological change, and increased productivity due to non-innovative

factors. I then estimate my model using Bayesian methods. This allows me to identify

and decompose productivity changes for each firm and each year. I am not aware of any

published research that empirically separates growth in productivity due to innovation

and that due to factors other than innovation. Productivity growth due to technological

change becomes increasingly important as an industry matures and other methods of

increasing productivity like merging with or acquiring other firms become less feasible.

Further, firms can take potentially take greater advantage of innovations by substituting

towards inputs that changing technology makes more productive. I identify a condition

under which firms substitute towards more productive inputs and estimate the probability

that firms take that action for each year. Finally, these models provide estimates of total

factor productivity and its growth, which are key values for informing regulation and give

insight into developments in the industry.

The models I estimate allow productivity growth to vary flexibly both across firms

and over time by imparting structure on its dynamics; specifically, I allow productivity

and technological parameters to follow random-walks with drift. Ignoring the effect of

technological change, I find that the Canadian National (CN) railway showed the strongest

productivity growth since 1999 at a rate of 3.551% per year. All other railroads exhibited

modest productivity growth, between 0.235% and 2.474% per year. After accounting for
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technological innovation, I am able to identify how much of productivity growth is due to

changing technology and how much is due to neutral shifts in the production technology.

I find that CN, CSX, and Norfolk Southern (NS) railways experienced strong growth in

productivity caused by factors other than technological growth; all other railroads showed

decreasing productivity due to these non-innovative factors. Burlington Northern Santa Fe

(BNSF), Kansas City Southern (KCS), Soo Line, and Union Pacific (UP) found significant

increases in productivity due to technological change, with growth between 30% and 60%

between 1999 and 2014. CN, CSX, and NS experienced smaller productivity gains due

to changing technology. Overall, when considering total productivity due to all factors,

CN and KCS have shown the strongest growth in productivity driven mostly by factors

other than technological innovation, though both have seen decreases since 2011. BNSF

showed modest total productivity growth due to technological change, and all other firms

had constant total productivity. Finally, I find that firms have about a 50% chance of

shifting resources towards inputs that innovation makes more productive. This provides

evidence that firms don’t anticipate technological changes, aren’t able to substitute inputs

fast enough to capitalize on innovations, or that input prices tend to offset changes in

technology.

I estimate three different models with varying degrees of flexibility in the dynamics

of productivity change and technological growth. The first model assumes the productivity

of each firm follows a simple linear trend, the second allows productivity to follow a

random-walk with drift while holding technology constant, and the third allows both

productivity and technology to follow a random-walk with drift. Using Bayesian model

selection, I find that the model allowing both productivity and technology to evolve

flexibly over time has the greatest probability of being the true model, indicating the

importance of controlling for technological change. Using estimated model probabilities,
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I conduct Bayesian model averaging of the results of each model and find that each firm

likely experienced modest growth in productivity between 1999 and 2014, with median

estimates ranging from 0.296% to 0.719% per annum. However, I estimate the probability

that all firms experienced productivity growth is 46.783%, indicating that at least one firm

likely saw a decrease in productivity over the sample period.

This paper begins with an overview of the railroad industry and its regulation.

Following this, I provide a review of the relevant literature, covering both the methods

used to measure productivity and how productivity has been studied in the railroad

industry. I then develop my theoretical model and proceed to present the data used in

this analysis. I cover each of the three empirical models presented in this paper, then show

and explain my results. A conclusion of my findings follows.

Institutional Background

The railroad industry has been federally regulated since 1887. The Interstate

Commerce Commission (ICC) was created in response to concerns of excessive rates,

market power, and discriminatory pricing in the industry with the passage of the

Interstate Commerce Act (ICA) of 1887. This policy gave the ICC control over collective

rate making and oversight over mergers and provided a channel through which the

reasonability of rates charged by railroads could easily been questioned by shippers.

Through most of the 1900s, these regulations helped promote competition in the industry

and kept shipping rates low while still allowing railroads to be profitable.

By the 1970s, the regulations that once promoted competition impeded firms in

the industry. Not only had new competing modes of transportation such as air, barge,

and trucking been developed and improved, but plastics, which are much less dense

than goods shipped in the past, constituted a greater proportion of all goods shipped.
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Consequentially, railroad costs rose to the point that rate regulation prevented firms from

being cost viable. In an effort to save the industry, railroads were partially deregulated

with the passage of the 4R Act in 1976 and the Staggers Act in 1980. These policies

allowed railroads to merge more easily to reduce costs through economies of scale, gave

firms the ability to negotiate contracts and generally provided greater pricing flexibility,

and allowed firms to more easily abandon lines on which operations were not profitable.2

Partial deregulation resulted in many drastic changes to the industry. The number

of Class I railroads fell from 40 in 1980 to just 7 in 1999, mostly through acquisitions and

mergers. The total size of the network controlled by Class I railroads fell from 164,822

miles in 1980 to 95,391 miles in 2013, largely through the abandonment and sale of

unprofitable lines. The average length of haul increased from 615 miles in 1980 to 973

miles in 2013 (United States Surface Transportation Board, 2015). Overall, individual

railroad networks were larger, the total size of the network grew smaller, and shipments

were traveling longer distances. As a result of these changes, rail shipping rates fell

dramatically, from $0.0646 per revenue-ton-mile in 1980 to $0.0329 in 2014 (United States

Surface Transportation Board, 2015). The reduction in prices is largely reflective of a

reduction in railroad costs and improvements in productivity (Bitzan and Keeler, 2007).

Following rapid changes that occurred in the railroad industry through the 1980s and

early 1990s, the general structure of the industry has mostly remained constant since 1999.

Only seven Class I railroads remained in 1999, and additional mergers have not occurred.

Most of the lines on which operations were unprofitable have been abandoned or sold to

short-line regional railways (Tretheway et al., 1997). As a result, there is little room for

railroads to improve their productivity on those fronts. Thus, to remain viable, firms have

2There have been a considerable number of studies that describe these policies and their effects. See,
for example, Bitzan and Wilson (2007), Schmalensee et al. (2015), Wilson (1997), and Winston et al.
(1990).
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turned towards other channels, such as technological progress, to realize productivity gains

and further reduce costs. As an example, the elimination of cabooses, a remnant of the age

of steam locomotives that required a crew to operate, resulted in a reduction in costs by

between 5% and 8% between 1983 and 1997 (Bitzan and Keeler, 2003). Railroads have

also invested $575 billion in infrastructure and equipment since 1980; recently, nearly

2700 new locomotives were purchased between 2008 and 2012, and many innovations

have been made in safety, fault detection, and performing maintenance that preempts

equipment failure (AAR, 2013). To my knowledge, there has been no published research

that considers the effects of these recent innovations.

Literature Review

This research investigates productivity of the railroad industry using a stochastic

frontier model. In this section, I provide a history and review of studies and methods

used to estimate productivity in general. I then describe research that has investigated

the productivity of railroads and the effects of the industry’s partial deregulation. Finally,

I describe stochastic frontier models and how they have been used to study productivity

and separate it from inefficiency.

Total Factor Productivity

Productivity has rightfully long been a focal point in many branches of economics;

various aspects of productivity can inform on the effectiveness with which inputs can

be transformed into outputs as well as the overall efficiency of production. Total factor

productivity has been studied extensively and provides a useful metric: The number units

of real output a firm can produce with one unit of real inputs (Jorgenson and Griliches,

1967). The value of this measure can be easily seen; it can be used to evaluate economies
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of scale, trends provide information about growth rates, and heterogeneity across firms can

shed light on factors that affect productivity and costs.

The notion of total factor productivity was created to explain economic growth.

Growth can either be the result of increased use of inputs, usually called capital

accumulation,3 or growth in productivity. In light of limited resources, increases in

productivity are the only way to sustainably promote economic growth.4 Empirical

findings have shown that productivity is the main cause of changes in economic growth;

in his seminal paper, Solow (1957) found that between 1909 and 1949, approximately

one-eighth of the variation in output was due to capital accumulation and seven-eighths

was due to changes in productivity. Further, he estimated that annual productivity

growth rates ranged from -7.6% to 7.2%, at an average of 1.5% per annum. Finally, Solow

estimates several forms for the production function. Using a log-linear (i.e., Cobb-Douglas)

form, he estimates that the level of productivity was approximately 0.482.

Productivity has been estimated using a variety of methods. Solow’s seminal work

on productivity suffered from a number of practical issues. Most notably, any deviations

from the empirical model (i.e., residuals) were assumed to be the result of differences

in productivity (Solow, 1957). Of course, there are many additional sources of error

including differences in efficiency and measurement error. Further, Solow used a linear

approximation in his analysis, which does not allow inputs to exhibit complementarity or

substitutability and can result in large approximation errors. Several models have been

3While non-capital inputs (e.g., labor) can also increase output, economists have historically not
attributed long-term growth to those factors since the stock of those inputs tends to grow at a relatively
slow rate.

4If resources are limited, capital cannot be endlessly accumulated, so growth must come from another
source.
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developed and extended to address these issues and largely fit into two groups, either

parametric or non-parametric.5

Parametric models assume a specific form for the production function and aim to

decompose shifts in the production frontier into changes in productivity and efficiency

and measurement error. There has been an abundance of research that estimate translog

cost functions and infer changes in productivity from shifts in the cost function. Since

translog cost functions are a second-order approximation of the true cost function, this

method reduces the approximation error presents in Solow’s work. Caves et al. (1981b)

used this framework to derive an expression for productivity growth that depends on the

change in costs and change in output over time. The authors estimate these parameters in

a cost function and use them to calculate productivity growth in the U.S. passenger and

freight rail industry. Cost function frameworks similar to this have been used to study

productivity in a variety of contexts.6 While this framework is very flexible, it cannot

separately identify productivity from inefficiency. Stochastic frontier (SF) models, which

are further explained in Section 3.3, extend the standard translog estimation framework

to include inefficiency; by noting that efficiency must lie between 0% and 100%, structure

can be imparted on the model that allows productivity and efficiency to be separately

identified (Aigner et al., 1977).

Non-parametric methods remain agnostic of the specific functional form of the

production function and instead rely on non-parametric methods to infer its shape. Data

envelopment analysis (DEA) is most commonly used to infer the production frontier. This

method assumes that production plans lie on the frontier and uses linear programming

5Of course, semi-parametric models, which have some parametric and some non-parametric
components, have also been used. For further reading, see Jondrow et al. (1982) and Park and Simar
(1994).

6For more examples of studies of the railroad industry that use translog cost functions, see Bitzan and
Wilson (2007), and Bitzan and Keeler (2007).
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techniques to trace out the exact location of the frontier (Friesner et al., 2006).7 Lim

and Lovell (2009) use DEA to investigate short-run profit changes in the rail industry. By

using non-parametric methods to identify the production frontier, the authors decompose

changes in profit into changes in price and productivity.

Both parametric methods like SF and non-parametric methods like DEA commonly

appear in the literature. Eisenbeis et al. (1999) compares the two in the context of the

banking industry and finds that while the level of estimated inefficiency is higher under

DEA, the two measures are highly correlated, indicating they capture similar information.

However, the authors also find that estimates from SF analysis more accurately capture

efficiency in management and preferences for risk than do linear programming methods.

Stochastic Frontier Models

Stochastic frontier (SF) models extend the productivity estimation framework in two

important ways. First, they assume that firms are not necessarily efficient; these analyses

distinguish maximum possible output from actual output and term the deviation between

the two inefficiency. The seminal work of Aigner et al. (1977) presents a commonly used

formulation of the stochastic frontier framework:

qi = f(xi; β) + εi − δi. (3.1)

In equation (3.1), qi represents log output, xi are inputs, β are parameters describing

production, εi is a productivity, and δi is inefficiency. Under usual error assumptions,

it would be impossible to separately identify εi from δi; however, inefficiency, defined

7More specifically, the basic DEA model assumes non-dominated plans, for which no other plan
produces more output with fewer inputs, lie on the frontier. Extensions of this model have been made
to include inefficiency.

57



as deviation from maximum output, is inherently one-sided. Using this assumption and

modeling δi as, for example, half-normal or log-normal allows productivity shocks and

inefficiency to be separately identified.

Similar to other parametric methods of estimating production, the problem of

estimating the form of the production function remains. Unlike non-parametric methods

like DEA, parametric models require a the researcher to assume a specific form of the

production function; in order to maintain minimal assumptions on the exact shape of

the production function, researchers have historically utilized some form of functional

approximation to address this problem. Early research into productivity, such as Solow

(1957), used a first-order Taylor approximation on the log-production function, also known

as the Cobb-Douglas form. While this form provides a good starting approximation, it

does imply the assumption that production is additive in the inputs; that is, the Cobb-

Douglas form assumes that the productivity of any given input depends only on the

amount of that input being used and not on any other inputs. Christensen et al. (1973)

test simple functional forms that assume additivity and constant returns to scale against

a more flexible second-order Taylor approximation of the log-production function, also

known as the translog form. The authors use data describing private production in the

United States from 1929 to 1969 and find that the assumption of additivity is clearly not

satisfied, leading to bias when a first-order approximation is used. As a result, it is safer to

use a more flexible functional form such as translog or even higher-order approximations if

the assumption of additivity is not clearly satisfied.

Stochastic frontier models have been extended in a number of ways and have been

used to identify differences or changes in productivity and efficiency. Schmidt and Lovell

(1979) separately estimate the production frontier and the cost function to separate

technical inefficiency, which originates in the transformation of inputs into outputs, from
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allocative inefficiency, which occurs when inputs are not used in the optimal proportions.

Applying this model to steam-electricity generation, there was evidence that both types

of inefficiency were significant: Technical inefficiency raised costs by about 8.5% while

allocative inefficiency raised costs by about 9.2%.

Kumbhakar (1988) adapts the technical/allocative inefficiency framework to panel

data, assuming that productivity is constant across all firms and time but that technical

inefficiency varies by firm. The author applies this model to Class I Railroads and

estimates input demand to correct for possible endogeneity and separate technical and

allocative inefficiency. As expected, the author finds sizable variation in inefficiency across

firms.

Many researchers have found success in using Bayesian methods to estimate SF

models. Generally, other estimation procedures such as maximum likelihood estimation

can produce unstable estimates of SF model parameters (van Den Broeck et al., 1994).

Further, the parameter uncertainty expressed by standard methods may not be accurate,

especially for small sample sizes (Koop et al., 1995). Bayesian methods are able to

properly express parameter uncertainty for large and small samples alike and tend to

produce more stable estimates. Recent research by Yan et al. (2009) have introduced

Bayesian estimation and extended the SF framework to analyze to analyze panel data

and models productivity and inefficiency in a flexible manner. The authors assume

productivity follows a deterministic trend shared by all firms and inefficiency is a random

effect across firms with structural breaks across time. In using this model to analyze

container ports, the author finds productivity increases by about 4.4% per year and that

inefficiency showed heterogeneity both other firms and across time.
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Productivity of Railroads

Productivity of railroads has long been a topic of interest to regulators and

researchers. Worries about the efficiency and productivity of railroads was a major

impetus for the partial deregulation of the railroad industry in the 1970s (Bitzan and

Wilson, 2007). Proponents of deregulation argued that because of the development and

improvement of other modes of shipping like planes, barges, and trucks and because of

changes in the mix of products being shipped, existing regulation intended to promote

competition for the majority of the 20th century were hindering efficiency and limiting

the cost-viability of the industry (Winston et al., 1990). Following deregulation, firms

were more easily able to take advantage of economies of scale by merging and could reduce

costs by abandoning rail lines that were unprofitable (Bitzan and Keeler, 2007).

Of course, there has been much interest in how these changes have affected

productivity. Additionally, in the light of the different characteristics and actions that

firms took after deregulation, there is interest in how firms differentially progressed

following deregulation and what factors led to those differences. Finally, the ultimate

prospects for the industry remain unclear; recent declines in aggregate demand have

further cut into firm profits and other modes of transportation continue to improve.

Many studies that examine railroad productivity have been conducted, and questions

about many aspects of the industry have been addressed. Caves et al. (1981b) began the

investigation into changes in the industry and its effect on productivity and viability. The

authors found that the industry was quickly becoming more productive prior to 1963;

productivity growth was estimated to be 3.5% per year on average during the period from

1955 to 1963. However, in the following period from 1963 to 1974, productivity grew at

a much slower rate, only 0.6% per year on average. The authors posit that in the early

period, many firms began small and were able to exercise economies of scale as they grew
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through the late 1950s and early 1960s. The growth of the size of these firms slowed and

most excess capacity was filled by the mid 1960s, leading to slower productivity growth

through the mid 1970s. In accompaniment with changes in the industry, this slowing

growth led many to worry about its ultimate survival and spurred its partial deregulation.

A crucial question for regulators is whether and by how much partial deregulation

helped the industry. Tretheway et al. (1997) indirectly address this question by examining

productivity and performance of Canadian railways, which underwent partial pricing

deregulation in 1967, and compared with U.S. railroads, which were partially deregulated

later in 1976 and 1980. While Canadian railroads had significantly higher productivity

growth than U.S. railroads prior to the deregulation of the U.S. rail industry, U.S.

railroads saw productivity growing between 1.3% and 1.5% per annum faster than

Candian railways between 1981 and 1988. The authors conclude that this increased

growth was due to reductions in the amount of inputs being used as well as higher traffic

density in the U.S. While partial deregulation was not necessarily responsible for these

changes, it did provide an environment where firms could more easily merge, thereby

taking advantage of economies of scale, and had greater flexibility in abandoning routes,

which could have lead railroads to find a more advantageous traffic density.

Further, while it was clear that some kind of intervention was needed to ensure the

viability of the U.S. rail industry, there have been questions over exactly what type of

intervention would be most beneficial to firms. Apart from deregulation, which aims to

utilize free-market principles to improve the efficiency and viability of firms, the most

commonly suggested intervention is public ownership of railways. Public ownership of the

entire rail industry has not been investigated since such a program has not been enacted,

but several studies have looked into public ownership of firms and appropriation of public

funds towards private railways. Caves and Christensen (1980) compare the publicly-owned
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Canadian National Railway (CN) with the privately owned Canadian Pacific Railway

(CP). Opponents of public ownership worry that firms won’t face the proper incentives

to minimize costs and improve efficiency. The authors found that competitive pressures

both between CN and CP and from other modes of transportation were very strong; as

a result, both railways experienced similar productivity growth. Due to an abundance of

unprofitable lines, CN initially had lower productivity at the beginning of the sample in

1956; however, both CN and CP aggressively abandoned track through 1967 and saw their

productivities converge and continue to grow at a similar rate through 1974.

Rather than owning railways outright, governments can appropriate funds towards

supporting rail operations. Similar to completely publicly-owned firms, railroads that

receive subsidies may not have the incentive to minimize costs and maximize efficiency

absent sufficient competitive pressures. Oum and Yu (1994) consider railways in nineteen

OECD countries8 and investigate the effect of public funding and firms’ autonomy from

their public funders on efficiency. Since many of the firms did not see competition from

other railroads or other forms of competition, efficiency tended to be higher for less

publicly funded firms and for firms that had a greater degree of autonomy. In all, whether

public funding or ownership is beneficial or detrimental is extremely dependent on whether

firms will face competition; when they don’t, railways will not have the incentive to

improve and will tend not to do so as a result.

Conceptual Framework

Fundamentally, productivity research compares production plans and determines how

much of the difference in output is due to increased use of inputs and how much is due to

changes in productivity. An example of this decomposition is shown graphically in Figure

8Contrary to many studies of the U.S. rail industry, the railways in this study transport mostly
passengers rather than freight.
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1. In this example, I consider an output that uses two inputs Xi and Xj. In practice, the
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FIGURE 7. Input Substitution and Productivity

researcher is faced with two production plans, given by P0 and P1 in the figure, and knows

their associated levels of output Q0 and Q1. The two plans are on two different isoquant

curves, given by A0F (X) = Q0 and A1F (X) = Q1. These differ only by a productivity

factor, and the researcher’s goal is to estimate the growth of productivity from A0 to A1.

In changing production from P0 to P1, the firm can first change the composition of inputs

it uses to most efficiently produce P1; this is called input substitution and is shown in

the graph by the shift from P0 to ‹P0. Since P0 and ‹P0 are on the same isoquant, they

produce the same level of output, i.e., A0F (P0) = A0F (‹P0). The firm can also increase

the amount of inputs it uses; this is shown in the graph by the movement from ‹P0 to ‹P1,

where A0F (‹P1) = A0F (P1). Then, the proportional growth in output due to increased

inputs is

A0F (‹P1)

A0F (‹P0)
=
F (P1)

F (P0)
. (3.2)

Finally, output can increase due to changes in productivity, shown in the graph by the

shift from ‹P1 to P1. The proportional growth in output due to the increase in productivity
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is given by

A1F (P1)

A0F (‹P1)
=
A1F (P1)

A0F (P1)
=
A1

A0

. (3.3)

Overall, the total proportional change in production is given by

Q1

Q0

=
A1

A0

F (P1)

F (P0)
. (3.4)

To reiterate, the ratio A1/A0 represents the proportional increase in productivity while

the quotient F (P1)/F (P0) represents the proportional increase in output due to increased

inputs.
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FIGURE 8. Estimating Productivity With Linearization

The above decomposition assumes the researcher knows the shape and position

of the isoquants (and therefore also knows the production function). In practice, this

is rarely true, and researchers have relied on a number of techniques to approximate or

infer the shape of the production function. The use of Taylor approximations has been

very prevalent in productivity estimation. These approximations have been popular

largely because of their flexibility; apart from differentiability, Taylor approximations
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make no assumptions on the shape of the production function and as a result may be

used in a variety of contexts. Further, by including more terms in the approximation, it

can be made as accurate as desired, subject to data restrictions. To see how this affects

estimation of productivity, consider Figure 2; the dotted line represents the linearization of

the production function around the point P0. In practice, the researcher does not observe

the isoquant A0F (X) = Q0 but instead can only approximate its form. The researcher

would then estimate input substitution as the shift from P0 to ‹P0. The proportional

change in output due to increased use of inputs would be estimated as the shift from ‹P0 to‹P1. Finally, the change in output due to increased productivity is estimated to be the shift

from ‹P1 to P1. Comparing these results to Figure 1, we can see that the researcher would

overestimate productivity in this example. Naturally, more complex Taylor approximations

can be used, which would decrease the approximation bias in productivity estimates.

While having been used extensively in the literature, the simple framework presented

above suffers from theoretical and practical issues. First, as illustrated above, productivity

estimates could be biased due to errors in approximating the production function.

Many have worked to reduce these errors by using higher order approximations, but

unfortunately approximation error can never be eliminated because the approximations

are never exact. As noted previously, some researchers have found success in using data

envelopment analysis (DEA) to non-parametrically estimate the production frontier (and

therefore production function).

Additionally, the above framework has encountered issues in estimation. Specifically,

researchers have historically used a deterministic production function and have

inferred that any deviations from that function (i.e., residuals) are due to differences in

productivity. Of course, there are many channels through which errors can propagate.

For example, in addition to approximation and measurement error, inefficiency, defined as
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deviation from maximum possible output, can affect the level of production independent of

changes in productivity. As discussed in greater length in Section 3.3, stochastic frontier

(SF) analysis works to separately identify these various sources of error by imparting

structure on their form.
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FIGURE 9. Productivity and Changing Technology

Finally, the method of identifying productivity described above ignores the

possibility that the production technology could change. This will lead to a bias in the

estimate of productivity. As an example, consider Figure 3, which shows two isoquants

that describe different production technologies. The function F1 represents the new

production technology and F0 represents the original. Since the isoquant is relatively

less steep under F1 than F0, the input Xj is more productive under the new production

technology. The firm increases production from Q0 to Q1 through a few different channels.

First, the production technology changes, which changes the productivity of inputs, which

in turn affects output. The proportional change in productivity due to innovation is shown

in Figure 3 by the movement from P0 to “P0. Notice that in this example, the production

technology is becoming less efficient since it requires more of both inputs to produce the
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quantity Q1, holding productivity constant. Then, the firm can substitute inputs to more

efficiently produce Q1, which is shown by the movement from “P0 to ‹P0. Next, the firm

can increase the amount of inputs it uses, shown in the shift from ‹P0 to ‹P1. In practice,

the researcher cannot separately identify the change in technology from the increased

use of inputs because those changes occur simultaneously. However, the researcher can

observe the sum of these effects, shown in the graph by the movement from P0 to “P1. The

proportional change in output due to innovations and increases in inputs is quantified by

A0F1(“P1)

A0F0(P0)
=
F1(P1)

F0(P0)
. (3.5)

Finally, the change in productivity due to factors other than technological change is shown

by the movement from ‹P1 to P1, which can be written as

A1F1(P1)

A0F1(‹P1)
=
A1F1(P1)

A0F1(P1)
=
A1

A0

. (3.6)

The total change in production can then be expressed as

Q1

Q0

=
A1

A0

F1(P1)

F0(P0)
(3.7)

=
A1

A0

F1(P1)

F1(P0)

F1(P0)

F0(P0)
. (3.8)

Here, A1/A0 represents the proportional change in productivity, F1(P1)/F1(P0) represents

the proportional change in output due to increasing inputs, and F1(P0)/F0(P0) represents

the proportional change in output due to changing technology using the inputs P0. Thus,

conditional on approximating the production function and how it evolves over time, the

researcher can separately identify changes in output due to increased inputs, improvements

in technology, and increases in productivity due to non-innovative factors.
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In my analysis of changing productivity, there are a few key values of interest derived

above. First, F1(P0)/F0(P0) denotes the change in productivity due to innovation and

A1/A0 represents the proportional change in productivity due to factors other than

technological change. As a result, the product A1F1(P0)/A0F0(P0) is the total change in

productivity due to any factor, which I refer to as technology-inclusive productivity growth.

I also focus on another value, F1(P1)/F0(P1), which measures technology’s contribution to

productivity growth using the new inputs P1. By comparing this value to F1(P0)/F0(P0),

inferences can be made about the benefits of input substitution:

– If F1(P0)/F0(P0) > F1(P1)/F0(P1), the new technology increases output more for the

original plan than for the new plan. Thus, the firm substituted towards inputs that

innovation made less productive.

– If F1(P0)/F0(P0) < F1(P1)/F0(P1), the new technology increases output more for the

new plan than for the original plan. This indicates that the firm substituted towards

factors that technology change made more productive.

Next, I turn to explaining how I approximate the shape of the production function.

Consider the output of a firm i in year t, given by Qit. Suppose that the firm’s production

technology is described by

Qit = AitFt(Xit; Φit)∆it, (3.9)

where αit is a productivity factor, Xit is a vector of inputs, ϕit is a vector of network

characteristics, and ∆it is a constant between zero and one describing efficiency. While

it is not possible to determine the exact shape of Ft, one can approximate it using the
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second order Taylor approximation of lnQit around zero:

qit ≈ αit − δit +
∑
j

∂ lnFt
∂ lnXj

xjit +
∑
j

∂ lnFt
∂ ln Φj

ϕjit

+
1

2!

∑
j

∑
k

∂2 lnFt
∂ lnXj∂ lnXk

xjitx
k
it

+
1

2!

∑
j

∑
k

∂2 lnFt
∂ ln Φj∂ ln Φk

ϕjitϕ
k
it

+
1

2!

∑
j

∑
k

∂2 lnFt
∂ lnXj∂ ln Φk

xjitϕ
k
it. (3.10)

Here, lower-case variables are log-transformed versions of upper case variables, and

superscripts index vectors of variables. As an exception, ∆it = exp(−δit), and δit is

restricted to be positive to ensure that the efficiency term ∆it is between zero and one.

I first assume that inputs and network characteristics are separable in production, so

that ∂2 lnFt
∂ lnXj∂ ln Φk

= 0 for all j and k. Also, under a modest assumption on Ft,
9 the second

derivatives of Ft will be symmetric.10 Using these assumptions, equation (4.2) becomes

qit ≈ αit − δit +
∑
j

∂ lnFt
∂ lnXj

xjit +
∑
j

∂ lnFt
∂ ln Φj

ϕjit

+
1

2

∑
j

∂2 lnFt
∂(lnXj)2

(xjit)
2 +

1

2

∑
j

∂2 lnFt
∂(ln Φj)2

(ϕjit)
2

+
∑
j

∑
k>j

∂2 lnFt
∂ lnXj∂ lnXk

xjitx
k
it

+
∑
j

∑
k>j

∂2 lnFt
∂ ln Φj∂ ln Φk

ϕjitϕ
k
it. (3.11)

9Specifically, I assume that the second derivatives of Ft are continuous in a neighborhood of zero.

10That is, ∂2 lnFt

∂ lnXj∂ lnXk = ∂2 lnFt

∂ lnXk∂ lnXj for all j and k.
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Renaming partial derivatives with respect to inputs βt and those with respect to network

characteristics θt, equation (3.11) can be rewritten to arrive at the familiar translog form:

qit ≈ αit − δit +
∑
j

βtjx
j
it +

∑
j

θtjϕ
j
it

+
∑
j

βtjj(x
j
it)

2 +
∑
j

θtjj(ϕ
j
it)

2

+
∑
j

∑
k>j

βtjkx
k
itx

j
it +

∑
j

∑
k>j

θtjkϕ
k
itϕ

j
it. (3.12)

Let xit be the matrix of all log-inputs, all log-inputs squared, and all of the interactions

between log-inputs (i.e., containing each xjit, (xjit)
2, and xjitx

k
it), and let ϕit be similarly

defined. Then, equation (4.3) can be expressed in vector form as

qit ≈ αit − δit + xitβt + ϕitθt. (3.13)

Naturally, there is some error incurred in the approximation and measurement of qit. I

label this approximation error εit, so that

qit = αit − δit + xitβt + ϕitθt + εit. (3.14)

Data

The data used in this analysis come from R1 forms, collected and presented by

the United States Surface Transportation Board (STB). These forms are published

annually and contain financial information and operating statistics for all Class I railroads,

including aggregate output and input use and characteristics of each firm’s network. The

time span of the sample has been restricted to the period from 1999 to 2014; this analysis

is interested in how productivity has evolved since Class I railroads fully merged in 1999.
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The Class I railroads in this sample are Burlington Northern Santa Fe (BNSF), the

Canadian National Railway (CN), CSX Transportation (CSX), the Kansas City Southern

Railway (KCS), the Norfolk Southern Railway (NS), the Soo Line Railroad (SOO),11 and

the Union Pacific Railroad (UP).

The dependent variable in this analysis is aggregate revenue-ton-miles, which are

defined as one ton of product shipped one mile that generates revenue. Production of

revenue-ton-miles is described by input use and network characteristics. I use amounts

of locomotives and cars, quantity of fuel consumed, and total hours of labor worked,

and investment per mile of road as inputs.12 Following Friedlaender and Spady (1981),

I opt to include investment in firms’ networks as an input and include network size as a

characteristic of output. The authors found that including network size as input results in

negative output elasticities with respect to the network due to economies of density.

Characteristics of each firm’s network are crucial in describing production, especially

aggregate production, in the railroad industry. Tretheway et al. (1997) investigate the

effect of aggregation on the estimates of productivity in the rail industry. The authors

estimate productivity using both aggregate and disaggregate data and found significant

differences. Using aggregate output assumes that the mix of products being shipped

remains constant over time. If, for example, firms instead shift to shipping products that

require fewer inputs, productivity would appear to increase even if productive capability

remained constant. One would ideally use disaggregated data in their analyses; however,

only aggregated data is publicly available, so it is important to control for other factors

11While Canadian Pacific Railway has owned the Soo Line Railroad since 1990, Soo changed in name to
Canadian Pacific in the early 2000s; I will continue to refer to this railroad as SOO.

12Miles of road is defined as the total length of non-redundant track operated by a railroad. Investment
was deflated using the GDP price deflator.
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that could be correlated with aggregate input use but not necessarily with productive

potential.

There are several network characteristics that are important to consider. First, as

noted in Tretheway et al. (1997), traffic mix is a crucial feature of railroad networks.

The mix of traffic is dependent both on the types of goods being shipped as well as

types of shipments that traverse the network. In this analysis I include the percentage

of shipments that carry bulk products13 as a measure of product mix and the percentage

of shipments that are unit train shipments as a measure of shipment mix. Bitzan and

Keeler (2007) additionally find that the shipment distance is important in describing

costs.14 The percentage of shipments that are unit train shipments partially captures

aspects of shipment distances, and I additionally include the average length of haul into

this analysis. Friedlaender and Spady (1981) find that network size is a crucial factor in

transportation costs, so I also include miles of road for each firm. Finally, the quality of a

railroad’s track will determine how efficiently trains can traverse the network and can also

influence maintenance costs. Following Wilson (1997), I use average locomotive speed as a

measure of network quality.

Descriptive statistics for each of these variables are presented in Table 1. Means and

standard deviations are given for each firm and as an average over all firms. The sample

spans sixteen years, and the descriptive statistics are averaged over time.

13I define bulk products as belonging to one of the following categories: Metallic ores, nonmetallic
minerals (not fuels), waste/scrap metals, clay/concrete/glass/stone, farm products.

14This comes at no surprise since, at the very least, short shipments require more fuel per revenue-ton-
mile.
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Empirical Models

In the analyzing the productivity and efficiency of firms, we are most interested in

estimating their respective parameters αit and δit in equation (3.14). However, all of the

parameters of equation (3.14) cannot be separately identified in a standard regression

framework. There are a number of ways to manipulate this model so that productivity

and efficiency can be identified, and in this section I describe the three models I use in this

paper.

Deterministic Trend in Productivity, Constant Technology

This model first assumes that technology and the effect of network characteristics

are constant across time, so that βt = β and θt = θ. I also assume that each firm has

its own initial productivity which then follows a deterministic linear trend shared by all

firms. Further, the model assumes that inefficiency is constant across time (but is allowed

to vary by firm); as a result, δit = δi. Finally, recall that δi was restricted to be greater

than zero; following the majority of the stochastic frontier literature, I assume δi has a

half-normal distribution centered and truncated at zero. Inefficiency can be separately

identified from productivity both because they have different dynamics across time15

and because inefficiency is strictly greater than zero. The model can be expressed in the

following relations.

qit = αit + xitβ + ϕitθ − δi + εit

αit = αi + τt

αi ∼ N(µα, σα)

εit ∼ N(0, σε)

δi ∼ N+(0, σδ)

15That is, inefficiency is assumed to be static while productivity follows a linear trend.
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Conditional on having prior distributions over the parameters, this model can be

estimated using Gibbs sampling. For a detailed description of the sampler, see Section

9.1.1 in the Appendix.

Random Walk in Productivity, Constant Technology

This model is similar to the previous model, but focuses on modeling productivity

in a more flexible way than with a deterministic trend. Specifically, I assume that

productivity follows a random walk with drift that is independent for each firm.

This type of process has been used in a number of applications and can model many

processes, especially those that exhibit persistence, flexibly and effectively.16 Importantly,

productivity likely exhibits persistence because firms don’t tend to change their exact

methods of production by a significant on an annual basis, and as a result, productivity

in one year will be dependent on productivity in the previous year.

The previous model also assumed that productivity growth was constant across all

firms; as a result, the estimates of productivity growth in that model are best viewed as

the average productivity growth in the industry. It is more likely that each firm follows its

own trend in productivity due to differences in how firms operate. This model relaxes the

common trend assumption and allows each firm to have its own productivity trend.

I maintain all of the other assumptions of the model, which is written below.

16For some examples of how time-varying parameters have been used in a variety of contexts, see
Leybourne (1993), Mazzocchi (2003), and Del Negro and Otrok (2008).
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qit = αit + xitβ + ϕitθ − δi + εit

αit = αit−1 + τi + ηit ; t > 0

αi0 ∼ N(µα, σα)

εit ∼ N(0, σε)

δi ∼ N+(0, σδ)

ηit ∼ N(0, ση)

Given assumptions of the prior distributions of each parameter, which can be

found in Section 9.1.2 of the Appendix, this model can be estimated using Gibbs

sampling. Exact evaluation of the likelihood is complicated by the random-walk process

in productivity, but is made possible via the Kalman filter. A review of the methodology

for using the Kalman filter to estimate standard regression models with time-varying

parameters in a Bayesian framework is given in Sarris (1973). While stochastic frontier

models and time-varying parameter models have been estimated, I am not aware of any

published research that combines the two to examine dynamic changes in productivity.

Random Walk in Productivity and Technology

This model presents an additional extension of the previous model. I maintain the

assumption that productivity follows a random walk with drift but relax the assumption

that technology remains constant over the time frame of the sample. There are a couple

of perspectives that justify relaxing this assumption. First, firms are constantly striving to

reduce costs and make innovations to their production technology to further that goal. As

discussed in Section 2, firms have invested large amounts in improving improving their

networks and pursuing innovation. Ignoring these innovations would lead to a bias in

productivity, as discussed in Section 3.1.
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A second line of reasoning refers back to the original definition of productivity:

The marginal amount of output that can be produced using an additional unit of

real resources. As the production technology changes, the combination of inputs that

constitutes one unit of real resources will change; not only will the amount of output that

can be produced with one unit of real inputs change, but firms will alter the composition

of inputs they use as factor productivities change at differing rates. Assuming that

technology remains constant over time, an increase in real expenditures will increase all

inputs by a constant fixed amount, which will increase output by a fixed amount, after

controlling for productivity.

Instead of assuming a technology that is constant across firms and time, I assume

that all firms share the production technology (up to their multiplicative productivity) in

a given year, but that technology is allowed to change over time. The primary estimating

equation then becomes

qit = αit + xitβt + ϕitθ − δi + εit. (3.17)

The data prevent the separate identification of βt for each year; instead, I propose that

βt follows a random walk with drift. Once again, I expect that βt will exhibit persistence

because new technology tends to adapt existing technology. The other assumptions of the

model remain the same, which can be expressed in the following relations.
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qit = αit + xitβt + ϕitθ − δi + εit

αit = αit−1 + τi + ηit ; t > 0

βt = βt−1 + ρ+ ψt ; t > 0

αi0 ∼ N(µα, σα)

β0 ∼ N(µβ,Σβ)

εit ∼ N(0, σε)

δi ∼ N+(0, σδ)

ηit ∼ N(0, ση)

ψt ∼ N(0,Σψ)

Once again, due to the random-walk process in productivity and technology

parameters, exact evaluation of the likelihood function is difficult but is possible by using

the Kalman filter; the general estimation procedure in a Bayesian context is described

in Sarris (1973). Once prior distributions are assigned to each parameter, the model

can be estimated using Gibbs sampling. A full description of the model, including prior

assumptions, can be found in Section 9.1.3 in the Appendix.

Results

This section presents results for each of the three models detailed in Section

6. Each of these models was estimated using Gibbs sampling, a Bayesian estimation

technique; unlike classical statistical methods which produce a point estimate for each

parameter, Bayesian methods like Gibbs sampling produce a distribution for each

parameter that is dependent on prior assumptions, the data, and the structure of the

model. Consequentially, I present statistics describing the distribution of each parameter.

The distributions of parameters, especially of productivity, have relatively high variance;

since many of these parameters are then exponentiated to get their economically-intuitive

value, their distributions show significant skew. As a result, I present only estimated
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medians for each parameter as these will give a better view of the central tendency of

these distributions. Parameter estimates for each model estimated are presented in Table

2.

Deterministic Trend in Productivity, Constant Technology

Median estimates from the model with a deterministic trend in productivity and

static technology are presented in the Baseline column of Table 2, and median estimates of

annual productivity for each firm are plotted in Figure 4. While this is the most basic

model presented in this paper, it provides some general insight into productivity and

growth in the industry. First, I estimate that average productivity growth was modest

over the period from 1999 to 2014, with median estimates of 1.2% growth per year on

average across all firms. There is also heterogeneity in productivity across firms; CN, CSX,

NS, and UP show the highest levels of productivity, between 1.65 and 1.708 in 2014, while

KCS has the lowest productivity at 1.52 in 2014. Mean productivity was estimated to be

1.661 in 2014. Estimates of efficiency range from 78.2% to 86.4%, with a mean of 81.4%

across firms.

As discussed in Section 4, the increase in output that results from a input

substitution and increased input usage is given by F (Xit)/F (Xi0), which is represented

by exp((Xit −Xi0)β) in the empirical model. A plot of the proportional increase in output

due to changing input quantities is given in Figure 5. CN, KCS, and the Soo Line all saw

increases in input use over the sample, CSX, NS, and UP all decreased input use, and

BNSF saw little change in output due to changing inputs.

Using a Bayesian estimation framework permits direct evaluation of the probability

that a parameter of interest, like productivity growth, lies within a given range.
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TABLE 9. Posterior Medians and Median Absolute Deviations

Constant Changing
Baseline Technology Technology

Productivity in 2014 (exp(α))
BNSF 1.602 (2.345) 2.594 (0.622) 1.026 (1.513)
CN 1.708 (2.5) 4.962 (1.557) 1.004 (1.487)
CSX 1.682 (2.463) 4.077 (1.045) 0.979 (1.451)
KCS 1.52 (2.224) 2.95 (0.809) 0.873 (1.295)
NS 1.675 (2.453) 3.831 (1.058) 1.116 (1.655)
SOO 1.534 (2.245) 3.296 (1.023) 1.074 (1.592)
UP 1.65 (2.417) 3.82 (0.98) 0.891 (1.321)

Efficiency (exp(−δ))
BNSF 0.814 (0.187) 0.938 (0.056) 0.612 (0.357)
CN 0.864 (0.138) 0.934 (0.043) 0.611 (0.363)
CSX 0.851 (0.16) 0.949 (0.04) 0.611 (0.351)
KCS 0.814 (0.191) 0.925 (0.061) 0.63 (0.357)
NS 0.864 (0.147) 0.954 (0.043) 0.618 (0.356)
SOO 0.782 (0.213) 0.943 (0.054) 0.623 (0.35)
UP 0.85 (0.159) 0.919 (0.064) 0.62 (0.356)

Productivity Trend (τ) 0.012 (0.005)
BNSF 0.002 (0.008) -0.01 (0.582)
CN 0.037 (0.016) 0.008 (0.669)
CSX 0.028 (0.009) 0.001 (0.432)
KCS 0.007 (0.007) -0.008 (0.646)
NS 0.021 (0.007) -0.003 (0.455)
SOO 0.018 (0.008) -0.01 (0.58)
UP 0.021 (0.008) -0.007 (0.597)

Input Parameters
Locomotives -0.249 (1.8) -2.522 (1.216) 0.161 (7.774)
Cars -0.728 (1.894) -1.076 (1.57) 0.245 (7.647)
Road 1.965 (1.82) 0.216 (1.62) 0.383 (7.359)
Fuel 1.354 (1.795) 2.928 (1.274) 0.474 (6.53)
Labor -0.916 (2.088) 1.185 (2.208) 0.476 (6.963)
(Locomotives)2 -0.21 (0.144) -0.46 (0.126) 0.049 (3.475)
(Cars)2 0.586 (0.145) 0.341 (0.303) -0.173 (4.978)
(Road)2 -0.173 (0.114) -0.206 (0.12) 0.22 (3.228)
(Fuel)2 0.165 (0.127) 0.034 (0.153) 0.072 (3.379)
(Labor)2 0.727 (0.401) -0.287 (0.259) 0.102 (4.505)
(Locomotives):(Cars) -0.009 (0.207) -0.009 (0.206) -0.008 (5.846)
(Locomotives):(Road) -0.147 (0.183) -0.486 (0.21) 0.123 (4.963)
(Locomotives):(Fuel) 0.199 (0.204) 0.792 (0.193) 0.059 (4.82)
(Locomotives):(Labor) 0.065 (0.332) -0.022 (0.399) -0.277 (5.417)
(Cars):(Road) 0.082 (0.2) 0.051 (0.179) 0.126 (5.262)
(Cars):(Fuel) 0.285 (0.285) -0.811 (0.216) -0.016 (5.669)
(Cars):(Labor) -1.049 (0.534) 0.61 (0.386) 0.157 (6.147)
(Road):(Fuel) 0.076 (0.196) 0.137 (0.217) -0.277 (4.45)
(Road):(Labor) 0.105 (0.367) 0.348 (0.332) -0.219 (5.076)
(Fuel):(Labor) -0.765 (0.264) -0.121 (0.21) 0.068 (5.884)

Network Characteristics
Avg. Length of Haul 1.592 (1.972) -0.99 (2.241) 0.047 (2.939)
Avg. Speed 0.685 (1.982) -1.438 (1.194) 0.035 (2.926)
Miles of Road -0.788 (1.585) -0.541 (1.344) 0.115 (2.88)
% Unit -3.558 (1.307) -2.04 (1.077) -0.046 (2.891)
% Bulk 2.178 (1.387) 1.544 (1.049) 0.019 (2.983)
(Avg. Length of Haul)2 -0.287 (0.205) 0.027 (0.164) 0.015 (1.66)
(Avg. Speed)2 -0.447 (0.316) -0.187 (0.21) 0.022 (2.497)
(Miles of Road)2 0.061 (0.083) 0.059 (0.066) -0.014 (0.899)
(% Unit)2 -0.069 (0.122) 0.004 (0.089) -0.053 (2.268)
(% Bulk)2 -0.061 (0.147) 0.014 (0.108) -0.095 (2.618)
(Avg. Length of Haul):(Avg. Speed) 0.675 (0.447) 0.51 (0.277) -0.002 (2.535)
(Avg. Length of Haul):(Miles of Road) 0.136 (0.167) 0.049 (0.119) 0.06 (2.103)
(Avg. Length of Haul):(% Unit) 0.776 (0.278) 0.508 (0.219) 0.021 (2.273)
(Avg. Length of Haul):(% Bulk) -0.189 (0.215) -0.267 (0.141) -0.023 (2.351)
(Avg. Speed):(Miles of Road) -0.338 (0.177) -0.197 (0.09) 0.012 (1.908)
(Avg. Speed):(% Unit) -0.113 (0.33) -0.076 (0.148) -0.048 (2.424)
(Avg. Speed):(% Bulk) -0.462 (0.344) -0.479 (0.152) 0.034 (2.672)
(Miles of Road):(% Unit) -0.095 (0.1) -0.047 (0.078) 0.035 (1.51)
(Miles of Road):(% Bulk) 0.026 (0.097) 0.178 (0.06) -0.054 (1.654)
(% Unit):(% Bulk) -0.014 (0.17) 0.12 (0.12) 0.012 (2.641)
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FIGURE 10. Railroad Productivity as a Deterministic Trend

Specifically, the probability that a parameter $ lies within a set S is

Pr($ ∈ S) =
∫
I($ ∈ S)p($|D)d$, (3.19)

where I(·) is an indicator function and p($|D) is the posterior distribution of $

conditional on the data D. I estimate the probability that average productivity increased

(i.e., Pr(τ > 1)) is 99.314%.

In light of these results, one can safely conclude that there has been growth in

average productivity since total consolidation in 1999. This is reassuring, the flexibility

granted to firms by partial deregulation seems to have set the groundwork for continued

long-term growth and sustained viability. However, while the industry appears to be

growing on average, the performance of individual firms is not clear. To investigate how

each railroad has progressed, I turn to my second model.
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Random Walk in Productivity, Constant Technology

Median estimates from the random walk in productivity model are presented in

the Constant Technology column in Table 2. There are several modest differences from

the previous model’s results. First, estimates of productivity and efficiency are lower

for this model; mean productivity is estimated to be 3.684 in 2014 and mean efficiency

was estimated to be 92.9%. I estimate that effective productivity (i.e., the product of

productivity and efficiency) was 3.385 in 2014. Trends in productivity show marked

heterogeneity across firms, and mean productivity growth is estimated to be 1.96% per

year, similar to the 1.2% growth estimated by the previous model.

Productivity for each firm over time is presented in Figures 6 and 7 in two ways.

Figure 6 shows the expectation of firm productivity conditional on firm trends and

information in the year 1999; this is identical to the deterministic part of productivity.

Figure 7 shows estimated productivity, which includes both the trend as well as the

random walk in productivity. The inclusion of the random walk is important because it
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FIGURE 12. Expected Railroad Productivity as a Random Walk With Drift

2.5

3.0

3.5

4.0

4.5

5.0

2000 2005 2010
Year

E
st

im
at

ed
 P

ro
du

ct
iv

ity

Railroad
BNSF

CN

CSX

KCS

NS

SOO

UP

FIGURE 13. Estimated Railroad Productivity as a Random Walk With Drift
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reflects actual year-to-year variation in productivity that cannot be captured by a simple

deterministic trend. There are many factors that could potentially affect productivity, and

it would be neither technically feasible nor even possible given data restrictions to include

them all into the model. By assuming productivity follows a random walk with trend,

variation in productivity can be captured flexibly.17

One can quickly see that actual productivity differs from its expected value. As an

example, NS was expected to have productivity growth of 2.1% per year over the course

of the sample; in actuality, NS received two negative shocks to productivity in 2008 and

2009, which resulted in lower estimated productivity growth of 1.889% per year. This

indicates that there are other factors influencing productivity that cannot be described

by changes in input use and a simple trend. As explained previously, it can be difficult to

attribute an exact cause to these fluctuations.
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FIGURE 14. Increase in Output From Change in Inputs

17Of course, this assumption comes at a cost. While variation in productivity can be identified, the
exact source of this variation cannot. As a result, one can only use institutional knowledge to posit
why firms see fluctuations in productivity; in order to empirically identify what factors drive changes in
productivity, those factors must be explicitly included in the model.
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Estimates of the effect of changing input use on output are shown in Figure 8.

Similar to the previous model, I find that BNSF, CN, KCS, and the Soo Line all increased

the quantity of inputs used while CSX, NS, and UP saw decreases in input quantities. As

noted earlier, CN and Soo Line also saw significant increases in productivity, indicating

both matched increased demand with a combination of neutral factors and increased

inputs.

I again estimate the probability that firms experience positive average growth in

productivity as well as the median value of annualized average growth between 1999

and 2014, and the results are given in Table 3. Estimates suggest that each firm saw

increases in productivity, with median estimates between 0.235% to 3.551% per annum,

and probability of productivity growth between 65.7% and 100%. Further, I estimate the

probability that all firms experience positive growth in productivity is 63.424%.

TABLE 10. Average Productivity Growth

Firm Annual Productivity Growth Probability of Increase
BNSF 0.235% (0.006) 65.7%
CN 3.551% (0.012) 100%
CSX 2.474% (0.007) 99.908%
KCS 0.816% (0.006) 94.102%
NS 1.889% (0.005) 99.992%
SOO 1.657% (0.006) 99.926%
UP 1.869% (0.006) 99.996%

These results offer optimistic outcomes for some firms and a more modest outlook for

others. Similar to Tretheway et al. (1997), which found that CN showed high productivity

growth through 1991, I estimate that CN has the highest productivity in 2014 as well as

the highest growth rate over the sample. As noted by previous research, CN continued to

operate on several less-profitable lines and had yet to fully take advantage of economies of

density through the 1990s; as CN continued to improve on those frontiers, its productivity

increased.
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On the other hand, the remainder of the railroads exhibit modest growth in

productivity. Some of these firms may no longer find it feasible to abandon lines and

make improvements to economies of density and instead must turn towards innovating

their production technology to realize higher growth. This model ignores the possibility of

technological change; to investigate whether firms have been able to increase productivity

through innovation, I turn to my third and final model.

Random Walk in Productivity and Technology

Median estimates from the changing technology model are presented in the Changing

Technology column in Table 2, and median estimated productivity for each firm is

plotted in Figure 9. As explained in Section 4, there are a few key values of interest in

the analysis of productivity in the light of changing technology. First, the productivity

growth estimated by this model does not include changes in productivity due to innovation

but instead reflects growth from factors other than innovation. Both CN and CSX

show growth in productivity due to non-innovative factors at 0.702% and 0.016% per

year, respectively, indicating those firms may still be able to abandon lines and improve

density to increase productivity. All other firms experience stagnating or even declining

productivity due to non-innovative factors at rates between 0.283% and 0.901% per year,

demonstrating that those other methods of increasing productivity are no longer feasible

for these railroads.

The growth in productivity due to technological change relative to the base year is

given by Xi0(βt − β0).18 A plot of the estimated change in productivity due to innovations

for each railroad is presented in Figure 10. Each railroad experienced positive average

growth in productivity due to innovations over the course of the sample. BNSF, KCS,

18Productivity growth due to innovation was given as F1(X0)/F0(X0). Note that this is an analogous
measure because ln(F1(X0)/F0(X0)) = f1(X0)− f0(X0) = X0β1 −X0β0 = X0(β1 − β0).
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FIGURE 15. Estimated Railroad Productivity Accounting For Changing Technology

Soo Line, and UP saw the largest productivity gains due to chnages in technology. On

the other hand, CSX, CN, and NS found more modest increases, indicating those firms

have relied more heavily on other methods to increase their productivity. While I have

a small sample of firms, I find that the large firms (i.e., BNSF and UP) are benefactors

of changing technology; this correlates with the finding of Rose and Joskow (1990) where

large firms are more likely to adopt innovations early due to risk preferences. A plot of

technology-inclusive productivity, the sum of productivity due to innovation and that due

to non-innovative factors, is presented in Figure 11. Overall, BNSF, CN, and Soo Line

have shown the highest growth in total productivity. KCS and UP experienced modest

gains in total productivity over the course of the sample, and all CSX and NS experienced

relatively little productivity growth.

Median estimates of average annual technology-inclusive productivity growth and the

probability that each firm experienced positive growth in productivity are given in Table

4. Productivity growth estimates are much more modest than in previous models; CN saw

the largest expected increase at 3.065% per annum, while NS experienced small decreases
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FIGURE 16. Estimated Change in Productivity Due to Innovations
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FIGURE 17. Estimated Productivity Including Effects of Innovation
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in productivity of 0.007% annually. I estimate the probability that all firms experienced

an increase in productivity between 1999 and 2014 is only 4.688%, indicating it is very

likely that at least one firm saw a decrease in productivity over the sample period.

TABLE 11. Average Productivity Growth

Firm Annual Productivity Growth Probability of Increase
BNSF 2.272% (0.367) 52.324%
CN 3.065% (0.666) 51.792%
CSX 0.037% (0.414) 50.036%
KCS 1.248% (0.468) 51.156%
NS -0.007% (0.395) 49.992%
SOO 2.79% (0.389) 53.064%
UP 1.623% (0.316) 52.028%

The change in output due to input substitution and increased input usage is shown

Figure 12. Most firms didn’t increased or even decreased the amount of inputs they used

over the sample, with the exception of CN. While CN saw decreases in productivity due to

technological change, especially before 2010, it dramatically increased its input use during

that time. This provides evidence that CN relied on increasing its input use rather than

increasing productivity through innovation, especially before 2010.

The preceding analysis examines how innovations affect the productivity of railroads’

original plan of production. To determine whether firms made changes that took

advantage of changing technology, namely by allocating more resources towards more

productive factors, one can examine how changing technology affects new production

plans. In Section 4, I described the comparison of two measures: Technology’s benefit

to the original production plan, Ft(Xt−1)/Ft−1(Xt−1), and the benefit of innovation to

the new production plan, Ft(Xt)/Ft−1(Xt). Since Ft(Xs) is expressible as exp(Xsβt) in

this model, these two ratios can be calculated as exp(Xt−1βt − Xt−1βt−1) and exp(Xtβt −

Xtβt−1), respectively. Recall that if the latter is greater than the former, then the firm

allocated resources towards factors that innovation made more productive; otherwise,
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FIGURE 18. Increase in Output From Change in Inputs

it made changes that clashed with technology change and must have found it cheaper

to increase productivity through means other than input substitution. To exhibit these

results, I calculate distributions of both values for each firm and year. Bayesian estimation

methods make it possible to evaluate the probability that one of these values exceeds the

other; I plot the probability that each firm substitutes towards more productive inputs19

in each year in Figure 10. Every railroad has near 50% probability of substituting towards

more productive inputs and no railroad appears to have consistent behavior. This shows

that firms are largely not able to anticipate changes in the relative productivity of inputs

and make allocative changes in response.

Bayesian Model Selection

An advantage of using a Bayesian estimation framework is that it allows for the

direct computation of model probabilities, which can be used for model selection and

19That is, I calculate the probability that Ft(Xt)/Ft−1(Xt) is greater than Ft(Xt−1)/Ft−1(Xt−1).
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FIGURE 19. Probability of Substituting Towards More Productive Input

averaging of results. Letting each of the previously discussed models be M1, M2, and M3,

respectively, the probability of model Mi being the correct model is

Pr(Mk|D) =
Pr(D|Mk) Pr(Mk)

Pr(D)
=

Pr(D|Mk) Pr(Mk)∑
j Pr(D|Mj) Pr(Mj)

, (3.20)

where Pr(D|Mk) is the marginal likelihood of the data D for model k and Pr(Mk) is the

prior probability of model k, chosen by the researcher. Direct evaluation of the marginal

likelihood is difficult in general, but can be computed using the methods described in Chib

and Jeliazkov (2001).

I assume a uniform prior probability over the above three models, and posterior

model probabilities are given in Table 3. The model that allows both productivity and

technology to follow a random walk with drift has the highest probability of being the

true model. The effects of changing technology have an important effect on productivity

changes, as can be seen from the relatively low probability of the model that only allows a

random walk in productivity and not in technological parameters.
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TABLE 12. Posterior Model Probabilities

Model Prior Probability Posterior Probability
Deterministic trend 1/3 0.24311
Random walk in productivity 1/3 0.08665
Random walk in

1/3 0.67024
productivity and technology

TABLE 13. Average Productivity Growth

Firm Annual Productivity Growth Probability of Increase
BNSF 1.817% (0.247) 64.907%
CN 2.636% (0.449) 67.522%
CSX 0.513% (0.279) 66.337%
KCS 1.181% (0.315) 66.585%
NS 0.433% (0.266) 66.315%
SOO 2.287% (0.262) 68.368%
UP 1.524% (0.213) 67.68%

Finally, I calculate median productivity for each firm over time, median productivity

growth over the course of the sample, and the probability that firms experienced increases

in productivity between 1999 and 2014 using Bayesian model averaging, which calculates

parameters of interest for each model and weights them by their respective model

probabilities. Specifically, for a statistic of interest $, the average of $ over the models

is

E[$|D] =
∑
k

$k Pr(Mk|D),

where $k is the estimated value of $ in model k. Estimated productivity growth and

the probability that each firm experienced growth in productivity over the course of the

sample are given in Table 4, and figure 11 plots productivity averaged over the models for

each firm over time.

Model average results show that CN experienced an average annual productivity

growth of 2.636% per year between 1999 and 2014, the greatest of all firms in the sample;

CSX and NS showed the least growth, at 0.513% and 0.433%, respectively, while the

92



1.3

1.5

1.7

2000 2005 2010
Year

E
st

im
at

ed
 P

ro
du

ct
iv

ity

Railroad
BNSF

CN

CSX

KCS

NS

SOO

UP

FIGURE 20. Model Average of Productivity Over Time

remainder of the firms saw productivity growth between 1.181% and 2.287% annually.

Each firm had a relatively high probability of experiencing positive growth, between

64.907% and 68.368%. Finally, I calculate that the probability that all firms experienced

positive growth 32.782%, meaning it is more likely than not that at least one firm saw a

decrease in productivity between 1999 and 2014.

Conclusion

The level and growth of productivity offer important insight into the functioning

of an industry, from its economies of scale to important factors of growth and even

its long-term viability. The railroad industry has changed dramatically since partial

deregulation 1980, which occurred largely because of worries about regulation and its

effect on productivity growth. Many studies have examined the growth in productivity

immediately following the industry’s partial deregulation, but few have looked at how

productivity has changed since the industry became more stable in 1999. Following the
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massive changes that occurred through the 1980s and early 1990s, it is unlikely that

firms will be able to continue pursuing broad changes like line abandonment to increase

productivity. Instead, they need to turn towards improving technology and substituting

inputs towards more productive factors to increase their productivity.

Unfortunately, existing models of productivity fail to account for technological

change. In this paper, I develop a model that flexibly accounts for changes in productivity

and technology and use it to decompose changes in productivity into those caused by

innovation and those caused by other factors. To my knowledge, no published research

exists that separately identifies productivity growth due to technological change and

that due to broad non-innovative changes. Further, this model allows productivity

and technology to evolve flexibly over time and can produce estimates of the level of

productivity and its growth, which can inform key values in regulation. Finally, I discover

a metric that determines whether firms have allocated additional resources towards factors

that innovation makes more productive in order to realize further productivity gains. I

apply my model to the railroad industry to investigate the recent change in productivity

and to determine whether it is being driven by technological change or factors other than

innovation.

I find that each Class I railroad has likely seen productivity growth since 1999, but

the driving forces behind this growth differ. BNSF, KCS, Soo Line, and UP have seen

large increases in its productivity due to technological change, by as much as 60% between

1999 and 2014. On the other hand, CN, KCS, and NS saw much slower growth induced

by changing technology. Instead, these railroads relied on other methods to increase

productivity, such as continuing to abandon unprofitable lines. The probability that firms

substituted inputs towards factors that technological change makes more productive is

about 50%, with no discernible pattern across firms or over time, indicating that railroads
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are not able to anticipate innovations or simply aren’t adjusting inputs to take advantage

of technological change. Finally, I perform Bayesian model selection and find that the

model that allows for flexibility in both productivity and technology has the highest

probability of being the true model. Using Bayesian model averaging, I find that each firm

experienced modest growth in productivity between 1999 and 2014, with median estimates

ranging from 0.433% to 2.636% per year. This chapter investigates productivity broadly,

so to more clearly identify inefficiency in production and its relationship to regulation

and competition, I turn to my fourth chapter, “Competitive Pressures and Inefficiency in

Allocation.”
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CHAPTER IV

COMPETITIVE PRESSURES AND INEFFICIENCY IN ALLOCATION

Abstract

There is a wealth of literature that points to inefficiencies in production. Inefficiencies
can arise in the production of outputs from overutilization of inputs in the production
process (technical inefficiency) or from errors in optimization that misalign factor prices
and optimal input decisions (allocative inefficiency). In examinations of inefficiency, many
studies use an inflexible production technology that fails to account for differences in the
technology of firms, which has the potential to bias estimates of allocative inefficiency.
In this study, I develop a model that flexibly accounts for differences in the production
process across firms. I use the model to derive optimal input quantities for each firm and
compare them to observed quantities to obtain estimates of allocative inefficiency. Using
Bayesian model selection, I find that incorporating flexibility in production is appropriate
and necessary for obtaining unbiased estimates of allocative inefficiency. Next, I find that
firms generally overcapitalize in the rate-regulated rail industry, providing evidence of the
Averch-Johnson effect. Finally, I allow allocative errors to be correlated with variables
describing competitive pressures and find that greater market power is associated with less
allocative inefficiency, providing evidence against X-inefficiencies.
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Introduction

Beginning with the seminal work of Leibenstein (1966), researchers have recognized

that the inefficiency of firms can emanate from a lack of competitive pressure that

allows firms to depart from normal activities to reduce costs. There is an abundance

of research investigating firms’ inefficiency in production, which can arise both from

technical inefficiencies in the application of inputs and allocative inefficiencies where there

are errors in the optimal allocation of inputs. While technical inefficiencies emerge from

the production process, allocative inefficiencies are caused by mistakes in the decision-

making process of firms. There are many reasons why inefficiency in allocation exists, from

imperfect observation of factor prices to stickiness in the amounts of inputs used, or even

that firms may find reducing allocative errors more costly than the errors themselves.

In this paper I reexamine these issues by developing and estimating a model that

encompasses both forms of inefficiencies and also the effect of competition on inefficiency.

Unlike much of the previous research, I develop a model that describes production flexibly,

accounts for differences in the production technology across firms, and evaluates the role of

competitive pressures.

Allocative inefficiency has been studied extensively, but I introduce a model that

offers some important extensions. I remain agnostic of the exact causes of allocative

inefficiency, but I focus on measuring allocative errors and determining their relationship

with firm characteristics. First, existing models that estimate allocative inefficiency fail

to account for differences in the production process between firms. As noted by Tsionas

(2002), accounting for differences in production is necessary to obtain unbiased estimates

of technical inefficiency, but is presumably also crucial to estimate allocative inefficiency.

As an example, if some firm uses a given input more productively than another, then

it should use relatively more of that input to maximize profit. Thus, assuming that all
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firms share the production technology can lead to biases in estimates of allocative errors.

Additionally, I allow total factor productivity to follow a random-walk with drift, which

is a flexible form that is able to capture idiosyncratic shocks in productivity that could

otherwise lead to bias in estimates of inefficiency. Using this extended framework, I

can test whether allowing firm production to vary is appropriate using Bayesian model

selection. I also look for evidence of overcapitalization, which would support the Averch-

Johnson hypothesis that firms in rate-regulated industries over-invest in capital so that

total profit allowed by regulation is greater.

Finally, firms may face different incentives to reduce allocative inefficiencies. If some

firm is able to attract higher quality inputs, the cost of a mistake in allocation will be

higher, providing a greater incentive to minimize such errors. It is also possible that so

called “X-inefficiencies” contribute to allocative inefficiencies. As first noted in Leibenstein

(1966), firms with large market power may not face sufficient incentives to minimize costs

by, for example, reducing errors in the allocation of inputs. I introduce a model that

allows allocative inefficiencies to be correlated with competitive pressures to test for the

effects of input quality and X-inefficiencies on the allocation process.

I apply my model to the railroad industry. The industry is ideal for this analysis

because of its history of regulation and the geographically distinct nature of many firms.

First, partial deregulation of the industry dramatically reduced costs and improved

firm viability but also resulted in the consolidation of the industry into just seven firms,

causing concerns of excess market power. Second, there is little geographic overlap across

railroad networks, which only exacerbates the problem of market power but also means

firms can face different input supply markets and therefore different input quality. While

there has been research examining allocative inefficiency in the railroad industry (most

notably by Kumbhakar (1988)), I am not aware of any published research that has used a
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flexible form for the production function, allowed for variability in production across firms,

or investigated the relationship between allocation errors and firm characteristics.

I first find that controlling for differences in the production technology over firms is

appropriate, and failure to do so will result in biased estimates of allocative inefficiency.

Next, I find strong evidence of overcapitalization in the rail industry and no significant

evidence of undercapitalization. Since the industry is rate-regulated, this finding suggests

the Averch-Johnson effect may hold for railroads. Finally, I find that as measures of

market power increase, allocative errors decrease or don’t change at all. This finding

appears to refute the existence of X-inefficiencies in the rail industry since we would

expect to see allocative errors increase with an increase in market power if X-inefficiencies

were present.

I begin by reviewing the history of regulation, productivity, and inefficiency in the

railroad industry. I continue by reviewing the literature relevant to the estimation of

allocative inefficiency and its study in the railroad industry. I then develop my theoretical

model of production. The data sources are described, and empirical models are presented.

I then review and interpret results and follow with a conclusion.

Institutional Background

The railroad industry has faced some form of federal regulation since the passage

of the Interstate Commerce Act (ICA) of 1887. While there was significant competition

between railroads on a large scale before regulation, firms tended to operate more

as monopolies on a local scale (Brown, 2013). Railroads readily engaged in price

discrimination based on shipper’s access to competing modes and willingness to pay.

Firms would also often act as cartels, and many shippers were affected by excessive

rates (MacDonald and Cavalluzzo, 1996). The ICA established the Interstate Commerce
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Commission, which was granted the ability to set maximum rates, oversee mergers, and

ensure availability of services (Hilton, 1966). Regulation caused shippers to see more

reasonable rates and encouraged healthy competition in the industry (MacDonald and

Cavalluzzo, 1996).

The development and improvement of competing modes of transportation and

changes to the types of goods being shipped caused existing regulation to impede efficiency

as the 20th century progressed. Not only were new modes of transportation like truck

and air able to transport goods faster and serve more customers, but efficiency of barges

had improved and plastics, which are much less dense than other bulk materials, began to

constitute a greater part of all shipments (Wilson, 1994). As a result, railroad profits fell,

and many raised concerns over the inefficiency of regulation and working with a bloated

regulatory agency (Lahner, 1975). The industry was partially deregulated with the passage

of the 4R Act of 1976 and the Staggers Act of 1980. Deregulation granted firms much

more flexibility over the rates they set, allowed for contracts to be negotiated, granted

the regulatory agency less oversight over mergers, and allowed railroads to more easily

abandon lines (Johnson and Thomas, 1983).

Deregulation certainly resulted in efficiency improvements. First, since railroads

were operating many unprofitable routes and had significant excess capacity, there were

enormous gains to be realized in economies of density (Keeler, 1974). After deregulation,

railroads began abandoning lines to realize benefits of increased density, and the total

network controlled by Class I railroads fell from 164,822 miles in 1980 to just 95,391

miles in 2013 (United States Surface Transportation Board, 2015). The abolishment of

minimum rate regulation had a more humble effect; railroads were not able to use their

greater flexibility in pricing to attract as much traffic from competing modes as previously

thought, and the effect of rate deregulation on prices was negligible (Boyer, 1987).
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Railroads also aggressively pursued mergers and acquisitions following partial deregulation.

The number of Class I railroads fell from 40 in 1980 to 7 by 1999, where it remains today.

The merging of firms has two contradictory effects on efficiency. On the one hand, larger

firms are able to take advantage of economies of scale, which are prevalent in the railroad

industry. On the other hand, mergers reduce the level of competition in the market,

potentially putting upward pressure on prices and reducing the incentive to minimize

costs. However, between 1986 and 2001, consumer surplus rose by about 30% in U.S. rail

freight markets, indicating that the benefits of mergers appear to have outweighed the

cost, at least initially (Ivaldi and McCullough, 2005). Overall, cost savings amounted to

up to 40% by 1989, though they have leveled off more recently (Wilson, 1997).

The more recent effects of reduced competition on the railroad industry have been

less studied. While many have looked towards excessive rates and market power,1 few

have examined efficiency losses. As firms experience lower levels of competition, they

not only lose the incentive to keep prices low, but also have less incentive to minimize

costs (Leibenstein, 1966). Further, I am not aware of any published research that has

examined the effect of excess market power on errors in the allocation of inputs. While

precise allocation reduces production costs and may be important for competitive firms,

the allocation process is costly and railroads that face lower levels of competition may not

have the incentive to invest in accurate allocation.

Literature Review

The inefficiency of firms has been studied in a number of contexts. Inefficiency has

been separated into many components including technical and allocative, and various

methods have been used to empirically estimate these values. While the inefficiency

1For examples of studies that examine railroad pricing after deregulation, see Bitzan and Wilson
(2007), McFarland (1987), and MacDonald and Cavalluzzo (1996).
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of many industries has been studied, railroads have long been a focal point due to the

structure and importance of the industry and its history of regulation. In this section, I

first review the relevant literature surrounding the study of inefficiency, its various types,

and methods used for its estimation. I then cover studies of inefficiency in the railroad

industry, how they relate to regulation, and areas that have been less examined.

Sources of Inefficiency

Researchers have long been interested in measuring inefficiency, defined as the

realized deviation from maximum possible output. As the study of inefficiency grew, new

sources were discovered and quantified, ranging from technical inefficiencies in production

to suboptimal allocation of inputs to absence of incentives to minimize costs when there is

a lack of competition. While inefficiency has been discussed, measured, and studied using

a variety of methods, most current empirical work relies on stochastic frontier models. In

this section I review the study of inefficiency and its various sources and how it has been

empirically measured.

Aigner et al. (1977) began the empirical study of inefficiency with the introduction

of the stochastic frontier model. In contrast with traditional production models like

Solow (1957) that assume any empirical errors are driven by differences in productivity,

stochastic frontier models separate errors into differences in productivity, inefficiency, and

measurement error by invoking a structural assumption on inefficiency. Since it is defined

as deviation from maximum possible output, inefficiency inherently one-sided; that is,

inefficiency must be non-negative and cannot exceed 100%. By assuming it follows a one-

sided distribution such as log-normal or half-normal, it is possible to separately identify

inefficiency from the two-sided measurement error. By further imposing structure on
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productivity, specifically that it is constant across firms and time, the authors were able

to separately estimate productivity, inefficiency, and measurement error.

While standard stochastic frontier models can estimate inefficiency, they are not

able to assign a cause to it. There have been many extensions made to the stochastic

frontier model to ascertain these causes. Perhaps most notably, Schmidt and Lovell (1979)

introduces the concept of allocative inefficiency, which occurs when firms make errors

in the allocation of inputs. There could be several causes for these errors. On the one

hand, firms may not accurately observe prices, leading them to use a suboptimal bundle

of inputs; on the other hand, firms may also incorrectly predict needed input quantities or

may face rigidities that make selecting the optimal input allocation difficult or impossible.

The authors extend the standard stochastic frontier framework to model input demand

via the first-order condition for the firm’s profit maximization problem. By comparing

the optimal and actual input allocations, it is possible to find systematic over- or under-

allocation towards specific inputs and calculate the profit loss from this inefficiency.

Further, the underlying stochastic frontier model provides another measure of inefficiency,

which the authors call technical inefficiency, otherwise known as inefficiency in production.

The authors analyze privately-owned steam-electric generating plants and find evidence of

overuse of capital goods, providing evidence of the Averch-Johnson effect, where firms in

heavily regulated industries, especially those that focus on the price-to-capital ratio, will

tend to overcapitalize to increase profit potential.

Still other researchers have focused on precise causes of inefficiency. Oum and

Zhang (1995) examine the U.S. telephone industry and how the introduction of new

firms and competition affects allocative inefficiencies. The authors found that when a

new firm enters a market, the increased competition reduces incumbent firms’ over-

allocation towards capital inputs caused by the Averch-Johnson effect. Kumbhakar et al.
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(1991) investigates causes of both technical and allocative inefficiency in U.S. dairy farms

using a Cobb-Douglas production function. The authors relate inefficiency to various

characteristics of farms including their size and education of the owner. Higher levels of

education reduced both technical and allocative inefficiency, while larger farms had lower

technical inefficiency but similar allocative inefficiency compared to small- and medium-

sized farms.

In studying efficiency, it is also important to consider variation in the production

process across firms. Tsionas (2002) used a stochastic frontier framework with random

coefficients to study technical inefficiency. The author found that differences in production

were responsible for most of the apparent variation in inefficiency. When the author

assumed production was constant across firms, inefficiency was high and variable; when

the author allowed for variation in the production process, firms were found to be highly

efficient with far lower differences in efficiency across firms. While it certainly appears

important to consider variability in firm production, I am not aware of any research that

considers how those differences might bias estimates of allocative inefficiency.

Inefficiency of Railroads

The inefficiency of railroads has long been a focal point of research and has

driven discussion of the regulation and partial deregulation of the industry. Prior to

the partial deregulation of the industry, many worried that existing regulation impeded

efficiency. Railroads expressed concerns over their own viability in the current regulatory

environment and how efficiency was affected not only by firm’s limited ability to set rates,

merge with others, or abandon unprofitable routes but also by how cumbersome it was

to work with regulatory agencies (Lahner, 1975). Caves et al. (1981a) compared the

performance U.S. railroads with their less-regulated Canadian counterparts and found
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that while U.S. railroads faced higher demand and generally better economic conditions,

Canadian firms experienced greater productivity growth, with excessive regulation being a

major cause. Had U.S. railroads grown at the same rate as their Canadian counterparts,

industry costs would have been up to 41% or $4 billion lower in 1974. Many believed that

specifically allowing railroads greater flexibility over rate setting would result in large

efficiency gains and improvements in viability by allowing them to more easily compete

with other modes of transportation, especially highway trucking (Harbeson, 1969).2

Still others found that deregulation would have a substantial effect on efficiency, but

not because of rate flexibility but rather the ability to merge and abandon unprofitable

lines (Boyer, 1987). Finally, others worried that deregulation would result in insufficient

competition in the industry, leading firms to have little incentive to either reduce prices or

minimize costs, potentially causing net social welfare losses (Johnson and Thomas, 1983).

Once the industry was partially deregulated in 1976 with the passage of the 4R Act

and in 1980 with the passage of the Staggers Act, the effects on the industry could be

more clearly seen. First, flexibility in rate setting appears to have improved the profits

and viability of firms but may result in welfare losses (Boyer, 1987). Levin (1981a) found

that in combination with other effects of deregulation, such as the ability to more easily

merge and abandon lines, competition would fall, especially considering the geographically

distinct nature of railroad networks. It was possible for regulators to promote competition

in the industry by, for example, more carefully scrutinizing parallel over end-to-end

mergers. However, more attention was paid to rate regulation which had the ability to

limit welfare losses from excessive rates, but did little to maintain competition and provide

an incentive to minimize costs (Levin, 1981b). Surprisingly, mergers had little overall

2For more reading on the idea that rate regulation was the greatest source of inefficiency among
railroads, see Meyer et al. (1959), Friedlaender (1969), and Moore (1975).
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effect on efficiency, indicating that gains earned from exercising economies of scale and

scope may have been lost to the lack of competition (Chapin and Schmidt, 1999).

Few have examined the allocative inefficiency of railroads, especially recently.

Notably, Kumbhakar (1988) measures the allocative errors in the industry prior

to deregulation and found that between 1951 and 1975, allocative inefficiency rose

dramatically for the industry as a whole, from 12.03% to 20.4% of costs, clearly indicating

the need for deregulation of the industry. While many have examined the effects of falling

competitive forces on prices, especially on a local level3, I am not aware of any published

research that examines the recent inefficiency of railroads (either technical or allocative)

and how they relate to competitive pressures and input quality.

Conceptual Framework

I begin by assuming production is Hicks-neutral with an inefficiency component:

Qit = AitFi(Xit; Φit)∆it. (4.1)

In this equation, Qit is the output of firm i in year t, Ait represents firm i’s total factor

productivity in year t, Fi is a transformation function that is constant across time but

specific to firm i, Xit measures inputs, Φit measures firm and network characteristics, and

∆it is a number between zero and one that quantifies efficiency. It is important to include

inefficiency into the specification of the production function to draw a distinction between

a firm’s production potential and its actual level of output (Aigner et al., 1977). In order

to maintain minimal assumptions about the shape of the production function, I opt to

3For more reading, see Bitzan and Wilson (2007), McFarland (1987), MacDonald and Cavalluzzo
(1996), and Burton and Wilson (2006).
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approximate it using a first-order log Taylor approximation:

qit ≈ αit − δit +
∑
j

∂ lnFi
∂ lnXj

xjit +
∑
j

∂ lnFi
∂ ln Φj

ϕjit. (4.2)

Lower-case variables are log-transformed versions of upper case variables, and superscripts

index vectors of variables. As an exception, ∆it = exp(−δit), and the inefficiency term

δit is restricted to be positive to ensure that the efficiency term ∆it is between zero and

one. Letting partial derivatives with respect to inputs be called βi and those with respect

to network characteristics be called θi, Equation (4.2) can then be rewritten in log-linear

form as

qit ≈ αit − δit +
∑
j

βji x
j
it +

∑
j

θjiϕ
j
it. (4.3)

Finally, I gather inputs xjit into xit and characteristics θji into θi and label errors accrued in

approximation and measurement εit, so log production can be expressed exactly as

qit = αit − δit + xitβi + ϕitθi + εit. (4.4)

As is, equation (4.4) assumes exact cost minimization, and as a result, the

inefficiency term δ in only captures technical inefficiencies that are the result of “an

equiproportianate overutilization of all inputs” (Schmidt and Lovell, 1979). Since this

research is also concerned with allocative inefficiencies that result from using suboptimal

proportions of inputs, I also model the firm’s choice of inputs to separate technical from

allocative inefficiency. Assuming firms are price-takers, profit can be written as

π(Xit) = PitQit −
∑
j

W j
itX

j
it, (4.5)
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where Pit is the price firm i receives for its output in year t, W j
it is the price of input j for

firm i in year t, and output Qit depends on inputs Xit. The first-order condition for profit

maximization4 with respect to input k is given by

∂π

∂Xk
it

= Pit
∂Qit

∂Xk
it

−W k
it = 0, (4.6)

which implies that

∂Qit

∂Xk
it

=
W k
it

Pit
. (4.7)

Now, since Qit had a Cobb-Douglas form, this condition has a closed-form solution. First

notice that

∂Qit

∂Xk
it

Xk
it

Qit

=
∂ lnQit

∂ lnXk
it

= βki . (4.8)

Thus, using the condition from equation (4.6),

W k
it

Pit
=
∂Qit

∂Xk
it

= βki
Qit

Xk
it

. (4.9)

Rewritten,

Xk
it = βki

PitQit

W k
it

. (4.10)

Then, denoting the capital input X1
it, the optimal ratio of capital to input k is

X1
it

Xk
it

=
β1
iW

k
it

βkiW
1
it

, (4.11)

or in logarithms,

x1
it − xkit = log

Ç
β1
i

βki

å
− log

Ç
W 1
it

W k
it

å
. (4.12)

4I assume production is concave so that there is a solution to the firm’s problem, and I assume firms
use positive amounts of each input, which is verified empirically.
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Now, I assume that firms experience allocative inefficiency, i.e., deviation from optimal

input use. I measure these deviations with errors ηkit so that the observed ratio of capital

to input k is

x1
it − xkit = log

Ç
β1
i

βki

å
− log

Ç
W 1
it

W k
it

å
+ ηkit. (4.13)

I also assume that there are systematic allocative errors, so that ηkit ∼ N(µki , σ
k
i ). Here, µki

represents the average amount firm i overcapitalizes relative to input k.

Data

To conduct my analysis, I use data from R1 financial forms filed with the United

States Surface Transportation Board (STB). These forms are filed annually by each Class

I railroad and describe financial and operating statistics. The data cover the time period

from 1999 to 2014. This period was chosen because all Class I mergers occurred before

1999 and railroad operations have been relatively stable since, providing a sample over

which differences in productions technologies across firms can be more easily identified.

The Class I railroads in this sample are Burlington Northern Santa Fe (BNSF), the

Canadian National Railway (CN), CSX Transportation (CSX), the Kansas City Southern

Railway (KCS), the Norfolk Southern Railway (NS), the Soo Line Railroad (SOO)5, and

the Union Pacific Railroad (UP). Descriptive statistics are presented in Table 4.1.

The dependent variable in my analysis is aggregate revenue-ton-miles, defined as one

ton of product which generates railroad revenue that is shipped one mile. I describe the

output of revenue-ton-miles with input use and characteristics of the railroad’s network.

There are many inputs described in the R1 forms, and I use total numbers of cars and

locomotives, total number of hours worked, amount of fuel consumed, and the book

5While Canadian Pacific Railway has owned the Soo Line Railroad since 1990, Soo changed in name to
Canadian Pacific in the early 2000s; I will continue to refer to this railroad as SOO.
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value of capital. I also control for several characteristics that differentiate production

across firms. First, I include the traffic mix for each railroad, which includes both the

types of goods being shipped and the different types of shipments that railroads provide

(Tretheway et al., 1997). Empirically, I include the percentage of shipments that contain

bulk goods6 and the percentage of shipments that are on unit trains. I also control for

the size of railroad networks, empirically represented by miles of road, defined as the

total length of non-redundant track controlled by a firm. As noted by Bitzan and Wilson

(2007), shipment distance is an important factor in production, so I control for the average

length of haul. Finally, the quality of track may have an important effect on efficiency and

maintenance costs. As discussed in Wilson (1997), average train speed should be positively

correlated with track quality, so I also include it as a network characteristic.

In order to determine optimal input quantities, I use factor prices for each input.

These prices are easy to calculate for labor and fuel because the R1 forms contain total

costs and quantities for those factors. However, the economic cost of cars, locomotives,

and track are not directly available. I infer that the opportunity cost of a capital input j is

Annual Depreciationj + ROIj

Xj

,

where Xj is the amount of input j used, ROIj = (Investmentj−Accumulated Depreciationj)×

CostK , and CostK is the cost of capital. The R1 forms contain information on investment,

depreciation, and input quantities, and I use the Rail Cost Adjustment Factor (RCAF)

published by the American Association of Railroads as the cost of capital. Finally, I use

average output price, defined as total revenue divided by revenue-ton-miles, as my measure

6I define bulk products as belonging to one of the following categories: Metallic ores, nonmetallic
minerals (not fuels), waste/scrap metals, clay/concrete/glass/stone, farm products.
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of price. All nominal variables have been deflated using the GDP price deflator published

by FRED with 2009 as the base year.

Empirical Models

Common Technology

From Section 4, recall that output is expressed as

qit = αit − δit + xitβi + ϕitθi + εit. (4.14)

First, it is not possible to separately identify αit, δit, and εit without assuming additional

structure. I first assume that inefficiency is constant across time, so that δit = δi for all

t. Additionally, I use the assumption that inefficiency is one-sided (specifically that δi ∼

N+(0, σδ)) to identify δi. I also assume that network characteristics affect firms in the

same way, so that θi = θ. For the moment, I also assume firms share the same production

process, so βi = β. Finally, to flexibly capture changes in productivity over time, I assume

it follows a random-walk with drift.7 Specifically, I assume that

αit = αit−1 + τi + νit, (4.15)

where τi is the trend in firm i’s productivity and νit is a normally distributed error term.

With these assumptions, the production function becomes

qit = αit − δi + xitβ + ϕitθ + εit. (4.16)

7For more examples of the various uses of time-varying-parameter models, see Leybourne (1993),
Mazzocchi (2003), and Del Negro and Otrok (2008).
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I assume that νit ∼ iid N(0, σν), δi ∼ iid N+(0, σδ), and εit ∼ iid N(0, σε). For details on

prior assumptions over the parameters, see the Appendix.

Next, recall that firm i’s overcapitalization relative to input k in year t is given by

x1
it − xkit = log

Ç
β1

βk

å
− log

Ç
W 1
it

W k
it

å
+ ηkit. (4.17)

Once again, I assume that ηkit ∼ N(µη, ση), which captures systematic allocative

inefficiencies.

Estimation of this model is similar to that of traditional stochastic frontier

models. I use a Bayesian estimation framework to both mitigate problems of parameter

instability and to properly express parameter uncertainty, both of which are issues that

commonly appear when classical methods are used to estimate these types of models (van

Den Broeck et al., 1994; Koop et al., 1995). Since the model includes equations describing

both output and input decisions, estimation is conducted in stages. First, parameters in

the output equation (including β) are drawn using Gibbs sampling. Then, conditional

on a value for β, allocative errors can be computed and parameters describing mean and

variance of allocative errors can be drawn via Gibbs sampling.

Of course, firms transform inputs to output differently from each other, and those

differences can influence how allocative inefficiency is estimated. To investigate the impact

of these differences, I turn to my second empirical model.

Variation in Production

Variability in the production process can clearly have an effect on estimates of

allocative inefficiency. As an example, if one firm has an appreciably higher productivity

of capital, it will optimally use less capital than other firms. Under the assumption
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of uniform production, this difference in productivity manifests as a bias towards

overcapitalization.8 To capture differences in production processes across firms and control

for its effect on estimates of allocative inefficiency, I assume that βi can vary by firm. This

makes the output and inefficiency equations

qit = αit − δi + xitβi + ϕitθ + εit (4.18)

x1
it − xkit = log

Ç
β1
i

βki

å
− log

Ç
W 1
it

W k
it

å
+ ηkit. (4.19)

To separately identify each βi, I assume they come from a common distribution;

specifically, I assume that

βi ∼ N(µβ,Σβ). (4.20)

Estimation is again carried out in a Bayesian framework and follows two stages. The

first draws samples of parameters in the output equation through Gibbs sampling, and

the second draws values of parameters related to allocative inefficiency, also via Gibbs

sampling. For more detail on the sampler and prior assumptions over the parameters, see

the Appendix.

While this model describes the inefficiency of firms, it doesn’t attribute any cause

to those inefficiencies. To investigate the effect of firm characteristics on misallocation of

inputs, I turn to my final model.

Relating Misallocation and Firm Characteristics

In this model, I draw connections between allocative errors and firm characteristics,

especially those related to competition and input quality. That is, rather than simply

8This can also be seen in equation (4.13); if firm i’s β1 increases, allocative inefficiency ηki must be
decrease to maintain the equality.
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estimating the amount of allocative inefficiency as in equation (4.17), I assume that

x1
it − xkit = log

Ç
β1
i

βki

å
− log

Ç
W 1
it

W k
it

å
+ Citγk + ηkit. (4.21)

where Cit describes competitive pressures felt by firm i in year t and ηkit is a normally

distributed empirical error. Thus, γk captures the effect of competitive pressures on the

allocative error in input k. If X-inefficiencies are present and variables Cit positively

measure competition, we would expect those variables to increase the magnitude of

misallocation. If the industry is generally overcapitalized so that x1
it − xkit > 0, then we

would expect coefficients γk to be positive if X-inefficiencies exist.

I maintain the other assumptions of the model, and as a result, estimation follows

a similar process. Conditional on having prior assumptions over the parameters of this

model, sampling follows a two stage process where parameters can be drawn via Gibbs

sampling.

Results

This section presents and discusses results of the three empirical models discussed in

the previous section. While specific results will be discussed in the proceeding subsections,

parameter estimates and estimates of allocative inefficiency for each of the models can be

found in Tables 2 and 3, respectively. Further, estimates of returns to scale, which is equal

to the sum of input elasticities, are given in Table 4. Recall that I use Bayesian methods

to estimate these models, which yields a probability distribution for each parameter

conditional on the data and prior assumptions over the parameters. The estimates

presented in the following section are the means of the distributions, and estimates in

parentheses represent standard deviations.

115



TABLE 15. Parameter Estimates

Common Random Competitive
Production Production Variables

Technical inefficiency
BNSF 0.279 0.317 0.338

(0.348) (0.412) (0.469)
CN 0.305 0.324 0.3

(0.464) (0.411) (0.416)
CSX 0.293 0.34 0.324

(0.417) (0.457) (0.46)
KCS 0.296 0.325 0.304

(0.363) (0.491) (0.387)
NS 0.299 0.351 0.315

(0.38) (0.518) (0.402)
SOO 0.308 0.326 0.312

(0.432) (0.448) (0.43)
UP 0.303 0.34 0.32

(0.437) (0.509) (0.434)
Input productivities

Capital 0.17 0.195 0.13
(0.053) (0.083) (0.024)

Cars 0.09 0.151 0.157
(0.073) (0.076) (0.099)

Locomotives 0.372 0.464 0.484
(0.075) (0.231) (0.165)

Fuel 0.346 0.236 0.257
(0.106) (0.098) (0.032)

Labor 0.051 0.085 0.097
(0.042) (0.042) (0.032)

Network characteristics
Average length of haul 0.538 0.532 0.506

(0.122) (0.113) (0.116)
Miles of road -0.277 -0.271 -0.276

(0.126) (0.131) (0.123)
Percent unit 0.049 0.049 0.032

(0.049) (0.042) (0.044)
Percent bulk -0.07 -0.047 -0.082

(0.079) (0.076) (0.076)

N 112 112 112
Model probability 0.2911 0.51947 0.18943

116



TABLE 16. Allocative Inefficiency Relative to Capital

Common Random Competitive Common Random Competitive
Production Production Variables Production Production Variables

BNSF NS
Cars 2.016 2.498 2.541 Cars 0.673 0.173 0.862

(1.134) (1.026) (0.983) (0.496) (0.794) (0.683)
Locomotives 1.473 2.665 2.522 Locomotives 0.891 0.282 0.952

(1.134) (0.994) (0.902) (0.491) (0.783) (0.7)
Fuel 0.965 1.686 2.537 Fuel 0.945 0.536 0.88

(1.139) (1.102) (0.951) (0.498) (0.725) (0.683)
Labor 1.972 2.472 2.521 Labor 0.617 -0.19 0.951

(1.143) (0.99) (0.906) (0.497) (0.837) (0.7)
CN SOO

Cars 0.965 1.79 2.534 Cars 0.937 0.081 0.854
(1.138) (0.886) (0.928) (0.489) (0.793) (0.684)

Locomotives 0.724 1.009 2.521 Locomotives 0.414 0.722 1.22
(1.162) (0.929) (0.906) (1.025) (1.233) (1.031)

Fuel 1.947 2.233 2.539 Fuel 1.619 2.289 2.089
(1.14) (0.954) (0.963) (1.024) (1.056) (1.039)

Labor 1.439 1.517 2.315 Labor 0.169 0.801 1.392
(0.472) (0.663) (0.591) (1.021) (0.965) (1.026)

CSX UP
Cars 2.497 1.902 2.378 Cars 1.041 1.558 2.18

(0.459) (0.963) (0.588) (1.023) (0.997) (1.045)
Locomotives 1.735 2.129 2.327 Locomotives 0.215 0.907 1.552

(0.445) (0.585) (0.579) (1.022) (0.998) (1.024)
Fuel 1.708 1.539 2.385 Fuel 0.685 0.823 2.177

(0.463) (0.619) (0.596) (1.028) (1.086) (1.044)
Labor 1.839 2.417 2.339 Labor 0.351 0.677 1.327

(0.454) (0.569) (0.572) (1.023) (1.014) (1.027)
KCS

Cars 1.548 1.431 2.385
(0.459) (0.626) (0.595)

Locomotives 1.584 1.75 2.322
(0.456) (0.592) (0.583)

Fuel 0.911 0.157 0.842
(0.489) (0.836) (0.686)

Labor 1.202 1.255 0.941
(0.498) (0.861) (0.696)
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TABLE 17. Returns to Scale

Common Random Competitive
Production Production Variables

BNSF 1.03 1.158 1.192
(0.118) (0.185) (0.141)

CN 1.03 0.873 0.872
(0.118) (0.171) (0.141)

CSX 1.03 1.242 1.199
(0.118) (0.191) (0.164)

KCS 1.03 1.083 1.066
(0.118) (0.184) (0.143)

NS 1.03 1.263 1.243
(0.118) (0.178) (0.164)

SOO 1.03 1.076 1.176
(0.118) (0.153) (0.153)

UP 1.03 1.192 1.177
(0.118) (0.169) (0.142)

Common Technology

Parameter estimates for this model are given in the “Common Production” column

of Tables 2 and 3, respectively. Technical inefficiency, which reflects inefficiencies in

transforming inputs into outputs, ranges between 0.279 and 0.308, with BNSF having the

greatest technical efficiency. Specifically, these estimates indicate that BNSF produced

exp(−0.279) ≈ 75.7% of what it could have if it used inputs to their maximum efficiency.

Input productivities refer to the elasticity of output with respect to input variables, i.e.,

the percentage increase in output that results from a 1% increase in the use of a given

input. Estimates relating to network characteristics are also elasticities.

Estimates of allocative inefficiency are presented as overcapitalization (i.e.,

investment in capital beyond what is profit-maximizing) with respect to each input and

for each firm in Table 3. Estimates indicate that railroads systematically over-invest

in capital relative to what is profit-maximizing. This finding provides evidence for the

Averch-Johnson hypothesis, which predicts that firms in industries where regulators
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TABLE 18. Pairwise Allocative Inefficiency

Capital Cars Locomotives Fuel Labor

Capital -1.438 -1.764 -0.883 -0.642
(1.25) (0.561) (0.525) (1.133)

Cars 1.438 -0.327 0.555 0.795
(1.25) (1.878) (1.84) (2.848)

Locomotives 1.764 0.327 0.882 1.122
(0.561) (1.878) (0.59) (1.599)

Fuel 0.883 -0.555 -0.882 0.24
(0.525) (1.84) (0.59) (1.56)

Labor 0.642 -0.795 -1.122 -0.24
(1.133) (2.848) (1.599) (1.56)

restrict revenue-to-cost ratios tend to overcapitalize to increase costs, thereby increasing

the total profit potential.

It can also be useful to consider the overutilization of any input j to any other

input k. This information is given in Table 5; the ijth entry in Table 5 measures the

overutilization of input j with respect to input i on average over all firms.9 First, as noted

previously, firms tend to overcapitalize, and the excess is largest on average relative to

quantities of cars and locomotives. Labor is overutilized on average with respect to every

input except capital, with rates between 0.24 and 1.122, potentially providing evidence of

union effects.

Since production (and therefore input elasticities) are assumed to be shared by

firms in this model, estimates of returns to scale do not vary by firm. I find that estimate

the mean of returns to scale is 1.03, indicating that a 1% increase in all inputs will

increase output by 1.03% on average. Returns to scale near unity indicates that firms are

near minimum efficient scale; that is, those firms operate where their average costs are

minimized.

9It is important to note that these estimates are averaged over all firms, and that a specific firm might
experience misallocation even when the industry doesn’t on average.
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Variability in Production

As mentioned in previous sections, estimates of allocative inefficiency will be biased

inasmuch as the productivity of inputs varies across firms. This model investigates the

relevancy of incorporating differences in production between firms and how that affects

estimates of allocative errors.

First, I use Bayesian model selection to determine the importance of allowing the

production technology to vary across firms. In a Bayesian framework, model selection

considers a set of models, of which one is assumed to be correct, and attributes to each

model the probability of being the correct model. The probability that a model Mk is the

correct model conditional on the data D is given by

Pr(Mk|D) =
Pr(D|Mk) Pr(Mk)

Pr(D)
=

Pr(D|Mk) Pr(Mk)∑
j Pr(D|Mj) Pr(Mj)

, (4.22)

where Pr(D|Mk) is the marginal likelihood of the data in model Mk and Pr(Mk) is the

prior probability attributed to Mk. In general, it can be difficult to compute the marginal

likelihood, but given I use a Gibbs sampler for my estimation, I use the methods in Chib

and Jeliazkov (2001) for efficient calculation of model probabilities. Model probabilities are

given in the second to last column of Table 2.

The only difference between this model and the Common Technology model is

flexibility in describing firms’ production processes. I find that the model which allows

production to vary over firms is approximately 1.785 times more likely to be correct

than the model which assumes input productivities are constant over firms. This clearly

indicates that it is necessary to incorporate differences in the production process of firms

when modeling allocative inefficiency in rail markets.
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The bias that results from restrictive assumptions on firm production is clear when

comparing results between the common and variable production models. To more clearly

see these effects, I have included estimates of input productivities for each firm in Table

6, which can be compared to allocative inefficiency in the “Random Production” column

of Table 3. There are many cases to draw from, but as an example, the productivity of

fuel is higher for CN (0.304) than for any other firm (between 0.203 and 0.243). In the

model that assumed a common production technology, CN was assumed to have the same

productivity with respect to locomotives as other firms, resulting in a modest estimate

of overcapitalization with respect to locomotives. Intuitively, after accounting for the

difference in production, we should infer that since CN has high fuel productivity, it

should use even more fuel than we previously estimated, resulting in a higher estimate

of overcapitalization. Indeed, after accounting for variation in production processes, the

estimate of CN’s overcapitalization with respect to fuel increases from 1.947 to 2.233,

indicative of the bias present in the common technology model.

TABLE 19. Input Productivity Estimates

BNSF CN CSX KCS NS SOO UP

Capital 0.215 0.14 0.177 0.206 0.161 0.223 0.226
(0.215) (0.223) (0.149) (0.179) (0.552) (0.233) (0.093)

Cars 0.149 0.18 0.162 0.149 0.157 0.127 0.126
(0.14) (0.226) (0.157) (0.571) (0.215) (0.218) (0.097)

Locomotives 0.498 0.179 0.571 0.388 0.62 0.434 0.552
(0.177) (0.149) (0.127) (0.388) (0.304) (0.203) (0.091)

Fuel 0.215 0.304 0.239 0.243 0.233 0.218 0.203
(0.206) (0.18) (0.126) (0.62) (0.239) (0.082) (0.074)

Labor 0.082 0.07 0.093 0.097 0.091 0.074 0.085
(0.161) (0.162) (0.498) (0.434) (0.243) (0.07) (0.085)

While specific estimates, especially those relating to allocative inefficiency, have

changed from the previous model, general takeaways remain the same. Estimates of

parameters and allocative errors can be found in the “Random Production” column of
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Tables 2 and 3, respectively, and a pairwise comparison of allocative inefficiencies across

inputs is given in Table 7. Firms are generally overcapitalizing with inefficiencies highest

with respect to cars and locomotives, again providing evidence of the Averch-Johnson

effect. Further, firms tend underutilize cars and overutilize fuel with respect to every input

apart from capital. Firms also use more labor than what is profit-maximizing relative to

both cars and locomotives, possibly indicative of persistent rigidities in labor allocation

due to labor unions. As in the previous model, average industry overcapitalization with

respect to fuel and labor is not significantly different from zero, but there is significant

overcapitalization on average with respect to both cars and locomotives.

TABLE 20. Pairwise Allocative Inefficiency

Capital Cars Locomotives Fuel Labor

Capital -2.05 -1.812 -0.328 -1.111
(1.125) (0.75) (0.912) (1.19)

Cars 2.05 0.238 1.723 0.94
(1.125) (1.829) (2.098) (2.682)

Locomotives 1.812 -0.238 1.484 0.701
(0.75) (1.829) (1.395) (1.979)

Fuel 0.328 -1.723 -1.484 -0.783
(0.912) (2.098) (1.395) (2.248)

Labor 1.111 -0.94 -0.701 0.783
(1.19) (2.682) (1.979) (2.248)

Estimates of returns to scale vary across firms in this model since each firm is

permitted to have a different production technology. Still, returns to scale are near unity,

indicating production near minimum efficient scale. I find that CN has the lowest returns

to scale at 0.873, meaning it experiences increasing average costs, while the remainder of

the firms have returns to scale slightly above one, allowing them to experience increasing

returns to scale.
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Relating Misallocation and Firm Characteristics

The final empirical model relates firm characteristics to allocative errors. Since

the structure of this model remains otherwise unchanged from the previous model, we

would expect estimates of parameters and returns to scale to be similar. As seen in the

“Competitive Variables” column in Tables 2 and 4, all estimates not related to allocative

inefficiency change little from the previous model. Further, as seen in average allocative

inefficiency in Table 8, firms still tend to overcapitalize, with the excess being greatest

on average relative to cars, yet again providing evidence supporting the Averch-Johnson

hypothesis.

TABLE 21. Pairwise Allocative Inefficiency

Capital Cars Locomotives Fuel Labor

Capital -2.518 -2.392 -0.963 -2.281
(0.913) (0.606) (0.706) (1.052)

Cars 2.518 0.126 1.555 0.237
(0.913) (1.2) (1.331) (1.939)

Locomotives 2.392 -0.126 1.429 0.111
(0.606) (1.2) (0.865) (1.473)

Fuel 0.963 -1.555 -1.429 -1.318
(0.706) (1.331) (0.865) (1.604)

Labor 2.281 -0.237 -0.111 1.318
(1.052) (1.939) (1.473) (1.604)

I allow allocative errors for each input to be correlated with the Herfindahl index,

a measure of market share, to test for the existence of potential X-inefficiencies. The

intuition is larger firms that face less competition may not have sufficient incentives to

minimize costs. This effect could be further amplified by the Averch-Johnson effect in

rate-regulated industries because by increasing costs, those firms could realize greater total

profits. The relationship between the Herfindahl index and allocative inefficiency is shown

in Table 9. The Herfindahl index does not have a significant effect on overcapitalization

with respect to any variable except labor, for which it reduces overcapitalization. An
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increase in a firm’s market share only increases overcapitalization on average relative

to cars, but this effect is insignificant. Overall, these findings do not lend evidence to

the X-inefficiency hypothesis; in fact, I find that larger firms tend to have lower levels of

misallocation.

TABLE 22. Effects of Firm Characteristics on Allocative Errors

Cars Locomotives Fuel Labor

Herfindahl 0.043 -0.148 -0.23 -2.016
(1.044) (0.683) (0.469) (0.686)

Conclusion

The inefficiency of firms has been dissected and studied in many ways and in

many contexts. Fundamentally, inefficiencies may occur despite firms’ best efforts, as

in the case of imperfect observation of prices, or because of incentives firms face due

to regulation or the state of competition, as in the case of Averch-Johnson effects and

X-inefficiencies. First, to analyze sources of inefficiency, it is crucial that the empirical

framework can provide consistent estimates of inefficiency. Previous research shown the

importance of controlling for differences in production over firms in obtaining unbiased

estimates of technical inefficiency, but no published research has examined its effect on

estimating errors in allocation. I develop models that allow production to vary flexibly

over firms and estimate both technical and allocative inefficiency. I use these models

to test whether incorporating flexibility in production across firms is appropriate and

important in obtaining unbiased estimates of allocative errors. I go on to look for evidence

of overcapitalization and Averch-Johnson effects as well as whether increased market

power increases inefficiency, which could provide evidence for X-inefficiencies.

I first examine whether it is appropriate and even necessary to control for differences

in production over firms when estimating allocative inefficiency. Using Bayesian model
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selection, I compare two models, one where the production technology is shared among

firms and one where it is allowed to vary, and I find the model with differences in

production better describes the data and is far more likely to be the correct model.

Further, estimates of allocative inefficiency are clearly and evidently biased when it

is assumed firms share the production technology. Thus, it is not only appropriate to

incorporate flexibility in production, but it is also crucial to obtaining unbiased estimates

of allocative errors.

I also look for evidence of the Averch-Johnson effect, which states that firms in

rate-regulated industries tend to over-invest in capital to increase total profit allowed by

regulators. I find no evidence of firms undercapitalizing with respect to any other input

and in most cases find significant evidence of overcapitalization. This finding is present in

each of my three models, providing strong evidence that firms over-invest in capital in the

rate-regulated rail industry, as predicted by the Averch-Johnson hypothesis.

Finally, I look for evidence of X-inefficiencies, which can arise if a firm does not have

sufficient incentives to minimize their costs. To test this hypothesis, I allow allocative

inefficiencies to be correlated with the Herfindahl index, a measure of a firm’s market

power. I find that allocative errors decrease or don’t change at all as market power

increases. This finding appears to refute the existence of X-inefficiencies in the rail

industry.
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CHAPTER V

CONCLUSION

Considering its long history of regulation and its critical role in transportation, the

railroad industry provides an interesting context to study efficiency, productivity, and

competition and how each are affected by regulation. In these essays, I examine railroads

after the partial deregulation of the industry and investigate recent progress in efficiency

as well as potential negative effects that result from decreases in competition between

firms.

I first analyze markups and scale elasticities in the industry and find that prices are

significantly greater than marginal costs and that production is generally near minimum

efficient scale. I then examine productivity changes in the industry and separate them

into those caused by innovation and those caused by other factors such as mergers or

the abandonment of unprofitable lines. I find that most firms have not seen productivity

increases since 1999, and the sources of productivity growth vary depending on the ability

of firms to pursue actions like line abandonment. My final chapter investigates errors in

the allocation of inputs, methods of obtaining unbiased estimates of those errors, and

how they are related to competitive pressures, with the understanding that competition

provides the incentive for firms to both keep prices low as well as minimize costs. I find

that incorporating flexibility into production across firms is vital for securing consistent

estimates of allocative inefficiency and that increased market share actually decreases

allocative errors, providing evidence against the X-inefficiency hypothesis in the rail

industry.

These studies provide a descriptive and granular insight into key functionings of the

railroads. As the industry continues to grow and serve as a part of our nation’s critical

transportation infrastructure, concern of issues regarding pricing, productivity, and
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efficiency will persist, especially in light of how the industry continues to be regulated.

Further, this research expounds on how the industry has progressed since its last

consolidation in 1999. While it appears that markups remain in excess of marginal costs

and there is evidence of significant overcapitalization in the rail industry, firms have

seen growth in productivity, turning towards technological change when other channels

of increasing productivity have been exhausted, and increased market power does not

appear to increase errors in allocation. While the prospects for the continued operation

and success of railroads looks optimistic, attention to consumer outcomes and regulation’s

role in assuring those outcomes will be needed.

127



APPENDIX A

MARKUPS AND SCALE ELASTICITIES FOR DIFFERENTIATED RAIL

NETWORKS

Bayesian Flexible Trend Model

This section presents the Flexible Trend version of the Bayesian model in its entirety.

First, the data in this model are the measure of output q̂it, capital input use x̂Kit , variable

input use x̂Vit , network characteristics ϕit, and instruments Zit. The instrumental variables

approach to estimating this model has two stages; in the first stage I use instruments and

exogenous variables to predict the endogenous variables x̂Vit and x̂Kit :

x̂Vit ∼ N
Ä
F V
i + ZitαV + ϕitβV , σ

2
V

ä
for each i, t

x̂Kit ∼ N
Ä
FK
i + ZitαK + ϕitβK , σ

2
K

ä
for each i, t.

Here, Fi represents firm fixed effects, α and β are parameter vectors, and σ2 is the

measure of uncertainty in these regressions. I then construct the fitted values from this

first stage, which are given by

x̃Vit = F V
i + ZitαV + ϕitβV

x̃Kit = FK
i + ZitαK + ϕitβK .

The second stage of the model is then given by

q̂it ∼ N
Ä
Fi + µitx̃

V
it + ηitx̃

K
it + ϕitβ, σ

2
ä
.
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Now, to obtain the posterior density of µit and ηit, there needs to be some assumption on

the distributions from which those parameters are drawn. Specifically, I assume that

[µ1t − 1, ..., µFt − 1, η1t, ..., ηFt]
′ ∼ lnMVN ([µt, ..., µt, ηt, ..., ηt]

′,Σ2F ) ,

where Σ2F is a covariance matrix and [µt, ηt]
′ is assumed to be independently and

identically distributed each year as

 µt

ηt

 ∼MVN

Ü $1

$2

 ,χ
ê
,

where $1 and $2 are hyperparameters and χ is a 2 by 2 covariance matrix. This

concludes the likelihood and random parameter portion of the model, and prior

distributions for each parameter are given below. This priors are intended to be diffuse

in order to limit the effect of prior assumptions on posterior results.

F V
i , F

K
i , Fi, αV , αK , βV , βK , β ∼ iid N(0, 25)

σV , σK , σ ∼ iid Gamma(0.5, 0.5)

[$1, $2]′ ∼MVN ([0, 0]′, I2)

χ−1 ∼Wishart(I2, 2)

Σ−1
2F ∼Wishart(I2F , 2F )

Bayesian Linear Trend Model and Results

Rather than allowing µt and ηt to drift flexibly across time as in the Flexible Trend

model, the Linear Trend version of the Bayesian model assumes that µt = µ + δµt and
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ηt = η + δηt, where δµ and δη are drift parameters. Thus, each µit will have a mode of

(exp(δµ))t exp(µ) + 1 and each ηit will have a mode of (exp(δη))
t exp(η). My priors for

these parameters are

δµ, δη ∼ N(0, 1)

[µ, η]′ ∼MVN ([0, 0]′, I2) .

All other assumptions and priors remain the same as in the Flexible Trend model.

I present results analogous to those given for the Flexible Trend version of this

model. Markup and scale elasticity means and quantiles are given for each firm in Table

8. Results from the Linear Trend model are very similar to those from the Flexible Trend

model; however, 2012 markup estimates tend to be higher and 2012 scale estimates tend

to be lower in the Linear Trend model. Additionally, elasticities of network characteristics

are similar to previous results as well. Finally, given that mean and median estimates of

exp(δµ) and exp(δη) are greater than one, I observe some evidence that markups and scale

elasticities have been drifting upward over the course of the sample at a rate of 4% per

year for markups and 0.8% per year for scales.

I additionally present densities for markups and scales for each firm in 2012 in Figure

5 and median markup and scale estimates for each year in Figure 6. Markup and scale

estimates show similar patterns over time in both the Linear and Flexible Trend models;

for example, BNSF experienced a sustained increase in its scale elasticity that began in

2007, as observed in the Flexible Trend model. There is also a clearly identifiable upward

trend in markups and some positive trend in scales in this model. Given that I don’t

expect markups and scales to strictly adhere to a trend, I prefer the Flexible model to

the Linear Trend model; however, the similarity of results between these models provides

evidence for the robustness of these models.
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TABLE 23. Trend Model Estimation

Quantiles:

Mean 5% 25% 50% 75% 95%
2012 Markups

BNSF 1.529 1.168 1.32 1.456 1.636 2.134
CN 1.517 1.211 1.345 1.457 1.638 2.045
CSX 1.542 1.194 1.329 1.469 1.651 2.159
KCS 1.596 1.177 1.35 1.528 1.772 2.256
NS 1.646 1.184 1.36 1.573 1.862 2.31
SOO 1.627 1.218 1.377 1.535 1.739 2.372
UP 1.591 1.201 1.331 1.465 1.746 2.377

2012 Scales
BNSF 1.043 0.804 0.927 1.074 1.159 1.225
CN 0.736 0.532 0.655 0.752 0.82 0.891
CSX 1.051 0.39 0.705 0.985 1.317 1.913
KCS 0.85 0.657 0.801 0.856 0.893 1.005
NS 0.9 0.515 0.713 0.854 1.061 1.456
SOO 0.899 0.627 0.822 0.947 0.996 1.044
UP 0.769 0.534 0.697 0.789 0.851 0.931

exp(δµ) 1.04 0.907 0.97 1.023 1.099 1.223
exp(δη) 1.008 0.987 0.999 1.008 1.017 1.03
Average length of haul 0.001 -0.005 -0.002 0.001 0.004 0.007
Percent unit -0.162 -0.342 -0.235 -0.165 -0.097 0.047
Percent bulk 0.091 -0.069 0.038 0.096 0.149 0.233
Network size 0.107 -0.094 0.008 0.063 0.206 0.395
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APPENDIX B

DECOMPOSING CHANGES IN PRODUCTIVITY USING BAYESIAN METHODS

Model and Sampling Specifications

Deterministic Trend in Productivity, Constant Technology

As stated in the Empirical Models section, this model assumes productivity follows a

deterministic trend that is shared across all firms. The production technology is common

across firms and is constant through time. The model can be expressed in the following

relations.

qit = αit + xitβ + ϕitθ − δi + εit

αit = αi + τt

αi ∼ N(µα, σα)

εit ∼ N(0, σε)

δi ∼ N+(0, σδ)

I use Gibbs sampling to draw inference on this model and estimate the posterior

distribution of the parameters conditional on the data. This distribution is the likelihood

of the data conditional on the parameters and the following prior assumptions over the

model parameters:

β, θ, µα ∼ N(0, 5)

τ ∼ N(0, 1)

σα, σε, σδ ∼ Γ(1.5, 1)

133



These assumptions were chosen to be diffuse with respect to their real world values. For

example, input elasticities are rarely estimated to be greater than five,1 which is just one

standard deviation of the prior distribution.

Conditional on a value for δi, this is a linear random-effects model, which can be

estimated via Gibbs sampling. To draw values of δi conditional on other parameters, first

notice that

p({δi}|{αi}, µα, σα, τ, β, θ, σε, σδ; q, x, ϕ)

∝ p(q|{αi}, τ, β, θ, σε, {δi};x, ϕ)× p({δi}|σδ)

∝
∏
i

p(qi|αi, τ, β, θ, σε, δi;xi, ϕi)× p(δi|σδ). (B.3)

Thus, each δi can be drawn in its own independent block. Then, the conditional

distribution of δi is

p(δi|αi, τ, β, θ, σε, δi; qi, xi, ϕi)

∝ p(qi|αi, τ, β, θ, σε, δi;xi, ϕi)× p(δi|σδ). (B.4)

Next,

p(qi|αi, τ, β, θ, σε, δi;xi, ϕi)

∝ exp

(
− 1

2σ2
ε

∑
t

(qit − (αi + τt+ xitβ + ϕitθ − δi))2

)

∝ exp

(
− 1

σ2
ε

∑
t

(qit − (αi + τt+ xitβ + ϕitθ))δi −
1

2σ2
ε

∑
t

δ2
i

)

= exp

(
δi

(
− 1

σ2
ε

∑
t

(qit − (αi + τt+ xitβ + ϕitθ))

)
+ δ2

i

Ç
− T

2σ2
ε

å)
. (B.5)

Further, since δi|σ2
δ ∼ N+(0, σδ), the normalizing constant of this half-normal distribution

does not depend on δi. Thus,

1As an example, Solow (1957) estimated the elasticity of capital to be 0.353.

134



p(δi|σδ) ∝ exp

Ç
− 1

2σ2
δ

δ2
i

å
; δi ≥ 0. (B.6)

So,

p(δi|αi, τ, β, θ, σε, δi; qi, xi, ϕi)

∝ exp

(
δi

(
− 1

σ2
ε

∑
t

(qit − (αi + τt+ xitβ + ϕitθ))

)
+ δ2

i

Ç
− T

2σ2
ε

− 1

2σ2
δ

å)
. (B.7)

This expression can then be factored so that

p(δi|αi, τ, β, θ, σε, δi; qi, xi, ϕi) ∝ exp(− 1

2s2
(δi −m)2),

where

m = − σ2
δ

Tσ2
δ + σ2

ε

∑
t

(qit − (αi + τt+ xitβ + ϕitθ))

s2 =
σ2
δσ

2
ε

Tσ2
δ + σ2

ε

. (B.8)

This is the kernel of a normal distribution with mean m and standard deviation s;

thus, δi|αi, τ, β, θ, σε, δi; qi, xi, ϕi ∼ N+(m, s), so this block can be sampled via rejection

sampling or by directly sampling from a truncated normal distribution.

The posterior distribution of the parameters was estimated using 10,000 warmup

iterations to achieve convergence of the Markov chain and 100,000 iterations to sample

the posterior distribution. Convergence was checked by examining trace plots and

autocorrelation factors. Prior distributions were also varied to ensure prior assumptions

weren’t driving results.

Random Walk in Productivity, Constant Technology

As discussed in the Empirical Models section, this model allows productivity to

follow a more flexible process, a random walk with drift. Each firm is allowed to have its
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own trend in its productivity process. The production technology is still assumed to be

constant across firms and time. The model can be expressed in the following relations:

qit = αit + xitβ + ϕitθ − δi + εit

αit = αit−1 + τi + ηit ; t > 0

αi0 ∼ N(µα, σα)

εit ∼ N(0, σε)

δi ∼ N+(0, σδ)

ηit ∼ N(0, ση)

I once again use a Gibbs sampler to draw values from the posterior distribution of

the parameters conditional on the data. This is complicated by the random walk process

in productivity, but the procedure is outlined in Sarris (1973). Samples of inefficiency

terms δi conditional on other parameters are taken from a half-normal distribution

as described in Section 9.1.1. The posterior distribution is also dependent on prior

assumptions, which are given below.

β, θ, µα ∼ N(0, 5)

τi ∼ N(0, 1)

σα, σε, σδ, ση ∼ Γ(1.5, 1)

The posterior distribution of the parameters was estimated using 10,000 warmup

iterations and 100,000 sampling iterations. Convergence was checked using previously

described methods, and various prior distributions were tested.

Random Walk in Productivity and Technology

This model allows each firm’s productivity as well as the parameters describing the

production technology to follow a random walk with drift. The production technology is
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assumed to be shared across firms, but is allowed to follow a flexible process over time.

The model is expressed in the following relations:

qit = αit + xitβt + ϕitθ − δi + εit

αit = αit−1 + τi + ηit ; t > 0

βt = βt−1 + ρ+ ψt ; t > 0

αi0 ∼ N(µα, σα)

β0 ∼ N(µβ,Σβ)

εit ∼ N(0, σε)

δi ∼ N+(0, σδ)

ηit ∼ N(0, ση)

ψt ∼ N(0,Σψ)

I assume that Σψ and Σβ are diagonal and label the kth diagonal element of each

Σkk
ψ

2
and Σkk

β
2
. Once again, I draw inefficiency conditional on other parameters using the

method described in Section 9.1.1. I use a Gibbs sampler with 5,000 warmup iterations

and 50,000 sampling iterations to draw inference on the parameters. Prior assumptions

over the parameters are given below.

θ, µα, µβ ∼ N(0, 5)

τi ∼ N(0, 1)

ρ ∼ N(0, I)

σα,Σ
kk
β , σε, σδ, ση,Σ

kk
ψ ∼ Γ(1.5, 1)
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