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DISSERTATION ABSTRACT

Nigel J. McClung

Doctor of Philosophy

Department of Economics

June 2018

Title: Essays in Regime Switching Policy and Adaptive Learning in Dynamic Stochastic
General Equilibrium

This dissertation studies monetary-fiscal policy interactions and adaptive

learning applications in regime-switching DSGE models. A common thread through

my research is understanding how policymakers may be affected by the interaction of

policy regime change and agents’ beliefs about past, current or future policy in general

equilibrium. The work I present in this dissertation shows that conventional and

unconventional policy outcomes, as well as the existence, uniqueness and expectational

stability of rational expectations solutions, depend heavily on the expectational effects

of time-varying policy. These findings suggest that uncertainty over future fiscal policy

may curb the effectiveness of monetary policy, or otherwise constrain the actions of

central bankers. In carrying out this research agenda, my work also examines the

relationship between determinacy and expectational stability in a general class of

Markov-switching DSGE models.
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CHAPTER I

INTRODUCTION

This dissertation studies monetary-fiscal policy interactions and adaptive

learning applications in regime-switching DSGE models. A common thread through

my research is understanding how policymakers may be affected by the interaction of

policy regime change and agents’ beliefs about past, current or future policy in general

equilibrium. The work I present in this dissertation shows that conventional and

unconventional policy outcomes, as well as the existence, uniqueness and expectational

stability of rational expectations solutions, depend heavily on the expectational effects

of time-varying policy. These findings suggest that uncertainty over future fiscal policy

may curb the effectiveness of monetary policy, or otherwise constrain the actions of

central bankers. In carrying out this research agenda, my work also examines the

relationship between determinacy and expectational stability in a general class of

Markov-switching DSGE models.

Chapter 2 of my dissertation generalizes McCallum (2007) and is the first to

address the relationship between determinacy and E-stability in Markov-switching

Dynamic Stochastic General Equilibrium (MS-DSGE) models with lagged endogenous

variables. I prove that the sufficient conditions for determinacy in Cho (2016) imply

the E-stability of the forward solution in MS-DSGE models with lagged endogenous

variables when agents condition their expectations of future endogenous variables on

current endogenous and exogenous variables. The class of models studied in this paper

is very general, and nests a wide array of models that are frequently studied in modern

macroeconomics.
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In Chapter 3, I study the impact of expansionary forward guidance in a simple

New Keynesian model with recurring or permanent active fiscal policy. This work

addresses and offers a potential solution to the simple New Keynesian model’s

prediction that expansionary forward guidance can generate an implausibly large

stimulus. I find that the introduction of permanent or recurring active fiscal policy

dampens the response of output and inflation to forward guidance in the New

Keynesian model. Moreover, the presence of regime-switching policy introduces

expectational effects that cause forward guidance to be less stimulative in our regime-

switching model’s active money, passive fiscal policy regime. Finally, the introduction

of long-term debt affects the magnitude of the stimulus resulting from forward

guidance in models with active fiscal policy.

In Chapter 4, I explore determinacy and E-stability in a New Keynesian model

with switching fiscal and monetary policy. Here I present three categories of results.

First, the maturity structure of government debt matters for determinacy and

the existence of stable equilibria in our switching model, which is not true in the

analogous fixed coefficient model. I use two numerical solution techniques to show that

maturity affects both the multiplicity of stable solutions, and the existence of sunspot

equilibria. Second, determinacy generally implies E-stability when agents do not

observe contemporaneous observable variables, but not for certain arguably unrealistic

regions of the model parameter space. Third, this chapter presents conditions for

stability under infinite-horizon learning in Markov-switching DSGE models and

compares stability under infinite horizon and one-step-ahead learning. To the best of

my knowledge, this is the first paper to derive these stability conditions in a model

with switching coefficients.
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Finally, Chapter 5 examines the performance and robustness of simple monetary

policy rules in models with learning agents subject to: (1) permanent or occasionally

active fiscal policy; and/or (2) the presence of long-term government debt. My analysis

indicates that the “global” response of the fiscal policymaker to debt determines the

optimal monetary policy response. When fiscal policy is globally passive or globally

active the optimal monetary policy rule typically features time-invariant coefficients

with high inflation reaction coefficients in globally passive models and interest rate

pegs in globally active models. In cases where fiscal policy features balanced or strong

switching between active and fiscal policy stances, the optimal monetary policy rule

features switching coefficients. These results extend to models with adaptive learning,

including a hidden Markov model of learning never seen before in the literature.
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CHAPTER II

E-STABILITY VIS-A-VIS DETERMINACY IN MS-DSGE MODELS

Introduction

Under rational expectations, a given macroeconomic model may have multiple

equilibria. When studying models that admit a multiplicity of rational expectations

equilibria, researchers must confront the issue of equilibrium selection: which, if any, of

the equilibria are economically reasonable? To that end, the notion of “determinacy”

is used extensively as a selection criterion. When a model is determinate only

one equilibrium exists, and this eliminates the need to choose between equilibria.

Alternative criteria advance robustness to bounded rationality as a means of selecting

plausible equilibria. In the adaptive learning literature the “learnability” or E-

stability of a specific equilibrium is viewed as a criterion for the selection of a rational

expectations equilibrium. Under adaptive learning, rational expectations are replaced

with a forecasting model that assumes the same functional form as the equilibrium

law of motion, and agents are assumed to update the parameters of their model

each period. If, in the limit, agents’ parameter estimates converge to the parameters

consistent with a given rational expectations equilibrium, then this equilibrium is said

to be “E-stable” or “stable under learning.”

Despite its popularity, determinacy has some weaknesses as an equilibrium

selection criterion. First, determinacy only guarantees the existence of a unique stable

rational expectations solution, and it is well known that determinate models may

have explosive equilibria (see Cochrane (2007)). Second, determinacy does not explain

how agents coordinate on a unique rational expectations equilibrium. The E-stability
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criterion mitigates these two problems as follows. First, the determinate equilibrium,

but not explosive solutions in determinate models, tend to be stable under learning

as shown by McCallum (2009). Second, learning explicitly examines how and when

boundedly agents can learn to become rational forecasters and therefore coordinate on

a rational expectations equilibrium. Because an E-stable determinate equilibrium is

robust to these weaknesses of determinacy as a selection criterion, it is important to

study and characterize the relationship between determinacy and E-stability.

The relationship between determinacy and E-stability has been extensively

explored in general classes of linear models with different assumptions about agents’

information sets and the horizons over which agents form expectations.1 In models

that feature Markov-switching parameters, relatively little is known about determinacy

and E-stability, and for the following reasons: (1) tractable necessary conditions for

determinacy in Markov-switching models are not known; (2) variation in the set of

current and past Markov states that agents use when forming expectations generates

distinct classes of equilibria. As shown in Branch, Davig, and McGough (2013), this

second limitation makes it hard to establish whether an equilibrium is unique to the

model, or merely to its class of equilibria. Despite these limiting factors, some research

has successfully isolated general relationships between determinacy and E-stability in

purely-forward looking Markov-switching rational expectations (MS-DSGE) models.

In this paper, we explore the relationship between determinacy and E-stability

in a very general class of Markov-switching rational expectations models with lagged

endogenous variables. Specifically, we demonstrate that a set of tractable sufficient

conditions for determinacy from Cho (2016) imply the learnability of the unique

1The following papers, among others, have studied the relationship between determinacy and E-
stability: McCallum (2007, 2009), Cochrane (2009), Ellison and Pearlman (2011), Bullard and Eusepi
(2014)
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mean-square stable rational expectations solution if agents know current endogenous

variables when forming one-period-ahead expectations. This result contributes to

the relevant literature in three ways. First, this result extends McCallum (2007),

which finds that determinacy implies E-stability in a general class of linear rational

expectations models. Second, this is the first study to explore the relationship between

determinacy and E-stability in MS-DSGE models where agents know contemporaneous

variables. Third, our result applies to models with lagged endogenous variables,

whereas previous research focused exclusively on classes of purely-forward looking

models.

The paper is organized as follows: first, we review the literature on determinacy

and E-stability in linear and Markov-switching models, as well as papers from the

fiscal theory of the price level literature that are relevant for applications; second, we

define the class of models, model equilibria and determinacy and E-stability conditions

under consideration; third, we provide the main analytical result; fourth, we present

applications to models of monetary-fiscal policy interactions with Markov-switching

policy parameters; finally, we conclude.

Brief Literature Review

Determinacy and E-stability in LRE and MS-DSGE Models

This section explores three strands of the literature surrounding the connection

between determinacy and E-stability in linear and Markov-switching rational

expectations models. First, a robust literature examines the relationship between

determinacy and E-stability in linear rational expectations (LRE) models. Second, a

recent research program seeks both necessary and sufficient conditions for determinacy

in rational expectations models with Markov-switching. Third, a couple of papers have
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explicitly examined the connection between determinacy and E-stability in MS-DSGE

models. We conclude with a review of the fiscal theory of the price level literature that

emphasizes New Keynesian models with Markov-switching monetary and fiscal policy

parameters and establishes a foundation for the applications in 2.5.

McCallum (2007) offers what is perhaps the most general analytical connection

between determinacy and E-stability. The paper employs a broad class of linear

rational expectations models with lagged endogenous variables. These models are

populated with agents who observe contemporaneous endogenous and exogenous

variables when forecasting tomorrow’s endogenous variables, and who utilize a

forecasting model that shares a functional form with the minimal state variable

solution. In these settings, necessary and sufficient conditions for determinacy imply

that the determinate equilibrium is stable under learning. This result does not

condition on any other assumptions 2, but is not robust to alternative assumptions

about agents’ information sets. For example, McCallum is not able to isolate

restrictions that guarantee the abovementioned implication when agents are unable

to observe contemporaneous endogenous variables–an issue that Ellison and Pearlman

(2011) further studies.

Ellison and Pearlman (2011) provides a “completely general” link between

determinacy and E-stability by requiring agents to use a saddlepath learning rule.

Their approach departs from McCallum’s in one notable way: agents’ forecasting

model assumes the same form as the saddlepath relationship. Econometrically, this

approach imposes zeros on the coefficients on lags of non-predetermined variables in

the regression model used in McCallum (2007). When agents know time-t variables,

the same relationship between determinacy and E-stability holds with either learning

2Except for a few regularity assumptions that McCallum dismisses as innocuous
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rule. However, the saddlepath learning rule requires agents to condition future

endogenous variables on estimates of current predetermined variables. This restriction,

they argue, ensures that the unique solution in any determinate model will also be

E-stable when agents don’t know the time-t endogenous variables (i.e. only know

the time-t exogenous variables). Moreover, Ellison and Pearlman prove that only one

minimal state variable solution will be “iteratively” E-stable in indeterminate models

when agents use a saddlepath learning rule. This notion of “iterative” E-stability is

a discretization of the E-stability conditions in Evans and Honkapohja (2001), and

without it, McCallum could not obtain general E-stability results in indeterminate

models.

Bullard and Eusepi (2014) extends Ellison and Pearlman (2011) and McCallum

(2007) in two directions: (1) they allow for richer lag structures in the information set

of agents; (2) they permit agents to form expectations over infinite-horizons. Their

results are clear: determinacy does not generally imply E-stability under infinite-

horizon (IH) learning or finite-horizon (FH) learning. In particular, the presence

of delays in the information set breaks the McCallum (2007) relationship between

determinacy and E-stability in models of finite-horizon learning. They illustrate this

using a simple New Keynesian model with Calvo pricing, a cash-in-advance constraint

and a basic Taylor-type interest rate rule. When the model under study is determinate

and agents do not know contemporaneous endogenous variables and the monetary

policy rule, the unique solution is generally E-unstable. Abstracting from the New

Keynesian setting, Bullard and Eusepi identify additional sources of E-instability in

determinate models. For instance, they find that IH and FH learning rules give us

stability conditions that differ only in magnitude, with magnitude being determined

by “discount factors” that “capture reduced-form discounting of future variables in the

8



equilibrium dynamics of the model.” Due to these differences in magnitude, a change

in the underlying decision rule may render an E-stable solution E-unstable and vice-

versa. As with the papers before, these results apply to linear DSGE models.

Attempts to study determinacy and E-stability in MS-DSGE models have been

stymied, in part, by a lack of useful necessary and sufficient conditions for determinacy.

However, numerous papers have made great strides in the direction of these conditions.

These papers are best categorized by the concept of stability they employ. Papers by

Davig and Leeper (2007) and Branch, Davig and McGough (2013) use the familiar

concept of bounded stability and identify conditions under which a purely-forward

looking model is determinate.3 In the other camp, Farmer, Waggoner, and Zha [FWZ]

(2009, 2011) and Cho (2016) use mean-square stability–a notion of stability often used

in engineering–to formulate their own conditions for determinacy.

One of the earliest papers in this literature, Davig and Leeper (2007), studies

a standard New Keynesian model with a Markov-switching Taylor-type interest rate

rule, and finds that monetary policy can occasionally switch into an indeterminate

(“passive”) regime without generating a multiplicity of stable equilibria. This occurs

provided that monetary policy satisfies the “long-run Taylor principle” (LRTP), which

allows monetary policy to be sometimes passive if the Taylor principle is satisfied

sufficiently often. While this result by itself has significant policy implications, the

methods they employ constitute a separate contribution to the MS-DSGE literature. In

particular, they demonstrate how to render the original non-linear system of equations

linear by “conditioning the structural form of the model” on the underlying Markov

state. When the model is written in this form, a straightforward application of the

3Determinate in the sense that a unique regime-dependent equilibrium (RDE) exists, where a RDE
is an equilibrium in which agents condition expectations on the current Markov state, and no lags of
the Markov state.
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Blanchard and Khan (1980) conditions yields the LRTP. Branch, Davig and McGough

(2013) develops an analogous condition in a more general purely-forward looking

model, that they call the “conditionally linear determinacy condition” or CLDC. The

CLDC is easy to use, and generalizes conditions for determinacy in LRE models to

a class of MS-DSGE model, but it does not apply to models with lagged endogenous

variables. Additionally, Branch, Davig and McGough (2013) are able to show that

the CLDC only guarantees the existence of a unique regime-dependent equilibrium;

if agents condition expectations on past states of the economy, they may generate

additional “history-dependent equilibria” when indeterminate regimes exhibit negative

feedback and the CLDC is satisfied. Similarly, FWZ (2010) identifies the potential for

indeterminacy in a New Keynesian model that satisfies the LRTP.

Because of the shortcomings of the LRTP, FWZ (2009) abandons the concept of

bounded stability in favor of mean-square stability. This decision to work with mean-

square stability also allowed them to borrow necessary-and-sufficient conditions for

mean-square stability from a rich engineering literature on the subject. In their paper,

they show how to write any rational expectations solution to a purely forward looking

MS-DSGE model as the sum of a fundamentals and non-fundamentals component.

The task of identifying determinacy is then twofold: (1) isolate conditions under which

the fundamentals component is a mean-square stable process; (2) isolate conditions

under which all non-fundamental components are mean-square unstable processes. One

can complete these tasks by minimizing the spectral radius of a single matrix with

respect to the dimensions spanned by the non-fundamental solutions. This amounts

to identifying the full set of sunspot solutions–a task that becomes drastically more

difficult as the number of states and equations increases–and restricting these solutions

to be unstable. As a result, this approach is very difficult to use in practice. Moreover,
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the approach only applies to a class of MS-DSGE models that do not have lagged

endogenous variables.

Whereas FWZ (2009) seeks to identify determinacy by finding all sunspot

solutions, FWZ (2011) presents a numerical algorithm that may detect indeterminacy.

Their method applies to forward-looking models with lagged endogenous variables,

and is able to detect indeterminacy if the algorithm converges to more than one

fundamental solution of the model under study. There is no proof that their method

finds all fundamental solutions to a model. As such, their method’s inability to detect

multiple fundamental solutions does not preclude indeterminacy.

Foerster et al. (2016) introduces a very general, and tractable perturbation

approach for finding higher-order solutions to MS-DSGE models. In their approach,

they only perturb time-varying parameters that affect the model’s steady state. In

doing so, they perturb the smallest permissible set of time-varying parameters, and

they show how to obtain reasonable approximations around the ergodic mean of the

time-varying parameters that impact steady state. Foerster et al. (2016) also advocates

for the use of a Gröbner basis approach to solving MS-DSGE models. The theory of

Gröbner bases is particularly useful in the MS-DSGE framework because MS-DSGE

equilibrium coefficients solve quadratic polynomials that typically cannot be solved

using standard solution techniques, and because we can obtain the full set of minimum

state variable (MSV) solutions to a MS-DSGE model using a Gröbner basis. As such,

Foerster et al (2016) offers a means for researchers to study issues of uniqueness and

existence in the class of MSV solutions. Importantly, their methods only study MSV

solutions to the model; they do not consider sunspot solutions in their analysis.

While the approach of FWZ (2009) and (2011) are limited in terms of tractability

and sufficiency, respectively, and Foerster et al. (2016) is limited with respect to its
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treatment of sunspot solutions, Cho (2016) offers a set of implementable sufficient

conditions for determinacy and indeterminacy. Cho’s approach builds on prior work

by McCallum (2007) and Cho and Moreno (2011) in a manner that simplifies the task

of restricting all sunspot solutions to be unstable. Unlike FWZ (2009), which requires

one to solve a complicated minimization problem to identify the full set of sunspot

solutions, Cho’s method solves a model forward for a unique solution, and computes

the spectral radii of two matrices. Cho’s method is discussed in greater detail later in

this chapter.

A much sparser literature examines the link between determinacy and E-stability

in MS-DSGE models. The biggest contribution along these lines is Branch, Davig and

McGough (2013). They prove that satisfaction of the CLDC implies E-stability of the

minimal state variable solution in purely forward looking MS-DSGE models. They also

obtain an intriguing result about the learnability of history-dependent equilibria: if the

CLDC is satisfied, then a history-dependent equilibrium can be learned when agents

condition their expectations on a “sunspot variable which captures the self-fulfilling

serial correlation in the equilibrium.” Reed (2015) extends their results by proving

that satisfaction of the conditions for determinacy in the mean-square stability sense

implies E-stability of the minimal state variable solution when agents do not know

time t endogenous variables. This is because the conditions in Cho are stronger than

the CLDC in purely forward looking models. The results in Reed only apply to purely

forward looking models–which I attempt to expand on in this section.

Fiscal Theory of the Price Level and New Keynesian Models

MS-DSGE models commonly feature Markov-switching fiscal and monetary

policy rules. This is even true to the extent that many, if not most, MS-DSGE models
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in the New Keynesian literature would be LRE models without Markov-switching

policy rules. In this chapter, we focus on New Keynesian MS-DSGE models that

allow fiscal policy and monetary policy rules to switch between various configurations

of “active” and “passive” fiscal and monetary policy. Models that feature these

switching rules are often associationg with the Fiscal Theory of the Price Level

(FTPL) literature. To better motivate the significance of these models, we briefly

introduce the FTPL and discuss some of the salient papers in this literature below.

The FTPL is developed in a host of papers that study how fiscal and monetary

policy jointly determine inflation. This complements the more canonical view of

inflation, which is rooted in the Quantity Theory and often abstracts away from fiscal

policy by assuming Ricardian equivalence. It’s important to emphasize that the FTPL

complements–and not contrasts–the canonical view, because even the canonical view

expresses inflation as the outcome of a joint fiscal-monetary policy configuration in

which fiscal policy stabilizes the real market value of debt and does not affect prices.

While the FTPL has faced considerable criticism, it raises interesting questions about

the role of fiscal policy in price-level determination. In particular, the FTPL argues

that inflation is a fiscal phenomenon in the absence of Ricardian fiscal policy. Given

that growing evidence challenges Ricardian equivalence, the FTPL is arguably quite

relevant.

The FTPL largely begins with Leeper (1991). This seminal paper introduces

a dichotomy in the conduct of monetary and fiscal policy: a “passive” policymaker

is “constrained to stabilize debt”, whereas an “active” policymaker does not act to

stabilize government debt. To formalize this distinction, Leeper identifies regions of

the parameter space consistent with passive and active policymaking in a stylized

endowment economy with a monetary authority that adjusts interest rates in response
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to inflation and a fiscal authority that adjusts lump-sum taxes in response to real debt.

Since each policymaker is in one of two disjoint parameter regions, there are a total of

four disjoint regions of the parameter spaces. Of these four, one yields indeterminacy

(passive fiscal and monetary policy), one yields explosive solutions (active fiscal

and monetary policy), and two of them yield determinacy: (1) the active monetary

and passive fiscal policy configuration; (2) the active fiscal and passive monetary

configuration.

Economists typically choose parameters from the first of these determinate

parameter regions for conventional macroeconomic models of inflation and output.

In this region, the monetary authority responds aggressively to inflation, and the fiscal

policymaker executes a Ricardian policy. Because a Ricardian fiscal policy does not

affect consumption and inflation, economists can ignore the fiscal authority when

studying the determination of inflation and corresponding equilibrium dynamics of

the model. In the second region, however, the fiscal authority does not raise enough

new revenue to service the interest and pay down the principal on newly issued debt.

This allows increases in debt to have first-order wealth effects that raise household

consumption and inflation since forward-looking agents do not expect governments to

tax away the benefits of the new debt wealth in the future. If the monetary authority

responds aggressively to the run up in inflation caused by debt issuance in this

environment, it will raise real interest rates, and therefore generate higher debt service

costs that an active fiscal authority will, again, not pay for. This generates explosive

model dynamics. A stable debt path therefore requires the monetary authority to

respond weakly to inflation–that is, a monetary authority must be “accommodative.”

Henceforth we embrace the terminology from Leeper and Leith (2016) and refer to an

active fiscal, passive monetary regime configuration as a “Regime F” configuration,
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and an active monetary and passive fiscal policy configuration as a “Regime M”

configuration.

Woodford (1995) and Sims (1994) shed further light on the relationship between

fiscal policy and inflation by studying endowment economies where monetary

authorities have direct control over the money supply. In these two papers, Woodford

and Sims build on Leeper (1991) by introducing an equilibrium condition sometimes

referred to as a “bond valuation” equation that determines prices in relation to

outstanding debt and the discounted present value of expected future real surpluses.4

Sims (1994) show that the same holds in a similar model. Sims also uncovers more

nuanced dependencies of monetary policy efficacy on fiscal policy. For example, in

cases where exogenous money growth does not keep up with agents’ discounting,

the fiscal authority must credibly back the value of the currency or else inflationary

sunspot equilibria may arise. In cases where the money supply rule targets an interest

rate peg, a larger menu of fiscal policy rules–including a constant tax rate–ensure a

unique, stable equilibrium.

Woodford (1998a, 1998b, 2001) are among the earlier papers to extend the

Leeper (1991) framework to include endogenous output and nominal rigidities. In this

framework, Woodford (1998a) clearly shows that a fiscal inflation may arise through

the private behavior of households–irrespective of monetary policy. One can illustrate

this point in a variety of ways, including: when nominal bond holding changes, real

wealth changes against sluggish prices, and these wealth effects vary aggregate demand.

This contrasts Sargent and Wallace (1981) which argues that fiscal policy causes

inflation only insofar as the monetary authority monetizes runaway debt. Under

4In contrast, Leeper (1991) studies bounded solutions to systems of linearized equilibrium
conditions. These conditions, when combined with a transversality condition, imply the bond
valuation equation, but Leeper (1991) does not explicitly derive this equation
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Woodford’s interpretation, however, fiscal inflation is not simply the result of monetary

policy, and it is this point that helps separate the fiscal theory from previous work

on the relationship between inflation and fiscal policy. These papers also study fiscal-

monetary policy interactions in the presence of debt ceilings, the zero lower bound,

and bounded rationality. For instance, Woodford (1998a) finds that a debt ceiling of

the kind proposed in the Maastrict Treaty constrains fiscal policy to be Ricardian.

Woodford (2001) suggests that the post-war bond-price support regime is an example

of Regime F behavior in U.S. data, as policymakers defended an interest rate peg. In

this analysis he further examines the zero lower bound as a subcase of interest rate

pegs.

Though Woodford (2001) describes the role of maturity structure in the fiscal

theory, Cochrane (2001) thoroughly characterizes how and when variation in the

maturity of debt affects the relationship between fiscal policy and inflation. Cochrane

studies a simple frictionless model of consumer optimization combined with a flow

constraint on fiscal policy, and a present value condition that requires the real value

of debt to equal the discounted present value of expected primary fiscal surpluses. He

calls this last condition the “equilibrium valuation equation” because it follows from

market-clearing and no-arbitrage conditions, and is therefore true in equilibrium.5 This

condition explicitly relates fiscal policy to inflation when debt is nominal: if surpluses

change exogenously, either nominal debt or price must change to restore the valuation

equation. If all debt is short-term debt, then debt is predetermined, so that a variation

in surpluses necessitates a price adjustment. To illustrate the complexity of this

relationship in the presence of long-term debt, Cochrane engages in two comparative

statics exercises. The first exercise studies the effects of debt on price. With a richer

5Conchrane’s valuation equation generalizes the aforementioned bond valuation equation from
Woodford (1995) and Sims (1994) to environments with rich maturity structures of government debt
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maturity structure, debt variations cause outstanding debt to be revalued, which

creates a second channel for restoring the present value condition. This implies that

policymakers can trade current inflation for future inflation by lenthening the maturity

structure of debt. The second exercise looks at the effects of surplus on price, and finds

that price is more responsive to current surpluses as the maturity lengthens. This is

because outstanding long-term debt is not a claim to the current surplus; variation

in the current surplus cannot revalue outstanding debt. Similarly, variation in future

surpluses revalues outstanding long-term debt, thereby reducing the need for price

changes today. The paper concludes with an optimal policy exercise that minimizes

the variance of inflation with respect to the scale and composition debt. Cochrane

finds that longer maturities are optimal when the present value of surpluses is more

volatile than current surpluses. The intuition follows from the second comparative

static exercise.

The preceding works assume that policy is fixed, but a growing body of empirical

research suggests that regime switches in policy are the norm. In this vein, Clarida

et al (2000) identifies a regime change in monetary policy under Volcker. They

estimate a forward-looking Taylor-type policy reaction function6 combined with the

assumption that the Federal Reserve partially adjusts the Funds rate to its target.

They then estimate the reaction function using GMM and find that pre-Volcker policy

is passive and post-Volcker policy is active. This suggests, as they demonstrate in

a New Keynesian model, that the Great Moderation occurred because post-Volcker

policymakers pursued stabilizing policies, while pre-Volcker regimes permitted sunspot

instability. Lubik and Schorfheide (2004) helps to confirm these results.

6the authors point out that Taylor (1993) proposes a rule where policy is backward-looking, but
if lagged inflation or a linear combination of lagged inflation and output“is a sufficient statistic for
forecasting future inflation” then their rule nests the Taylor rule

17



While Clarida et al. (2000) offers evidence of a one-time regime change, Cogley

and Sargent (2002, 2005) find evidence of drift in monetary policy rules using a

random coefficients model. Evidence of recurring structural change appears in Sims

and Zha (2006). They estimate a backward-looking Markov-switching model that

allows for switching in monetary policy parameters and shock volatilities, and conclude

that switches in shock variances explain the Great Moderation.

Davig and Leeper (2006, 2011) combine Markov-switching reduced-form

estimation of policy rules and MS-DSGE models to examine the general equilibrium

implication of switching in policy parameters. In the first of these two papers, they

estimate a standard Markov-switching Taylor-type interest rate rule and a lump-

sum transfers rule that responds to real debt, government purchases, and output.

Each rule follows a two-state Markov process and they are estimated separately to

determine when each authority exhibits active or passive behavior. These rules are

then embedded in an on otherwise standard New Keynesian model with government

purchases. We emphasize three results. First, they uncover evidence of recurring

Regime F policy regimes in U.S. economic history. Second, they find that aggregate

demand responds to lump-sum transfer shocks, which gives additional reason to

question the assumption of Ricardian equivalence in models of the U.S. economy. In

the model, for example, a $1 tax cut increases the discounted present value of output

by 76 to 102 cents. Third, the U.S. can be described as a single unique equilibrium.

This conclusion breaks with Clarida et. al (2000) and Lubik and Schorfheide (2004),

which both suppose that the economy unexpectedly jumps between regions of

determinacy, indeterminacy and explosiveness, so that agents always expect permanent

regimes. When agents expect regime change, as is assumed by Davig and Leeper, the
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economy can temporarily pass through indeterminate and explosive regimes without

undermining the determinacy of the model.

Additional attempts to extend and complement the work of Davig and Leeper

come from Bianchi (2012, 2013), Bianchi and Ilut (2017), and Bianchi and Melosi

(2013).7 Bianchi (2012) and Bianchi and Ilut (2017) estimate a regime-switching New

Keynesian model using Bayesian techniques and techniques from FWZ (2011) and Kim

and Nelson (1999). They assume a “circular structure” for transition probabilities that

forces the economy to move from Regime F to an active-active regime to either Regime

M or Regime F.8 Unlike Davig and Leeper (2006, 2011), they jointly estimate policy

rules and model parameters. They find that the economy was in Regime F pre-Volcker,

in the explosive regime during the early 1980s, and then transitioned into Regime M.

Bianchi and Ilut (2017) juxtaposes the impulse response functions from a similar

rational expectations model and impulse response functions from a counterfactual

model in which agents maintain different assumptions about the persistence and

number of regimes. These comparisons of “actual” and “counterfactual” impulse

response functions suggest that the magnitude of fiscal inflation under an active fiscal

regime depends on the horizon over which agents expect active fiscal policy to persist.

They conclude that the Great Inflation of the 1970s would not have occurred if agents

either believed fiscal policy was passive, or felt that a return to passive fiscal policy

was imminent. Specifically, their estimated model indicates that monetary policy

switched from passive monetary to active monetary under Volcker in 1979, but fiscal

policy did not switch from active to passive until 1981. Their counterfactual exercises

7Other papers not mentioned here include Bhattarai et al (2012), Bhattarai et al (2014), Bhattarai
et al (2016), Gonzalez-Astudillo (2013), Chung et al (2007)

8Bianchi (2012) employs a similar circular structure that forces the economy to transition from
active-active regimes to Regime M
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predicts that a coordinated monetary-fiscal regime change in 1979 would have reduced

inflation sooner. Similary, Bianchi (2013) conducts counterfactuals that suggest the

Great Inflation might not have occurred had agents believed that the economy could

have switched to a very active monetary regime (“Eagle” regime) in the 1980s and on.

These results also echo findings from Bianchi and Melosi (2013), in which policy

regimes are hidden from rational agents who experience recurring deviations from

passive fiscal policy to two active fiscal regimes that are identical apart from their

average persistence. As agents observe more deviations from passive or “virtuous”

policy regime, they grow more pessimistic about the probability of being in the

more persistent regime. In this environment, the growing pessimism causes inflation

to become more responsive to fiscal policy, and this means that once “dormant”,

persistent shocks to government debt can have creeping inflationary effects as agents

become more pessimistic.

Though Bianchi and Melosi study Bayesian learning in MS-DSGE models of

fiscal-monetary policy interactions, little research has studied adaptive learning in

this class of models. A number of papers, however, approach adaptive learning in

fixed regime models of the fiscal theory of prices. Namely, Evans and Honkapohja

(2007) examines stability of the “fiscalist” and “monetarist” solutions in McCallum

(2001), and the Regime M and Regime F equilibria in Leeper (1991). To this end,

they employ a model of an endowment economy with constant government purchases,

money in utility, and policy rules from the two aforementioned papers. They find

that the explosive fiscalist equilibrium obtained in a non-stochastic model with point

expectations is unstable under learning when agents use a one-period ahead learning

rule. Using the same rule, the fixed price, zero-debt monetarist solution is E-stable. In

the context of the Leeper (1991) model, they find that Regime M equilibria are stable
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while only a subregion of the parameter space consistent with Regime F equilibria yield

learnable solutions. These results lend some credence to Regime F equilibria.

Evans and Honkapohja (2005) studies learning and fiscal-monetary policy

interactions in the presence of a liquidity trap. They first examine a nonlinear

frictionless endowment economy to demonstrate the existence of a desired high

inflation steady state and a low inflation liquidity trap steady state. Under passive

fiscal policy, a unique high steady state equilibrium exists, under active policy, a

unique low steady state exists. The stability of these equilibria under learning are

examined using two learning rules. First, agents engage in a process of steady state

learning under which the high state is E-stable, and the low state is E-unstable. In the

second learning model, agents use a perceived law of motion that shares a functional

form with the equilibrium law of motion. Under this second learning scheme, the high

state is E-stable given passive fiscal policy, and the low state is learnable when policy

is active. However, the basin of attraction at the lower steady state is small, and this

presents the potential for a cumulative deflation. If the economy is pushed into such

a deflation, the monetary authority must pursue an aggressive policy to regain the

desirable high steady state. In other words, active fiscal policy is not enough. This

subject is further studied in a production economy with sticky prices in Evans, Guse

and Honkapohja (2008).

Eusepi and Preston tackle a number of adaptive learning questions in New

Keynesian models of monetary-fiscal policy interactions with nominal government

debt. Their analysis in Eusepi and Preston (2012) shows that a restricted subset of the

Regime F equilibria in a simple New Keynesian model with Leeper-style policy rules

are E-stable when agents are uncertain about the prevailing monetary-fiscal policy mix.

However, the removal of this uncertainty renders some of these previously E-unstable
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equilibria stable under learning. In Eusepi and Preston (2011), the relationship

between expectational stability and the scale and composition of debt is examined.

To capture scale effects, they vary the steady state level of debt, and to capture

composition effects, they vary the rate of decay in the government’s geometrically

decaying bond portfolio. They find that models with very short or very long average

maturities tend to be the most expectationally stable. This is because variation in

maturity has two competing effects. First, a lengthening in maturity structure subjects

debt to changes in inflation expectations through revaluation effects. This means

that a shock to expectations that revalues debt may feedback to agents’ expectations

in a destabilizing way. Second, a lengthening in maturity reduces the percentage of

outstanding debt that must be rolled over in each period. This makes it easier to

finance new debt should an unexpected exogenous shock place pressure on government

finances. These effects combine to make expectations least stable at medium-to-long

average maturities. Across all maturities, expectations are most stable when the fiscal

policy is active against an interest rate peg.

For more information on the FTPL, consult Leeper and Leith (2016). Other

relevant papers not introduced in this section are discussed in Chapters 3 and 5 of

this dissertation.

MS-DSGE Models

General Class of MS-DSGE Models

In this paper, we consider Markov-Switching Rational Expectations (MS-DSGE)

models of the following form:

Xt =M(st)Et(Xt+1) +N(st)Xt−1 +Q(st)Ut (2.1)
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where Xt is n × 1 vector of endogenous variables, Ut is m × 1 vector of exogenous

variables that follows

Ut = ρUt−1 + εt

where ρ is a diagonal matrix and εt is a white noise process. By assumption, Ut is a

covariance stationary process. st is a S-state Markov Chain and pij = Pr(st+1 = j|st =
i) is the (i, j)-th element of the transition probability matrix, P . From Proposition 1

in Cho (2016), any rational expectations solution to (2.1) can be written as a linear

combination of a minimal state variable solution that depends on Xt, st, and Ut and a

non-fundamental solution component, wt, as:

Xt = Ω(st)Xt−1 + Γ(st)Ut + wt (2.2)

wt = Et(F (st)wt+1) (2.3)

where the coefficient matrices satisfy the following conditions for all realizations of the

Markov Chain:

Ω(st) = {In − Et[M(st)Ω(st+1)]}−1N(st) (2.4)

Γ(st) = {In − Et[M(st)Ω(st+1)]}−1Q(st) + Et(F (st)Γ(st+1)ρ) (2.5)

F (st) = {In − Et[M(st)Ω(st+1)]}−1M(st) (2.6)

A minimal state variable solution takes the form given in (2.2) with wt = 0n×1:9

Xt = Ω(st)Xt−1 + Γ(st)Ut (2.7)

9Non-fundamental solutions arise with wt �= 0n×1 where wt satisfies (2.3)
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Any Ω(st) and Γ(st) that satisfy (2.4) and (2.5) give us a minimal state variable

solution of the form given in (2.7). Moreover, Γ(st) is uniquely determined by Ω(st)

and can be obtained by vectorizing (2.5) for each state and stacking the vectorized

equations as follow:

vec

⎛
⎜⎜⎜⎜⎝
Γ(1)

...

Γ(S)

⎞
⎟⎟⎟⎟⎠ = vec

⎛
⎜⎜⎜⎜⎝
Ξ(1)−1Q(1)

...

Ξ(S)−1Q(S)

⎞
⎟⎟⎟⎟⎠+ ((⊕S

j=1ρ
′ ⊗ F (j))(P ⊗ In×m))vec

⎛
⎜⎜⎜⎜⎝
Γ(1)

...

Γ(S)

⎞
⎟⎟⎟⎟⎠

where ⊕S
j=1ρ

′ ⊗ F (j) = diag(ρ′ ⊗ F (1), . . . , ρ′ ⊗ F (S)) and

Ξ(i) = In − Et[M(st)Ω(st+1)] (2.8)

Also, P denotes the transition probability matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p11 p12 · · · p1S

p21 p22 · · · p2S
...

. . .
...

pS1 pS2 · · · pSS

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where pij is the probability of transitioning from state i to state j.

The Forward Method for Solving MS-DSGE Models

In this section, we discuss the forward method for solving MS-DSGE models

developed in Cho (2016) and Cho and Moreno (2011). When the forward method

works, we obtain the “forward solution” to the MS-DSGE model given in (2.1). We

discuss this method and the “forward solution” for two reasons: (1) the determinacy
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results used in this paper only apply to the forward solution; (2) the presence of

lagged endogenous variables in MS-DSGE models generates an infinite regress problem

that often precludes use of standard solution techniques such as the method of

undetermined coefficients. As stated in Cho (2016), the forward method “simply

amounts to text-book style ‘solving the model’” forwards. To that end, consider the

following proposition, which is Proposition 3 in Cho (2016):

Proposition 1

Consider (2.1). For given st, Xt and Xt−1 there exists a unique sequence of

real-valued matrices (Ωk(st),Γk(st), Fk(st)) for k = 1, 2, 3, ... such that

Xt = Et[Mk(st, st+1, ..., st+k)Xt+k] + Ωk(st)Xt−1 + Γk(st)Ut (2.9)

where Ω1(st) = N(st), Γ1(st) = Q(st), F1(st) =M1(st) =M(st),

Ωk(st) = {In − Et[M(st)Ωk−1(st+1]}−1N(st) (2.10)

Γk(st) = {In − Et[M(st)Ωk−1(st+1)]}−1Q(st) + Et(Fk(st)Γk−1(st+1)ρ)(2.11)

Fk(st) = {In − Et[M(st)Ωk−1(st+1)]}−1M(st) (2.12)

and

Mk(st, st+1, ..., st+k) = Fk(st)Mk−1(st+1, ..., st+k)

Proof: See Appendix D in Cho (2016)

Definition 1

(2.1) satisfies the forward convergence condition if the coefficients of

the state variables, (Ωk(st),Γk(st), Fk(st)) in (2.10)-(2.12) converge as k
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goes to infinity for every st. Let Ω
∗(st) = limk→∞Ωk(st) and Γ

∗(st) =

limk→∞ Γk(st).

Then the model implies:

Xt = lim
k→∞

Et(Mk(st, ..., st+k)Xt+k) + Ω∗(st)Xt−1 + Γ∗(st)Ut (2.13)

Now, since Ω∗(st) and Γ∗(st) satisfy (2.4) and (2.5). The following equation describes a

rational expectations solution of (2.1):

Xt = Ω∗(st)Xt−1 + Γ∗(st)Ut (2.14)

Equation (2.14) is the forward solution to (2.1). (2.13) and (2.14) jointly imply that

Et(Mk(st, ..., st+k)Xt+k) = 0n×1, and Cho (2016) shows that (2.14) is the unique

solution obtained via the forward method that satisfies the No Bubble Condition

(NBC): Et(Mk(st, ..., st+k)Xt+k) = 0n×1. Because Γ∗(st) does not exist if Ω∗(st) does

not exist, one should first check to see if Ωk(st) converges. If Ω
∗(st) exists, and the

spectral radius of (⊕S
j=1ρ

′⊗F (j))(P ⊗ In×m) is less than one, then Γ∗(st) exists and can

be recovered from the following equation:

vec

⎛
⎜⎜⎜⎜⎝
Γ∗(1)
...

Γ∗(S)

⎞
⎟⎟⎟⎟⎠ = vec

⎛
⎜⎜⎜⎜⎝
Ξ∗(1)−1Q(1)

...

Ξ∗(S)−1Q(S)

⎞
⎟⎟⎟⎟⎠+ ((⊕S

j=1ρ
′ ⊗ F ∗(j))(P ⊗ In×m))vec

⎛
⎜⎜⎜⎜⎝
Γ∗(1)
...

Γ∗(S)

⎞
⎟⎟⎟⎟⎠

where we have substituted Ω∗(st) for Ω(st) in (2.6) and (2.8) to form F ∗(st) and

Ξ∗(st), respectively.
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E-Stability

In this paper, we focus on the stability of the forward solution of (2.1) under

adaptive learning. Specifically, we show that a set of sufficient conditions for

determinacy in this class of models imply that the forward solution of (2.1) is stable

under learning. This result depends on the information that agents have at their

disposal. Suppose agents observe st, P , Ut, and Xt at time t. Agents have the following

perceived law of motion:

Xt = A(st) + B(st)Xt−1 + C(st)Ut

where A(i) is n × 1, B(i) is n × n and C(i) is n × m. Consistent with the PLM, the

learning agent believes that if st = i then Xt = A(i) + B(i)Xt−1 + C(i)Ut for i =

1, 2, ..., S. The coefficient matrices of the PLM may be estimated using a recursive least

squares procedure that updates A(i), B(i), and C(i) each time st = i. Notice that we

allow agents to learn steady state values by including a constant term in the PLM. In

this section, we solve for agents’ state-contingent expectations and derive the state-

contingent T-map. If st = i then

Et(Xt+1) = E(Xt+1|st = i;Xt, Ut)

=
S∑

j=1

E(Xt+1|st+1 = j, st = i;Xt, Ut)

=
S∑

j=1

pij(A(j) + B(j)EtXt + C(j)EtUt+1))

=
S∑

j=1

pij(A(j) +B(j)Xt + C(j)ρUt))

27



Substituting Et(Xt+1) into (2.1) yields the actual data generating process:

Xt = {I −M(i)(
S∑

j=1

pijB(j))}−1M(i)(
S∑

j=1

pijA(j))

+ {I −M(i)(
S∑

j=1

pijB(j))}−1N(i)Xt−1

+ {I −M(i)(
S∑

j=1

pijB(j))}−1(M(i)(
S∑

j=1

pijC(j))ρ+Q(i))Ut

If we define B = (B(1) B(2) · · ·B(S)) and Ξ(i, B) = {I −M(i)(
∑S

j=1 pijB(j))} then
the state-contingent T-map is:

A(i) → Ξ(i, B)−1M(i)
S∑

j=1

pijA(j)

B(i) → Ξ(i, B)−1N(i)

C(i) → Ξ(i, B)−1(M(i)
S∑

j=1

pijC(j)ρ+Q(i))

Notice that the forward solution is a fixed point of the T-map. The block of the T-map

associated to B = (B(1) B(2) · · ·B(S)) decouples from the other equations. This block

is given by:

TB(B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(Ξ(1, B)−1N(1))′

(Ξ(2, B)−1N(2))′

...

(Ξ(S,B)−1N(S))′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

′

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

T 1
B(B)

′

T 2
B(B)

′

...

T S
B(B)

′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

′
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To assess E-stability, we begin by examining the following differential equation:

dB

dt
= TB(B)− B

Let DTB(B̄) denote the Jacobian of TB evaluated at the forward solution, B̄ = (Ω∗(1)

Ω∗(2) · · ·Ω∗(S)). Since TB is continuously differentiable, Proposition 5.6 in Evans and

Honkapohja (2001) tells us that B̄ is locally asymptotically stable if the eigenvalues of

DTB(B̄) have real parts less than one. As demonstrated in Appendix A. this process

yields the following Jacobian:

DTB(B̄) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p11Ω
∗(1)′ ⊗ F ∗(1) p12Ω

∗(1)′ ⊗ F ∗(1) · · · p1SΩ
∗(1)′ ⊗ F ∗(1)

p21Ω
∗(2)′ ⊗ F ∗(2) p22Ω

∗(2)′ ⊗ F ∗(2) · · · p2SΩ
∗(2)′ ⊗ F ∗(2)

...
. . .

...

pS1Ω
∗(S)′ ⊗ F ∗(S) pS2Ω

∗(S)′ ⊗ F ∗(S) · · · pSSΩ
∗(S)′ ⊗ F ∗(S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≡ (⊕S
j=1Ω

∗′(j)⊗ F ∗(j))(P ⊗ In2)

E-stability requires the real parts of (⊕S
j=1Ω

∗′(j) ⊗ F ∗(j))(P ⊗ In2) to be less

than one. It is important to note that our derivation of the E-stability conditions

hinges on the following: Ξ(i, B̄)−1N(i) = {I − M(i)(
∑S

j=1 pijΩ
∗(j))}−1N(i) =

{I − M(i)(Et(Ω
∗(st+1))}−1N(i) = Ω∗(i) and Ξ(i, B̄)−1M(i) = {I −

M(i)(
∑S

j=1 pijΩ
∗(j))}−1M(i) = {I − M(i)(Et(Ω

∗(st+1))}−1M(i) = F ∗(i) where Et

denotes conditional expectations here. We now turn to the equation for A = (A(1)′

A(2)′ · · ·A(S)′)′:
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TA(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ξ(1, B)−1M(1)(
∑S

j=1 p1jA(j))

Ξ(2, B)−1M(2)(
∑S

j=1 p2jA(j))

...

Ξ(S,B)−1M(S)(
∑S

j=1 pSjA(j))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p11Ξ(1, B)
−1M(1) p12Ξ(1, B)

−1M(1) · · · p1SΞ(1, B)
−1M(1)

p21Ξ(2, B)
−1M(2) p22Ξ(2, B)

−1M(2) · · · p2SΞ(2, B)
−1M(1)

...
. . .

...

pS1Ξ(S,B)
−1M(S) pS2Ξ(S,B)

−1M(S) · · · pSSΞ(S,B)
−1M(S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
A

Using the same methods as before we obtain the following Jacobian evaluated at the

REE where Ā = 0Sn×1 :

DTA(Ā, B̄) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p11F
∗(1) p12F

∗(1) . . . p1SF
∗(1)

p21F
∗(2) p22F

∗(2) . . . p2SF
∗(2)

...
. . .

...

pS1F
∗(S) pS2F

∗(S) . . . pSSF
∗(S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
≡ (⊕S

j=1F
∗(j))(P ⊗ In)

E-stability requires the real parts of ((⊕S
j=1F

∗(j))(P ⊗ In)) to be less than one.

Finally, we consider the equation for C = (C(1)′ C(2)′ · · ·C(S)′)′:
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TC(B,C) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ξ(1, B)−1(M(1)(
∑S

j=1 p1jC(j))ρ+Q(1))

Ξ(2, B)−1(M(2)(
∑S

j=1 p2jC(j))ρ+Q(2))

...

Ξ(S,B)−1(M(S)(
∑S

j=1 pSjC(j))ρ+Q(S))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p11Ξ(1, B)
−1M(1) p12Ξ(1, B)

−1M(1) · · · p1SΞ(1, B)
−1M(1)

p21Ξ(2, B)
−1M(2) p22Ξ(2, B)

−1M(2) · · · p2SΞ(2, B)
−1M(1)

...
. . .

...

pS1Ξ(S,B)
−1M(S) pS2Ξ(S,B)

−1M(S) · · · pSSΞ(S,B)
−1M(S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
Cρ

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ξ(1, B)−1Q(1)

Ξ(2, B)−1Q(2)
...

Ξ(S,B)−1Q(S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Using the same methods as before we obtain the following Jacobian evaluated at the

REE where C̄ = (Γ∗(1)′ Γ∗(2)′ · · ·Γ∗(S)′)′:

DTC(B̄, C̄) = ρ⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p11F
∗(1) p12F

∗(1) . . . p1SF
∗(1)

p21F
∗(2) p22F

∗(2) . . . p2SF
∗(2)

...
. . .

...

pS1F
∗(S) pS2F

∗(S) . . . pSSF
∗(S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
≡ ρ⊗ ((⊕S

j=1F
∗(j))(P ⊗ In))
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The REE solution Ā, B̄, C̄ is E-stable if:

i. all the eigenvalues of (⊕S
j=1Ω

∗′(j)⊗ F ∗(j))(P ⊗ In2) have real parts less than 1,

ii. all the eigenvalues of (⊕S
j=1F

∗(j))(P ⊗ In) have real parts less than 1, and,

iii. all the eigenvalues of ρ⊗ ((⊕S
j=1F

∗(j))(P ⊗ In)) have real parts less than 1

The solution is not E-stable if any of these three conditions fail with eigenvalues

strictly greater than one.

Mean-Square Stability

As noted in the literature review, the MS-DSGE literature utilizes two notions of

stability: (1) bounded stability; (2) mean-square stability. We focus on mean-square

stability in this paper, but offer definitions for both mean-square stability and bounded

stability below.

Definition 2

An n × 1 stochastic process yt is mean-square stable (MSS) if there exists

an n × 1 vector ȳ and n × n matrix Q s.t. limt→∞(E[yt]) = ȳ and

limt→∞(E[yty′t]) = Q.

Intuitively, a stochastic process is MSS if its first and second moments converge

to well-defined limits. The concept of mean-square stability is closely related to other

often used concepts of stability. For example, asymptotic covariance stationarity

implies mean-square stability in general, and is even equivalent to mean-square

stability in models with exogenous asymptotic covariance stationary shock processes.
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Definition 3

An n-dimensional stochastic process yt is bounded if there exists a real

number N such that ||yt|| < N for all t

where || • || is any well-defined norm, including the uniform norm. In LRE models

with bounded shocks, determinacy in the mean-square stability sense and determinacy

in the bounded stability sense are equivalent equilibrium selection criteria. In

models with unbounded shocks–such as the normal or lognormal exogenous shocks

commonly used in applications–the criteria differ; a mean-square stable process can

have unbounded support while bounded processes cannot. Of course, this paper, and

other papers in the MS-DSGE literature, work with models that are linearized around

a nonstochastic steady state, and therefore function best with small shocks. This

substantially reduces the meaningfulness of embracing a concept of stability that allows

for unbounded shock processes. Even with bounded shocks, the two concepts are not

equivalent in MS-DSGE models. For example, Farmer, Whaggoner and Zha (2009)

argues that MS-DSGE models with persistent unstable regimes may admit unbounded

MSS rational expectations equilibria. This means that bounded stability may rule out

equilibria of theoretical importance in certain applications (i.e. equilibria in economies

that experience recurring hyperinflation). These reasons notwithstanding, we work

with mean-square stability because there are not tractable conditions for determinacy

in the boundedly stable sense in MS-DSGE models with lagged endogenous variables.

Though Definition 2 both formalizes the concept of mean-square stability, and

offers helpful intuition, it does not help us identify mean-square stability. To that end,

Costa et al. (2005) developed a set of tractable conditions for identifying whether or

not a given process is MSS. We state these conditions by considering a very general
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process:

yt+1 = D(st, st+1)yt +H(st+1)ηt+1 (2.15)

where D(st, st+1) is n × n, H(st+1) is n × l and ηt+1 is some l × 1 mean-square stable

(MSS) process. D(st, st+1) can depend on st alone, st+1 alone, or both st and st+1.

Given certain conditions on Ut, the forward solution is a stochastic process of this form

10:

Xt = Ω∗(st)Xt−1 + Γ∗(st)Ut (2.16)

We can also form a stochastic process of this form by forcing the coefficient matrices in

the forward solution to depend on last period’s state:

Xt = Ω∗(st−1)Xt−1 + Γ∗(st−1)Ut (2.17)

Theorem 3.34 in Costa et al. (2005) allows us to focus solely on the homogeneous part

of (2.15): yt+1 = D(st, st+1)yt. Consider the following matrices:

Ψ̄D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p11D(1, 1) p21D(2, 1) · · · pS1D(S, 1)

p12D(1, 2) p22D(2, 2) · · · pS2D(S, 2)

...
. . .

...

p1SD(1, S) p2SD(2, S) · · · pSSD(S, S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

ΨD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p11D(1, 1) p12D(1, 2) · · · p1SD(1, S)

p21D(2, 1) p22D(2, 2) · · · p2SD(2, S)

...
. . .

...

pS1D(S, 1) pS2D(S, 2) · · · pSSD(S, S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

10If Ut consists of m independent covariance stationary AR(1) processes then Γ(st)Ut will be MSS
and these conditions are met
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Ψ̄D⊗D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p11D(1, 1)⊗D(1, 1) p21D(2, 1)⊗D(2, 1) · · · pS1D(S, 1)⊗D(S, 1)

p12D(1, 2)⊗D(1, 2) p22D(2, 2)⊗D(2, 2) · · · pS2D(S, 2)⊗D(S, 2)

...
. . .

...

p1SD(1, S)⊗D(1, S) p2SD(2, S)⊗D(2, S) · · · pSSD(S, S)⊗D(S, S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

ΨD⊗D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p11D(1, 1)⊗D(1, 1) p12D(1, 2)⊗D(1, 2) · · · p1SD(1, S)⊗D(1, S)

p21D(2, 1)⊗D(2, 1) p22D(2, 2)⊗D(2, 2) · · · p2SD(2, S)⊗D(2, S)

...
. . .

...

pS1D(S, 1)⊗D(S, 1) pS2D(S, 2)⊗D(S, 2) · · · pSSD(S, S)⊗D(S, S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Definition 4

Let rσ(X) = max1≤i≤n(|λi|), where λ1, ..., λn are the eigenvalues of the n×n

matrix X.

Theorem 1

The process (2.15) is mean-square stable if and only if rσ(Ψ̄D⊗D) < 1.

Proof: See Proposition 3.9 in Costa et al. (2005).

To derive this result, Costa et al. develop first-order difference equations that

describe the evolution of the first and second moments of an arbitrary stochastic

process. They show that Ψ̄D⊗D governs the evolution of the second moment such

that the second moment equation converges in the limit if and only if the spectral

radius of Ψ̄D⊗D is less than one. Conveniently, this condition is also sufficient for

the convergence of the first moment process, whose evolution is governed by Ψ̄D (see

Theorem 2). As a result, rσ(Ψ̄D⊗D) < 1 is necessary and sufficient for the mean-square

stability of the process in (2.15). The following is also a useful result from Costa et al

(2005).
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Theorem 2

If rσ(Ψ̄D⊗D) < 1 then rσ(Ψ̄D) < 1

Proof: See Proposition 3.6 in Costa et al. (2005)

Corollary: If rσ(ΨD⊗D) < 1 then rσ(ΨD) < 1

Proof: Since rσ(ΨD⊗D) = rσ(Ψ̄D′⊗D′) < 1, Theorem 2 implies that rσ(Ψ̄D′) =

rσ(ΨD) < 1.

The stochastic processes that we study in this paper have homogeneous component

matrices that strictly depend on st or st+1, but not both. For example, let

D(st, st+1) = Ω∗(st+1) as in (2.16). In this case: Ψ̄D⊗D = (⊕S
j=1Ω

∗(j)⊗Ω∗(j))(P ′⊗ In2);

Ψ̄D = (⊕S
j=1Ω

∗(j))(P ′ ⊗ In); ΨD⊗D = (P ⊗ In2)(⊕S
j=1Ω

∗(j) ⊗ Ω∗(j)); ΨD =

(P ⊗ In)(⊕S
j=1Ω

∗(j)). If D(st, st+1) = Ω∗(st) as in (2.17), then: Ψ̄D⊗D = (P ′ ⊗
In2)(⊕S

j=1Ω
∗(j)⊗Ω∗(j)); Ψ̄D = (P ′⊗ In)(⊕S

j=1Ω
∗(j)); ΨD⊗D = (⊕S

j=1Ω
∗(j)⊗Ω∗(j))(P ⊗

In2); ΨD = (⊕S
j=1Ω

∗(j))(P ⊗ In)

Cho (2016) Sufficient Conditions for Determinacy

As shown in Cho (2016), the following two conditions are sufficient for

determinacy in the mean square stability sense:

1. rσ((⊕S
j=1Ω

∗(j)⊗ Ω∗(j))(P ′ ⊗ In2)) < 1

2. rσ((⊕S
j=1F

∗(j)⊗ F ∗(j))(P ⊗ In2)) ≤ 1

where all coefficient matrices are taken from the forward solution to the model.

Determinacy and E-Stability

In this section, we show that the abovementioned sufficient conditions for

determinacy imply E-stability in the class of MS-DSGE models under consideration
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in this paper. Simply put, determinacy implies rσ(((⊕S
j=1F

∗(j))(P ⊗ In))) < 1 and

rσ((⊕S
j=1Ω

∗′(j) ⊗ F ∗(j))(P ⊗ In2)) < 1. rσ((⊕S
j=1Ω

∗′(j) ⊗ F ∗(j))(P ⊗ In2)) < 1 implies

that condition (i) for E-stability holds, and rσ((⊕S
j=1F

∗(j))(P ⊗ In)) < 1 implies that

conditions (ii) and (iii) are satisfied as well.

E-Stability and Cho (2016) Conditions

Theorem 3

If the MSV solution to a model of the form (2.1) satisfies the sufficient

conditions for determinacy in Cho (2016), then the MSV solution is stable

under learning.

Proof: The proof consists of two parts. First, we demonstrate that both

determinacy conditions imply rσ((⊕S
j=1Ω

∗′(j) ⊗ F ∗(j))(P ⊗ In2)) < 1, which implies

the first sufficient condition for E-stability. Then, we demonstrate that the second

determinacy condition implies rσ((⊕S
j=1F

∗(j))(P ⊗ In)) < 1, which implies the

second and third conditions for E-stability . We begin by considering the following

proposition:

Proposition 2

Consider the two arbitrary stochastic processes with the following

homogeneous components:

Xt+1 = G(st)Xt

ωt+1 = H(st)
′ωt
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where X and ω are both n × 1. If rσ((⊕S
j=1H(j) ⊗H(j))(P ⊗ In)) < 1 and

rσ((P
′⊗In)(⊕S

j=1G(j)⊗G(j))) < 1 then rσ((⊕S
j=1G

′
(j)⊗H(j))(P⊗In2)) < 1.

Proof: See proof of Lemma 1 in Cho (2016). Set F ′(st−1, st) = H(st−1)′ and

G(st−1, st) = G(st−1) and Proposition 2 follows. �

Now suppose G(st) = Ω∗(st) and H ′(st) = F ∗(st)′ so that (⊕S
j=1G

′
(j)⊗H(j))(P ⊗

In2) = (⊕S
j=1Ω

∗′(j)⊗ F ∗(j))(P ⊗ In2). If the sufficient conditions for determinacy imply

that we can form MSS processes with the following homogeneous components:

Xt+1 = Ω∗(st)Xt (2.18)

wt+1 = F ∗(st)′ωt (2.19)

then rσ((⊕S
j=1Ω

∗′(j) ⊗ F ∗(j))(P ⊗ In2)) < 1 by Proposition 2. We now prove this

implication. From the first condition for determinacy, rσ((⊕S
j=1Ω

∗(j) ⊗ Ω∗(j))(P ′ ⊗
In2)) < 1. Since (⊕S

j=1Ω
∗(j) ⊗ Ω∗(j))(P ′ ⊗ In2) and (P ′ ⊗ In2)(⊕S

j=1Ω
∗(j) ⊗ Ω∗(j))

have the same characteristic equation, the first condition for determinacy implies

rσ((P
′ ⊗ In2)(⊕S

j=1Ω
∗(j) ⊗ Ω∗(j))) < 1. From Theorem 1, it follows that (2.18) is

a MSS homogenous component. Now consider the second condition for determinacy:

rσ((⊕S
j=1F

∗(j) ⊗ F ∗(j))(P ⊗ In)) < 1. Since ((⊕S
j=1F

∗(j) ⊗ F ∗(j))(P ⊗ In))
′ =

(P ′ ⊗ In)(⊕S
j=1F

∗(j)′ ⊗ F ∗(j)′), the second condition for determinacy also implies

rσ((P
′ ⊗ In)(⊕S

j=1F
∗(j)′ ⊗ F ∗(j)′)) < 1. It follows from Theorem 1 that (2.19) is also

a MSS homogeneous component. Together, the stability of (2.18) and (2.19) give us

rσ((⊕S
j=1Ω

∗′(j)⊗ F ∗(j))(P ⊗ In2)) < 1 which satisfies the first E-stability condition

Now, we show that conditions (ii) and (iii) are satisfied. As demonstrated,

determinacy implies rσ((P
′ ⊗ In)(⊕S

j=1F
∗(j)′ ⊗ F ∗(j)′)) < 1. From Theorem 2 and

its corollary, rσ((P
′ ⊗ In)(⊕S

j=1F
∗(j)′)) = rσ((⊕S

j=1F
∗(j))(P ⊗ In)) < 1 follows.
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Therefore, if the forward solution satisfies the sufficient conditions for determinacy

in Cho (2016), then E-stability condition (ii) is satisfied. To see that (iii) is satisfied,

observe the following: rσ(ρ ⊗ ((⊕S
j=1F

∗(j))(P ⊗ In))) = rσ(ρ)rσ((⊕S
j=1F

∗(j))(P ⊗ In)).

Since ρ is a diagonal matrix and all of its entries are bounded below by 0 and above

by 1, rσ(ρ) is less than one. Hence, rσ(((⊕S
j=1F

∗(j))(P ⊗ In))) < 1 implies condition

(iii). We conclude that the sufficient conditions for determinacy imply E-stability of

the forward solution for any S-state Markov chain. �

McCallum (2007): A Special Case

Though we implicitly pursue this result in order to further our understanding of

nondegenerate Markov-switching models (i.e. models with S > 1), we draw attention

to the fact that linear rational expectations models are nested in the class of models we

examine. This means that our methods should agree with the main result in McCallum

(2007), which shows that determinacy implies the learnability of the minimal state

variable solution when agents use an information set that is identical to the one used

in this paper. To see what our approach says about linear models we let S = 1. When

this is true, the forward solution Ā, B̄, C̄ is E-stable if:

i. all the eigenvalues of (Ω∗)′ ⊗ F have real parts less than 1,

ii. all the eigenvalues of F ∗ have real parts less than 1, and,

iii. all the eigenvalues of ρ⊗ F ∗ have real parts less than 1

Likewise, the sufficient conditions for determinacy become:

1. rσ(Ω
∗ ⊗ Ω∗) < 1

2. rσ(F
∗ ⊗ F ∗) < 1
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A well known result in matrix algebra says that for any matrix, A, rσ(A ⊗ A) < 1 if

and only if rσ(A) < 1. Therefore, we can use the following equivalent conditions for

determinacy:

1. rσ(Ω
∗) < 1

2. rσ(F
∗) < 1

McCallum (2007) shows that these last two determinacy conditions imply the three

E-stability conditions above. Hence, our results agree with McCallum (2007).

Numerical Example

We apply our results to a basic New Keynesian model of the kind Woodford

(1998a) uses. This model is augmented to allow for Markov-switching in fiscal and

monetary policy parameters, and features a representative household and firm,

monopolistic competition in the production of intermediate goods, and price stickiness

a la Calvo (1983) according to which 1−θ fraction of firms can change their prices each
period. The model also allows government to sell one-period nominal bonds, Bt, at a

price that equals the inverse of the monetary policy instrument, 1 + it. The government

collects lump-sum taxes in accordance with an endogenous primary surplus rule, τt

and government purchases are assumed to equal 0, so that income, Yt, equals Ct in

equilibrium.

The model is linearized around the non-stochastic steady state with zero

inflation. Let ẑt ≡ ln(zt)− ln(z̄) where z̄ is the value of z in steady state. The behavior
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of households and firms then reduces to two-equations 11:

ŷt = Etŷt+1 − σ−1(̂it − Etπ̂t+1) (2.20)

π̂t = βEtπ̂t+1 + κŷt (2.21)

where β is the household discount factor, σ−1 is the intertemporal elasticity of

substitution and κ is defined in Appendix B. β, κ, and σ are positive by assumption,

and β is also bounded above by 1. Monetary policy follows a standard interest rate

rule of the form:

ît = α(st)π̂t + zmt (2.22)

zmt = ρmzm,t−1 + εmt (2.23)

where st follows a 2-state Markov chain, zmt is an AR(1) exogenous monetary

policy shock, and εm is an exogenous i.i.d. mean-zero innovation. Fiscal policy is

characterized by the following linearized rule for primary surpluses:

τ̂t = γ(st)(b̂t−1 − ît−1) + zft (2.24)

zft = ρF zf,t−1 + εft (2.25)

where b̂t is the percentage deviation of real bonds from steady state, zft is an

exogenous fiscal policy shock, and εf is an exogenous mean-zero i.i.d innovation. γ is

the fiscal authority’s policy parameter and it follows the same Markov process as α.

11See Appendix B. for full-derivation of (2.20), (2.21), and policy equations
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Fiscal policy must also satisfy the following budget constraint:

b̂t − ît + (β−1 − 1)ŝt = β−1(b̂t−1 − π̂t) (2.26)

To reduce the number of equations in the system, we substitute (2.24) into (2.26),

which yields:

b̂t − ît + β−1πt = (β−1 − γ(st)(β
−1 − 1))b̂t−1 + γ(st)(β

−1 − 1)̂it−1 + (1− β−1)zft (2.27)

To characterize the time-varying behavior of policymakers, let st = M if the economy

is in Regime M, and let st = F if the economy is in Regime F. In Regime M, α(M) > 1

and γ(M) > 1; in regime F, 0 ≤ α(F ) < 1 and 0 ≤ γ(F ) < 1. As discussed,

a LRE model that features either a Regime F or Regime M policy configuration is

determinate. In Regime F (M), fiscal policy is active (passive) and monetary policy

is passive (active). If the economy is not in Regime F or Regime M in a LRE model,

then monetary and fiscal policy are both passive (active), in which case the model

is indeterminate (explosive). Though the assumption that policy strictly switches

between Regime M and Regime F configurations is highly restrictive, we assume this

for expositional purposes, and will study a more general model of switching in the

future.

The system given by (2.20)-(2.23), (2.25), and (2.27) yields a solution for xt =

(ŷt, π̂t, ît, b̂t)
′. To utilize the forward method for solving this model, we must write the

model in the form of (2.1). Before doing this, however, we add the following constraint
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to (2.21):

λEt(b̂t+1 − ît+1 + β−1πt+1 − (1− β−1)ρF zft

− (β−1 −
2∑

j=1

pijγ(j)(β
−1 − 1))b̂t −

2∑
j=1

pijγ(j)(β
−1 − 1)̂it)) = 0

where λ is any nonzero scalar, and st = i. To derive this constraint, we forward the

government budget constraint one-period and take expectations. The constraint forces

expected inflation to be consistent with agents’ expectations of future fiscal policy. Cho

(2015) demonstrates the need for this constraint when using the forward method to

solve “block-recursive” models that have an autonomous block and a dependent block.

An autonomous block is subsystem of equations that have no behavioral dependence

on the dependent block. For example, the Phillips Curve, IS curve, and interest

rate rule constitute the autonomous block in our New Keynesian model because

these equations do not explicitly depend on the government budget constraint and

fiscal surplus rule, which constitute the dependent block. When we solve the model

forward, expectations of inflation and output will not depend on, or be consistent with,

current and expected future fiscal policy. In other words, agents will condition their

expectations on information set, {π̂t, ŷt, ît, zmt, st}, when we are interested in a class of
equilibria corresponding to the following information set: {π̂t, ŷt, ît, b̂t, zmt, zft, st}. If
fiscal policy is always passive, then current and expected future output and inflation

do not depend on fiscal policy, and the information adjustment is unnecessary. If,

however, fiscal policy is active sufficiently often, then inflation and output–which are

determined in the autonomous block–will not respond to stabilize government debt in

the absence of the informational adjustment, and the conditions for determinacy will

fail regardless of whether or not the model is determinate. Because we allow for active
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fiscal policy, we add this informational adjustment to the system of equations. After

making this adjustment the system is written as:

A(i)xt = BEtxt+1 + C(i)xt−1 +Qut

where ut = (zmt, zft)
′, st = iand

A(i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 σ−1 0

−κ 1 λ(−(1− β−1)
∑2

j=1 pijγ(j)) λ(β−1 − (1− β−1)
∑2

j=1 pijγ(j))

0 −α(i) 1 0

0 β−1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 σ−1 0 0

0 β + λ(β−1) −λ λ

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

C(i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 γ(i)(β−1 − 1) (β−1 − γ(i)(β−1 − 1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 0

1 0

0 1− β−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Provided A(st) is invertible for all st it is straightforward to show that M(st) =

A(st)
−1B, N(st) = A(st)

−1C(st) and Q(st) = A(st)
−1. We can now apply the
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forward method and assess the uniqueness, mean-square stability and E-stability of the

resulting forward solution. Unsurprisingly, our numerical analysis supports the main

analytical result of this paper. Specifically, consider the set of parameter values

̂α(M) ∈ [1, 5] ̂α(F ) ∈ [0, 1] ̂γ(M) ∈ [1, 5]
̂γ(F ) ∈ [0, 1] κ ∈ [0, 1] β ∈ [.975, 1]
σ ∈ [0, 5]

The forward solution is found to be E-stable for all indicated combinations of

parameter values whenever the sufficient conditions for determinacy are also satisfied.

This result depends crucially on the agents information set, I1t = {xt, ut, st}. When

agents only observe I2t = {xt−1, ut, st} at time t, there are cases in which determinacy
does not imply E-stability. This appears to hinge on the fact that fiscal policy is

periodically active; a determinate purely forward-looking New Keynesian model (i.e.

a model with a passive fiscal authority) will always have E-stable forward solutions

when agents only observe I2t . We leave this topic to future research.

Conclusion

We proved that the sufficient conditions for determinacy in Cho (2016) imply

the E-stability of the forward solution in MS-DSGE models with lagged endogenous

variables when agents condition their expectations of future endogenous variables

on all current endogenous and exogenous variables. This result extends a well-

known result in McCallum (2007), and is the first study to address the relationship

between determinacy and E-stability in MS-DSGE models with lagged endogenous

variables. Through applications to models of fiscal-monetary policy interactions, we

also demonstrate that our result is not robust to changes in agents’ information set.
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In the future, we hope to extend the model of Eusepi and Preston (2013) to

allow for switching in fiscal and monetary policy parameters. This extension allows

us to explore new issues. First, we can analyze how the size and average maturity

of government debt affects economies that face recurring changes in fiscal and

monetary policy. In the presence of a permanent Regime F configuration, medium

to long average maturities induce expectational instability. This is a significant result

inasmuch as global data reveals substantial cross-country variation in the scale and

composition of debt. The present study does not, however, account for switches in

policy that may have occurred in the U.S. and abroad since the 1960s. We therefore

see the addition of Markov-switching interest rate rule and surplus rule parameters

as a natural extension. Second, this research allows us to better understand and

characterize regions of the New Keynesian model’s parameter space consistent with

determinacy and E-stability in the presence of switching policy rules. Third, our

treatment of this model may allow us to identify cases where the forward solution

appears stable but violates the conditions for determinacy and indeterminacy in Cho

(2016). This may help us better understand the extent to which Cho’s conditions

are not necessary. Finally, we want to study how switching in fiscal policy appears

to impart expectational instability on an otherwise standard New Keynesian model

when agents do not observe current endogenous varaiables. This is a subject of

interest to us because the methods in Branch et al. (2013) and Reed (2015) show

that determinacy implies E-stability when agents do not know the contemporaneous

endogenous variables and fiscal policy is permanently passive. We take this topic up in

Chapter 4.
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CHAPTER III

THE POWER OF FORWARD GUIDANCE AND THE FISCAL THEORY OF THE

PRICE LEVEL

Introduction

A growing literature offers strong theoretical support for the use of expansionary

forward guidance on interest rates, particularly when interest rates are constrained by

the zero lower bound (see, for example, Eggertsson and Woodford, (2003)). Despite

the effectiveness of forward guidance in theory, the predictions of workhorse New

Keynesian models do not accord well with empirical studies of the effects of forward

guidance in the U.S. (e.g. Del Negro et al (2015), D’Amico and King (2015)). That

is, while New Keynesian models predict large responses of inflation and output to

forward guidance on short-term rates, the empirical evidence points to responses that

are positive but modest. This shortcoming of the New Keynesian model is dubbed

“The Forward Guidance Puzzle” (Del Negro et al. 2015), and it calls into question

the ability of the standard New Keynesian model to predict the effects of anticipated

monetary policy.

According to Del Negro et al. (2015), McKay et al. (2015), Carlstrom et al.

(2012), Chung et al.(2014), Kiley (2014), the implausible responsiveness of output

and inflation to forward guidance stems from three signature features of the New

Keynesian model. First, consumption is excessively responsive to changes in interest

rates. Second, the lack of a discount factor in the household’s log-linearized Euler

equation implies a strong response of consumption to long-run interest rates. Because

forward guidance is designed to influence long-run rates, forward guidance naturally
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generates a large response in consumption through the Euler equation. Third, “front-

loading” in the New Keynesian Phillips Curve renders inflation particularly sensitive

to changes in current and future output. Together, the lack of discounting in the

Euler equation and front-loading in the Phillips Curve generate a feedback loop that

exacerbates the rise in inflation and output implied by forward guidance.

Several papers have addressed this puzzle by limiting the importance of these

three features of the New Keynesian model. For instance, McKay et al (2015) mute

the response of agents to forward guidance by introducing borrowing constraints that

prevent agents from drawing down their savings over the forward guidance horizon.

Gabaix (2016) introduces an explicit discount factor into the Euler equation and an

additional discount factor into the Phillips Curve to model myopic agents. Del Negro

et al (2015) show that a positive probability of death generates effective discounting

in the Euler equation when they introduce a perpetual youth structure into the New

Keynesian model. Chung et al. (2014) and Kiley (2014) introduce “sticky information”

in the spirit of Mankiw and Reis (2002) to mitigate feedback effects from the Phillips

Curve. Cole (2015) replaces rational expectations with a model of adaptive learning

to demonstrate that bounded rationality lessens the effectiveness of forward guidance

in specific policy experiments. Cochrane (2017) argues that equilibrium selection rules

may help to explain the Forward Guidance Puzzle.

In contrast to previous attempts to explain the exaggerated response of inflation

and output to forward guidance – which focus primarily on the specification of private

sector behavior – this paper examines how the joint conduct of monetary and fiscal

policy influences the effects of expansionary forward guidance in the New Keynesian

model. Specifically, we show that the above mentioned exaggerated response of output

and inflation to forward guidance may hinge on two assumptions (in addition to the
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three model features highlighted above): (1) the monetary authority employs an

interest rate rule that satisfies the “Taylor Principle”; (2) fiscal policy is conducted in

such a way that variation in fiscal surpluses acts to stabilize government debt, thereby

rendering fiscal policy Ricardian. Our approach is most closely related to Cochrane

(2017), which suggests that fiscal considerations may help select equilibria with smaller

initial price jumps in response to anticipated policy announcements.1 In contrast to

Cochrane (2017), we explicitly characterize fiscal policy regimes and study how wealth

effects arising in these regimes reduce the responses of inflation and output to forward

guidance. Moreover, we model recurring fiscal regimes to capture how uncertainty

about future fiscal policy impacts the effectiveness of forward guidance.

Our contribution borrows heavily from the Fiscal Theory of the Price Level

literature, which models inflation as the outcome of both monetary and fiscal

policy (see Leeper and Leith (2016) for a review of the Fiscal Theory of the Price

Level). Work in this literature distinguishes between “passive” policymakers who are

constrained to stabilize the government debt, and “active” policymakers who determine

inflation. In the standard New Keynesian model we study here, monetary policy is

active (passive) when interest rate responds respond strongly (weakly) to inflation,

and fiscal policy is passive (active) when Ricardian equivalence is satisfied (violated).

Careful consideration of the passive-active dichotomy reveals a number of channels

through which the fiscal policy stance impacts the response of inflation and output to

both fundamental and policy shocks.

This paper focuses on a specific channel through which active fiscal policy affects

agents’ perception of bond wealth. To illustrate this channel, we restrict attention to

1Cochrane (2017) uses a bond valuation equation, which we introduce in (2), to point out the idea
that the large price adjustments predicted in the standard “forward-stable” model equilibrium must
be supported by changes in the present value of expected future surpluses.
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our model’s intertemporal household budget constraint (assuming that all government

debt is single-period debt):

Et

( ∞∑
T=t

Rt,TPTCT

)
= Et

( ∞∑
T=t

{
Rt,T [PTYT − PT τT ]

})
+Bt−1 (3.1)

where Rt,T is the stochastic discount factor from time t to T , C is consumption,

τ is the government’s real primary surplus, PT is the price level at T , Bt−1 is the

government debt stock that matures at t, and Y is income. Under the assumption that

YT = CT ∀T , and after substituting for Rt,T = βT−tu′(YT )Pt/u
′(Yt)PT , this equation

reduces to

Bt−1
Pt

= Et

( ∞∑
T=t

βT−tu
′(YT )

u′(Yt)
τT

)
(3.2)

Equation 3.2 is the sticky price version of bond valuation equation in Cochrane

(2001), and it asserts that today’s price level is determined by the real present value

of expected future surpluses, Et

(∑∞
T=t β

T−t(u′(YT )/u
′(Yt))τT

)
, and the predetermined

debt stock, Bt−1. From (3.1) it follows that any variation in Bt−1 affects the

household’s consumption path, all else constant. When fiscal policy is passive, however,

all else is not constant – any change in Bt−1 induces an offsetting response in {τT} that
leaves the households choice set intact. In other words, fiscal policy satisfies Ricardian

equivalence. In an active fiscal policy regime, variations in bond wealth are not totally

offset by changes in the stream of expected surpluses, and this implies that the change

in bonds has wealth effects.

One source of the aforementioned variation in bond wealth is monetary policy.

For example, a reduction in interest rates might force bonds to a lower equilibrium

path as lower rates alleviate the burden of rolling over existing debt. In a model with

active fiscal policy, households are not compensated for their lower bond holdings with
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tax cuts, which causes the household to feel nominally constrained through (3.1).

Moreover, the fall in bonds places downward pressure on prices through (3.2). The

resulting effect of this monetary expansion is an eventual fall in output and prices.

Much of what follows in this paper depends on the fact that forward guidance on

short-term interest rates appears in the model as a series of anticipated interest rate

cuts.

We illustrate the role played by monetary-fiscal policy interactions in determining

the effects of forward guidance by allowing fiscal (monetary) policy to be permanently

or recurrently active (passive). Our results are threefold. First, we find that the

presence of active fiscal policy allows for forward guidance to have wealth effects

that dampen the response of output and inflation to forward guidance (potentially

at the cost of implausible deflation). This result depends on the fact that agents

view government debt as net wealth in a regime with active fiscal policy. Hence, an

anticipated reduction in interest rates which places downward pressure on agents’

nominal bond returns causes agents to feel more constrained today. This mutes agents’

responses to lower long-run real interest rates and induces firms to lower prices.

Second, the presence of switching in fiscal and monetary policy has expectational

spillover effects that may cause forward guidance to be less stimulative in the switching

model’s passive fiscal, active monetary policy regime. In such a setting, the possibility

that fiscal policy may become active during the forward guidance horizon causes agents

to become less optimistic about the effects of forward guidance in an economy where

monetary and fiscal policy are currently active and passive, respectively. Interestingly,

these spillover effects always attenuate the short-term effects of forward guidance,

but can lead to more persistent responses of output and inflation, as we demonstrate
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in one specific case. Our Markov-switching approach helps to highlight the role that

expectations play in generating a response of inflation and output to forward guidance.

Third, the presence of long-term government debt in a model with active fiscal,

passive monetary policy introduces “revaluation effects” that mitigate the deflationary

effects observed in the corresponding model with only short-term debt. We observe

these effects because an anticipated reduction in short-term interest rates raises the

market value of outstanding debt. Thus, while a reduction in interest rates lowers

aggregate demand due to lower interest rate receipts, it can also raise aggregate

demand by raising the price of the debt that households own. Such an effect cannot

be observed in a model without long-term debt.

The paper is organized as follows: first, we develop the model; second, we

explore the effects of forward in active fiscal, passive monetary policy regimes without

switching; third, we extend these results to economies that experience switching in

fiscal and monetary policy parameters; finally, we conclude.

Model

We use a basic New Keynesian model of the kind Woodford (1998) uses, and

augment this model to allow for (1) a richer maturity structure of debt as in Woodford

(2001), Eusepi and Preston (2013), and Leeper and Leith (2016); (2) Markov-

switching in policy parameters as in Davig and Leeper (2011). This model features

a representative household and firm, monopolistic competition in the production of

intermediate goods, and price stickiness a la Calvo (1983) according to which 1 − θ

fraction of firms can change their prices each period. The model also allows the

government to issue both bond portfolios, Bm
t , that have a geometrically decaying

maturity structure, and short-term debt, Bs, which is held in net-zero supply. The
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government collects lump-sum taxes in accordance with an endogenous primary surplus

rule, τt, and government purchases are assumed to equal 0, so that income, Yt, equals

Ct in equilibrium.

The model is linearized around the non-stochastic steady state with zero

inflation. Let ẑt ≡ ln(zt)− ln(z̄) where z̄ is the value of z in steady state. The behavior

of households and firms then reduces to two-equations:2

ŷt = Etŷt+1 − σ−1(̂it − Etπ̂t+1) + rnt (3.3)

π̂t = βEtπ̂t+1 + κŷt + μt (3.4)

where y is the output gap, π is inflation, β is the household discount factor, σ−1 is the

intertemporal elasticity of substitution and κ is defined in Appendix B. β, κ, and σ are

positive by assumption, and β is also bounded above by 1. Moreover, rnt and μt evolve

according to

rnt = ρnr
n
t−1 + εnt (3.5)

μt = ρμμt−1 + εμt (3.6)

Monetary policy is given by:

ît = φy(st)ŷt + φπ(st)π̂t + εMP
t + v1,t−1 (3.7)

where εMP is an i.i.d monetary policy shock, and v1,t is a linear combination of L

forward guidance shocks that obeys

2See Appendix B. for full-derivation of model equations
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v1,t = v2,t−1 + εR1,t (3.8)

v2,t = v3,t−1 + εR2,t (3.9)

...

vL,t = εRL,t (3.10)

such that v1,t−1 =
∑L

l=1 ε
R
l,t−l, where [ε

R
1,t, ε

R
2,t, ..., ε

R
L,t] are the L forward guidance shocks

announced at time t. This model of short-term interest rate guidance is borrowed from

Laseen and Svensson (2011) and is widely used in the forward guidance literature.

Intuitively, εRl,t is a shock announce at time t that affects interest rates at time t + l.

The general structure of forward guidance shocks given by (3.8)-(3.10) ensure that

shocks announced at t are actually realized as intended at t + l. As shown in Appendix

C and D, policymakers can use (εMP
t , εR1,t, . . . , ε

R
L,t) to announce an interest rate peg

between time t and t + L. To model recent instances of forward guidance we will peg

i at or near the zero lower bound on i. Our specification allows for switching in policy

parameters: st follows a S-state Markov chain, and the value of st determines φπ and

φy. Fiscal policy is characterized by the following linearized rule for primary surpluses:

τ̂t = γ(st)(b̂
m
t−1 + βρP̂m

t ) + zft (3.11)

zft = ρF zf,t−1 + εft (3.12)
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where b̂mt is the percentage deviation of real bonds from steady state, zft is an

exogenous fiscal policy shock, and εf is an exogenous mean-zero i.i.d innovation. γ is

the fiscal authority’s policy parameter and it follows the same Markov process as φy

and φπ. Fiscal policy must also satisfy the following budget constraint:

b̂mt−1 = β(1− ρ)P̂m
t + βb̂mt + (1− β)τ̂t + π̂t (3.13)

where P̂m
t is the price of the bond portfolio at time t and ρ ∈ [0, 1] captures the

maturity structure of the government debt. While we relegate the derivation of this

equation to Appendix B., the intuition behind the bond portfolio is fairly simple: the

government issues b̂mt units of a nominal portfolio debt at time t that pays 1 unit of

nominal income at time t+ 1, ρ units at time t+ 2, ρ2 units at t+ 3 and so forth. This

is the sense in which the maturity of debt is geometrically decaying. This structure

allows us to introduce long-term debt into our model by using a single state variable

that captures the average maturity of debt, ρ. The limiting cases of ρ illuminate how

larger values of ρ correspond to longer average maturities: when ρ = 0, all debt is short

term, and when ρ = 1, all debt is in the form of consols. As demonstrated in Appendix

B, P̂m
t satisfies

P̂m
t = −ît + ρβEtP̂

m
t+1 (3.14)

The system given by (3.3)-(3.14) yields a solution for xt = (ŷt, π̂t, ît, b̂t, τ̂t, P̂
m
t )

′.

We use Sims’ (2002) method to solve the fixed regime model, and the forward method

in Cho (2016) and Cho (2017) to solve the switching model.3 A rational expectations

3The “block-recursive” structure of the model requires us to add a constraint to the switching
model that renders agents’ inflation expectations consistent with the government budget constraint.
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equilibrium assumes the form:

xt = Ω(st)xt−1 + Γ(st)ut

Parameters are selected so that the model under study is determinate. While there

are no simple analytical conditions for determinacy in our switching model, Woodford

(1998) gives simple conditions for determinacy in the case of non-switching (see Table

1):4

TABLE 1. Fixed Coefficent Model Determinacy Conditions

φπ > 1− 1−β
κ
φy φπ < 1− 1−β

κ
φy

γ ∈ (1, β−1+1
β−1−1) determinate indeterminate

γ /∈ (1, β−1+1
β−1−1) no stable solution determinate

We say they the economy is in Regime M when φπ > 1 − (1 − β)φy/κ and γ ∈
(1, (β−1+1)/(β−1−1)). and that the economy is in Regime F when φπ < 1−(1−β)φy/κ

and γ /∈ (1, (β−1 + 1)/(β−1 − 1)). In Regime M, fiscal policy is passive while monetary

policy is active. This is the standard assumption in most New Keynesian research. In

Regime F, fiscal policy is active while monetary policy is passive.

Fixed Coefficient Exercises

We now examine the effectiveness of forward guidance in the presence of fixed

policy regimes (i.e. we constrain all policy parameters to be permanent). Our analysis

involves three different model parameterizations: (1) a Regime M parameterization;

(2) a Regime F parameterization with short-term debt (ρ = 0): (3) a Regime F

parameterization with long-term debt. Table 6 in Appendix E contains the parameter

4We assume that φπ(st) ≥ 0 for all st
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values used in each of the three configurations, though our results are robust to

different parameterizations.5 Our analysis in this section also involves two distinct

policy exercises that are commonly used in the literature. First, we examine the

impulse responses of output and inflation to a single one unit k-period ahead forward

guidance shock to the nominal interest rate. This exercise gives us useful intuition for

the second policy experiment, which is the main result in this section. In that exercise,

we examine the impulse responses of output and inflation to an announced 12-quarter

interest rate peg that mimics aspects of the Federal Reserve’s calendar-based forward

guidance announcements in August 2011, January 2012, and September 2012 (see Del

Negro et al (2015) for more details).

Exercise 1: Inspecting the Mechanism

In order to better understand the mechanism driving our main results in the

forward guidance experiments, we examine the effects of a one-time expansionary

forward guidance shock to the short-term nominal interest rate under all three

parameterizations. The exercise takes place as follows: at time t the central bank

announces a negative one unit shock to it+k where k ≥ 0. Agents respond at time t

by adjusting hours worked, consumption, prices and bond holdings, and this generates

paths for inflation and output that are plotted in Figure 1 for the cases where k = 8.6

Overall, output and inflation respond less favorably to forward guidance shocks

in a Regime F economy. In a Regime M economy, the negative shock at the k-

5There is one exception: for small σ and as φπ approaches 1 in Regime F, the Regime F impulse
responses of output and inflation are strictly above the Regime M impulse responses before the
realization of the shock in exercise 1 (after the shock, the Regime M impulse responses are above
the Regime F responses). This applies only to our fixed regime results and we regard this as an
unrealistic parameterization of the model. Our Markov-switching results are robust to reasonable
parameterizations.

6Qualitatively similar results obtain for different choices of k
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FIGURE 1. Impulse Responses to One-Unit Shock

the impulse responses of output and inflation to a one-unit anticipated shock to it+8

at t. The solid line shows impulse responses in the Regime M model; the dashed line
shows impulse responses in the Regime F model with long-term debt; the dashed-
dotted line shows impulse responses in Regime F with only short-term debt.

horizon causes long run real rates to drop, which induces positive responses in output

and inflation. These responses are magnified by the lack of a discount factor in the

linearized Euler equation, which causes consumption and therefore output to be highly

responsive to changes in long-run real rates. The response of inflation to the shock is

driven, in part, by the front-loading in the Phillips curve and the presence of nominal

rigidities: firms understand that demand will continue to rise until the shock is realized

58



so they raise their prices the moment they have an opportunity to do so. These effects

combine to cause a large stimulus.

In Regime F, however, output and inflation respond to the forward guidance

shock through an additional channel: the decline in anticipated short-term interest

rates reduces the return on bond holdings. Since agents in a Regime F economy treat

their bond holdings as net wealth, expansionary forward guidance has negative wealth

effects that counteract the stimulating effects of lower long-run real interest rates. In

this framework, a k-period ahead shock initially lowers long-run real interest rates and

raises consumption. At the time of the shock’s realization, nominal wealth declines

and puts downward pressure on prices through the bond valuation equation. After the

shock is realized, agents reduce consumption to replenish bond holdings and this puts

downward pressure on consumption and output. As with the Regime M case, firms

respond by changing prices well in advance of the anticipated deflationary pressure.

This might also be driven by the presence of price stickiness: firms recognize the

probability that they won’t be able to adjust prices at the time of the shock, so they

adjust their prices as soon as they have an opportunity to do so. The overall effect of

this price setting behavior is a large and persistent deflation. Hence, while the presence

of these wealth effects generate less favorable and maybe more plausible responses of

output to forward guidance, it comes at the cost of a deflation that is not obviously

reconcilable with the data.

Figure 1 also reveals that the presence of long-term debt (i.e. ρ > 0) in Regime

F leads to higher paths of output and inflation than in a Regime F economy without

short-term debt (i.e. ρ = 0). This is because the presence of long-term debt introduces

yet another channel through which forward guidance impacts output and inflation: the

anticipated decline in short-term interest rates raises the price of outstanding debt, and
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therefore raises the market value of outstanding debt held by the household. This is a

debt revaluation effect, and it leans against the aforementioned negative wealth effects.

One notable feature of the impulse response functions is that output responds

more favorably to forward guidance on impact, i.e. at the time of the announcement,

in the Regime F economies. We attribute this to one feature of the Regime M

economy: monetary policy satisfies the Taylor Principle such that the increase in

inflation observed on impact corresponds with higher real interest rates on impact.

If we allow φπ in all regimes to approach 1 from both directions, we observe similar

responses in all economies on impact.

Exercise 2: The Fixed Regime Forward Guidance Experiment

Our second policy experiment in the fixed coefficient model assesses the effects

of forward guidance on a specific path for interest rates. Using methods inspired by

Del Negro et al. (2015), and Cole (2015), we study what happens when the central

bank announces an interest rate target, ī, between time T and T + L.7 We chose L =

12 to mimic the September 2012 FOMC statement that called for low interest rates

through mid-2015. Additionally, ī = 0 is chosen as a target, but any interest rate

target between 0 and 25 basis points may reasonably approximate the path implied by

the September 2012 statement.8 The economy is simulated for T − 1 periods prior to

announcement, and the simulations are repeated 10000 times. Figure 2 and 3 report

the mean impulse responses of output, inflation and interest rates to the L + 1 period

anticipated interest rate peg. For simplicity’s sake, I shut down shocks after time t so

that it+l = Etit+l for 0 ≤ l ≤ L. If shocks are present, monetary policymakers use

7See appendix C. for further details

8The main qualitative results in this section are robust to any ī below steady state, i∗ = β−1 − 1
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some combination of unanticipated and anticipated monetary policy shocks at t + 1 to

t+ L to maintain the peg and agents’ expectation of the peg over the forward guidance

horizon. As such, we regard this simplification as innocuous.

As with the previous exercises, Figures 2 and 3 demonstrate that output and

inflation respond less favorably to expansionary forward guidance on interest rates

under the assumption of active fiscal, passive monetary policy. In contrast to previous

exercises, the forward guidance shocks do not induce a dramatic fall in output in the

Regime F economies. This result may be driven by an important feature of the impulse

responses in Figure 1: each expansionary forward guidance shock raises output before

the shock is realized, and depresses output after the shock is realized (the latter effect

is driven, in part, by a sharp drop in long-term real interest rates). Therefore, when

the economy is hit by a sequence of such shocks, as in this section, the contractionary

effects of realized forward guidance shocks are partially offset by the expansionary

effects of unrealized shocks. In general equilibrium, this leads to a relatively flat

trajectory for output (see Figure 3). Also in contrast to results from previous exercises,

inflation responds much more positively to forward guidance on the interest rate path

in the presence of long-term debt. We attribute this result to a particular strong

revaluation effect, as forward guidance on L + 1 future short-term interest rates has

a huge impact on P̂m
t (which is simply a weighted sum of expected future short-term

interest rates) .

We emphasize that the strong responses of output and inflation in Regime M are

a reflection of the forward guidance puzzle. Also note that Figure 3 uses a different

vertical scale than Figure 2.
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FIGURE 2. The 12-quarter Forward Guidance Horizon Experiment.

The solid line shows impulse responses in the Regime M model; the dashed line shows
impulse responses in the Regime F model with long-term debt; the dashed-dotted line
shows impulse responses in Regime F with only short-term debt.

Markov-Switching Forward Guidance Experiment

We now allow the policy stances of the monetary and fiscal authorities to

periodically and recurrently change. Specifically, we assume that the economy

switches between a Regime F configuration (st = F ) and a Regime M configuration

(st = M). This assumption is restrictive, but it allows us to get at one important

mechanism: expectations of changing responses to forward guidance cause agents to

behave differently today. These expectational spillovers shock the impulse responses of

inflation and output in Regime M away from the paths implied by the corresponding
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FIGURE 3. The 12-quarter Forward Guidance Horizon Experiment (Regime F).

The 12-quarter Forward Guidance Horizon Experiment. The dashed line shows impulse
responses in the Regime F model with long-term debt; the dashed-dotted line shows
impulse responses in Regime F with only short-term debt.

fixed coefficient models, and may therefore help the impulse responses agree with the

data.

To illustrate this idea, we conduct a forward guidance experiment in the

switching model. Specifically, we first assume that the economy is in Regime M when

the central bank announces a sequence of shocks at time T such that iT = ET iT+1 =

... = ET iT+L = ī. We then assume that the economy remains in Regime M at

T + 1, when another sequence of shocks is announced such that iT+1 = ET+1iT+2 =

... = ET+1iT+L = ī. This process is repeated until T + L. This experiment shows
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how the switching economy responds to an announced L + 1 period interest rate

peg in Regime M. Figures 4-5 show the Regime M effects of this experiment when

L = 3 using a parameterization inspired by a similar model in Ascari et al. (2017)

(see Table 7 in Appendix E for the parameter values contained in Figures 4-6; see

Appendix D a derivation for the policy experiment). We emphasize that agents do

FIGURE 4. Regime Switching Forward Guidance Experiment 1

The 3-quarter Forward Guidance Horizon Experiment, Parameterization 1. The solid
line shows impulse responses in the fixed coefficient model Regime M; dashed line
shows impulse responses in the switching model Regime M with long-term debt; the
dashed-dotted line shows impulse responses in the switching model Regime M with
only short-term debt.
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FIGURE 5. Regime Switching Forward Guidance Experiment 2

The 3-quarter Forward Guidance Horizon Experiment, Parameterization 2. The solid
line shows impulse responses in the fixed coefficient model Regime M; dashed line
shows impulse responses in the switching model Regime M with long-term debt; the
dashed-dotted line shows impulse responses in the switching model Regime M with
only short-term debt.

not expect the economy to remain in Regime M throughout the forward guidance

horizon. Agents form rational expectations using the true transition probabilities

(e.g. ET (sT+1 = M |sT = M) = pMM where pMM is the probability of remaining in

Regime M). We only hold M fixed to compare the Regime M impulse responses in the

switching model, to the Regime M impulse responses in the fixed regime model. More

generally, we could allow for regime-switching during our forward guidance experiment.
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FIGURE 6. Regime Switching Forward Guidance Experiment 3

The 3-quarter Forward Guidance Horizon Experiment, Parameterization 3. The solid
line shows impulse responses in the fixed coefficient model Regime M; dashed line
shows impulse responses in the switching model Regime M with long-term debt; the
dashed-dotted line shows impulse responses in the switching model Regime M with
only short-term debt.

Relative to the fixed regime cases, expansionary forward guidance appears to be

less stimulative in the switching model’s Regime M. In Regime M, this is driven by the

positive probability that the economy will switch to a state where the expansionary

shock has negative wealth effects. Crucially, these spillover effects exist because policy

is anticipated;9 in an environment where all shocks are i.i.d unanticipated shocks, such

9A persistent unanticipated shock would deliver similar spillover effects. We leave this for future
research.
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spillover effects are not observed because there is zero probability that a given shock

will affect the economy in a future regime.

While the qualitative results in Figures 4-5 are robust to different policy

coefficients, structural parameters, transition probabilities, and forward guidance

horizons, Figure 6 shows that the output and inflation impulse responses in the

switching model can barely overshoot and undershoot the fixed regime responses

after the interest rate peg is over when inflation reaction coefficients are high and the

fiscal policy parameter in Regime M is relatively low.10 We have two remarks about

this particular result. First, a regime switch quickly eliminates the persistent output

and inflation gaps. In the calibrated model, these switches occur every 20 periods on

average. Second, lower inflation and higher output reaction coefficients in the interest

rate rule help to raise i faster and close the gaps.

Conclusion

Standard New Keynesian models predict implausibly large and favorable

responses of inflation and output to forward guidance on interest rates. This paper

investigates the effects of forward guidance in a New Keynesian model with active

fiscal policy and passive monetary policy. We find that the presence of active fiscal

policy allows for forward guidance to have wealth effects that dampen the response

of output and inflation to forward guidance, potentially at the cost of implausible

deflation. In an active fiscal, passive money regime, the deflationary effects of forward

guidance are mitigated by the presence of long-term debt. Moreover, the presence of

switching in fiscal and monetary policy may have expectational spillover effects that

cause forward guidance to be less stimulative in a passive fiscal, active money regime.

10See Appendix E. for parameter values
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CHAPTER IV

MATURITY, DETERMINACY, AND E-STABILITY

Introduction

A vast literature examines determinacy and E-stability in New Keynesian

models. This work may guide the design of monetary policy by offering tractable

conditions for ensuring the existence of unique, learnable equilibria. For example, the

Taylor Principle, by which central banks move real interest rates in the direction of

inflation, is widely known to guarantee determinacy and E-stability in New Keynesian

models when fiscal policy is “passive” in the sense described in Chapter 2 (Woodford

(2003), Bullard and Mitra (2002)). Taking this point one step further, the simple

Leeper (1991) conditions also apply to a broad class of New Keynesian models to

help characterize determinacy when fiscal policy is not passive. Typically, those

papers study linear approximations to economies that involve time-invariant fiscal

and monetary policy regimes, despite ample econometric work that suggests recurring

changes in the conduct of policy. Past work may assume time-invariant policy for at

least one reason: tractability. The advent of new solution techniques and conditions for

determinacy has made it possible to more fully examine determinacy and E-stability

in a New Keynesian model with 2-state Markov-switching fiscal and monetary policy

(see Cho (2016), Foerster et al (2016)). This paper uses those techniques to study

determinacy (in the mean-square stability sense) and E-stability in a New Keynesian

model with Markov-switching fiscal and monetary policy. We emphasize three results.

First, the maturity structure of government debt matters for determinacy and

the existence of stable equilibria. We regard this as a significant result in part because
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the maturity structure of government debt is irrelevant for determinacy in the fixed

regime analog of the model without a real risk premium on long-term debt (Eusepi

and Preston (2011), Jin (2013)). Our results therefore suggest that time-variation in

the fiscal policy stance on debt matters not only for equilibrium dynamics, but for

the existence and uniqueness of rational expectations equilibria. More specifically,

our results suggest that the maturity structure of debt impacts both the existence

of sunspot equilibria and the number of stable fundamental (MSV) solutions. We

demonstrate the former claim using a numerical search method from Cho (2016), and

the latter claim using solution techniques from Foerster et al. (2016). We utilize these

two approaches because they complement each other’s strengths and weaknesses nicely.

This result is significant for at least one other reason: a policy parameterization that

yields determinacy in a model with only short-term debt may yield indeterminacy or

no stable solutions in a model with more realistic debt maturity. As such, misspecified

models that abstract away from rich maturity structures may offer suboptimal policy

recommendations.

Second, determinacy generally implies E-stability in the 2-state switching model

when agents do not observe contemporaneous endogenous variables and employ one-

step-ahead decision rules. This finding extends our result in Chapter 2 and indicates

that determinacy is mostly sufficient for the stability of an equilibrium under learning.

Importantly, these results do not extend to cases where regimes lack persistence and

fiscal policy is occasionally or permanently extremely active. While these regions of the

parameter space are arguably unreasonable, we document them in this paper.

Finally, we derive the necessary and sufficient conditions for stability under

infinite horizon learning, and numerically compare infinite horizon and one-step-ahead

E-stability conditions. To the best of our knowledge, this is the first work to derive
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conditions for infinite horizon learning in a model with Markov-switching coefficients.

Our preliminary analysis suggests that determinate equilibria are generally stable

under both infinite-horizon and one-step-ahead learning.

The paper is organized as follows: first, we explore the relationship between

debt maturity structure and the existence and uniqueness of rational expectations

equilibria; second, we explore the relationship between determinacy and E-stability

under one-step-ahead learning; third, we present the infinite-horizon learning results.

Unless otherwise stated, our analysis involves the New Keynesian model developed

in Appendix B. The following change of notation is used for convenience: ˜γ(st) =

(1− β)γ(st)

Maturity and Determinacy

We use New Keynesian model developed in B. to show that the maturity

structure of debt (specifically, the average maturity of outstanding debt, ρ ) matters

for the existence and uniqueness of rational expectations equilibrium. As in Chapter 2,

we cast our model in the form:

Xt =M(st)Et(Xt+1) +N(st)Xt−1 +Q(st)Ut

where Xt is n × 1 vector of endogenous variables, Ut is m × 1 vector of exogenous

variables that follows

Ut = ρUt−1 + εt

A MSV, or fundamental, solution to the model assumes the form:

Xt = Ω(st)xt−1 + Γ(st)Ut
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Our analysis proceeds in a series of steps. First, we solve the models under

study using the forward method in Cho (2016) and search for regions of the parameter

space consistent with determinacy, indeterminacy and explosive MSV solutions across

the parameter space. Since the conditions for determinacy in Cho (2016) are only

sufficient, we must prove indeterminacy or the non-existence of stable MSV solutions

whenever applicable. To prove indeterminacy, we either search for stable sunspot

equilibria using a search routine developed in Cho (2016), or we solve for all the

MSV solutions using methods from Foerster et al (2016) and examine their mean-

square stability one by one. If multiple fundamentals solutions are stable, the model is

indeterminate. To demonstrate explosiveness, we either appeal to a necessary condition

for mean-square stability to rule out the existence of stable fundamental solutions,

or we use the aforementioned routine in Foerster et al (2016) to demonstrate that all

fundamentals solutions are explosive. We rely on such a complex scheme for checking

indeterminacy and explosiveness because neither Cho (2016) nor Foerster et al (2016)

offer necessary and sufficient conditions for determinacy.

Our approach starts with the methods in Cho (2016), which are explored

extensively in Chapter 2. The results in that paper apply exclusively to the forward

solution, whose equilibrium coefficients are acquired by taking the limit of the

coefficients on lagged endogenous and exogenous variables in the forward solved

model. Using the forward solution coefficients, Cho (2016) constructs two matrices

with spectral radii that offer sufficient conditions for determinacy: when both spectral

radii are inside the unit circle, the forward solution is the unique rational expectations

equilibrium. This last condition is only sufficient for determinacy. If one or both

spectral radii are outside of the unit circle, we must prove indeterminacy or the non-

existence of stable MSV solutions.
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When the forward solution is stable, but does not satisfy conditions for

determinacy, we first search for sunspot equilibria of the form:

xt = Ω∗(st)xt−1 + Γ∗(st)ut + wt (4.1)

wt+1 = Λ(st, st+1)wt−1 + V (st+1)V (st+1)
′ηt+1 (4.2)

where η is mean-zero i.i.d., and V (st+1) is a matrix with orthonormal columns.

Λ(st, st+1) and V (st+1) satisfy the following conditions for each i, j ∈ {1, 2, ..., S}:

Λ(i, j) = V (j)Φ(i, j)V (j)′ (4.3)

V (i) =
S∑

j=1

pijF
∗(i, j)V (j)Φ(i, j) (4.4)

rσ(Ψ̄Λ) = rσ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p11Λ(1, 1) p21Λ(2, 1) · · · pS1Λ(S, 1)

p12Λ(1, 2) p22Λ(2, 2) · · · pS2Λ(S, 2)

...
. . .

...

p1SΛ(1, S) p2SΛ(2, S) · · · pSSΛ(S, S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

< 1 (4.5)

for some conformable matrix Φ(j), where F ∗(st) = {I − Et(M(st)Ω
∗(st+1))}−1M(st).

The last condition is necessary and sufficient for mean-square stability. If that

condition is satisfied, then equation (4.1) is mean-square stable as well. Moreover,

we can show that the existence of a single mean-square stable wt is sufficient for the

existence of a continuum of mean-square stable processes. Indeterminacy follows.

Cho(2016) presents a simple method for detecting indeterminacy: minimize

rσ(Ψ̄Λ) in (4.5) subject to constraints (4.2)-(4.4) with respect to V (j) and Φ(i, j) using

the fminsearch function in Matlab. In practice, this approach is inefficient for at least

two reasons. First, our approach attempts to minimize a function with a relatively
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flat bottom. This means that it often takes hundreds of initial guesses to find a stable

sunspot equilibrium.1 Second, initial guesses for V (j) and Φ(i, j) are arbitrary. This is

justified by a lack of a priori reasons for picking particular values of those matrices as

initial guesses.

Since we are working with a model that includes lagged endogenous variables,

we know that the fundamental solution is not typically unique. Consequently, we

might check to see if multiple fundamental solutions are stable when indeterminacy

is suspected. As we demonstrate below, it is relatively straightforward to express the

equilibrium coefficients as the solutions to a system of quadratic polynomials. Without

switching, this system can be solved using the generalized Schur decomposition

(Uhlig(1999), Klein(2000)). With switching coefficients, however, we cannot appeal

to the cited results. Instead, we follow Foerster et al (2016) and use Gröbner bases. A

Gröbner basis is a transformed system of polynomials with the same set of solutions

as the original system of polynomials under study. While there are many ways to

accomplish the aforementioned transformation, the Shape Lemma suggests that one

very useful transformation generally exists. Here, we restate Foerster et al. (2016)’s

presentation of the Shape Lemma

The Shape Lemma There exists an open dense subset S of systems of n

polynomial in n unknowns, {x1, ..., xn} such that for every system in S, there exists a

system with same roots that assumes the following form

1Each attempt to minimize the spectral radius function takes several seconds at least. We find that
for some parameterizations involving inflation reaction coefficients close to unity, over 5,000 initial
guesses must be made to find a single stable sunspot equilibrium. The issues we discuss here are also
addressed in Cho (2016)
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x1 = q1(xn)

x2 = q2(xn)

...

0 = qn(xn)

where each qi is a univariate polynomial in n.

According to the Shape Lemma, we can solve a complicated system of quadratic

polynomials by simply solving a series of univariate polynomials. We now apply these

methods to the New Keynesian model we derive in Appendix B. To help deliver some

key results concisely, we abstract from nominal rigidity and exogenous shocks.2 Also,

we will temporarily assume that there is only one policy Markov state (st = 1 ∀t)
to illustrate the effect of ρ on the existence and uniqueness of model equilibrium.

Together, these restrictions on the model yield the following system of equations that

govern the laws of motion for inflation, πt, bond portfolios, bt, and the price of bond

bortfolios, Pt:
3

φππt = Etπt+1

Pt = −φππt + βρEtPt+1

bt = β−1(1− γ̃)bt−1 + (1− ρ+ ργ̃)Pt + β−1πt

2Since we are only interested in studying the determinacy properties of our models, we can exclude
shocks without affecting any of our results

3In the absence of nominal rigidity, the output gap, yt = 0 ∀t

74



where the first equation combines it = φππt and the Fisher relation, and the second

and third equations describe a no-arbitrage equation and the government budget

constraint, respectively. Without exogenous shocks, a MSV solution to the above

system of equations assumes the form xt = Ωxbt−1 for each x ∈ {π, b, P} where the
Ωx solves:

φπΩπ = ΩπΩb

ΩP = −φπΩπ(1) + βρΩP

β−1(1− γ̃) = Ωb + (1− ρ+ ργ̃)ΩP + β−1Ωπ

There are three solutions to this model. The stability of a solution is determined Ωb

which assumes one of three values depending on the solution at hand: φπ, β
−1(1 −

γ̃(1)), 1/ρβ. The first solution is the active fiscal, passive monetary policy solution,

in which inflation responds to debt, and the second solution is the active monetary,

passive fiscal policy solution. The Leeper (1991) conditions for determinacy ensure

that one and only one of those two solutions are inside the unit circle (which satisfies

the condition for mean-square stability). Crucially, these roots do not depend on ρ,

and the only root that does not on ρ is greater than one for all ρ ∈ [0, 1]. This is the

sense in which the maturity structure of debt is irrelevant for determinacy in the fixed

regime model. If, however, we allow for regime change (i.e. st ∈ {1, 2} ∀ t where st
follows a 2-state Markov process), our simple model becomes:

φπ(st)πt = Etπt+1

Pt = −φπ(st)πt + βρEtPt+1

bt = β−1(1− γ̃(st))bt−1 + (1− ρ+ ργ̃(st))Pt + β−1πt
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A MSV solution to the above system of equations now assumes the form xt =

Ωx(st)bt−1 for each x ∈ {π, b, P} where the Ωx(st) solve:

φπ(1)Ωπ(1) = (p11Ωπ(1) + p12Ωπ(2))Ωb(1)

φπ(2)Ωπ(2) = (p21Ωπ(1) + p22Ωπ(2))Ωb(2)

ΩP (1) = −φπ(1)Ωπ(1) + βρ(p11ΩP (1) + p12ΩP (2))Ωb(1)

ΩP (2) = −φπ(2)Ωπ(2) + βρ(p21ΩP (1) + p22ΩP (2))Ωb(2)

β−1(1− γ̃(1)) = Ωb(1) + (1− ρ+ ργ̃(1))ΩP (1) + β−1Ωπ(1)

β−1(1− γ̃(2)) = Ωb(2) + (1− ρ+ ργ̃(2))ΩP (2) + β−1Ωπ(2)

As mentioned before, we find model MSV solutions using either the forward method

outlined by Cho (2016) or the Gröbner basis method discussed in Foerster et al (2016).

Since we are unable to find analytical solutions to the model, we set p11 = p22 = .95,

γ̃(1) = .05, γ̃(2) = −.05, β = .99, though we can obtain similar results using vastly

different parameterizations. Figure 7 shows determinacy regions in (φπ(1), φπ(2)) space

for the model with short-term debt (ρ = 0) and the model with long-term debt (ρ =

.96).4

Figure 7 makes it clear that variation in ρ can have substantial effects on the

menu of policy options available to monetary policymakers. At point A, where φπ(1) =

2.5 and φπ(2) = .4, we use Cho (2016) to prove determinacy for the short-term model,

and we use the Gröbner basis routine in Mathematica to show that there is no stable

real-valued MSV solution when ρ = .96. At point B, where φπ(1) = 1.5 and φπ(2) =

4ρ = .96 roughly imitates the average duration of outstanding debt observed in recent U.S. data (25
quarters)

76



FIGURE 7. Determinacy and Maturity: Fisher Model

Left panel ρ = 0; Right panel ρ = .96; pmm = .95; pff = .94; γ(M) = .05;
γ(F ) = −.05. The determinate region is dark gray; the indeterminate region is light
gray; explosive region is white

.4, techniques from Cho (2016) still yield a unique stable MSV solution for the case

where ρ = 0, but the Gröbner basis method now yields two stable MSV solutions

when ρ = .96. At point C, we use the Gröbner basis routine to show that no stable

MSV solutions exist when ρ = 0, but techniques from Cho (2016) reveal that we have

sunspot indeterminacy when ρ = .96. These points demonstrate that the addition

of long-term debt to the model can greatly complicate our determinacy analysis. In

some cases, such as at point A, the addition of long-term debt reduces the number

of equilibria, while at others, such as B and C, it can expand the set of stable MSV

solutions and lead to indeterminacy.

When we back away from the assumption of flexible prices in the model, we

allow for the output gap, y, to be nonzero. In this environment, equations of the form

yt = Ωy(st)bt−1 give us the equilibrium dynamics of the output gap. Because nominal

ridigity gives us non-zero output gaps, our equilibrium coefficients now must solve the

following more difficult system of equation:
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Ωy(1) =
∑
j

(p1j(Ωy(j) + σ−1Ωπ(j)))Ωb(1)− σ−1φπ(1)Ωπ(1)

Ωy(2) =
∑
j

(p2j(Ωy(j) + σ−1Ωπ(j)))Ωb(2)− σ−1φπ(2)Ωπ(2)

Ωπ(1) = κΩy(1) + β(p11Ωπ(1) + p12Ωπ(2))Ωb(1)

Ωπ(2) = κΩy(2) + β(p21Ωπ(1) + p22Ωπ(2))Ωb(2)

ΩP (1) = −φπ(1)Ωπ(1) + βρ(p11ΩP (1) + p12ΩP (2))Ωb(1)

ΩP (2) = −φπ(2)Ωπ(2) + βρ(p21ΩP (1) + p22ΩP (2))Ωb(2)

β−1(1− γ̃(1)) = Ωb(1) + (1− ρ+ ργ̃(1))ΩP (1) + β−1Ωπ(1)

β−1(1− γ̃(2)) = Ωb(2) + (1− ρ+ ργ̃(2))ΩP (2) + β−1Ωπ(2)

Figure 8 uses this model to offer intuition on how longer maturity structures

of debt held by households can generate an expanded determinacy region in the

monetary policy parameter space. Consider point D, for example, which yields an

unique equilibrium when ρ = .96 and no stable MSV solutions when ρ = 0. The reason

point D generates explosive dynamics when ρ = 0 has to do with the extent to which

monetary policy is active in Regime M.5 The fiscal policy parameterization featured

in this figure is too active to yield a stable Ricardian equilibrium. As such, increases

in debt are viewed as net wealth, and if monetary policymakers respond using active

monetary policy, explosive dynamics may result. For determinacy to obtain, monetary

policymakers must implement a consistenly passive monetary policy rule.

As we lengthen the maturity structure, however, the aforementioned active

monetary policy regime also revalues the outstanding debt stock in a manner that

5Here Regime M refers to the least active fiscal regime
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FIGURE 8. Determinacy and Maturity: New Keynesian Model

Left panel ρ = 0; right panel ρ = .96; pmm = .95; pff = .94; γ(M) = .05;
γ(F ) = −.05. The determinate region is dark gray; the indeterminate region is light
gray; explosive region is white

tempers the explosive economic response. For example, if debt increases today, which

without Ricardian equivalence raises inflation and therefore real interest rates under

active monetary policy, agents will feel wealthier due to higher real rates of return

on their net wealth, but they will also feel poorer because the interest rate increase

reduced the price of oustanding debt. The former effect is destabilizing and present

in both the long-term and short-term debt models, whereas the latter stabilizing

effect is only prevalent in the long-term model. These revaluation effects at point D

are evidently great enough to generate a MSV process with well-defined asymptotic

variance.

As revealed by all of these figures, policy configurations that generate

determinacy in the short-term debt model may yield indeterminacy in the

corresponding long-term debt model, and vice versa. Consequently, policy

recommendations stemming from models with only short-term debt, such as the

models commonly employed in the New Keynesian literature, may yield suboptimal

outcomes when fiscal policy is characterized by switching. Additionally, Figure 8
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reveals the addition of long-term debt to the model may expand regions of the policy

parameter space consistent with determinacy. Interestingly, fiscal policy does not need

to switch to generate this expanded determinacy region. In other words, maturity

allows central banks to choose from a wider menu of policy options that are consistent

with determinacy and E-stability. This result is left for further study.

Determinacy and E-stability

This section builds on recent work by Ascari et al. (2016) and Cho and Moreno

(2016), which characterizes conditions for determinacy in our two-state model with

only short-term debt. Their analyses suggest an even more complicated role for

monetary-fiscal policy coordination than in the fixed regime case where determinacy is

completely described by the simple Leeper (1991) conditions. For example, their works

separately confirm that switching between policy configurations that satisfy the Leeper

(1991) determinacy conditions is not sufficient for determinacy in the switching model.

Moreover, switching into explosive regime configurations or indeterminate regime

configurations does not preclude determinacy in the switching model. Determinacy

in the switching environment depends on the balance of policy. If, for example, fiscal

policy is very active or monetary policy is very passive in one regime, then fiscal policy

must be very passive or monetary policy must be very active in the other. Similarly,

if monetary policy is predominantly active (passive) across regimes, then fiscal policy

must be predominantly passive (active) across regimes as well.

We extend Ascari et al. (2016) and Cho and Moreno (2016) by studying the

relationship between determinacy and E-stability in this model class. This section

also extends our analysis in Chapter 1 by relaxing the assumption that agents observe

contemporaneous endogenous variables when forming expectations of next period’s
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endogenous variables. Instead, we assume that agents observe all contemporaneous

exogenous variables, but only observe endogenous variables with a lag. That is, agents

use the full history of endogenous variables up to t − 1 when forming expectations

at t.6 First, we assume that agents observe all contemporaneous variables and study

determinacy and E-stability numerically. We find that the forward solution is E-stable

for all indicated combinations of parameter values whenever the sufficient conditions

for determinacy are also satisfied:

φ(M) ∈ [1, 5] φ(F ) ∈ [0, 1] γ̃(M) ∈ (.01, .2]
γ̃(F ) ∈ [−.1, 01) κ ∈ [0, 1] β ∈ [.975, 1]

σ ∈ [0, 5] pmm ∈ [.8, 1) pff ∈ [.8, 1)
ρ ∈ [0, 1]

where pff and pmm are the probabilities of remaining within regimes F and M,

respectively. We emphasize two things about this set of parameter values. First, we

present a very conservative set. It is certainly the case that parameter values outside of

this set or consistent with determinacy and E-stability. Second, and more importantly,

the works cited in the literature of Chapter 1 all use parameter values that fall in this

set. This analysis therefore supports the conclusion that determinacy is sufficient for

E-stability for reasonable parameterizations of the model.

To help illustrate our results, we reproduce figures from Cho and Moreno

(2016) with the addition of E-stability regions (see Appendix J). As suggested earlier,

determinacy implies E-stability for the parameter values considered therein. We

also want to point out that for indeterminate regions of the parameter space, the

forward solution is generally unstable when the conditions for determinacy in the

6Stability conditions are derived in E.
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mean-stable sense fail. However, determinacy in the mean-stability sense is neither

necessary nor sufficient for E-stability. This notwithstanding, the close relationship

between mean-stability and learnability echo results in Branch, Davig and McGough

(2013). That paper, which we describe in Chapter 2, studies a class of models without

lagged endogenous variables. They find that a condition for determinacy, known as

the Conditionally Linear Determinacy Condition (CLDC) implies E-stability. It is

straightforward to show that the CLDC is equivalent to determinacy in the mean-

stable sense.

Our results also suggest that determinacy is not sufficient for E-stability when

agents do not observe contemporaneous endogenous variables. When the model

features a persistent active fiscal policy regime with very large negative values of γ̃,

as well a very short-lived regime (i.e. p11 to zero where Regime 1 is the short-lived

regime), the relationship between determinacy and E-stability breaks down. This is

true regardless of the fiscal policy stance in the short-lived regime, and is particularly

relevant when inflation reaction coefficients are relatively high in both regimes. Our

preliminary analysis suggests that most determinate equilibria become E-unstable as

γ̃(2) approaches negative infinity–this even applies to cases where all other parameters

are insider the set offered above.

Infinite-Horizon Learning

We now present results in our model when agents employ infinite horizon decision

rules. In order to accomplish this, we need to replace equations (3.3) and (3.4) in
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Chapter 3 with the following equations:

yt = Et

∑
T≥t

βT−t[(1− β)yT+1 − σ−1(iT − πT+1) + rnT ]

πt = κπt + Et

∑
T≥t

(αβ)T−t[καβyT+1 + (1− α)βπT+1 + μT ]

All other equations, including agents’ perceived law of motion, are the same as before.

If we assume that agents understand the aggregate probability laws associated to the

evolution of inflation and output, as is assumed under rational expectations, these two

equations reduce to (3.3) and (3.4) in Chapter 3. Under adaptive learning, however, it

is not assumed that agents understand how other agents form expectations. As such,

they may lack sufficient information to deduce the fact that their expectations are the

aggregate expectations. The infinite horizon learning approach therefore avoids the

strong assumption that learning agents know the relevant aggregate probability laws.

The actual laws of motion and stability conditions are derived in Appendix G.7

To be the best of our knowledge, this is the first work to produce infinite horizon

stability conditions in a macroeconomic model with Markov-switching coefficients.

Generally speaking, we find that stability under one-step-ahead learning generally

coincides with stability under infinite horizon learning for determinate models. This

relationship between infinite horizon E-stability and one-step-ahead stability breaks

down for intermediate average debt maturities, and when the central bank employs the

following interest rate rule: it = Et−1φππt. These results echo results in Eusepi and

Preston (2011, 2013), which show that intermediate average durations of outstanding

debt, and the abovementioned policy rule are generally inconsistent with stability

7For brevity’s sake, we present the actual laws of motion for an economy without persistent shock
processes. We can relax this assumption and derive stability conditions for models with persistent
processes as well.
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under infinite horizon learning in an analogous model with fixed regimes. This suggests

that we can dispense with algebraically burdensome infinite horizon learning models

when studying models of this form.

Conclusion

To conclude, we explore determinacy and E-stability in a New Keynesian model

with switching fiscal and monetary policy. Here we present three categories of results.

First, the maturity structure of government debt matters for determinacy and the

existence of stable equilibria in our switching model, which is not true in the analogous

fixed coefficient model. We use two numerical solution techniques to show that

maturity affects both the multiplicity of stable solutions, and the existence of sunspot

equilibria. Second, determinacy generally implies E-stability when agents do not

observe contemporaneous observable variables, but not for certain arguably unrealistic

regions of the model parameter space. Third, we present conditions for stability under

infinite-horizon learning in Markov-switching DSGE models and compare stability

under infinite horizon and one-step-ahead learning. To the best of our knowledge,

this is the first paper to derive these stability conditions in a model with switching

coefficients.
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CHAPTER V

PERFORMANCE OF SIMPLE INTEREST RATE RULES SUBJECT TO FISCAL

POLICY

Introduction

This paper examines the performance and robustness of simple monetary policy

rules in New Keynesian models with: (1) permanent or occasionally non-Ricardian

fiscal policy; (2) long-term government debt. In these models, time-variation in the

fiscal policy stance on debt is captured by Markov-switching in fiscal policy rule

coefficients. Policy performance is measured in terms of a loss function that equals

some weighted average of the variance of inflation and the variance of the output gap,

and central banks are tasked with selecting implementable interest rate rules that

minimize loss taking fiscal policy as given. While a primary goal of this project is to

identify optimal interest rate rules in models with rational expectations, we endeavor

to construct policies that are robust to parameter and model uncertainty, and that also

perform well in models with constant gain learning.

Our contributions provide answers to three questions. First, should monetary

policymakers respond to time-varying fiscal policy stances on the debt by implementing

time-varying monetary policy? A growing body of work argues that fiscal policy

stances on the debt are time-varying.1 By offering a potential answer to this question,

we may better understand the importance of precisely identifying the timing and

magnitude of fiscal policy regime shifts.

1See Bianchi (2012), Bianchi and Ilut (2014), Davig and Leeper (2006, 2011), Gonzalez-Astudillo
(2013), Kleim, Kriwoluzky, and Sarferaz (2015, 2016)
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We find that the long-run or “global” responsiveness of fiscal policy to

government debt determines whether the optimal interest rate rule is time-varying.

When fiscal policy is “globally active” or “globally passive”, central banks typically

lack reason to track the fiscal policy stance, and should instead implement time-

invariant interest rate rules. In the case of globally active policy, we find that there

are strikingly large regions of the parameter space for which time-invariant interest rate

pegs are optimal. For “globally switching” policies that feature more balanced fiscal

regimes, the optimal policy is both time-varying and parameter-dependent. Hence,

we identify certain cases where monetary policymakers should track the timing and

magnitude of fiscal policy regime changes.

Second, do the optimal policy rules under rational expectations perform

well in models with adaptive learning? By answering this question, we hope to

identify conditions under which the optimal rational expectations policy is robust to

misspecifications about the true model of expectations formation. We find that interest

rate pegs are also optimal in globally active models with least squares learning agents.

Moreover, our learning agents in globally switching and passive models tend to prefer

inflation reaction coefficients in passive fiscal regimes that are higher than the optimal

rational expectations coefficients.

These last points are demonstrated in a constant gain learning model with

observed states, and in a novel hidden Markov model of learning. To the best of our

knowledge, this is the first paper to study a model with least squares learning agents

who jointly estimate the equilibrium law of motion and state probabilities in a self-

referential framework. In this environment, it is unclear whether optimal policies

are robust to the exclusion of contemporaneous variables from agents’ information

sets. This is because the non-linear structure of Markov-switching DSGE models
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prevents agents with lagged information sets from learning the MSV solution.2 This

calls into question the relevant class of equilibria in our policy analysis. Fortunately,

in this environment, agents generally succeed in identifying policy states and learning

equilibrium coefficients if they receive some contemporaneous signal of current policy.

We emphasize that certain implications of the nowcasting problem just described, as

well as the broader analysis of stability under learning in hidden Markov models, are

left for future work.

Third, we ask: how does optimal monetary policy vary with the average maturity

of debt? McClung (2012b) shows that the maturity structure of debt matters for

determinacy in models with switching fiscal policy, which is not the case in analogous

models with fixed fiscal regimes. We expand on this by showing how the menu of

potential optimal policies available to central banks is particularly susceptible to

the effects of maturity when fiscal policy is globally switching. Moreover, we show

that uncertainty over fiscal policy variables can generate the kind of tradeoff between

minimizing loss and maximizing probability of determinacy and E-stability that Evans

and McGough (2007) discusses. A companion project to this paper explores whether

the monetary authority ought to make balance sheet decisions that target the optimal

debt maturity structure.

This paper most directly builds on the works of three optimal policy papers

in the New Keynesian literature. First, this paper extends Schmitt-Grohe and

Uribe (2007) which studies optimal simple monetary policy rules in fixed regime

New Keynesian models with active and passive fiscal policy. We extend this paper

by allowing for time-variation in fiscal policy stances. Second, this paper borrows

2Here, a MSV solution only depends on lagged endogenous variables, and contemporaneous
exogenous shocks including the Markov state. We show that agents with lagged information sets
can only learn equilibria that also depend on past Markov states.
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heavily from Orphanides and Williams (2007), which studies the performance and

robustness of simple monetary rules in simple monetary models with price-stickiness

and learning agents. We build on their work by studying the robustness of optimal

rational expectations monetary policy rules to misspecifications about private sector

expectations in models with fiscal policy. Finally, we extend Chen et al (2015), which

studies joint optimal monetary and fiscal policy in a model with switching policies.

Their paper derives fully optimal joint policy rules through a Stackelberg game. In

contrast, we look for optimal simple, implementable policy rules that are robust to

misspecifications about private sector expectations. We also take the complementary

view that fiscal policymakers do not engage in a sophisticated optimization routine to

determine fiscal surpluses.

This paper also contributes to a growing literature on regime-switching policy in

the context of the Fiscal Theory of the Price Level. For instance, Davig and Leeper

(2011), Bianchi (2012, 2013), and Bianchi and Melosi (2014) estimate switching New

Keynesian models such as the models in this paper and find evidence of fiscal and

monetary policy switches in the U.S. Ascari et al. (2017) and Cho and Moreno (2016)

attempt to generalize the determinacy conditions from Leeper (1991) to environments

with switching coefficients. We extend their work by showing how maturity impacts

determinacy in the presence of fiscal policy switching, and by more exhaustively

studying how the across-regimes behavior of fiscal policymakers constrains the menu

of monetary policies consistent with determinacy. Additionally this paper borrows

heavily from, and attempts to contribute to, a learning literature involving models with

monetary-fiscal policy interactions that includes Eusepi and Preston (2011, 2012, 2013)

and Bianchi (2013) and Bianchi and Melosi (2014).
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Finally, this paper contributes a hidden Markov model of least squares

learning to the learning literature. While many hidden Markov models of learning

are introduced by papers such as Bullard and Singh (2007) and Davig (2004),

relatively few of them study agents who jointly estimate model parameters and state

probabilities. Exceptions that do exist, such as Hansen and Sargent (2010), Hansen,

Polson and Sargent (2010), and Johannes et al (2013) invariably involve Bayesian

learners, and, almost invariably, 3 Bayesian learners in models without self-referential

feedbacks.

Our approach differs from these other approaches in many ways. First, we study

conditional least squares learners in a hidden Markov model, whereas other papers

study Bayesian learning. Second, we concern ourselves with stability of rational

expectations equilibrium in a model with hidden states. Because we can appeal to

stochastic approximation papers that study convergence properties of our conditional

least squares algorithm, future research may develop stability conditions that help

extend the intuition of Evans and Honkapohja (2001) to our regime-switching models.

Third, our agents estimate a Markov-switching VAR law of motion for endogenous

variables.

The paper is organized as follows: first, we briefly introduce the model and

estimation routine; second, we derive the optimal interest rate rules under rational

expectations in models with short-term debt; third, we discuss the optimal rules under

adaptive learning; fourth, we discuss optimal policy in the presence of long-term debt;

finally, we conclude.

3Hansen and Sargent (2010) is an exception, but their approach applies only to models that assume
a very specific structure
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Model and Method

We consider a class of log-linearized New Keynesian models that is augmented to

include time-varying fiscal policy as in Davig and Leeper (2011), long-term maturity

structure of debt as in Woodford (2001) and Eusepi and Preston (2013). In this class

of models, private sector behavior is given by two equations of the form:

ỹt = Etỹt+1 − σ−1(̂it − Etπ̂t+1) +
∑
d

udt

π̂t = βEtπ̂t+1 + κỹt +
∑
s

ust

where all variables are expressed as percentage deviations from steady state, ỹ is

the output gap, π̂ is inflation, and î is the deviation of nominal interest rates from

the nominal interest rate target.
∑

d u
d
t and

∑
s u

s
t are demand and supply shocks,

respectively, that may include any number of exogenous processes acting on technology,

preferences, market power, etc. To introduce fiscal policy into the model, we consider

the log-linearized versions of the following equations:

Pm
t bt + τt =

bt−1
πt

(1 + ρPm
t ) +Gt

Pm
t =

1

1 + it
(1 + ρEtP

m
t+1)

where b is real debt, G is real government spending, and τ is a surplus rule. P̂m
t is the

price of the bond portfolio at time t and ρ ∈ [0, 1] captures the maturity structure

of the government debt. While we relegate the derivation of these equations to the

appendix, the intuition behind the bond portfolio is fairly simple: the government

issues bt units of a nominal bond portfolio at time t that pays 1 unit of nominal income

at time t + 1, ρ units at time t + 2, ρ2 units at t + 3 and so forth. In other words,
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government debt exhibits a geometrically decaying maturity structure. This structure

allows us to introduce long-term debt into our model by using a single state variable

that captures the average maturity of debt, ρ. The limiting cases of ρ illuminate how

larger values of ρ correspond to longer average maturities: when ρ = 0, all debt is short

term, and when ρ = 1, all debt is in the form of consols.

In this paper, we are primarily interested in how optimal monetary policy

depends on τ , which is characterized by a rule of the form:

τt = τ̄ (bt(1 + ρPm
t ))

γ(st) ft

ft = f
ρf
t−1e

εft

where εft is some mean-zero i.i.d shock. τ adjusts some lump-sum component of the

government’s structural surplus in response to government liabilities, bt(1 + ρPm
t ).

The responsiveness of this fiscal rule is determined by γ(st), which is assumed to

follow a two-state Markov process given by st. As we will discuss shortly, the value

of γ determines which model variables need to stabilize government debt. Because

the parameterization of this rule has general equilibrium implications for inflation and

output, we allow the monetary policymaker to employ a log-linearized switching rule of

the form:

ît = ρiît−1 + (1− ρi)(φπ(st)π̂t + φy(st)ỹt) + εRt

where st is the same process that drives variation in γ, î is the deviation of the

nominal interest rate from its target. To impose structure on Gt and the private sector

shocks in the model, we derive a model that is similar in spirit to the simple New

Keynesian model in An and Schorfheide (2007). Specifically, government spending is
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given by

Gt = ξtYt

gt =
1

1− ξt

ln(gt) = ρgln(gt−1) + εgt

According to this specification of government spending, a time varying fraction of

output is consumed by the government. If we substitute this into the government

budget constraint, it is straightforward to see that government debt depends directly

on output. Therefore, government spending in our model introduces an output channel

that may have implications for our results. In simple cases where we want to abstract

away from this output channel, we simply set Ḡ = 0 and εgt = 0 and model fiscal

disturbances through ft. To bring demand and supply shocks into the model, we

assume that there are both markup shocks and shocks to household preferences. The

model derivation is left for the Appendix H, but we can write our model in the form

ỹt = Etỹt+1 − σ−1(it − Etπ̂t+1) + σ−1ρẑ ẑt

π̂t = βEtπ̂t+1 + κỹt + μ̂t

ît = ρiît−1 + (1− ρi)(φπ(st)π̂t + φy(st)ŷt) + εRt

b̂t = β−1(b̂t−1 − πt)− (1− ρ)P̂m,t + β−1
Ḡ

b̄
ŷt

−β−1((1− β) + (1− βρ)
Ḡ

B̄
)τ̂t + β−1ĝt

τ̂t = γ(st)(b̂t−1 + βρP̂m,t) + f̂t

P̂m,t = −ît + βρEtP̂m,t+1

f̂t = ρf̂ f̂t−1 + εft
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ĝt = ρgĝt−1 + εgt

ẑt = ρẑ ẑt−1 + εzt

μ̂t = ρμμ̂t−1 + εμt

where z is the technology shock, μ is the cost-push shock, P is the transition

probability matrix and pij = Pr(st = j|st−1 = i). All other variables are defined

as before. In the baseline analysis, we calibrate our model so that the steady state

government liabilities, b̄(1 + ρP̄ ), equals the steady state level of output. We also

set Ḡ/b̄ so that Ḡ/Ȳ = .2 conditional of ρ. My main results do not seem to depend

on these assumptions, except in rare special cases we discuss below. Having written

the model, we are now in a position to define the fiscal policy stance on debt, and the

monetary policy rule. To that end, we use the following two definitions.

Definition 5

A fiscal policy is defined by the following parameters: {p11, p22, γ(1), γ(2)}.
Stated more thoroughly, a switching fiscal policy is fully characterized by

within-regime responses to outstanding debt, given by {γ(1), γ(2)} and by
the transition probabilities {p11, p22}.

Definition 6

A monetary policy is defined by the parameters of the interest rate rule:

{φπ(1), φπ(2), φy(1), φy(2), ρi}. In late sections, we may allow a monetary

policy to be indexed by the average maturity of debt, ρ.

We subject our policy rule to a monetary policy shock to help account for fluctuations

of i around its target value, or to capture any short-lived deviation of policy from the

rule that might be caused by dissension between policymakers. In our simple model
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without debt, εR is isomorphic to a demand shock in the IS curve. As such, we do not

need monetary policy to explore optimal monetary responses to demand shocks in a

model with Ricardian dynamics. In our model, however, εR shows up in both the IS

curve and the government budget constraint and this will have implications for optimal

policy.

To help distinguish between policy regimes, we follow Leeper (1991) and describe

an “active” policymaker as one who determines inflation without concern for the

stability of debt, and a “passive” policymaker as one who directly acts to stabilize

the evolution of debt. With respect to fiscal policy, γ > 1 characterizes a “passive”

policy regime. When γ > 1, bonds evolve according to a stable autoregressive process

so that changes in i and π are not needed to keep debt from exploding. Intuitively,

γ > 1 means that surpluses adjust endogenously by an amount that is sufficient to pay

down interest and principal on new debt issuance over an infinite horizon. In such an

environment, forward looking agents recognize that any wealth effects stemming from

debt issuance will be offset by future taxes and this renders policy Ricardian. Because

fiscal policy stabilizes debt, the central bank is free to contain inflation as it pleases –

ideally by employing an active monetary policy that satisfies the Taylor Principle.

When fiscal policy is active (i.e. γ < 1), surpluses do not rise by enough to offset

any wealth effects coming from any new debt issuance and this causes consumption

and inflation to rise in response to higher debt. Any rise in inflation that results

from these wealth effects must be accommodated by central banks; if central banks

raise interest rates by more than one-for-one in response to higher inflation, they will

raise real debt service costs, leading to higher debt and therefore higher inflation in

the future, and so on. Central banks therefore must respond weakly or passively to

inflation so that inflation may erode the outstanding debt stock without generating
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additional debt service costs. Such monetary policy is said to be “passive” and is

characterized by a violation of the Taylor Principle (e.g. φπ < 1).

Parameter values are chosen to so that the resulting model is determinate. While

there are no simple analytical conditions for determinacy in our switching model,

Leeper (1991)4 gives simple conditions for determinacy in the case of non-switching

(assuming Ḡ = 0):5

TABLE 2. Leeper (1991) Determinacy Conditions

φπ > 1 φπ < 1

γ ∈ (1, β−1+1
β−1−1) determinate indeterminate

γ /∈ (1, β−1+1
β−1−1) no stable solution determinate

We say they the economy is in Regime M when φπ > 1 and γ ∈ (1, β
−1+1

β−1−1). and

that the economy is in Regime F when φπ < 1 and γ /∈ (1, β
−1+1

β−1−1). In Regime M,

fiscal policy is passive while monetary policy is active. This is the standard assumption

in most New Keynesian research. In Regime F, fiscal policy is active while monetary

policy is passive. Our model features switching between Regime F and Regime M

policy configurations. That is, our model features 2 states (i.e. S = 2) where each

state is consistent with determinacy in the analogous fixed regime model6. We solve

the model and check for determinacy in the mean-square-stable sense using techniques

from Cho (2016).

4See Table 1 for Woodford (1998a) generalization of conditions

5We assume that φπ(st) ≥ 0 for all st

6Despite the fact that each regime induces determinacy in a fixed regime model, the model with
switching between determinate regimes is often explosive or yields indeterminacy
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We now specify the optimization problem. The central bank chooses φ = (φπ(1),

φy(1), φπ(2), φy(2), ρi, ρ)∀st to minimize:

l(φ) = var(π) + λvar(y)

The choice of φ that minimizes l is referred to as the optimal policy or “optimized”

simple interest rate rule as in Orphanides and Williams (2007). The optimal policy is

said to be time-invariant if φπ(1) = φπ(2) and φy(1) = φy(2), and is said to be time-

varying otherwise. Though the average maturity of debt appears to be a fiscal policy

tool, central banks are able to engage in large-scale asset purchase (LSAP) programs

that “twist” the maturity structure of the debt held by the public. Consequently,

we include this parameter in the central’s bank’s choice set in specific exercises. In

addition to minimizing loss, the optimal policy should satisfy two criteria: (1) the

optimal policy should implement a unique mean-square stable rational expectations

equilibrium; (2) optimal inflation reaction coefficients must be non-negative.

As implied by our discussion of the Leeper (1991) conditions, the value of the

fiscal policy parameter, γ, impacts the menu of policy options that central banks must

choose from to contain inflation. When γ < 1, fiscal policy is active and monetary

responses to inflation must be dovish; when γ is high and policy is passive, monetary

responses must be aggressive. To help characterize how fiscal policy constrains central

bankers in our model with time-varying policy stances, we employ a generalization

of these conditions similar in spirit to conditions developed by Ascari et al (2017).

Our taxonomy considers three types of fiscal policy stances: (1) “globally passive”

policies that support a stable Ricardian equivalent equilibrium; (2) “globally active”

policies that are more active than passive across regimes; (3) “globally switching” or

“balanced” policies that are neither more active nor more passive across regimes. We
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note that both globally active and globally switching policies feature non-Ricardian

dynamics; only globally passive policies are Ricardian. The following definitions help

us characterize our three categories of switching fiscal policy and provide valuable

intuition.

Definition 7

A fiscal policy is globally passive if φπ(1) = φπ(2) = αP for all αP > 1

yields a determinate equilibrium.

A globally passive policy can be paired with any time-invariant interest rate rule

that satisfies the Taylor Principle. In order for this to be true, fiscal policy must

be Ricardian. Otherwise, we could choose a time-invariant active monetary policy

that places debt on an explosive path. Because globally passive implies Ricardian

equivalence and vice versa we can determine if a policy is globally passive using the

following conditions passive (assuming p11 + p22 > 1):7

(p11 + p22 − 1)h2
1h

2
2 < 1 (5.1)

p11h
2
1(1− h2

2) + p22h
2
2(1− h2

1) + h2
1h

2
2 < 1 (5.2)

where hi = β−1(1 − (1 − β)γ(i)) for i = 1, 2. These conditions, which are also

presented in Ascari et al (2017), tell us when the budget constraint implies a mean-

square stable autoregressive process for debt. If a fiscal policy satisfies these conditions,

then debt evolves according to a mean-square stable autoregressive process without

accommodation from the monetary authority and this allows monetary policymakers

to determine inflation and output in the non-policy block of the New Keynesian

model. Determinacy then requires that interest rates respond aggressively to inflation.

7We are interested in highly persistent regimes, which makes this a harmless assumption
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Figure 9 shows regions of determinacy, indeterminacy and non-existence of stable

solutions for a model with globally passive policy. As argued in Ascari et al. (2017),

the determinacy region in Figure 9 presents something akin to the Long-Run Taylor

Principle in Davig and Leeper (2007): fiscal policy can be very active for short amount

of times, or modestly active with persistence, and the resulting equilibrium may still be

Ricardian and determinate if policy is mostly passive overall. Note that a fixed passive

fiscal policy regime is merely a special case of a globally passive policy.

FIGURE 9. Globally Passive Policy

The determinacy region is dark gray; indeterminacy is light gray; no stable solutions is
white

Definition 8

A fiscal policy is globally active if φπ(1) = φπ(2) = αA for all α < 1 yields

a determinate equilibrium.
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Stated equivalently, policy is globally active if a unique equilibrium exists when the

monetary authority employs a time-invariant passive monetary policy. For a permanent

passive monetary policy to be consistent with determinacy in our model, fiscal policy

must be more active than passive overall. Figure 10 shows regions of determinacy,

indeterminacy and explosiveness region for globally active fiscal policy. Note that a

fixed active fiscal policy is merely a special case of a globally active policy.

FIGURE 10. Globally Active Policy

The determinacy region is dark gray; indeterminacy is light gray; no stable solutions is
white

Definition 9

A fiscal policy is globally switching if there exists αA < 1 and αP > 1

such that neither φπ(1) = φπ(2) = αA nor φπ(1) = φπ(2) = αP yield a

determinate equilibrium.
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The set of globally switching fiscal policies is the complement of the set of globally

active and passive policies. Intuitively, a globally switching policy is neither active

enough in the long-run to support all passive monetary policies nor passive enough

in the long-run to support all active monetary policies. These fiscal policies are

balanced in the sense that they are not obviously more active or passive overall. For

example, a globally switching policy may feature slow-changing, strongly active and

strongly passive regimes, or fast-changing weakly active and weakly passive fiscal

policy regimes. Table 3 offers very rough qualitative examples of how fiscal policies

may be assigned to certain categories. Figure 11 shows determinacy regions for policies

that feature highly persistent and/or strongly active and passive regimes. This figure

suggests that determinacy requires monetary authorities to be hawkish during passive

fiscal regimes and dovish during active fiscal regimes. Crucially, central banks cannot

implement time-invariant policies such as permanent interest rate pegs because the

overall fiscal policy stance is no longer mostly active or mostly passive. Figure 12

shows determinacy regions for policies that feature fast-changing and/or weakly active

and passive regimes. In these scenarios, central bankers face a meager menu of policy

options. Typically, determinacy regions for globally switching policies will resemble

either Figure 11 or 12 depending on the strength of switching regime fiscal policy

responses to debt and the persistence of regimes. Table 1 offers very rough qualitative

examples of how fiscal policies may be assigned to certain categories.

Before we present results we offer some final intuition about the fiscal policy

taxonomy. Globally active and globally passive policies can be coupled with a wide

range of time-invariant policies to deliver a determinate model, while globally switching

policies must be paired with time-varying monetary policies for determinacy. One

practical benefit of using time-invariant policies is that their implementation does not
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FIGURE 11. Globally Switching Policy (Strong)

The determinacy region is dark gray; indeterminacy is light gray; no stable solutions is
white

FIGURE 12. Globally Switching Policy (Weak)

The determinacy region is dark gray; indeterminacy is light gray; no stable solutions is
white
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TABLE 3. Overall Stance of Fiscal Policy

low pers.;
weak active

high pers.;
weak active

low pers.;
strong active

high pers.;
strong active

low pers.;
weak passive

GS GA GA GA

high pers.;
weak passive

GP GS GS GA

low pers.;
strong passive

GP GS GS GA

high pers.;
strong passive

GP GP GP GS

Strength and persistence of fiscal regime and the overall stance of fiscal policy. “pers.”
= persistence; GA = “globally active”; GP = “globally passive”; GS = “globally
switching”

require policymakers to actively track any changes in responsiveness of fiscal policy

to debt. As we show next, time-invariant policies are going to perform well in models

with globally active or passive policy.

Short-term Debt and Rational Expectations

In this section, I abstract away from long-term debt by assuming ρ = 0. We

also assume that λ = 0 so that the central bank loss function equals that variance of

inflation, but the optimal policies discussed in this section appear to perform well in

applications with small λ such as the λ weights typically found in microfounded loss

functions. Because we prioritize inflation-targeting, φy(1) = φy(2) = 0 reduces loss in

our numerical search. Accordingly, we restrict our attention the interest rate rules of

the form:

it = ρiit−1 + (1− ρi)φπ(st)πt

We present our numerical results through a series of claims contained in this section.
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Claim 1

If fiscal policy is globally passive then for all parameterizations the optimal

monetary policy response is to employ an interest rate rule with coefficients

φπ(st) = φ̄π ∀st and ρi = ρ̄i

Since determinacy requires that inflation and output be determined in the non-policy

block, the optimal simple policy rule is identical to the optimal rule used in small-

scale 3-equation models that consist of an IS curve, Phillips Curve and interest rate

rule (see Woodford (2003)). Intuitively, a globally passive policy supports a mean-

square stable autoregressive process for debt. Consequently, central banks do not need

to accommodate fiscal policy and this allows monetary policymakers to determine

inflation through the non-policy block.

When λ = 0, φ̄π → ∞ (see Woodford (2003)). Two features of this result should

be emphasized. First, the optimal policy is time-invariant despite switching in the

fiscal policy stance. Second, the monetarist equilibrium can be stable in models with

persistent active fiscal policy. For example, the monetarist equilibrium is stable when

p11 = p22 = .95, γ(1) = 5, γ(2) = 0, and Ḡ = 0 despite the fact that fiscal surpluses

are entirely exogenous half of the time. See Orphanides and Williams (2007) for a

treatment of the optimal ρi when interest rates are determined in this environment

Claim 2

If fiscal policy is globally active then for all reasonable parameterizations

the monetary authorities should employ a permanent interest rate peg (i.e.

φπ(1) = φπ(2) = 0) in order to minimize the variance of inflation.

While we cannot prove Claim 3 formally, our claim relies on the following numerical

support: for all globally active policies in p11 ∈ [.9, 1], p22 ∈ [.9, 1], γ(1) ∈ [−10, 10], and
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γ(2) ∈ [−10, 10], the interest rate peg is optimal. For the posterior mean calibration
with added cost-push shocks and fiscal variables, we search over approximately 64,000

globally active policies and find that the interest rate peg is optimal for each one of

them. We repeat this analysis for alternative reasonable calibrations (alternative shock

covariance-variance structure, alternative persistence parameters for structural shocks,

σ, κ) and find that this result is robust.

We add the word “reasonable” because non-Ricardian fiscal policy presents

a tradeoff between stabilizing inflation in response to private sector shocks (i.e.

demand and supply shocks), and stabilizing inflation in response to policy shocks. In

conjunction with active fiscal policy, private sector shocks call for very high ρi (e.g.

ρi = .995) and time-varying inflation reaction coefficients, while pegs perform best

in response to monetary and fiscal policy shocks. As a result, the optimal monetary

policy in a model with globally active fiscal policy depends on the net effect of these

competing influences on inflation.

As it turns out, the private sector shock variances need to be very large relative

to policy shock variances, or the private sector shocks need to be very persistent

relative to policy shocks for the interest rate peg to be suboptimal. In particular,

monetary policy shocks need to be very small relative to other shock variances. To

illustrate this last point, we calibrate the model at the posterior mean, shut down each

shock except for one private sector shock and ask: how large does the variance of the

monetary policy shock need to be for the interest rate peg to be optimal?

When we set Ḡ = 0, so that output no longer impacts debt through the budget

constraint and set ρu = .99 where ρu is the supply shock persistence term, we need for

the variance of the monetary policy shock to be greater than .014% of the variance of

the i.i.d innovation to the supply shock to get an optimal interest rate peg. For ρu =
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.9, the monetary policy shock needs to be greater than .0017% of the variance of the

same innovation to the supply shock. When we increase Ḡ to .2, the interest rate peg

is optimal even when cost-push is the only shock in the model.

When we set Ḡ = 0, so that output no longer impacts debt through the budget

constraint and set ρz = .99 where ρz is the demand shock persistence term, the

variance of the i.i.d. innovation to the demand shock must be less than 5 times the

variance of the monetary policy shock for the peg to be optimal. This suggests that

demand shocks are a bigger threat to the optimal interest rate peg. However, when

ρz = .9, the monetary policy shock only needs to be greater than .025% of the

variance of the i.i.d innovation to the demand shock for the peg to be optimal. Of

course, these exercises exclude fiscal policy shocks, and those shocks help to select

the peg. For example, if we shut down monetary policy shocks and set all remaining

shock parameters to their posterior mean values, we can set ρz = .99 and still have an

optimal peg.

Because intuition supports the inclusion of policy shocks in our model, and

because it is highly unlikely that an estimated model will reject the inclusion of

policy shocks, we regard cases where the peg is suboptimal as special cases involving

potentially unreasonable parameterizations of the model. We also note that pegs are

quite often nearly optimal in that loss is often close to 0% higher under the peg when

compared to the optimum. However, we have found cases where loss is as much as 3%

higher under the peg.

Non-Ricardian equilibria in our model allows us to generate some intuition

concerning the optimality of interest rate pegs. Suppose some shock (e.g. a fiscal

shock) raises the outstanding debt stock today. Since agents perceive government debt

as net wealth, this will raise consumption and inflation. This is one sense in which debt

105



determines inflation under a globally active policy. The amount of inflation generated

in general equilibrium depends on monetary policy, however. As such, monetary

policy determines how inflation feeds back to stabilize debt. If an interest rate peg

is in place, a large inflation will occur today, which pushes debt in the direction of

its steady state value. On the other hand, if the central bank allows interest rates to

respond positively, then debt service costs will increase today, which creates higher

debt tomorrow and so on. The higher expected path of debt raises time t inflation

expectations, so that inflation is both higher today and propagated into the future. In

a similar thought experiment, Leeper and Leith (2016) show that the present value

of inflation will be higher under the responsive interest rate than under the peg in

their small-scale New Keynesian model. Once they solve for the equilibrium path of

inflation, it’s straightforward to show that the sharp, sudden responses of inflation

under the peg are consistent with less volatility in inflation. The complexity of our

non-linear model makes it very difficult to repeat a similar experiment in this paper.

However, Claim 3 strongly suggests that their results generalize to models with time-

varying fiscal stances – even models with recurring passive fiscal policy regimes.

To understand why pegs perform so well in globally active models, it’s important

to recall the fact that debt both determines inflation and is stabilized by inflation

in any non-Ricardian equilibrium. This means that any shock to government debt

(i.e. any shock appearing in the budget constraint) will have an affect on inflation

and output. To fix things, consider a shock which raises debt. Since agents perceive

government debt as net wealth, this will raise consumption and inflation. This is one

sense in which debt determines inflation under a globally active policy. The amount

of inflation generated in general equilibrium depends on monetary policy, however.

As such, monetary policy determines how inflation feeds back to stabilize debt. If an
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interest rate peg is in place, a large inflation will occur today, which pushes debt in

the direction of its steady state value. On the other hand, if the central bank allows

interest rates to respond positively, then debt service costs will increase today, which

creates higher debt tomorrow and so on. The higher expected path of debt raises time

t inflation expectations, so that inflation is both higher today and propagated into the

future. In a similar thought experiment, Leeper and Leith (2016) show that the present

value of inflation will be higher under the responsive interest rate than under the peg

in their small-scale New Keynesian model. Once they solve for the equilibrium path

of inflation, it’s straightforward to show that the sharp, sudden responses of inflation

under the peg are consistent with less volatility in inflation. The complexity of our

non-linear model makes it very difficult to repeat a similar experiment in this paper.

However, Claim 3 strongly suggests that their results generalize to models with time-

varying fiscal stances – even models with recurring passive fiscal policy regimes.

While pegs are broadly consistent with stable inflation in our non-Ricardian

model, φπ(1) = φπ(2) = 0 does not guarantee determinacy for all fiscal policies

that violate the abovementioned conditions (i.e. mean-square stable common-factor

sunspots may exist). In particular, indeterminacy obtains if fiscal policy is too passive

in one regime. For example, if p11 = p22 = .95, γ(1) = 2, γ(2) = −5 then fiscal policy is
sufficiently active for the interest rate peg to deliver determinacy. If, however, γ(1) = 2

is replaced by γ(1) = 5, then policy is too passive in regime 1 for the interest rate

peg to deliver determinacy. These are globally switching equilibria and determinacy

requires that they be paired with special optimal equilibria.

Claim 3

Optimal GS monetary policies are time-varying and parameter dependent
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For example, the optimized inflation reaction coefficients for the policy given by p11 =

p22 = .95, γ(1) = 5, γ(2) = −5 and for the policy given by p11 = p22 = .95, γ(1) = 2,

γ(2) = 0, are (φπ(1), φπ(2), ρi) = (3.3, 0, .99) and (φπ(1), φπ(2), ρi) = (2.97, .73, .99),

respectively. These particular optimized coefficients come from the expected posterior

loss exercise we introduce in the next paragraph. Since the optimized policy favors

large swings in inflation responses, policy inertia is undesired (i.e. ρi = 0 is optimal).

While results in the globally active and globally passive settings hinge only on

fiscal policy parameters (for reasonable parameterizations of shock processes), the

optimal policy in globally switching models depends on any model parameter that

impacts determinacy conditions. This means that we need to choose parameter values

in order to draw conclusions about optimal policy in the globally switching models.

To help inform our selection of model parameter values, we estimate the following

truncated model using Bayesian techniques:8

ŷt = Etŷt+1 − σ−1(it − Etπ̂t+1) + (1− ρg)ĝt + σ−1ρẑ ẑt

π̂t = βEtπ̂t+1 + κ(ŷt − ĝt) + μ̂t

ît = ρiît−1 + (1− ρi)(φππ̂t + φyŷt) + εRt

ĝt = ρgĝt−1 + εgt

ẑt = ρẑ ẑt−1 + εzt

μ̂t = ρμμ̂t−1 + εμt

ỹt = ŷt − ĝt

where the final equations reflects the fact the natural rate of output equals ĝt in our

model, thus allowing us to glean information about government shocks from estimates

8See Appendix I. for tables containing information about our prior and posterior distributions
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of the IS and Phillips Curves. Using the separated partial means test to test the

convergence of our estimates, we believe that the best results emerge when we place

dogmatic priors over ρu and σμ and estimate only the non-policy block with the

interest rate. Since this exercise intends to consider counterfactural policies, estimates

of the underlying fiscal policy stance are unnecessary. However, estimates pertaining to

the shock processes and other private sector coefficients help to discipline our analysis

towards parameter regions that agree better with the data. In extensions of the present

work, we intend to estimate a fuller DSGE model.

After sampling from the posterior distribution, we follow Cogley et al. (2011) and

compute the expected posterior loss associated with each policy parameterization. A

Monte Carlo average of the following expected posterior loss function is computed:

∫
l(φ)P (θ̃|Y )dθ̃

where θ̃ = (κ, σ, ρg, ρz, ρμ, σg, σz, σμ, σr). For the previously mentioned case where

γ(1) = 5 and γ(2) = −5, p11 = p22 = .95, the optimal policy is given by φπ(1) = 3.33,

φπ(2) = 0, ρi = 0.99. Intuitively, monetary policy should be active in the passive fiscal

regime, and very passive in the active fiscal regime.

To sum up, the optimal policy response depends on whether fiscal policy is

globally active, globally passive or globally switching. If fiscal policy is globally passive,

then optimal policy is time-invariant and calls for large inflation reaction coefficients. If

fiscal policy is not globally passive, then interest rate pegs deliver the fundamental

solutions that minimize loss. If, however, fiscal policy is globally switching then

interest rate pegs lead to indeterminacy. In those settings, and those settings alone,

the optimal policy is time-varying.
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TABLE 4. Optimal Inflation Reaction Coefficients under RE when ρ = 0

Type (γ(1), γ(2) optimal (φπ(1), φπ(2))
GP (5, 0) (∞, ∞)
GS (5, −5) (3.33, 0)
GS (2, 0) (2.73, .72)
GA (2, −5) (0, 0)

Adaptive Learning

In this section we relax the assumption that agents form rational expectations,

and study policy performance in a model where agents attempt to learn the

equilibrium law of motion for the model’s endogenous variables, and form forecasts of

future variables according to an estimated perceived law of motion. Relative to rational

expectations models, models with learning agents feature instabilities that arise from

agents’ forecast errors. Specifically, agents’ forecast errors affect the model’s data

generating process, thereby changing future data points and future estimates of the

model’s coefficients. This self-referential feature of our model fundamentally changes

the way in which policy interacts with expectations to contain inflation and output.

As such, the inclusion of adaptive learning in our analysis provides an important

robustness check. Our main conclusion is that the optimized simple policy rules

studied under rational expectations are robust to misspecifications of the underlying

model of expectations employed by agents. That is, the optimized policy rules under

rational expectations are optimal or nearly optimal in models with adaptive learning

agents, with exceptions in the case of globally switching policy.

We present our results in two sections.First, westudy a learning model in which

agents observe the model’s endogenous variables (with a reasonable lag), exogenous

driving processes and the underlying Markov state that drives variation in fiscal

and monetary policy rules. When agents observe the underlying Markov state, they
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can easily update parameter estimates using a within-state recursive least squares

algorithm that resembles the least squares algorithm developed and discussed in Evans

and Honkapohja (2001). While this learning specification provides a natural first step

away from the rather strong assumption that agents form rational expectations, it still

assumes that agents easily observe something an applied econometrician would not:

the underlying state of policy. We therefore develop a model of learning that backs

away from this assumption.

In our hidden Markov model of adaptive learning, agents estimate the same

perceived law of motion, but do not observe the underlying Markov state (i.e. agents

find themselves in a hidden Markov model). Because agents do not observe the stance

of fiscal and monetary policy, they cannot use the recursive least squares algorithm

employed in the learning model with observed states. Instead, we allow agents to use

the recursive MLE algorithm and the recursive conditional least squares algorithm

developed in Krishnamurthy and Yin (2002) and LeGland and Mevel (1997) to update

parameter estimates after observing the model’s endogenous variables and exogenous

driving processes. We emphasize two main results from this section. First, this is,

to the best of our knowledge, the first paper to study least squares learning agents

who estimate a Markov-switching autoregressive equilibrium law of motion in a self-

referential model with hidden Markov states.9 That is, previous research does not

jointly estimate perceived laws of motion and the Markov state probabilities. We

therefore regard this section as a springboard for future research on the use of hidden

markov models of learning. Second, the exogeneity10 of policy rule coefficients makes it

possible for agents to infer the underlying state with some reasonable accuracy. Hence,

9See literature review for details on related papers

10By “exogeneity” we mean that the coefficients in the equilibrium law of motion for policy
variables τ and i do not depend on agents’ beliefs
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model dynamics in a model with learning agents and hidden states are very similar

to model dynamics in the learning model with observed states. We conclude that it is

potentially reasonable to assume that agents observe policy switches, but it remains to

be seen whether with assumption is strong in models where Markov-switching affects

non-policy variables such as trend growth.

Observed Markov States

We now develop a model of learning in which agents observe the underlying

Markov state (i.e. they observe the underlying policy stance). The model dynamics are

still given by an actual law of motion, which can be constructed from the log-linearized

equilibrium conditions given previously:

xt = A(st)Etxt+1 +B(st)xt−1 + C(st)zt (5.3)

where x = (π y i b τ P )′ and z = (g ẑ εR μ εf ). Under rational expectations, agents

know the full structure given by (5.3) and can solve for the rational expectations

equilibrium. Under adaptive learning, however, agents do not know (5.3) and are

therefore incapable of computing the true mathematical expectations of tomorrow’s

variables. Despite the fact that agents are not fully rational, we still endow agents

with sophisticated beliefs about the law of motion governing inflation, output, etc., in

equilibrium. Specifically, we give agents the following perceived law of motion (PLM):

xt = a(st) + b(st)xt−1 + c(st)zt (5.4)

Notice that this perceived law of motion has the same functional form as the rational

expectations equilibrium law of motion, which implies that agents may conceivably
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learn the rational expectations equilibrium law of motion if their estimates of a(st),

b(st), and c(st) converge to their rational expectations values (i.e. if a(st) → 0n×1,

b(st) → Ω(st) and c(st) → Γ(st) for all st). If a rational expectations equilibrium

can be learned, it is said to be “stable under learning” or “expectationally stable”

(“E-stable”) (see McClung (2016, 2017b) for more about E-stability in this class of

models). E-stable rational expectations equilibria are easier to rationalize in the sense

that adaptive learning supports a coordination story for their realization, and in the

sense that they are robust to the unreasonably strong assumptions that undergird

rational expectations. Our task in this section is to study the volatility of inflation and

output when agents beliefs about the structure of the economy are close to the unique

rational expectations equilibrium implemented by the monetary policy rule.

To make our model of learning fully operational, we must specify agents’

information set, their estimation strategy, and the full process through which

expectations interact with predetermined variables to pin down the endogenous

variable values. We begin by specifying agents’ time t information set, It, which

includes all past observations of x, and all past and current observations of z and s.

Formally: It = {yt−1, yt−2, . . . , y0; zt, zt−1, . . . , z0; st, st−1, . . . , s0}. We could exclude zt

from the information set (i.e. only include past values of z) and obtain similar results.

Using observations in It, agents will update their estimates of the coefficients in (5.4)

using the following within-regime learning algorithm:

Φ(st)st = Φ(st)st−1 + ψstR(st)
−1
st ut(xt − Φ(st)

′
st−1ut) (5.5)

R(st)st = R(st)st−1 + ψst(utu
′
t −R(st)st−1) (5.6)
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where Φ(st)st = (at(st), bt(st), ct(st))
′ are the time-t estimates of regime st coefficients,

ut = (1, x′t−1, z
′
t)
′, and st is the number of realizations of state st up until and including

time t. Alternatively, we might use a learning algorithm that estimates a dummy

variable regression where elements in u are interacted with dummy variables that

take on values of 1 or 0 depending on the underlying Markov state. The last feature

of the algorithm we need to define is the gain parameter, ψst . Intuitively, ψst attaches

a weight to each new observation and therefore determines the extent to which new

information impacts parameter estimates. If we give each observation equal weight by

setting ψ = 1/tst , where tst is the number of realizations of st up until time t, then

our learning algorithm becomes the conditional recursive least squares estimator of Φ.

Clearly, as t → ∞ the estimates converge to some value, which may be the rational

expectations equilibrium coefficients depending on initial beliefs and the E-stability

of the equilibrium under study. Alternatively, we might allow agents to give more

weight to recent observations by using a constant gain parameter,ψ = ψ̄, where ψ̄ is

some scalar. In constant gain learning algorithms, beliefs will never converge, but may

converge to some distribution centered on the rational expectations equilibrium. These

algorithms are considered appropriate in settings where agents may expected structural

changes in the model, or in settings where agents simply value recent data more than

older data.

Having specified the learning algorithm, we now outline the sequence of events

that lead to an equilibrium at time t:

1. Agents observe zt and st and add those to their information sets.
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2. Using It and time t−1 estimates at−1(st), bt−1(st), ct−1(st). Agents form forecasts,

Êtxt+1:

Êtxt+1 = (pst1a(1)t−1 + pst2a(2)t−1) +

(pst1b(1)t−1 + pst2b(2)t−1)(a(st)t−1 + b(st)t−1xt−1 + c(st)t−1zt) +

(pst1c(1)t−1 + pst2c(2)t−1)ρzt

3. xt is generated from the actual law of motion, (5.3), which gives us time t

endogenous variables as a function of beliefs and predetermined variables

4. Agents observe xt and add it to their information sets

5. Agents use (5.5)-(5.6) to update their estimates

6. Forward t to t+ 1 and repeat steps 1-5.

Before studying policy performance in this environment, we first use a decreasing

gain parameter see whether agents can learn the rational expectations equilibrium

corresponding to each of the parameterizations we consider. Initial beliefs about a(st),

c(st) for st = 1, 2 are set to zero, while initial beliefs about b(st) are perturbed around

Ω(st).
11 For all parameterizations we consider here, beliefs eventually converge to their

rational expectations equilibrium values. Figure 13 illustrates the convergence of beliefs

for the posterior mean calibration with γ(1) = 5, γ(2) = −5, φπ(1) = 3, φπ(2) = 0.

In this figure, as well Figure 16 we plot the difference of actual beliefs and rational

11We set initial beliefs about the VAR coefficients away from zero (but still far from their REE
values) to help improve the rate of convergence of beliefs to the REE. We also want to mention that
beliefs may not converge to the rational expectations equilibrium for all initial values; E-stability is
a local stability concept that only applies to beliefs that are in some neighborhood of their potential
convergence points.
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expectations equilibrium beliefs over time (i.e. a value of 0 means that beliefs equal the

rational expectations equilibrium).

FIGURE 13. Coefficient Estimate Errors and Observed State Learning

The left-hand column features the VAR-coefficients on independent variable lagged
debt in regime 1; right-hand column features the VAR-coefficients on independent
variable lagged debt in regime 2. Notice that beliefs are held fixed when they
correspond to an inactive state (e.g. notice the flat, “mesas” in the state 2 coefficients
between t=50 and t=150).

To help better understand the impact that learning has on model dynamics, we

study policy performance in a model with constant gain learning and a gain parameter

equal to .01.12 In such a model, we cannot compute the unconditional variance of

12The learning algorithm is also augmented with a ridge correction mechanism as in Slobydan
and Wouters (2012), and projection facility that prevents estimates from updating if the updated
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TABLE 5. Optimal Coefficients under Adaptive Learning

Type (γ(1), γ(2))
optimal RE coeff.
(φπ(1), φπ(2), ρi)

optimal AL coeff.
φπ(1), φπ(2), ρi)

Projection
Facility
(per 100,000)

GS (5, −5) (3.3, 0, .99) (3.68, 0, .99) 110
GA (2, −5) (0, 0, 0) (0, 0, 0) 86

The larger inflation reaction coefficients under learning echoes a result from
Orphanides and Williams (2007). 4 is the largest inflation reaction coefficient used
in this particular numerical search. Despite the small gain parameter and infrequent
use of the projection facility, the model is frequently unstable for ψ > .02

inflation and output. We therefore approximate the variance of inflation and output by

simulating the model for 100,000 periods and computing sample variances.13 Because

these simulations are more computationally intensive, we do not compute expected

posterior losses. Instead, we set non-policy parameters equal to their posterior mean

(with added cost-push shock), and make inferences based on this model calibration.

Otherwise, the procedure for measuring performance is the same as the procedure

used in the RE model: we search over monetary policy parameters and find the set

of interest rate rule coefficients that minimizes the variance of inflation and output.

Table 5 presents our main findings.

Unobserved Markov States (Hidden Markov Model)

The learning model with observed states provides valuable evidence that the

optimized simple rules under rational expectations are robust to misspecifications of

private sector expectations. However, that model makes one potentially unreasonable

parameters imply a Markov-switching VAR that is not mean-square-stable. Intuitively, the projection
facility formalizes the notion that agents reject unstable models. We invoke the projection facility and
ridge correction mechanism in far less than 1% of simulated periods

13Each simulation uses the same 100,000 realizations of shocks. We do this to help mitigate the
potential for large outlier shocks to bias our sample variances.
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assumption: agents observe the state of fiscal and monetary policy. In practice, applied

econometricians do not observe the stance of fiscal and monetary policy. Instead,

econometricians use techniques developed in papers such as Hamilton (1989) to

identify the probable state of the economy at any point in time. Because a lot of

adaptive learning research begins with the premise that our models’ agents should

be no more informed and rational than the econometricians among us, we endeavor

in this section to remove st from the information set, It, and study the model-implied

dynamics of inflation and output. We refer to this new model as the hidden Markov

model of learning. Before deriving the hidden Markov model of learning, we emphasize

that self-referential feedback in this model not only poses the risk of destabilizing

agents’ beliefs about model coefficients; forecast errors act on both future coefficient

estimates and agents’ inferences about the underlying state. One may therefore expect

additional expectations-induced volatility in this model.

As it turns out, the structure of our model makes it possible for agents to

infer the underlying state with reasonable accuracy so that the removal of Markov

states from agents’ information set only raises the volatility of inflation and output

slightly. This last point is partly explained by an argument made in Bianchi (2013)

which states that fully rational agents can perfectly infer today’s state if they observe

contemporaneous and past x, z. Their argument relies on the fact that rational agents

know all of the S within-regime systems of equations (i.e. xt = Ω(st)xt−1+Γ(st)zt) that

may determine xt. All agents in their model need to do to perfectly infer the state is

compute each of the S equations until they find the correct system of equations. Their

argument does not apply to our framework; if agents hold incorrect beliefs about the

economy – as they always do in a model of constant gain learning, or before beliefs

converge – they may make horrible inferences about the state of the economy. Despite
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this limitation, the equilibrium coefficients of the policy rules are exogenous to beliefs,

which makes it easy for agents to learn the rational expectations equilibrium law

of motion for fiscal surpluses and infer from it the underlying state of the economy

with reasonable but far from perfect accuracy. We emphasize that other equilibrium

coefficients do depend on agents’ beliefs, so that our model is still self-referential.

As before, agents beliefs about the law of motion for endogenous variables is

given by the PLM in (5.4). In what follows, we consider two information structures.

First, we assume that It = {yt−1, yt−2, . . . , y0; zt−1, . . . , z0}. After examining the
potential convergence points of beliefs, and pointing out the exogeneity of the surplus

law of motion, we then add surpluses, τt, to It and demonstrate that agents’ beliefs

can converge to the rational expectations equilibrium. Under both information

structures, agents do not observe st, which implies that they cannot use (5.5)-(5.6)

to update their beliefs. To get around the difficulty presented by the hidden Markov

process, we rely on techniques from Krishnamurthy and Yin (2002) and LeGland

and Mevel (1997), which present “online” or recursive algorithms for learning the

coefficients of an exogenous Markov-switching autoregression. Specifically, we use the

recursive maximum likelihood estimator (RMLE) from both papers, and the recursive

conditional least squares estimator (RCLS) from LeGland and Mevel (1997). While

newer alternatives to these algorithms exist outside of the stochastic approximation

literature, we rely on these papers because they present convergence results that may

prove useful in extensions of the current analysis.

The algorithms described in both papers make inferences about the coefficients,

Φ(st), and the Markov process, st, using two related recursive processes. First, agents

make inferences about st using a prediction filter of the form introduced by Hamilton

(1989). To develop this filter we first define within-regime conditional densities for x,
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fst = f(xt|xt−1, xt−2, ...., zt, zt−1, ...., st; Φ(st)t−1). In a model with normally distributed
i.i.d innovations to our exogenous driving process, fst assumes the following form:

fst = (2π)−t/2|Σ|−.5exp{−.5(xt − μ(st)t−1)′Σ−1(xt − μ(st)t−1)}

where μ(st)t−1 = at−1(st) + bt−1(st)xt−1 + ct−1(st)zt and Σ is the covariance-

variance matrix for the i.i.d innovations to z. To make future calculations easier, we

define the following matrices:

ft = (f1t, f2t . . . , fSt)
′

Ft = diag(f1t, f2t . . . , fSt)

Let p̂i,t|t−1 = Pr(st = i|It), and p̂t|t−1 = (p̂1t|t−1, p̂2t|t−1, . . . , p̂St|t−1)′. p̂t follows the

recursion:

p̂t+1|t =
P ′Ftp̂t|t−1
f ′t p̂t|t−1

(5.7)

where it is assumed that agents know the true transition probabilities in P . The

prediction filter in the last equation completely describes how agents recursively

compute their predictions for today’s state. Because inferences about st are made

prior to time t, agents can, at best, infer st−1 perfectly. As we show below, this

feature of our model makes it impossible for agents’ beliefs to converge to the rational

expectations equilibrium studied in previous sections, and is the primary reason why

we argue for the addition of τt to It. The second recursive process in the algorithms

presented by Krishnamurthy and Yin (2002) and LeGland and Mevel (1997) updates
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the parameter estimates, Φ(st), according to:

Φt = Φt−1 + γS(xt, It; Φt−1) + εtMt

where Φt is a k × 1 vector14 that contains the elements of Φ(st) for all st, γ is the

gain parameter and Mt is a correction term (i.e. we use a projection facility in our

implementation of their algorithms). Let Φl
t denote the l-th element of Φt. The

function S(xt, It; Φt−1) is the only thing that varies across the two algorithms we use in

the paper. For the RMLE algorithm, S(xt, It,Φt−1) is given by the following equations:

S(xt, It,Φt−1) = (S1(xt, It,Φt−1), . . . , Sk(xt, It,Φt−1))′

where

Sl(xt, It,Φt−1) =
f ′tω

l
t

f ′t p̂t|t−1
+
(∂f ′t/∂Φ

l
t)p̂t|t−1

f ′t p̂t|t−1
(5.8)

for all l ∈ {1, ..., k} and ωl
t =

∂p̂t|t−1

∂Φl
t
. We update ωl

t recursively as follows:

ωl
t+1 = R1tω

l
t +R2t (5.9)

where

R1t = P ′(I − Ftp̂t|t−11′s
f ′t p̂t|t−1

)
Ft

f ′t p̂t|t−1

R2t = P ′(I − Ftp̂t|t−11′s
f ′t p̂t|t−1

)
(∂Ft)/(∂Φ

l
t)p̂t|t−1

f ′t p̂t|t−1

14In our model with S = 2, n endogenous variables and m endogenous variables, k = 2(n(n + 1) +
nm)
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Equation (5.7), (5.8) and (5.9), plus initial conditions, give us the RMLE algorithm.

To derive the RCLS we only need to change our definition of Sl(xt, It−1,Φt−1) as

follows:

Sl(xt, It,Φt−1) = (φΦt−1(xt − φ′Φt−1
p̂t|t−1))′ωl

t + (
∂φΦt−1

∂Φl
t−1

(xt − φ′Φt−1
p̂t|t−1))′p̂t|t−1 (5.10)

where φΦt−1 is a matrix that collects the conditional mean for each state (i.e. μ(s)t−1

for each s ∈ {1, . . . , S}). Before outlining the events leading to a temporary
equilibrium, we emphasize that this algorithm is very similar to the algorithm

presented in (5.5)-(5.6). Specifically, if agents observe the state so that ω becomes a

vector of zeros (since (I − Ftp̂t|t−11
′
s

f ′t p̂t|t−1
→ 0S), and they replace p̂t|t−1 with p̂t|t = (1 0)′

or p̂t|t = (0 1)′ to reflect this knowledge, then this algorithm becomes the recursive

estimator used in the model with observed states with R(st)st = I. We can now outline

the sequence of events that lead to an equilibrium at time t:

1. Agents update information sets.

2. Using It and time t−1 estimates at−1(st), bt−1(st), ct−1(st). Agents form forecasts,

Êtxt+1:

Êtxt+1 = (p̂1t|t−1p11 + p̂2t|t−1p21)a(1) + (p̂1t|t−1p12 + p̂2t|t−1p22)a(2) +

p̂1t|t−1p11b(1)(a(1) + b(1)xt−1 + c(1)zt) +

p̂1t|t−1p12b(2)(a(1) + b(1)xt−1 + c(1)zt) +

p̂2t|t−1p11b(1)(a(2) + b(2)xt−1 + c(2)zt) +

p̂2t|t−1p11b(1)(a(2) + b(2)xt−1 + c(2)zt) +

((p̂1t|t−1p11 + p̂2t|t−1p21)c(1) + (p̂1t|t−1p12 + p̂2t|t−1p22)c(2))ρzt

122



3. xt is generated from the actual law of motion, (5.3), which gives us time t

endogenous variables as a function of beliefs and predetermined variables

4. Agents observe xt and add it to their information sets

5. Agents use (5.7), (5.8), (5.9), or (5.7), (5.9), and (5.10) to update their coefficient

estimates and prediction filter

6. Forward t to t+ 1 and repeat steps 1-5.

Before presenting results, it is important to note that our hidden states information

structure prevents agents from learning the rational expectations equilibrium studied

in all previous sections. This is because agents only form p̂t using t − 1 information.

Hence, if agents perfectly infer st−1 – which is the best they can do – they still hold the

following beliefs about st: p̂t|t−1 = (pst−11, pst−12)
′ < (1, 1)′. In this best case scenario,

agents’ beliefs about the VAR coefficients, b(st), will not converge to a solution of

(5.3). If, instead, agents allow their beliefs about PLM coefficients to depend on both

st and st−1 then this information structure may allow agents to learn solutions to the

following fixed point condition:

b(st, st−1) = A(st)
2∑

j=1

2∑
h=1

pst−1jpjhb(h, j)b(j, st−1) +B(st) (5.11)

These solutions, which we refer to as history-dependent equilibria, do solve (5.3).

However, they do not satisfy the following fixed point condition:

b(st) = A(st)(pst1b(1) + pst2b(2))b(st) + B(st) (5.12)

which is a necessary condition for solutions of the form, b(st). While beliefs are no

longer consistent with the rational expectations equilibria we examined up until now,
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we nonetheless find that beliefs can converge15. Hence, while beliefs never converge to

the rational expectations equilibrium, they may nonetheless be stable over time and

converge to values that may be relatively close to the original rational expectations

equilibrium.

To identify potential convergence points consistent with (5.11), we use the

Groebner basis approach from Foerster et al (2016). We then explore issues of

uniqueness and E-stability pertaining to this class of equilibria. Initial evidence

suggests that policy parameters widely associated with determinacy in the preceding

analysis may admit multiple mean-square stable history dependent equilibria that

satisfy the fixed point condition in (5.11). Moreover, these equilibria do not appear

to be stable under learning. Since this class of equilibria is arguably relevant in settings

where agents cannot observe contemporaneous variables, we intend to further explore

these issues of uniqueness and expectational stability in future work.

Figure 14 plots p̂1 over time. In our calibration p11 = .95 so that oscillation in

their beliefs between .05 and .95 implies that they’re inferring st−1 almost perfectly. To

better understand how agents so successfully infer the underlying state of the economy,

despite initial incorrect beliefs about the structure of the economy, we redefine x =

(x̃, τ)′ where x̃ = (y, π, i, b, P )′ and point out that the actual law of motion for x (after

beliefs are substituted in) may be written as:

⎛
⎜⎝x̃t
τt

⎞
⎟⎠ =

⎛
⎜⎝Ω̃(st; Φt−1)

Ωτ (st)

⎞
⎟⎠
⎛
⎜⎝x̃t−1
τt−1

⎞
⎟⎠+

⎛
⎜⎝Γ̃(st; Φt−1)

e′6

⎞
⎟⎠ zt (5.13)

where Ωτ (st) = (0 0 0 γ(st) 0 0), and e′6 = (0 0 0 0 0 1). Clearly, the evolution of τt

is only endogenous to beliefs through bt−1; the coefficients governing the evolution of

15Even for constant gain parameters beliefs appear to converge to a distribution around a fixed
point
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τ are exogenous, which suggests that agents will quickly learn the law of motion for τ

and then make accurate inferences for p̂t that rely on the marginal density:

f τ
st = f(τt|xt−1,Φt−1) (5.14)

The marginal density in (5.14) is so essential for correct inference of st−1 that we

can redefine our prediction filter using only the marginal densities for surpluses and

get results that are nearly identical to the results displayed in Figure 14). The fact

that surpluses are determined at the beginning of t (i.e. all shocks and bt−1 have

been realized by beginning of t, so that τt is fixed before agents form expectations),

begs an important question about timing: should agents be able to observe τt at

the beginning of t? That is, should It include τt? If agents observe τt at t, they may

be able to perfectly infer st. This allows for agents to learn solutions of the fixed

point problem given by (5.12) to coincide, i.e. so that agents may actually learn the

rational expectations equilibrium under study. To support this idea numerically, we

first redefine the prediction filter:

f τ
t = (f τ

1t, f
τ
2t . . . , f

τ
St)

′

F τ
t = diag(f τ

1t, f
τ
2t . . . , f

τ
St)

p̂τt|t =
F τ
t p̂

τ
t|t−1

f ′τt p̂τt|t−1
p̂τt+1|t = P ′p̂τt|t

Now agents use p̂τt|t instead of p̂t|t−1 when forming expectations at time t. As shown

in Figure 15 agents can now infer the current state very effectively, which allows them

to learn the rational expectations equilibrium under study in the previous section, as
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demonstrated by Figure 16. In Figure 16, we initialize beliefs away from the rational

expectations equilibrium16, set ψ = t−2/3 (as in LeGland and Mevel (1997)) and

estimate the model using the RCLS algorithm. We also use a projection facility that

prevents agents from accepting a mean-square-unstable PLM, but this facility is

invoked in far less than .1% of periods simulated. Compared to Figure 13, the rate of

convergence is slow under RCLS, but this may be driven the errors in the prediction

filter (Figure 15) and the large decreasing gain parameter t−2/3. We find that the

optimal policy results in the observed states learning section generalize to the hidden

Markov model of learning.

FIGURE 14. Estimating the Policy State (Lagged Information)

Blue line is p̂1,t|t−1; black line equals 1 if st = 1 and 0 otherwise

16As seen in the third subplot in the second column of Figure 16, initial beliefs about the
dependence of i on b in regime F are unintentionally close to 0. Our results do not depend on this
initial belief.
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FIGURE 15. Estimating the Policy State (Contemporaneous Information)

Blue line is p̂1,t|t; black line equals 1 if st = 1 and 0 otherwise

FIGURE 16. Coefficient Estimate Errors in Hidden Markov Model Learning

The left-hand column features the VAR-coefficients on independent variable lagged
debt in regime 1; right-hand column features the VAR-coefficients on independent
variable lagged debt in regime 2.
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Long-term Debt

In this section, we relax the assumption that ρ = 0 and introduce long-term debt

into our model. While this innovation helps to bring our model closer to reality, it also

creates a debt revaluation channel through which monetary and fiscal policy interact

to affect agents’ perceptions of bond wealth in non-Ricardian economies. This debt

revaluation works as follows: if interest rates are reduced (increased), then the price of

outstanding debt, given by P̂m, increases (decreases) and this positively (negatively)

affects agents’ perception of their own net wealth. This revaluation channel can often

lean against the wealth effects created by movements in debt service costs, a tendency

demonstrated in a host of papers including McClung (2017a).

In addition to the creation of a revaluation channel, the introduction of long-term

debt can alter the menu of monetary policies that induce a determinate equilibrium

when fiscal policy switches and is non-Ricardian (see McClung (2017b)). The fact that

maturity matters for determinacy in our simple switching DSGE model is a novel

result insofar as the average maturity of debt does not matter for determinacy in

the corresponding fixed regime model (see Jin (2013), for example). To illustrate the

impact that maturity has on determinacy consider figures 17 and 18.

The fact that maturity matters for determinacy complicates the policymaker’s

problem in at least two ways. First, the policymaker now has an incentive to identify

the steady state average maturity given by ρ when fiscal policy is non-Ricardian.

Without knowledge of ρ, the policymaker cannot properly identify the menu of

policies that induce a unique equilibrium, which may prevent them from finding the

optimized policy. Second, the policymaker now has an incentive to consider balance

sheet decisions that affect the value of ρ when solving their optimization problem. In

our model, the relevant measure of government debt is government debt held by the
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household, not purely the debt issued by the fiscal authority itself. As such, central

banks can impact the maturity structure of debt held by households by engaging

in Operation Twist-style policies in which households and the monetary authority

exchange short-term debt for long-term debt. Figure 17 illustrates a case where

monetary policymakers may realize an incentive to lengthen the maturity debt held

by households, while Figure 18 illustrates the opposite case. We hope to use ρ as a

proxy for these debt operations by adding ρ to the central bank’s choice set.

The search for an optimal ρ is further complicated by the fact that we face

uncertainty over the true value of ρ.17 We might address this uncertainty by assigning

a prior distribution to ρ, adding ρ to θ then estimating the model using Bayesian

techniques. Using simple priors over ρ we can generate a tradeoff between expected

posterior loss and the probability that a given policy implements a unique mean-square

stable and E-stable equilibrium. For one simple prior over ρ, the policy that maximizes

the probability of determinacy and E-stability (at .985) when p11 = p22 = .95,

γ(1) = 5, γ(2) = −1, involves φπ(1) = 1.2, φπ(2) = .9 and an expected posterior

loss of 4.15. If we replace φπ(1) = 1.2, φπ(2) = .9 with φπ(1) = 1.3, φπ(2) = .8,

we reduce the probability of determinacy and E-stability to .917, but we also reduce

expected posterior loss to 2.57. The addition of uncertainty over ρ therefore introduces

a tradeoff between minimizing loss and maximizing the probability of determinacy and

E-stability, a tradeoff first recognized by Evans and McGough (2007). Uncertainty over

all other fiscal policy parameters will almost surely present a similar tradeoff.

We believe that parameter uncertainty and the addition of an extra dimension

in ρ to our policy problem generates complications that are beyond the scope of the

17The average maturity of debt, equal to (1 − βρ)−1 in our model has been estimated using U.S.
data. However, because the actual maturity structure of U.S. debt does not decay geometrically, it is
not clear whether or not such estimates should be used to select ρ
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FIGURE 17. Lengthening Maturity Expands Policy Menus

Left panel ρ = 0, right panel ρ = .96. pmm = .98, pff = .95, γ(M) = .02,
γ(F ) = −.01. The determine region is dark gray; the indeterminate region is light gray;
explosive region is white

FIGURE 18. Shortening Maturity Expands Policy Menus

Left panel ρ = 0, right panel ρ = .96. pmm = .98, pff = .95, γ(M) = .02,
γ(F ) = −.01. The determine region is dark gray; the indeterminate region is light gray;
explosive region is white

present analysis. However, we hope to fully explore issues pertaining to long-term debt

in an estimated DSGE framework in the near future.

Conclusion

This paper examines the performance and robustness of simple monetary

policy rules in models with learning agents subject to: (1) permanent or occasionally

non-Ricardian fiscal policy; and/or (2) the presence of long-term government debt.
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My analysis indicates that the “global” response of the fiscal policymaker to debt

determines the optimal monetary policy response. When fiscal policy is globally

passive or globally active the optimal monetary policy rule features time-invariant

coefficients with high inflation reaction coefficients in globally passive models and

interest rate pegs in globally active models. In cases where fiscal policy features

balanced or strong switching between active and fiscal policy stances, the optimal

monetary policy rule features switching coefficients. These results are robust to

adaptive learning, including a novel hidden Markov model of learning we introduce

in the paper. For this reason, we should want to better understand how the presence

of long-term debt affects the optimal monetary policy in a model with switching fiscal

policy stances.
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CHAPTER VI

CONCLUSION

Concluding Summary

The work which comprises this dissertation demonstrates the extent to

which conventional and unconventional policy outcomes, as well as the existence,

uniqueness and expectational stability of rational expectations solutions, depend

on the expectational effects of time-varying policy. These findings suggest that

uncertainty over future fiscal policy may curb the effectiveness of monetary policy,

or otherwise constrain the actions of central bankers. Additionally, this work examines

the relationship between determinacy and expectational stability in a general class of

Markov-switching DSGE models.

Chapter 2 of my dissertation generalizes McCallum (2007) and is the first to

address the relationship between determinacy and E-stability in Markov-switching

Dynamic Stochastic General Equilibrium (MS-DSGE) models with lagged endogenous

variables. I prove that the sufficient conditions for determinacy in Cho (2016) imply

the E-stability of the forward solution in MS-DSGE models with lagged endogenous

variables when agents condition their expectations of future endogenous variables on

current endogenous and exogenous variables. The class of models studied in this paper

is very general, and nests a wide array of models that are frequently studied in modern

macroeconomics.

In Chapter 3, I study the impact of expansionary forward guidance in a simple

New Keynesian model with recurring or permanent active fiscal policy. This work

addresses and offers a potential solution to the simple New Keynesian model’s
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prediction that expansionary forward guidance can generate an implausibly large

stimulus. I find that the introduction of permanent or recurring active fiscal policy

dampens the response of output and inflation to forward guidance in the New

Keynesian model. Moreover, the presence of regime-switching policy introduces

expectational effects that cause forward guidance to be less stimulative in our regime-

switching model’s active money, passive fiscal policy regime. Finally, the introduction

of long-term debt affects the magnitude of the stimulus resulting from forward

guidance in models with active fiscal policy.

In Chapter 4, I explore determinacy and E-stability in a New Keynesian model

with switching fiscal and monetary policy. Here I present three categories of results.

First, the maturity structure of government debt matters for determinacy and

the existence of stable equilibria in our switching model, which is not true in the

analogous fixed coefficient model. I use two numerical solution techniques to show that

maturity affects both the multiplicity of stable solutions, and the existence of sunspot

equilibria. Second, determinacy generally implies E-stability when agents do not

observe contemporaneous observable variables, but not for certain arguably unrealistic

regions of the model parameter space. Third, this chapter presents conditions for

stability under infinite-horizon learning in Markov-switching DSGE models and

compares stability under infinite horizon and one-step-ahead learning. To the best of

my knowledge, this is the first paper to derive these stability conditions in a model

with switching coefficients.

Finally, Chapter 5 examines the performance and robustness of simple monetary

policy rules in models with learning agents subject to: (1) permanent or occasionally

active fiscal policy; and/or (2) the presence of long-term government debt. My analysis

indicates that the “global” response of the fiscal policymaker to debt determines the
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optimal monetary policy response. When fiscal policy is globally passive or globally

active the optimal monetary policy rule typically features time-invariant coefficients

with high inflation reaction coefficients in globally passive models and interest rate

pegs in globally active models. In cases where fiscal policy features balanced or strong

switching between active and fiscal policy stances, the optimal monetary policy rule

features switching coefficients. These results extend to models with adaptive learning,

including a hidden Markov model of learning never seen before in the literature.

Extensions and Future Work

Current work in progress examines the implications of debt maturity structure for

central bank balance sheet decisions and the performance of simple interest rate rules

subject to time-varying fiscal policy. Because the maturity structure of debt has major

implications for the menu of interest rate rules available to monetary policymakers,

this project may answer two questions. First, how might optimal simple interest rate

rules depend on both the maturity structure of debt and fiscal policy regimes? Second,

what central bank balance sheet decisions help to contain inflation and output in an

economy with regime switching fiscal policy?

Other work in progress explores issues of uniqueness and expectational stability

in a general class of Markov-switching DSGE models with lagged information

structures. This line of research is motivated by Chapter 5, which shows that the

beliefs of learning agents who do not observe contemporaneous variables, including

underlying Markov states, cannot converge to the class of rational expectations

equilibria considered in most Markov-switching DSGE analyses. Because learning

applications commonly exclude contemporaneous variables from information sets, this

result suggests that a separate class of equilibria that depend on past Markov states
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may be relevant in specific policy applications. This project attempts to learn various

properties of this class of equilibria.

Additionally, I endeavor to further study the expectational stability of rational

expectations equilibria and convergence of beliefs in hidden Markov models of adaptive

learning. Papers in the stochastic approximation literature have studied the properties

of recursive algorithms that estimate parameters of Markov-switching autoregressive

processes with hidden states. I would like to apply convergence results in that

literature to my work on learning in regime-switching DSGE models.

Future work should also extend themes in the dissertation to larger, more

realistic models with more sophisticated policy rules. While simple fiscal policy rules

help us understand the link between policy interactions and general equilibrium

outcomes, the performance of monetary policy should be studied in fuller models

that include rich debt maturity structures, capital, etc., and that allow for more

sophisticated policy rules and more than two policy states. These projects could

involve additional Bayesian model estimation of regime switching DSGE models. Such

exercises help to resolve parameter and model uncertainty, therefore offering greater

insight into the robustness of optimal policy
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APPENDIX A

DERIVATION OF FIRST E-STABILITY CONDITION

To solve for DTB(B̄), we linearize TB(B) at the forward solution and vectorize

the resulting equation. We then use the following identification rule: if vec(dTB) =

Avec(dB) then A = DTB(B), where dB = (dB(1) dB(2) · · · dB(S)) and dTB is the

linearized system of equations. Using the rule: d(F (X)−1) = −F (X)−1(dF )F (X)−1, we
obtain the following linearization of TB(B):

dTB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(Ξ(1, B)−1M(1)(
∑S

j=1 p1jdB(j))Ξ(1, B)
−1N(1))′

(Ξ(2, B)−1M(2)(
∑S

j=1 p2jdB(j))Ξ(2, B)
−1N(2))′

...

(Ξ(S,B)−1M(S)(
∑S

j=1 pSjdB(j))Ξ(S,B)
−1N(S))′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

′

= Ξ(1, B)−1M(1)p11(dB)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ξ(1, B)−1N(1) 0n · · · 0n

0n 0n · · · 0n
...

. . .

0n 0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ Ξ(1, B)−1M(1)p12(dB)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n 0n · · · 0n

Ξ(1, B)−1N(1) 0n · · · 0n
...

. . .

0n 0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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+ · · ·

+ Ξ(1, B)−1M(1)p1S(dB)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n 0n · · · 0n

0n 0n · · · 0n
...

. . .

Ξ(1, B)−1N(1) 0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ Ξ(2, B)−1M(2)p21(dB)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n Ξ(2, B)−1N(2) · · · 0n

0n 0n · · · 0n
...

. . .

0n 0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ Ξ(2, B)−1M(2)p22(dB)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n 0n · · · 0n

0n Ξ(2, B)−1N(2) · · · 0n
...

. . .

0n 0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ · · ·

+ Ξ(2, B)−1M(2)p2S(dB)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n 0n · · · 0n

0n 0n · · · 0n
...

. . .

0n Ξ(2, B)−1N(2) 0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ · · ·

+ Ξ(S,B)−1M(S)pSS(dB)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n 0n · · · 0n

0n 0n · · · 0n
...

. . .

0n 0n Ξ(S,B)−1N(S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Using the rule vec(ABC) = C ′ ⊗ Avec(B), and the identification rule, we obtain:

DTB(B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(Ξ(1, B)−1N(1))′ 0n · · · 0n

0n 0n · · · 0n
...

. . .

0n 0n · · · 0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
⊗ Ξ(1, B)−1M(1)p11

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n (Ξ(1, B)−1N(1))′ · · · 0n

0n 0n · · · 0n
...

. . .

0n 0n · · · 0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
⊗ Ξ(1, B)−1M(1)p12

+ · · ·

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n 0n · · · (Ξ(1, B)−1N(1))′

0n 0n · · · 0n
...

. . .

0n 0n · · · 0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
⊗ Ξ(1, B)−1M(1)p1S

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n 0n · · · 0n

(Ξ(2, B)−1N(2))′ 0n · · · 0n
...

. . .

0n 0n · · · 0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
⊗ Ξ(2, B)−1M(2)p21

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n 0n · · · 0n

0n (Ξ(2, B)−1N(2))′ · · · 0n
...

. . .

0n 0n · · · 0n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
⊗ Ξ(2, B)−1M(2)p22
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+ · · ·

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n 0n · · · 0n

0n 0n · · · 0n
...

. . .

0n 0n · · · (Ξ(S,B)−1N(S))′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
⊗ Ξ(S,B)−1M(S)pSS

At the forward solution, (B(1) B(2) · · ·B(S)) = (Ω∗(1) Ω∗(2) · · ·Ω∗(S)). Moreover, it is
straightforward to show that Ξ(i, B̄)−1N(i) = {I − M(i)(

∑S
j=1 pijΩ

∗(j))}−1N(i) =
{I − M(i)(Et(Ω

∗(st+1))}−1N(i) = Ω∗(i) and Ξ(i, B̄)−1M(i) = {I −
M(i)(

∑S
j=1 pijΩ

∗(j))}−1M(i) = {I − M(i)(Et(Ω
∗(st+1))}−1M(i) = F ∗(i) where Et

denotes rational expectations here. After substituting these equilibrium expressions

into the Jacobian, we obtain the following Jacobian evaluated at the forward solution:

DTB(B̄) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p11Ω
∗(1)′ ⊗ F ∗(1) p12Ω

∗(1)′ ⊗ F ∗(1) · · · p1SΩ
∗(1)′ ⊗ F ∗(1)

p21Ω
∗(2)′ ⊗ F ∗(2) p22Ω

∗(2)′ ⊗ F ∗(2) · · · p2SΩ
∗(2)′ ⊗ F ∗(2)

...
. . .

...

pS1Ω
∗(S)′ ⊗ F ∗(S) pS2Ω

∗(S)′ ⊗ F ∗(S) · · · pSSΩ
∗(S)′ ⊗ F ∗(S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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APPENDIX B

NEW KEYNESIAN MODEL DERIVATION

Throughout the dissertation we study an economy that is populated by a

large number of infinite-lived identical household-firms indexed by j ∈ [0, 1]. Each

household-firm is a monopolistically competitive producer of a unique product variety

indexed by i ∈ [0, 1], where i = j denotes the product of household-firm j. Household-

firm j engages in a decision-making process to maximize the following objective:

E0

∞∑
t=0

βt(
(Cj

t )
1−σ

1− σ
− ω(yt(j)))

subject to

∫ 1

0

pt(i)c
j
t(i)di+ Et(Rt,t+1B

j
t ) ≤ W j

t + pt(j)yt(j) + Pt(zt − τt) (B.1)

Cj
t = (

∫ 1

0

cjt(i)
1− 1

ε di)
ε

ε−1

where cj(i) is household-firm j’s consumption of good i; W j
t denotes the nominal value

of the bond portfolio that the household holds at the beginning of t and W0 is given;

Rt,T is the stochastic discount factor between time t and T ; y(j) is the quantity of

product variety j produced by the household-firm; z is a lump-sum transfer from the

government; τ is a lump-sum tax; ω is a strictly convex function; pt(j) and Pt are

the price of product variety j and the price level, respectively. To preclude arbitrage

opportunities, we assume that all asset prices are determined by stochastic discount

factors. This implies, for example, that Qt,t+1 = 1
1+it

= Et(Rt,t+1) where Qt,t+1 is

the price of a single-period government bond at time t, and it is the nominal interest
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rate on a riskless one-period bond. Furthermore, market completeness is assumed.

The sequence of flow constraints implied by (B.12) yields the following intertemporal

constraint:

∞∑
t=0

E0{R0,t

∫ 1

0

pt(i)c
j
t(i)di} ≤

∞∑
t=0

E0{Ro,t

(
pt(j)yt(j) + Pt(zt − τt)

)}+W j
t

Since each household-firm is identical and markets are complete, we assume that

each household-firm has the same initial wealth level. This induces agents to engage

in a process of perfect risk-sharing that generates identical equilibrium paths for

household consumption and so forth. As a result, we can drop the j subscript and

treat household-firm j as the representative household and firm.

The household-firm chooses (1) how to allocate its expenditures among the

product varieties; (2) how much to consume or save in each period; (3) how much to

produce in each period. We study these three decision processes in turn. In making

these decisions, the representative household-firm acts as a “price-taker” by taking the

actions of other household-firms as given (i.e. the household-firm takes Pt and Yt as

given). Additionally, the household-firm faces a price rigidity when solving its producer

problem, and we discuss this in greater detail below.

In this environment, a rational expectations equilibrium is a collection of

stochastic processes such that each household-firm chooses sequences of consumption,

asset portfolios, and prices that maximizes its objective given {Pt, Yt, zt, τt} and a
specification for fiscal and monetary policy; such that net demand of assets by private

household-firms equals the supply of government debt. By studying the aforementioned

three decision-making processes of the representative household-firm, we uncover

conditions that characterize such an equilibrium.
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We present the first of these problems–the problem of maximizing Ct subject to a

given level of expenditure–in the form of a Lagrangean:

L = (

∫ 1

0

ct(i)
1− 1

ε di)
ε

1−ε − μ(

∫ 1

0

pt(i)ct(i)di−Xt)

where Xt is the minimum level of expenditure. Differentiating with respect to ct(z)

yields the following optimality condition:

ε

ε− 1
(

∫ 1

0

ct(i)
1− 1

ε di)
ε

ε−1
−1(1− 1

ε
)ct(z)

− 1
ε − μpt(z) = 0

which can be combined with the first-order condition for any other product variety

(e.g. product variety i) to obtain:

(
ct(z)

ct(i)
)−

1
ε =

Pt(i)

Pt(z)

Now, we can substitute this into the expenditure function and solve for ct(i):

Xt =

∫ 1

0

pt(i)ct(i)di =

∫ 1

0

pt(i)(
pt(i)

pt(z)
)−εct(z)di

=
ct(z)

pt(z)−ε

∫ 1

0

pt(i)
1−εdi

Because Pt = (
∫ 1

0
pt(i)

1−εdi)1/(1−ε), this last equation implies:

ct(z) =
Xt

Pt

(
pt(z)

Pt

)−ε (B.2)

We can then substitute the analogous equation for ct(i) this into the definition for Ct:
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Ct = (

∫ 1

0

ct(i)
1− 1

ε dj)
ε

ε−1 =
Xt

P 1−ε
t

(

∫ 1

0

pt(j)
1−εdj)

−ε
1−ε =

Xt

P 1−ε
t

P−εt (B.3)

∴ PtCt = Xt =

∫ 1

0

pt(i)ct(i)di (B.4)

Equations (B.2)-(B.4) therefore imply the following demand schedule for good i:

ct(i) = Ct(
pt(i)

Pt

)−ε

Henceforth, let government purchases equal 0 in every period. This assumption delivers

the following market-clear condition:

Yt = Ct (B.5)

Accordingly, the demand schedule for product variety i may be expressed as:

yt(i) = Yt(
pt(i)

Pt

)−ε (B.6)

The optimal consumption-savings plan of the representative household must satisfy:

(1) Yt = Ct for all t; (2) the intertemporal household budget constraint (with equality)

in each period; (3) a consumption Euler-equation that can be derived through a

variational argument:

βEt

{u′(Ct+1)

u′(Ct)

Pt

Pt+1

}
=

1

1 + it
(B.7)
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Condition (B.1) along with complete risk-sharing imply 1:

∞∑
T=t

EtRt,TPtCT =
∞∑
T=t

Et

{
Rt,T [PTYT + PT (zT − τT )]

}
+Wt (B.8)

where Wt = Bm
t−1(1 + ρPm

t ) is nominal outstanding government debt at beginning of t.

Combining with the government flow constraint,

Bm
t−1(1 + ρPm

t ) = Pt(τt − zt) + Pm
t Bm

t

yields the transversality condition:

lim
t→∞

Et[Rt,TWT ] = 0

We now turn to the pricing-production decision of the household-firm. Because price

determines quantity through the demand schedule, we assume that the household-

firm chooses price when solving for the optimal production schedule. The firm is

constrained by a price friction of the form developed in Calvo (1983). Each period,

1 − θ fraction of firms are randomly allowed to reset prices, while the remaining θ

fraction continue to charge last period’s price. This means that a firm expects its price

to persist for 1/(1 − θ) periods into the future each time it resets prices. As a result,

it is natural for the household-firm to treat θ as a discount factor and choose a single

price that maximizes the discounted sum of future profits:

∞∑
k=0

θk
{
ΛtEt[Rt,t+kPyt+k(P)]− βkEt[ω(yt+k((P )))]

}

1Under full insurance, identical households with identical initial wealth levels choose identical

optimal consumption paths. Moreover,
∫ 1

0
Bj(t)dj = Bt follows from the assumption that net demand

for assets by private households equals supply of government debt
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where Λt is the marginal utility of household income at t. As in Woodford (1998a), we

treat Λt as a constant, and proceed to the first-order condition:

∞∑
k=0

θkEt

{
Λ[Rt,t+k(

P
Pt+k

)−εYt+k(1− ε)− βkω′(yt+k((P )))(−ε)P
−ε−1

P−εt+k

Yt+k

}
= 0

Multiply both sides of the first-order condition by P
Λ(1−ε) to obtain

∞∑
k=0

θkEt

{
Rt,t+k(

P
Pt+k

)−εPYt+k − βkΛ−1ω′(yt+k((P )))(
ε

ε− 1
)
P−ε
P−εt+k

Yt+k

}
= 0

∞∑
k=0

θkEt

{
[Rt,t+k(

P
Pt+k

)−εYt+k

(P − βk

Rt,t+kΛ
ω′(yt+k(P))( ε

ε− 1

)} = 0

To further simplify the first-order condition, consider the following two equations:

βku
′(Yt+k)

y′(Yt)

Pt

Pt+k

= Rt,t+k

Λt = u′(Yt)/Pt

The first equation is a necessary and sufficient condition for household optimization,

while the second equation is an expression for the marginal utility of income. We

substitute these equations into the first-order condition to yield:

∞∑
k=0

θkEt

{
[Rt,t+k(

P
Pt+k

)−εYt+k

(P − St+k,t(
ε

ε− 1

)} = 0 (B.9)

ω′(yt+k(P))
u′(Yt+k)

Pt+k = St+k,t (B.10)

St+k,t captures the household’s expected marginal costs at time t + k. A sufficient but

not necessary condition for optimality is that P = ε
ε−1St+k,t for all t + k. In this case,

the optimal price is always a mark-up of ε
ε−1 over marginal costs. Since P is the same
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for all firms who change price at t it is straightforward to show that

Pt = [θP 1−ε
t−1 + (1− θ)P ] 1

1−ε (B.11)

We are now in a position to characterize the non-policy aggregate demand (AD)

and aggregate supply (AS) blocks of the model. The non-policy AD block is given by

equations (B.5)-(B.8), and the AS block is given by equations (B.9)-(B.11). The AD

equations give us consumption demand, bond holdings and rates of return subject to

monetary and fiscal policy and a path for prices. The AS equation gives us a path for

the price index and optimal prices subject to AD. To complete the model, we discuss

simple fiscal and monetary policy arrangements. First, the monetary authority uses an

interest rate rule of the form:

it = Φ(πt, st, ε
MP
t , V1,t−1)

where πt is inflation, εm is an exogenous mean-one i.i.d. shock, v1,t−1 is the log of

V1,t−12, and st follows the 2-state Markov process described in Section 5. The fiscal

authority only issues a bond portfolio, Bm
t , with a maturity that declines at a rate

ρ ∈ [0, 1]. Under this maturity structure, the quantity of government debt issued at

t− 1 that matures at t+ j is:

Bt−1(t+ j) = Bm
t−1ρ

j

2Outside of section 3, we set V1,t−1 ∀t. The addition of V1,t−1 allows us to model forward guidance
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The evolution of the government’s bond portfolio satisfies that following budget

constraint:

Bm
t−1(1−

∑
j≥0

Qt(t+ j)ρj−1) = Pt(τt − zt) + Bm
t

∑
j≥0

Qt(t+ j)ρj

where Qt(t + j) is the price of debt that matures at time t + j and is sold at t.. To

simplify the government budget constraint, we define the price of the bond portfolio,

Pm
t , as:

Pm
t = Et

∑
j≥0

Qt(t+ j)ρj

Furthermore, we can show that bond prices follow a recursive formulation:

Pm
t = Qt(t+ 1)(1 + ρEtP

m
t+1) (B.12)

which allows us to rewrite the government budget constraint as

Bm
t−1(1 + ρPm

t ) = Pt(τt − zt) + Pm
t Bm

t

given Bm
−1. The government also implements a rule that adjusts real primary surpluses

in response to the market value of real debt. If we let St = τt − zt denote the real

primary surplus, then we may characterize this rule as:

St = S∗ + Γ(st)(
Bm

t−1
Pt−1

− bm∗) + Zft

Zft =
(
ZρF

f,t−1
)
εf (t)

where Zft is an exogenous fiscal shock process and εF is an exogenous mean-one i.i.d

fiscal policy shock.
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We add these policy equations to the non-policy AD block to completely

characterize aggregate demand. To better analyze the equilibrium dynamics of the

model, we linearize the equations of the AD and AS blocks. The linearized AD

equations appear in equations (3.3), (3.5), (3.7)-(3.14) in Chapter 3. To arrive at

equation (3.4) in section 3 which is the linearized AS curve, we linearize equations

(B.9)-(B.11):

P̂t = (1− θβ)
∞∑
k=0

(θβ)kEt{ŝt+k,t +
t+k∑

s=t+1

π̂s} (B.13)

ŝt+k,t = (ω−1 + σ−1ŷt − θω−1[P̂t −
t+k∑

s=t+1

πs]) (B.14)

π̂t =
1− θ

θ
P̂t (B.15)

where P̂t is the percentage deviation of optimal price over the price index from its

steady state value of 1, Ŝt+k,t is the percentage deviation of marginal costs over the

price index from its steady state value of 1 over the markup and ω = ω′(Y ∗)
ω′′(Y ∗)Y ∗ . To

arrive at the linearized AS curve, we substitute equation (B.14) into equation (B.13)

and quasi-difference to obtain:

P̂t =
κθ

1− θ

∞∑
k=0

(θβ)kEtŷt+k +
∞∑
k=1

Etπ̂t (B.16)

where

κ ≡ (1− θ)(1− θβ)

θ

ω + σ

σ(ω + θ)

Substituting equation (B.16) into equation (B.15) yields the linearized AS equation in

(3.4).
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APPENDIX C

FIXED REGIME FORWARD GUIDANCE EXPERIMENT

This appendix shows how to implement an anticipated interest rate peg at time

T (i.e. iT = ET iT+1 = ... = ET iT+L = ī) using the forward guidance shocks introduced

in section 2. First, it helps to rewrite the equilibrium relationships as

Yt = GYt−1 + Ψ̄ε̄t + Ψ̃ε̃t

where Yt = (ŷt, π̂t, ît, r
n
t , μt, v1,t, v2,t, . . . , vL,t, τ̂t, b̂

m
t , P̂

m
t )

′, ε̄t = (εnt , ε
μ
t , ε

f
t )
′, and ε̃t =

(εMP
t , εR1,t, . . . , ε

R
L,t)

′. It follows that the equilibrium process for î is given by an equation

of the form:

ît = GiYt−1 + Ψ̄iε̄t + Ψ̃iε̃t

Assume ε̄T = 0, for simplicity (we can relax this). Then:

iT = GiYT−1 + Ψ̃iε̃T

ET iT+1 = G2
iYT−1 + (GΨ̃)iε̃T

...

ET iT+L = GL+1
i YT−1 + (GLΨ̃)iε̃T

where Gk
i and (G

kΨ̃)i denote the rows of G
k and (GkΨ̃) that correspond to the

nominal interest rate for k = 1, ..., L+1. If we set is = ī for all s ∈ {T, T+1, . . . , T+L},
then we have a system of L+ 1 equations in L+ 1 unknowns which are the elements of
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ε̃T . The solution of this system is given by:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ψ̃i

(GΨ̃)i
...

(GLΨ̃)i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎜⎜⎜⎜⎝
ī1L+1×1 −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Gi

G2
i

...

GL+1
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
YT−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
= ε̃T

where 1L+1×1 is a L + 1 × 1 vector of ones. We implement the interest rate peg by

announcing ε̃T at T . If we also suppose that ε̄s = 0 for all s ∈ {T, T + 1, . . . , T + L}
and ε̃s = 0 for all s ∈ {T + 1, . . . , T + L} then ε̃T will also successfully implement the

interest rate ex post (i.e. iT = iT+1 = ... = iT+L = ī). If we relax this last assumption

(e.g. if ε̄s �= 0 for some some s ∈ {T + 1, ..., T + L}), then the central bank will have to
announce shocks after T to defend the peg. Regardless of whether shocks are present,

the central bank can always use these shocks to defend an L-horizon peg.
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APPENDIX D

REGIME SWITCHING FORWARD GUIDANCE EXPERIMENT

First, it helps to rewrite the equilibrium relationships as

Yt = G(st)Yt−1 + Ψ̄(st)ε̄t + Ψ̃(st)ε̃t

where Yt = (ŷt, π̂t, ît, r
n
t , μt, v1,t, v2,t, . . . , vL,t, τt, b̂

m
t , P̂

m
t )

′, ε̄t = (εnt , ε
μ
t , ε

f
t )
′, and ε̃t =

(εMP
t , εR1,t, . . . , ε

R
3,t)

′. It follows that the equilibrium process for î is given by an equation

of the form:

ît = G(st)iYt−1 + Ψ̄(st)iε̄t + Ψ̃(st)iε̃t

We now suppose that ε̄s = 0 for all s ∈ {T, T + 1, . . . , T + L} and ε̃s = 0 for all

s ∈ {T + 1, . . . , T + L}. As in Appendix A.2. we can relax this assumption and allow
the central bank to defend the peg using shocks after T . Next, we define the following

matrices:

K1
st = (pst1G(1)i + pst2G(2)i)

K2
st = (pst1p11G(1)iG(1) + pst1p12G(2)iG(1)

+ pst2p21G(1)iG(2) + pst2p22G(2)iG(2))

K3
st = (pst1p

2
11G(1)i(G(1))

2 + pst1p11p12G(2)i(G(1))
2 + pst1p12p21G(1)iG(2)G(1)

+ pst1p12p22G(2)iG(2)G(1) + pst2p21p11G(1)iG(1)G(2)

+ pst2p21p12G(2)iG(1)G(2) + pst2p22p21G(1)i(G(2))
2 + pst2p

2
22G(2)i(G(2))

2)
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where G(st)i is the row of G(st) corresponding to the nominal interest rate, i,

for st ∈ {1, 2} and pstk is the probability of transition from state st to state k for k ∈
{1, 2}. Under these assumptions:

iT = G(sT )iYT−1 + Ψ̃(sT )iε̃T

ET iT+1 = K1
sT
(G(sT )YT−1 + Ψ̃(sT )ε̃T )

ET iT+2 = K2
sT
(G(sT )YT−1 + Ψ̃(sT )ε̃T )

ET iT+3 = K3
sT
(G(sT )YT−1 + Ψ̃(sT )ε̃T )

If we set is = ī for all s ∈ {T, T + 1, T + 3}, then we have a system of 4 equations

in 4 unknowns which are the elements of ε̃T . The solution to this system is the set of

shocks that sets the interest rate peg. The solution is given by:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ψ̃(sT )i

K1
sT
Ψ̃(sT )

K2
sT
Ψ̃(sT )

K3
sT
Ψ̃(sT )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎜⎜⎜⎜⎝
ī14×1 −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

G(sT )i

K1
sT
G(sT )

K2
sT
G(sT )

K3
sT
G(sT )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
YT−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
= ε̃T

where 1L+1×1 is a 4× 1 vector of ones.

Since ET iT+1 �= iT+1 is typically true in the presence of switching coefficients and

non-absorbing states, the central bank will typically have to announce a new sequence

of shocks at T + 1 to defend the interest rate peg (i.e. the central bank issues new

monetary shocks to ensure that iT+1 = ET+1iT+2 = ET+1iT+3 = ī). Define ˜εT+1 =

(εMP
T+1, ε

R
1,T+1, ε

R
2,T+1, 0)

′. Then at time T + 1:
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iT+1 = G(sT+1)iYT + Ψ̃(sT+1)iε̃T+1

ET+1iT+2 = K1
sT+1

(G(sT+1)YT + Ψ̃(sT+1)ε̃T+1)

ET+1iT+3 = K2
sT+1

(G(sT+1)YT + Ψ̃(sT+1)ε̃T+1)

If we set is = ī for all s ∈ {T + 1, T + 3}, then we have a system of 3 equations in

3 unknowns, which we solve for εMP
T+1, ε

R
1,T+1, ε

R
2,T+1 as before. This process repeats itself

in T + 2 where we use equations for iT+2 and iT+3 to solve for the pair (ε
MP
T+2, ε

R
1,T+2)

that sets iT+2 = ET+2iT+3 = ī. Then again at T +3 we use the equilibrium equation for

iT+3 to solve for the ε
MP
T+3 that sets iT+3 = ī
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APPENDIX E

TABLES

TABLE 6. Fixed Coefficient Model Parameterization

Description Regime M
Regime F
(short-term )

Regime F
(long-term)

σ CRRA parameter 1 1 1
β Discount Factor .99 .99 .99
κ Phillips Curve Slope .1 .1 .1
φπ Feedback Inflation 1.5 0 0
φy Feedback Output 0 0 0
ρn AR(1) natural rate .5 .5 .5
ρμ AR(1) cost-push .5 .5 .5
ρ Average Debt Maturity 0 0 .93
γ Feedback Debt 2 .1 .1

TABLE 7. Regime-Switching Model Parameterizations

γ(M) γ(F ) φπ(M) φπ(F ) pMM pFF

Figure 4 20 -5 1.5 0 .95 .95
Figure 5 20 -5 1.5 .8 .95 .95
Figure 6 5 -5 1.5 .8 .95 .95

Section 4 parameterizations same as Section 3 parameterizations except for the above
values.
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APPENDIX F

LAGGED INFORMATION ONE-STEP-AHEAD E-STABILITY

We consider the class of models developed in section 2.3.1. Suppose agents

observe the current state, st, and know the elements of P , but do not know Xt. Agents

have the following perceived law of motion:

Xt = A(st) + B(st)Xt−1 + C(st)Ut

where A(i) is n × 1, B(i) is n × n and C(i) is n × m. In this section, we solve for

agents’ state-contingent expectations and derive the state-contingent T-map. For now,

we assume S = 2, but this proof can be extended to any finite Markov-Chain. If st = i

then:

Et(Xt+1) = E(Xt+1|st = i)

= pi1A(1) + pi2A(2) + (pi1B(1) + pi2B(2))Xt + (pi1C(1) + pi2C(2))ρUt

= pi1A(1) + pi2A(2) + (pi1B(1) + pi2B(2))(A(i) + B(i)Xt−1

+C(i)Ut) + (pi1C(1) + pi2C(2))ρUt

= (pi1A(1) + pi2A(2) + (pi1B(1) + pi2B(2))(A(i)))

+((pi1B(1) + pi2B(2))B(i))Xt−1 +

((pi1C(1) + pi2C(2))ρ+ (pi1B(1) + pi2B(2))C(i))Ut

Substituting Et(Xt+1) into (2.1) in Chapter 2 yields the actual data generating process:
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Xt = M(i)(pi1A(1) + pi2A(2) + (pi1B(1) + pi2B(2))(A(i)))

+ (M(i)((pi1B(1) + pi2B(2))B(i)) +N(i))Xt−1

+ (M(i)((pi1C(1) + pi2C(2))ρ+ (pi1B(1) + pi2B(2))C(i)) +Q(i))Ut

This delivers the state-contingent T-map:

T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(1)

A(2)

B(1)

B(2)

C(1)

C(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M(1)((p11 + p11B(1) + p12B(2))A(1) + p12A(2))

M(2)((p22 + p21B(1) + p22B(2))A(2) + p21A(1))

M(1)(p11B(1)
2 + p12B(2)B(1)) +N(1)

M(2)(p22B(2)
2 + p21B(1)B(2)) +N(2)

M(1)((p11C(1)ρ+ (p11B(1) + p12B(2))C(1)) + p12C(2))ρ+Q(1)

M(2)((p22C(2)ρ+ (p21B(1) + p22B(2))C(2)) + p21C(1))ρ+Q(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The block of the T-map associated to B = (B(1)′ B(2)′)′ decouples from the other

blocks. This block is given by:

TB(B) =

⎛
⎜⎝M(1)(p11B(1)

2 + p12B(2)B(1)) +N(1)

M(2)(p22B(2)
2 + p21B(1)B(2)) +N(2)

⎞
⎟⎠ =

⎛
⎜⎝T 1

B(B)

T 2
B(B)

⎞
⎟⎠

To assess E-stability, we begin by stabilizing the following differential equation:

dB

dt
= TB(B)− B
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Let DTB(B̄) denote the Jacobian of Tb evaluated at the MSV solution, B̄ = (Ω∗(1)′

Ω∗(2)′)′. Since TB is continuously differentiable, Proposition 5.6 in Evans and

Honkapohja (2001) tells us that B̄ is asymptotically stable if the eigenvalues of

DTB(B̄) have real parts less than one. Alternatively, we can analyze the stability of

(3) by analyzing the stability of the following differential equation:

dB̃

dt
= TB̃(B̃)− B̃

where B̃ = (B(1) B(2)) and

TB̃(B̃) =

(
T 1
B(B) T 2

B(B)

)

Now let DTB̃(Ω̄
∗) denote the Jacobian of Tb evaluated at the MSV solution, Ω̄∗ =

(Ω∗(1) Ω∗(2)). Since TB̃ is continuously differentiable, Ω̄∗ is asymptotically stable if

the eigenvalues of DTB̃(Ω̄
∗) have real parts less than one. Finally, since DTB(B̄) is

similar to DTB̃(Ω̄
∗), the asymptotic stability of the ¯̃B in (4) implies the asymptotic

stability of B̄ in (3). To solve for DTB̃(Ω̄
∗), we linearize TB̃(B̃) at the REE and

vectorize the resulting equation. We then use the following identification rule: if

vec(dTB̃) = Avec(dB̃) then A = DTB̃(Ω̄
∗), where dB̃ = (dB(1) dB(2)) and dTB̃ is

the linearized system of equations.
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dTB̃ =

⎛
⎜⎝(p11M(1)((dB(1))B(1) + B(1)dB(1)))′

(p22M(2)((dB(2))B(2) + B(2)dB(2)))′

⎞
⎟⎠

+

⎛
⎜⎝(p12M(1)(B(2)(dB(1)) + (dB(2))B(1)))′

(p21M(2)(B(1)(dB(2)) + (dB(1))B(2)))′

⎞
⎟⎠
′

= (p11M(1)B(1) + p12M(1)B(2))dB̃

⎛
⎜⎝In 0n

0n 0n

⎞
⎟⎠+ p11M(1)dB̃

⎛
⎜⎝B(1) 0n

0n 0n

⎞
⎟⎠

+ p12M(1)dB̃

⎛
⎜⎝ 0n 0n

B(1) 0n

⎞
⎟⎠+ (p22M(2)B(2) + p21M(2)B(1))dB̃

⎛
⎜⎝0n 0n

0n In

⎞
⎟⎠

+ p22M(2)dB̃

⎛
⎜⎝0n 0n

0n B(2)

⎞
⎟⎠+ p21M(2)dB̃

⎛
⎜⎝0n B(2)

0n 0n

⎞
⎟⎠

Using the rule vec(ABC) = C ′ ⊗ Avec(B), and the identification rule, we obtain:

DTB̃(B̃) =

⎛
⎜⎝In 0n

0n 0n

⎞
⎟⎠⊗ (p11M(1)B(1) + p12M(1)B(2))

+

⎛
⎜⎝B(1)′ 0n

0n 0n

⎞
⎟⎠⊗ (p11M(1)) +

⎛
⎜⎝0n B(1)′

0n 0n

⎞
⎟⎠⊗ (p12M(1))

+

⎛
⎜⎝0n 0n

0n In

⎞
⎟⎠⊗ (p22M(2)B(2) + p21M(2)B(1))

+

⎛
⎜⎝0n 0n

0n B(2)′

⎞
⎟⎠⊗ (p22M(2)) +

⎛
⎜⎝ 0n 0n

B(2)′ 0n

⎞
⎟⎠⊗ (p21M(2))
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At the REE, (B(1) B(2)) = (Ω∗(1) Ω∗(2)) = Ω̄∗. E-stability requires the real parts of

DTB̃(Ω̄
∗) to be less than one. We now turn to the equation for A = (A(1)′ A(2)′)′:

TA(A) =

⎛
⎜⎝M(1)(p11 + p11B(1) + p12B(2)) p12M(1)

p21M(1) M(2)(p22 + p21B(1) + p22B(2))

⎞
⎟⎠A

Using the same methods as before, we obtain the following Jacobian evaluated at the

REE where Ā = (0′n×1 0
′
n×1)

′ :

DTA(Ā, B̄) =

⎛
⎜⎝M(1)(p11Ω

∗(1) + p12Ω
∗(2)) 0n

0n M(2)(p21Ω
∗(1) + p22Ω

∗(2))

⎞
⎟⎠

+

⎛
⎜⎝p11M(1) p12M(1)

p21M(2) p22M(2)

⎞
⎟⎠

E-stability requires the real parts of ΨM to be less than one. Finally, we consider

the equation for C = (C(1)′ C(2)′)′:

TC(C) =

⎛
⎜⎝p11M(1)B(1) + p12M(1)B(2) 0n

0n p21M(2)B(1) + p22M(2)B(2)

⎞
⎟⎠C

+

⎛
⎜⎝p11M(1) p12M(1)

p21M(2) p22M(2)

⎞
⎟⎠Cρ
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Using the same methods as before, we obtain the following Jacobian evaluated at the

REE where C̄ = (Γ(1)′,Γ(2)′)′:

DTC(B̄, C̄) = ρ⊗

⎛
⎜⎝p11M(1) p12M(1)

p21M(1) p22M(2)

⎞
⎟⎠

+ Im ⊗

⎛
⎜⎝M(1)(p11Ω

∗(1) + p12Ω
∗(2)) 0n

0n M(2)(p21Ω
∗(1) + p22Ω

∗(2))

⎞
⎟⎠

The REE solution Ā, B̄, C̄ is E-stable if:

i. all the eigenvalues of DTA(Ā, B̄) have real parts less than 1,

ii. all the eigenvalues of DTB̃(Ω̄
∗) have real parts less than 1, and,

iii. all the eigenvalues of DTC(B̄, C̄) have real parts less than 1

The solution is not E-stable if any of these three conditions fail with eigenvalues

strictly greater than one.
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APPENDIX G

INFINITE HORIZON STABILITY CONDITIONS DERIVATION

We derive the infinite horizon stability conditions in section (4). As mentioned in

a footnote in that section, we assume that all exogenous driving processes are mean-

zero i.i.d and that ρ = 0 in our derivation. We do this for expositional purposes; we

can relax these assumptions and obtain stability conditions in the more general model.

It should also be noted that all matrix infinite series of the form
∑

t≥0A
t converge to

(I − A)−1 if and only if the spectral radius of A is less than one. In the model explored

in section 4, this condition is met for nearly all of the parameterizations we consider.

When shocks are i.i.d agents employ the following perceived laws of motion for x ∈
{y, π, i} and b:

bt = a(st) + b(st)bt−1

xt = cx(st) + dx(st)bt−1

We also define the following matrix for each z ∈ {a, b, cx, dx}:

ẑ = diag(z(1), z(2), ..., z(S))

where S is the number of Markov states. In much of what follows, we let Fi denote

the ith row of the matrix F . Moreover, P is the transition probability matrix and 1s

denotes an S by 1 vector of ones. Let Et denote expectations formed using agents’
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subjective beliefs. For T ≥ t, the following is true:

Etbt+1 = (
T−t∑
k=0

P T−t+1−kâ(P b̂)k)i1s + ((P b̂)T−t+1)i1sEtbt

Etxt+1 = P T−t+1ĉx

+ (
T−t∑
k=0

P T−t+1−kâ(P b̂)k−1P d̂x)i1s + ((P b̂)T−t)P d̂x)i1sEtbt

To proceed, we need to find an expression for AT =
∑T−t

k=0 P
−kâ(P b̂)k. We accomplish

this by first vectorizing AT :

vec(
T−t∑
k=0

P−kâ(P b̂)k) =
T−t∑
k=0

vec(P−kâ(P b̂)k)

=
T−t∑
k=0

(((P b̂)k)′ ⊗ P−k)vec(â)

=
T−t∑
k=0

((P b̂)′ ⊗ P−1)kvec(â)

= (I − ((P b̂)′ ⊗ P−1)T−t+1)(I − (P b̂)′ ⊗ P−1)−1vec(â)

= vec(AT )

Returning to the original equation:

Etbt+1 = (P T−t+1AT )i1s + ((P b̂)T−t+1)i1sEtbt

This implies:

∑
T≥t

γT−tEtbt+1 = γ−1(
∑
T≥t

γT−t+1EtbT+1)

= γ−1(
∑
T≥t

((γP )T−t+1AT )i1S + ((γP b̂)T−t+1)i1S)Etbt
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We now need to calculate:

Ā =
∑
T≥t

(γP )T−t+1AT )

=⇒ vecĀ =
∑
T≥t

I ⊗ (γP )T−t+1vec(AT )

vec(Ā) = ((I ⊗ γP )(I − I ⊗ γP )−1

− ((P b̂)′ ⊗ γI)(I − (P b̂)′ ⊗ γI)−1)(I − (P b̂)′ ⊗ P−1)−1vecâ

Therefore: ∑
T≥t

γT−tEtbT+1 = (γ−1Ā)i1S + γ−1((I − γP b̂)−1P b̂)i1SEtbt

for all reduced form discount factors in the infinite horizon model. Similarly, we can

show:

∑
T≥t

γT−tEtxT+1 = ((I − Pγ)−1P ĉx)i1s + ((γP )−1ÃP d̂x)i1S + ((I − γP b̂)−1P d̂x)i1SEtbt

where

Ã =
∑
T≥t

(γP )T−t+1ÃT )

ÃT =
T−t−1∑
k=0

P−kâ(P b̂)k

In our model, γ ∈ {β, αβ}. We can write the model as:

Yt =
∑
γ

Mγ(st)(
∑
T≥t

γT−tEtYT+1) + N̂(st)Yt−1 + εt
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where Y = (y, π, i, b)′ and ε is an m by 1 vector of i.i.d shocks. Next, we define A =

(cy(1) cπ(1) ci(1) a(1) cy(2) cπ(2) ci(2) a(2))′ and B = (dy(1) dy(2) dπ(1) dπ(2) di(1)

di(2) b(1) b(2))′. If Etbt = a(st) + b(st)bt−1, it follows that:

T (A) =
∑
γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mγ(1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

((I − Pγ)−1P ĉy)11s + ((γP )−1ÃP d̂y)11S

((I − Pγ)−1P ĉπ)11s + ((γP )−1ÃP d̂π)11S

((I − Pγ)−1P ĉi)11s + ((γP )−1ÃP d̂i)11S

(γ−1Ā)11S + ((I − γP b̂)−1P b̂)11Sa(1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Mγ(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

((I − Pγ)−1P ĉy)21s + ((γP )−1ÃP d̂y)21S

((I − Pγ)−1P ĉπ)21s + ((γP )−1ÃP d̂π)21S

((I − Pγ)−1P ĉi)21s + ((γP )−1ÃP d̂i)21S

(γ−1Ā)21S + ((I − γP b̂)−1P b̂)21Sa(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
∑
γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mγ(1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

((I − γP b̂)−1P d̂y)11Sa(1)

((I − γP b̂)−1P d̂π)11Sa(1)

((I − γP b̂)−1P d̂i)11Sa(1)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Mγ(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

((I − γP b̂)−1P d̂y)21Sa(2)

((I − γP b̂)−1P d̂π)21Sa(2)

((I − γP b̂)−1P d̂i)21Sa(2)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

To simplify this expression in order to obtain E-stability conditions, consider the

following manipulation that works, for some correctly defined matrix, for any ẑ ∈
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{â, b̂, ĉx} where x ∈ {y, π, i}:

((I − Pγ)−1P ĉy)i1s = ((I − Pγ)−1P (cy(1), cy(2))′)i

= ((I − Pγ)−1Pξ((1, 1), (5, 2)))iA

where ξ((h, j), (l,m)) is a 2 by 8 matrix with ones in the (h, j) and (l,m) entries and

zeros elsewhere. Similarly, we define ξ(h, j) as a 2 by 8 matrix with one in its (4, 1)th

entry and zeros elsewhere. Also note that vec(Ā) assumes the following form:

vec(Ā) = Qvec(â)

=⇒ Ā =

⎛
⎜⎝Q11a(1) +Q14a(2) Q31a(1) +Q34a(2)

Q21a(1) +Q24a(2) Q41a(1) +Q44a(2)

⎞
⎟⎠

= Q1ξ((4, 1), (8, 2))A

(
1 0

)
) +Q2ξ((4, 1), (8, 2))A

(
0 1

)
)

Similarly:

Ã = Q̃1ξ((4, 1), (8, 2))A

(
1 0

)
) + Q̃2ξ((4, 1), (8, 2))A

(
0 1

)
)
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For appropriately defined matrices Q1 and Q2, which can be recovered from our

calculations above. We can also simplify ((γP )−1ĀP d̂x)i1S for x ∈ {y, i, b} as follows:

((γP )−1ĀP d̂x)i1S = ((γP )−1)iĀP d̂x1S

= ((γP )−1)i(Q1ξ((4, 1), (8, 2))A

(
1 0

)

+ Q2ξ((4, 1), (8, 2))A

(
0 1

)
)P d̂x1S

= (

(
1 0

)
P d̂x1S)((γP )

−1)iQ1ξ((4, 1), (8, 2))A

+ (

(
0 1

)
P d̂x1S)((γP )

−1)iQ2ξ((4, 1), (8, 2))A

Since

(
1 0

)
P d̂y1S and

(
0 1

)
P d̂y1S are scalars. These simplications allow us to

express T (A) = DT (A,B)A. Evaluated at the rational expectations equilibrium, where

ξi(k) is a 1 by 8 matrix of zeros with 1 in the (k, 1) entry:

DTA(0,Ω
∗) =

∑
γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mγ(1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

((I − Pγ)−1P )1ξ((1, 1), (5, 2))

((I − Pγ)−1P )1ξ((2, 1), (6, 2))

((I − Pγ)−1P )1ξ((3, 1), (7, 2))+

((I − γP b̂)−1P b̂1s)1ξ1(4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Mγ(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

((I − Pγ)−1P )2ξ((1, 1), (5, 2))

((I − Pγ)−1P )2ξ((2, 1), (6, 2))

((I − Pγ)−1P )2ξ((3, 1), (7, 2))

((I − γP b̂)−1P b̂1s)2ξ1(8)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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+
∑
γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mγ(1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

((I − γP b̂)−1P d̂y1s)1ξ1(4)

((I − γP b̂)−1P d̂π1s)1ξ1(4)

((I − γP b̂)−1P d̂i1s)1ξ1(4)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Mγ(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

((I − γP b̂)−1P d̂y1s)2ξ1(8)

((I − γP b̂)−1P d̂π1s)2ξ1(8)

((I − γP b̂)−1P d̂i1s)2ξ1(8)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
∑
γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mγ(1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1 0

)
P d̂y1s((γP )

−1)1Q̃1ξ((4, 1), (8, 2))(
1 0

)
P d̂π1s((γP )

−1)1Q̃1ξ((4, 1), (8, 2))(
1 0

)
P d̂i1s((γP )

−1)1Q̃1ξ((4, 1), (8, 2))(
1 0

)
1s(γ)

−1Q1ξ((4, 1), (8, 2))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Mγ(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1 0

)
P d̂y1s((γP )

−1)2Q̃1ξ((4, 1), (8, 2))+(
1 0

)
P d̂π1s((γP )

−1)2Q̃1ξ((4, 1), (8, 2))(
1 0

)
P d̂i1s((γP )

−1)2Q̃1ξ((4, 1), (8, 2))(
1 0

)
1s(γ)

−1Q1ξ((4, 1), (8, 2))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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+
∑
γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mγ(1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
0 1

)
P d̂y1s((γP )

−1)1Q̃2ξ((4, 1), (8, 2))(
0 1

)
P d̂π1s((γP )

−1)1Q̃2ξ((4, 1), (8, 2))(
0 1

)
P d̂i1s((γP )

−1)1Q̃2ξ((4, 1), (8, 2))(
0 1

)
1s(γ)

−1Q2ξ((4, 1), (8, 2))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Mγ(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
0 1

)
P d̂y1s((γP )

−1)2Q̃2ξ((4, 1), (8, 2))(
0 1

)
P d̂π1s((γP )

−1)2Q̃2ξ((4, 1), (8, 2))(
0 1

)
P d̂i1s((γP )

−1)2Q̃2ξ((4, 1), (8, 2))(
0 1

)
1s(γ)

−1Q2ξ((4, 1), (8, 2))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Again, the d̂z are evaluated at the rational equations equilibrium coefficients. Since the

ODE associated to B decouples from the system, it can be studied in isolation. Let

γ = 1 correspond to a discount factor of αβ and γ = 2 correspond to a discount factor

of β. We make use of the model structure to simplify our analysis as well:

M1(st) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Myy
1 (i) Mπy

1 (i) 0 0

Myπ
1 (i) Mππ

1 (i) 0 0

Myi
1 (i) Mπi

1 (i) 0 0

Myb
1 (i) Mπb

1 (i) 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

M2(st) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Myy
2 (i) Mπy

2 (i) M iy
2 (i) 0

Myπ
2 (i) Mππ

2 (i) M iπ
2 (i) 0

Myi
2 (i) Mπi

2 (i) M iπ
2 (i) 0

Myb
2 (i) Mπb

2 (i) M iπ
2 (i) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Using elements from the above matrices, we form the following:

Mγ
z (1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mγ
zy(1) 0

0 0

Mγ
zπ(1) 0

0 0

Mγ
zi(1) 0

0 0

Mγ
zb(1) 0

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Mγ
z (2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 Mγ
zy(2)

0 0

0 Mγ
zπ(2)

0 0

0 Mγ
zi(2)

0 0

0 Mγ
zb(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for z ∈ {π, y, i, b}. The T-map is then given by:1

T (B) =
∑
γ

∑
i∈{1,...,S}

∑
z

Mγ
z (i)(I − γP b̂)−1P d̂z1SN(i)B

1We exclude N̂ terms because they will not affect the stability analysis and because they clutter
the proof
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where N(1) = (0 0 0 0 0 0 1 0) and N(2) = (0 0 0 0 0 0 0 1). Define 2 by 8 matrices

N(z, i) such that N(z, 1)B = (d̂z(1), 0)
′ and N(z, 2)B = (0, d̂z(2))

′ for z ∈ {y, π, i, b}.
This implies:

P d̂z = P (N(z, 1)B

(
1 0

)
+N(z, 2)B

(
0 1

)
)

Using this, we can derive the E-stability matrix associated to B:

DTB(B) = ∑
γ

∑
i∈{1,...,S}

∑
z

(((1, 0)δ(γ, i, z))′ ⊗Mγ
z (i)(I − γb̂)−1PN(b, 1)

+ ((0, 1)δ(γ, i, z))′ ⊗Mγ
z (i)(I − γb̂)−1PN(b, 2)

+ ((1, 0)1sN(i)B)
′ ⊗Mγ

z (i)(I − γb̂)−1PN(z, 1)

+ ((0, 1)1sN(i)B)
′ ⊗Mγ

z (i)(I − γb̂)−1PN(z, 2)

+ I ⊗Mγ
z (i)(I − γP b̂)−1P d̂z1SN(i))

where δ(γ, i, z) = (I − γb̂)−1P d̂z1sN(i)B. The necessary and sufficient conditions

for E-stability are that all the eigenvalues of DTB and DTA have real parts less than

one where both matrices are evaluated at the rational expectations equilibrium.
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APPENDIX H

AN AND SCHORFHEIDE (2007) MODEL DERIVATION

We present a simple model that is inspired by An and Schorfheide (2007). As

in standard in the New Keynesian literature, the model consists of households, a

competitive final goods producing firm, monopolistically competitive intermediate

firms, a fiscal authority and a monetary authority. We briefly describe the optimization

problems facing agents in this economy, then we collect the equilibrium conditions

which are log-linearized and presented in section 2.

Households maximize a lifetime utility functions that depends positively on the

level of consumption, Ct and negatively on labor supply, Nt. Additionally, households

are subjected to a preference shock, Zt that directly impacts the contribution of time t

utility to overall lifetime utility. Formally:

max
{Ct,Nt,Wt}

Eo

∑
t≥0

(
C1−σ

t − 1

1− σ
− χNt

)
Zt

subject to

PtCt + Et(Rt,t+1W
j
t+1) ≤ W j

t + PtωtNt − Ptτt

and a tranversality condition of the form:

lim
t→∞

Et[Rt,TWT ] = 0
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where Wt is wealth at time t, ω is the competitive real wage paid to labor, τ is a lump-

sum tax, C is consumption, and Rt,t+1 is a stochastic discount factor that equals

(Ct+1/Ct)
−σ in our model with complete markets. From the first order conditions

for Wt+1, Ct and Wt we get the familiar necessary intertemporal and intratemporal

conditions for the household optimization problem:

1 = βEt

{
Ct+1

Ct

−σZt+1

Zt

(1 + it)

πt+1

}
(H.1)

ωt = χCσ
t

The perfectly competitive firm has technology described by:

Yt =

(∫ 1

0

Yt(j)
1−ηtdj

) 1
1−ηt

where inputs, Yt(j), are goods produced by each intermediate firm j ∈ [0, 1], and ηt is a

shock to markups. The perfectly competitive firm maximizes profits given by:

ΠFIN
t = PtYt −

∫ 1

0

Pt(j)Yt(j)dj

This implies the following demand schedule for each intermediate producer’s good,

Yt(j):

Yt(j) =

(
Pt(j)

Pt

)−1/ηt
Yt

Pt(j) =

(∫ 1

0

Pt(j)
ηt−1
ηt

) ηt
ηt−1

172



Intermediate firms are monopolistically competitive and utilize identical technologies

that assume the form:

Yt(j) = Nt(j)

To introduce nominal rigidities, we assume that firms face the following adjustment

costs:

ACt(j) =
φ

2

(
Pt(j)

Pt−1(j)
− π

)2

Yt(j)

Firms maximize the present value of firm profits taken real wages, ωt+s as given.

Formally, they choose labor inputs and prices to maximize the following:

ΠINT = E0

{∑
t≥0

βtR0,t

(
Pt(j)

Pt

Yt(j)− ωt(j)Nt(j)− ACt(j)

)}

Substituting the product demand schedule into the profits equation, then optimizing

with respect to Pt+s(j) and substituting for ωt+s = cσt and Rt|0 = (Ct/C0)
−σ yields the

following optimality condition:

(
1

ηt
− 1

)
=

Cσ
t

ηt
− φ

2

(
2(πt − π)− (πt − π)2

ηt

)

+βφ

((
Ct+1

Ct

)σ

(πt+1 − π) πt+1
Yt+1

Yt

)
(H.2)

The fiscal authority only issues a bond portfolio, Bm
t , with a maturity that

declines at a rate ρ ∈ [0, 1]. Under this maturity structure, the quantity of government

debt issued at t− 1 that matures at t+ j is:

Bt−1(t+ j) = Bm
t−1ρ

j
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The evolution of the government’s bond portfolio satisfies that following budget

constraint:

Bm
t−1(1−

∑
j≥0

Qt(t+ j)ρj) + PtGt = Ptτt +Bm
t

∑
j≥0

Qt(t+ j)ρj−1

where Qt(t + j) is the price of debt that matures at time t + j and is sold at t. To

simplify the government budget constraint, we define the price of the bond portfolio,

Pm
t , as:

Pm
t = Et

∑
j≥0

Qt(t+ j)ρj−1

which allows us to rewrite the government budget constraint as

Bm
t−1(1 + ρPm

t ) + PtGt = Ptτt + Pm
t Bm

t (H.3)

Furthermore, we can show that bond prices follow a recursive formulation:

Pm
t = Qt(t+ 1)(1 + ρEtP

m
t+1) (H.4)

given Bm
−1. The government also implements a rule that adjusts real primary surpluses

in response to the market value of real debt. In equilibrium, households hold all

government debt which requires that the following condition hold ∀t:

Wt = Bm
t−1(1 + ρPm

t )

The processes for τt and Gt are specified. Finally, monetary policy follows the following

rule:

Rt = Rρi
t−1

(
R∗
( πt
π∗

)φπ(st)
(
Yt

Y ∗t

)φy(st)
)1−ρi

(H.5)
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where Rt = 1 + it, R
∗ = β−1, Y ∗t is potential output defined as the level of output

that obtains without nominal rigidities and with constant markups. The log-linearized

equilibrium conditions in Chapter 5, are simply log-linearized versions of equations

(H.1), (H.2), (H.3)-(H.5). μt is a composite of ηt from (H.2), and all other shocks and

the fiscal policy rule are described in Chapter 5.
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APPENDIX I

PRIOR AND POSTERIOR DISTRIBUTIONS

TABLE 8. Prior and Posterior Distribution Statistics

Name Prior Density Prior Param (1) Prior Param (2)
Posterior
Mean

σ Gamma 2.00 0.50 2.36
κ Uniform 0.00 1.00 .91
φπ Gamma 1.50 0.25 2.16
φy Gamma 0.50 0.25 .56
ρi Uniform 0.00 1.00 .71
ρg Uniform 0.00 1.00 .98
ρz Uniform 0.00 1.00 .93
100σm InvGamma 0.40 4.00 .2
100σg InvGamma 1.00 4.00 .75
100σz InvGamma 0.50 4.00 .2

We estimate the An and Schorfheide (2007) model using U.S. data, Q1:1983 to
Q3:2007. Param (1) and Param (2) are the lower and upper bounds for the uniform
distributions and the mean and standard deviation for the Gamma and Inverse
Gamma distributions
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APPENDIX J

MISCELLANEOUS FIGURES

FIGURE 19. Determinacy and E-Stability (Parameterization 1)

This figures show determinacy and E-stability regions in Regime F when φπ(M) = 1.5
and γ̃(M) = γ(M)(1 − β) = .05. φπ(F ) is on the vertical axis and γ̃(F ) is on
the horizontal axis. The top right and bottom left quadrants are consistent with
determinacy in the fixed regime model. Green regions are determinate and E-stable,
yellow regions are indeterminate and E-stable, and black regions of indeterminate and
E-unstable
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FIGURE 20. Determinacy and E-Stability (Parameterization 2)

This figures show determinacy and E-stability regions in Regime F when φπ(F ) = 0
and γ̃(F ) = γ(M)(1 − β) = −.05. φπ(M) is on the vertical axis and γ̃(M) is on
the horizontal axis. The top right and bottom left quadrants are consistent with
determinacy in the fixed regime model. Green regions are determinate and E-stable,
yellow regions are indeterminate and E-stable, and black regions of indeterminate and
E-unstable
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FIGURE 21. Determinacy and E-Stability (Parameterization 2)

This figures show determinacy and E-stability regions in Regime F when φπ(M) = 1.5
and φπ(M) = 0. γ̃(M) = γ(M)(1 − β) is on the horizontal axis and γ̃(F ) is on the
vertical axis. The bottom right and top left quadrants are consistent with determinacy
in the fixed regime model. Green regions are determinate and E-stable, yellow regions
are indeterminate and E-stable, and black regions of indeterminate and E-unstable
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