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DISSERTATION ABSTRACT

Nathan R Biemiller

Doctor of Philosophy

Department of Economics

June 2019

Title: Essays in Behavioral Economics

I use applied and experimental methods to empirically investigate individual

decisions in a number of settings where behavior may be more consistent with

models from behavioral economic theory than from traditional economic theory.

These situations provide us with insights about real-world situations in which

behavioral models may be more applicable than traditional models. In Chapter

II, I find that losing candidates in U.S. House of Representatives elections are

more likely to run in the subsequent election if they outperform their expectations

relative to opponents. Chapter III estimates the effect of opening recreational

marijuana markets on domestic violence; I find that opening markets increases

reported domestic violence incidents in treated states. Finally, in Chapter IV,

which is co-authored with Michael Kuhn and Jeffrey Naecker, we construct an

experiment to test individual commitment demand in a group framework.

This dissertation includes previously unpublished co-authored material.
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CHAPTER I

INTRODUCTION

Behavioral economics, generally, is concerned with predictable deviations

from traditional economic theory. In this dissertation, I investigate a number of

situations in which individuals make decisions consistent with predictions from

models in the behavioral economics literature.

In Chapter II, I examine how past experiences influence present decisions. I

model U.S. House of Representatives candidates expectations of their vote share

outcome based on their mean poll share. Assuming that these expectations are

unbiased, candidates receive a signal of unexpected value when election results are

realized. I find that candidates are unresponsive to the strength of the signal, but

that candidates who lose their elections exhibit a discontinuity in the probability of

running in the subsequent election around the zero-signal value. Losing candidates

either believe that their probability of winning the next election is larger following

a positive signal, or these candidates receive some amount of utility from the

positive signal and account for that utility in future decisions.

In Chapter III, I find that reported domestic violence incidents increase when

recreational marijuana markets open in Colorado, Washington, and Oregon. Since

2014, ten states and the District of Columbia have legalized the recreational use

and sales of marijuana. Past literature makes contradictory predictions about

the expansion of marijuana use on crime. I use a difference-in-differences model

and high-frequency crime data to investigate the causal effect the opening of the

recreational marijuana market has on domestic violence in Colorado, Washington,

and Oregon, which were the first three states to begin recreational sales. I find
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that the beginning of recreational sales leads to a 2.9-6.2% increase in domestic

violence incidents in these states; there is no effect of legalization, which occurs

prior to the start of sales. The least severe category–intimidation, which does not

involve physical harm to the victim–increases by the largest percentage. The closest

counterfactual crime, non-intimate-partner in-home assaults, remains unchanged

when recreational sales begin. While there are multiple mechanisms through which

this effect could act, additional evidence is most consistent with an increase in

within-household conflict.

In Chapter IV, I investigate group commitment demand in an unpublished

work co-authored with Michael Kuhn and Jeffrey Naecker. When individuals are

aware that their future preferences differ from their current preferences, they may

seek commitment devices to ensure that their future selves take the proper action.

There is evidence in the literature of real-world situations in which individuals

seek commitment, from decisions about smoking to choices about retirement

savings contributions. In this paper, we investigate commitment in group settings

by conducting an experiment in which subjects perform a task, indicate that

they would like to perform the same task again in the future, and then have the

opportunity to commit to that future task by decreasing the future payout in the

event that the task does not get completed. We randomly assign participants into

either an individual commitment choice or one of a number of group commitment

frameworks. We find that commitment demand is much larger in the individual

treatment (42% of the budget) than in any group treatment (10% of the budget),

and we hypothesize that this may be due to individuals perceiving higher follow-

through rates in group treatment settings.
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CHAPTER II

THE POWER OF THE POLLS: THE ROLE OF EXPECTATIONS IN

INTERPRETING ELECTION RESULTS

Introduction

Consider two political candidates, Alice and Bob, who run for the same office

in different districts in the same election. Both candidates are underdogs in polls

conducted before the election. Specifically, suppose that Alice polls at 40% of the

projected vote share, while her main opponent sits at 60%. Bob expects to receive

a higher portion of the vote than Alice: he polls at 44%, while his main opponent

sits at 56%. Prior to the election, these candidates have different expectations

about their relative performance. Alice should expect to lose her election by 20

percentage points, while Bob should expect to lose his election by 12 percentage

points.

On election night, the local television stations broadcast the results:

unsurprisingly, both Alice and Bob lose their elections. Each candidate’s main

opponent receives exactly 58% of the total vote share in the respective districts.

Alice slightly outperforms her expectations relative to her opponent by receiving

42% of the vote share, while Bob’s 42% of the vote share comes in just below his

expectations about his relative performance.

Assuming that the election results provide a true measure of candidate

quality, these two candidates are identical, as they each received 42% of the vote.

As described, they differ in just one important way: Alice received a positive signal

about her performance relative to her expectations of the outcome, while Bob
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received a negative signal about his performance relative to expectations. In the

future, each of these candidates must decide whether to run for this office again in

the next election cycle. This paper attempts to determine whether the valence of

this signal received by a candidate affects the probability that the candidate runs

for the same office in the subsequent election. This is closely related to research on

biased information processing and updating.

Eil and Rao (2011)–henceforth referred to as “ER”–conduct a lab experiment

to test the following hypothesis about individual updating behavior: when faced

with signals regarding attributes about themselves, subjects will respond more

to favorable news than to unfavorable news. This type of updating behavior is

intuitive. In many facets of life, individuals receive both positive and negative

signals about themselves, and it may be the case that individuals process and

update differentially based on whether the signal received represents “good news”

or “bad news.” A compliment from a stranger could cause an individual to think,

“That person doesn’t even know me, but she thinks highly of me. It’s very likely

that I truly possess this positive quality.” Conversely, following an insult, an

individual might think, “That person doesn’t even know me, and she made this

horrible comment. Why would I believe that what she said has any merit at all?”

ER find that when facing signals about their own attributes, individuals

differentially update their beliefs about these attributes depending on the valence of

the signal received. In tasks related to individuals’ attractiveness and intelligence,

individuals who received positive signals updated their beliefs more strongly than

individuals who received negative signals. The authors call this the “good news-bad

news effect.”
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This paper is motivated by ER’s experiment: does the good news-bad news

effect generalize outside the lab? There are a variety of important contexts in which

individuals could display this type of behavior: high school students updating the

distribution of colleges to which they apply after receiving an SAT or ACT score;

homeowners updating their valuations of their houses following a signal about

a change in the home’s risk of catastrophe; or ill patients deciding whether to

receive treatment following a diagnosis about a particular health condition. In each

case, the signal informs the individual about the state of the world relative to the

individual’s expectations.

I investigate how the valence of the signal received by United States House of

Representatives candidates affects candidate decisions to run for the same office in

the next election. This situation provides a context in which individuals plausibly

have an observable, unbiased expectation, subsequently receive an unpredictable

signal relative to that expectation, and finally make a relevant, related decision in

the future.

At the time the election takes place, each candidate has an expectation of his

or her vote share margin. I assume that candidates formulate their expectations

of their vote shares as the difference between their mean poll share prior to the

election and their main opponent’s mean poll share prior to the election. When the

election occurs, each candidate experiences a signal about his or her performance in

the form of the actual vote share received. The signal received by the candidate is

given by

(V SC − V SO)− (PSC − PSO),

where V SC is the candidate’s realized vote share, V SO is the opponent’s realized

vote share, PSC is the candidate’s mean poll share, and PSO is the opponent’s
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mean poll share. While this signal is not truly random, since it is determined

by the behavior of the electorate, the candidate is unable to predict the value or

the valence of the signal. After experiencing this signal in the current election,

candidates must decide whether to run for the same office in subsequent elections.

The hypothesis derived from the good news-bad news effect is that candidates

update their beliefs about the probability of winning the next election in a specific

way: those candidates receiving positive signals would “properly” update their

beliefs about winning a future election, while those candidates receiving negative

signals would fail to update their beliefs about the probability of winning as far

down as they should. Since there are two components—beliefs about the future

probability of winning or losing an election and the predicted utilities derived

from winning or losing the future election—of the expected utility calculation,

the good news-bad news effect is not the only potential theoretical underpinning

of candidates’ decisions to run in a subsequent election, however. Haggag et al.

(2016)–henceforth HP–describe a bias caused by selective memory that could affect

candidates’ projected utility of winning or losing: attribution bias occurs when the

state of the world in which an individual originally experienced a certain type of

consumption affects the individual’s prediction about the utility derived from future

consumption of the same type. This is similar to projection bias, which is described

by Loewenstein et al. (2003), in which the current state of the world influences

individuals’ expectations about the utility they will derive from future consumption

of the same type. In both of these models, individuals may be aware that the

future state of the world could differ and still fail to fully account for this factor.

This type of behavior is consistent with the model of misattribution of reference-

dependence presented by Bushong and Gagnon-Bartsch (2016), in which individuals
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fail to account for the extent to which their own reference-dependence affected their

memories of an experience.

How attribution bias occurs depends on the shape of the experienced utility

function. Candidates could have some variant of reference-dependent preferences,

where the utility function exhibits a kink or slope change at a specific reference

point. If candidates derive some utility from the value of the signal received,

there could be changes in the effect of the signal on the probability of running

again or discontinuities in the probability of running in the future at a reference

point, especially if candidates experience attribution bias. A candidate who loses

while outperforming expectations must predict her utility of running in the next

election. If her utility is higher in the outperforming-expectations state of the

world than in the state in which she underperforms, she may fail to account for

the difference in the utility she would receive in each state of the world. In this

way, not experiencing a loss in the underperforming-expectations state of the world

could cause her to overestimate her utility of running in the future. Similarly, if she

mistakenly fails to account for the reference-dependent nature of her preferences,

she may overestimate the future utility of running after previously experiencing

a positive signal. In both cases, candidates who outperform expectations fail

to properly predict their utilities of running in the future, which causes these

candidates to re-run more frequently than candidates who underperform relative

to expectations.

Using polling and outcome data for U.S. House elections from 2002, 2006,

2008, 2010, 2012, and 2014, I estimate the probability that a candidate runs for

office in the subsequent election as a function of the signal received relative to the
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expectation using a regression discontinuity approach, where the signal received is

the running variable.

For candidates who won their elections, I estimate a small (5.2 percentage

points) but statistically insignificant positive discontinuity in the probability of

running in the subsequent election at a signal value of zero. For winners, the

estimated slope of the relationship between the signal received and the probability

that the candidate runs in the next election is statistically insignificant from zero.

This is true both for winners who receive a positive signal and for winners who

receive a negative signal. Together, these results imply that when candidates win

an election, they pay little attention to the value of the signal received relative to

expectations. Once a candidate has won an election, it is likely that other factors,

such as job satisfaction or approval rating, play a much larger role in the decision

to run in the subsequent election. Unsurprisingly, the mean probability of running

in the subsequent election for winners (82.9%) is over 60 percentage points higher

than the mean probability of running in the subsequent election for losers (18.0%).

Candidates who lost their elections, on the other hand, display a larger and

statistically significant discontinuity in the probability of running in the next

election at a signal value of zero. For these candidates, receiving a positive signal

instead of a negative signal increases the probability of running in the subsequent

election by 17.7 percentage points (in the full sample). While this estimated effect

may seem quite large from an intuitive standpoint, much of the effect seems to

result from underperforming candidates failing to run again. As shown in Figure

8, the estimated probability of running in the next election for losers who received

negative signals is very close to zero for all negative signal values. It appears that
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receiving any negative signal relative to expectations causes candidates to decide

not to run in the subsequent election.

The size of this estimated discontinuity is larger in subsamples in which the

signal bandwidth is restricted to be closer to the hypothesized reference point of a

zero signal. As is the case for the winning candidates, I do not estimate a positive

slope of the relationship between the signal value and the probability to run in

the next election. Losers with a negative signal exhibit a slope that is statistically

indistinguishable from zero, while losers with a positive signal have a negative

slope. This estimated negative slope is unexpected; one potential explanation is

that those candidates who outperform their expectations by large amounts decide

to run for more prestigious offices in the future, such as Senate or gubernatorial

seats, rather than again attempting to win a House seat.

In the following section of the paper, I discuss the literature and theory;

section 3 presents the model and the data sources; I discuss the estimation results

in section 4; and section 5 concludes the paper.

Literature and Hypotheses

The literature that is most relevant to this question comes from two distinct

categories: behavioral economics’ models of reference-dependent preferences

and political science’s investigation of elections using regression discontinuity

techniques. While this paper is motivated by testing the good news-bad news

effect described by ER, various other models of utility and beliefs provide different

predictions about the behavior of individuals around a given reference point.
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Behavioral economics

In a simple expected utility setup, the candidate has beliefs about the

probability of winning an election and a utility function governing how she feels

about winning or losing. Together, these provide an expectation of the amount of

utility she would receive from running in the next election. If this expected utility

is greater than the utility she would receive from not running in the election, she

will choose to run. Performance relative to expectations could affect this expected

utility through the candidate’s beliefs or through the candidate’s utility of winning

or losing. An individual could derive utility from winning with a larger signal value

or losing with a larger signal value; the individual could also experience some utility

irrespective of the outcome of the election. If candidates derive utility from their

performance relative to expectations, traditional economic theory predicts that this

utility function is smooth and upward-sloping, with no discontinuities or kinks at

any reference points, like their expectations.

Reference-dependent preferences

Politicians clearly possess expectations about election outcomes. Behavioral

economics has produced a variety of formulations of utility functions that depend

on individuals’ reference points. Kőszegi and Rabin (2006) develop a model of

reference-dependent preferences that includes gain-loss utility, where an individual’s

overall utility is comprised both of consumption utility and of a utility term

capturing the effect of a “gain” or a “loss” relative to a reference point. In their

framework, individual utility is given by

u(c|r) = m(c) + n(c|r),
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where c is the consumption bundle, r is the reference point, m(c) is the standard

consumption utility, and n(c|r) is the gain-loss utility derived from the position

relative to the reference point. The gain-loss utility is modeled as n(c|r) = µ(m(c)−

m(r)), where µ(·) satisfies the properties of the value function from Kahneman and

Tversky (1979).

If candidates derive utility from their performance relative to expectations

and exhibit value functions like the one hypothesized by Kőszegi and Rabin, their

expected utility of running for office in the next election would incorporate an

additive gain-loss term capturing the additional value of the signal received. In

the data, this would manifest as a positive slope of the relationship between signal

value and probability of re-running for those in the positive-signal domain and a

positive and steeper slope for those in the negative-signal domain. Additionally, if

the slopes are decreasing as the magnitude of the signal increases, this would be

evidence of the concavity in gains and convexity in losses described in the standard

Kahneman-Tversky loss-aversion model.

Authors have shown that reference-dependent preferences matter in various

empirical settings. Some recent examples include Allen et al. (2016), who show

that marathon runners exhibit reference-dependence around even finishing times

by bunching just under these hypothesized reference points. DellaVigna et al.

(2017) write a job search model that incorporates reference-dependent preferences

relative to an individual’s most recent income level and present evidence from

Hungary to argue that the reference-dependent model fits observed hazard rates

better than alternative models. Rees-Jones (2017) shows that there is excess mass

of tax returns at a value of 0, and he argues that this is evidence that tax filers

have a reference point at zero tax liability. Tax filers who owe additional payments
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are in the loss domain, and these individuals reduce their tax liability more than

individuals who are owed a refund.

Another form of reference-dependent preferences comes from Diecidue

and Van De Ven (2008), who write a model of utility derived from attaining an

aspiration level. They hypothesize that individuals receive some utility from

achieving a specified level of wealth, which would cause a discontinuous jump in

the utility function at the given aspiration level. The aspiration-level expected

utility function is similar to the expected utility function from Kőszegi and Rabin.

However, in a subsequent paper (Diecidue et al., 2015), the authors conduct a lab

experiment and fail to find evidence of this type of behavior, although they mention

that this lack of evidence could be a function of individuals having heterogeneous

aspiration levels. If I estimate a discontinuity at the reference point, it would

provide evidence that candidates possess this sort of utility function.

While candidates may truly derive gain-loss utility from their performance

relative to expectations, they may also misattribute the utility of the election

when making a decision about the next election. Haggag et al. (2016) show

evidence of attribution bias, which occurs when individuals’ predicted utility of

future consumption depends upon the state in which the individual previously

experienced that type of consumption. This is similar to the model of projection

bias introduced by Loewenstein et al. (2003). Attribution bias exists if an

individual’s predicted utility of consumption in a given state lies between the

utility derived from the consumption in the initial state and the true utility derived

from consumption in the new state. Formally, an individual’s predicted utility of
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consuming c in state st is given by

ũ(c, st) = (1− γ)u(c, st) + γu(c, st−1)

for γ ∈ [0, 1].

When making an expected utility calculation to decide whether to run for

office again, candidates must predict the utility they will receive for each potential

election outcome. Candidates could exhibit attribution bias: in the current election,

candidates experience the election outcome only in one state of the world. No

candidate experiences the election outcome while receiving both a positive and a

negative signal. Losing candidates who outperform their expectations may predict

that the utility they would derive from losing in time t + 1 is exactly the same as

the utility they actually experienced from losing in time t without realizing that

the positive signal they received mitigated their unhappiness about losing. If this is

the case, losers receiving positive signals would predict higher levels of expected

utility of running in the future, which would lead to this group of candidates

running more frequently in the subsequent election than the losing candidates who

underperformed expectations.

While theoretical models discuss behavior around reference points, a

key empirical challenge is determining the proper reference point used by the

individuals making the decision of interest. As Barberis (2013) discusses in his

overview of prospect theory, determining this reference point is one of the major

difficulties in investigating reference-dependent preferences. Though there is no

guarantee that the signal value of zero is the correct reference point for candidates,

this makes more intuitive sense than other candidate reference points. When

evaluating performance, candidates must compare outcomes to some type of
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expectations. I assume that these expectations are derived from public polls,

which play a significant role in elections by informing both candidates’ campaigns

and voters about the electorate’s sentiments about candidates and issues. While

campaigns conduct private polls, I am unable to obtain these to use as candidates’

expectations in the model. As such, I assume that public polls provide an unbiased

estimate of a candidate’s expected vote share prior to the election occurring.

Good news-bad news effect

ER conduct a lab experiment in which subjects are ranked on attractiveness

and intelligence among a group of ten participants. For attractiveness, these

ranks are determined by a speed-dating exercise and subsequent questionnaire; for

intelligence, these ranks are determined by an IQ test. The individuals do not know

their true ranks. For each attribute, subjects are then asked to specify prior beliefs

about what ranking they occupy in the distribution. After specifying prior beliefs,

subjects receive a signal telling them either that they are ranked higher or lower in

the distribution than another randomly selected participant. Finally, the subjects

again specify their beliefs about where they rank in the distribution of participants.

This framework allows ER to assess how participants differentially update beliefs

as a result of receiving “good news” or “bad news.” In the attractiveness task, the

authors find that subjects “properly” update in a Bayesian sense when receiving

positive signals and fail to update as much as they should when receiving negative

signals. A similar effect occurs in the intelligence task, although the difference

in slopes is not statistically significant. In a control task with no relevance to

personal attributes, the way in which subjects receiving positive and negative
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signals updated was indistinguishable. The authors call this sort of behavior the

“good news-bad news effect.”

If the good news-bad news effect holds in the context of elections, those

candidates who receive positive shocks—vote shares above expectation—properly

update their expectations about the decision to run for the same office in the

future. However, those who receive negative shocks do not fully update downward.

Graphically, when plotting the probability of running for the same office against the

valence of the shock received, this effect would appear as a kink at 0 in the best-fit

lines, with the negative-shock best-fit line having a flatter slope than the positive-

shock best-fit line. Intuitively, this would mean that while candidates properly

internalize positive information about their chances of getting elected, they fail

to properly internalize negative signals. Figure 1 depicts the relationship between

the signal received and the probability of re-running for each of the hypotheses.

FIGURE 1.
Hypothesized potential effects
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Good News-Bad News Effect

(a) Good news-bad news effect
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Loss Aversion

(b) Loss aversion
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(c) No updating
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(d) Aspiration level
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Political science

In political science, the application of the regression discontinuity approach to

elections was pioneered by Lee (2008), who uses a regression discontinuity design to

investigate U.S. congressional elections; he argues that in close elections, candidates

are unable to sort into the positive side of the election-winning vote share threshold

in order to win the election. He implements this discontinuity design to investigate

the incumbency effect: Democratic candidates who barely won an election at time

t are much more likely to win an election at time t + 1 than Democratic candidates

who barely lose an election at time t. Unsurprisingly, he also finds a significant

discontinuity in the probability a candidate runs in an election at time t + 1 at the

zero margin-of-victory cutoff for the election at time t. Candidates who barely win

an election in time t are much more likely to run in time t+ 1.

The literature is fairly clear that an incumbency advantage exists. Levitt

and Wolfram (1997) investigate the incumbency advantage in congressional

elections, which increased from approximately 3.4% in the 1950s to approximately

8.0% in the 1980s, conclude that most of the incumbency advantage comes from

candidates’ abilities to deter high-quality challengers, instead of from direct benefits

associated with holding office. Ashworth and Bueno de Mesquita (2008) model

the incumbency advantage as a result of the fact that incumbents have greater

ability than challengers, which stems from two factors: high-ability candidates are

more likely to get elected, and high-quality incumbents are more likely to deter

challengers. While I do not specifically investigate the incumbency advantage, I do

find that candidates who win elections in time t are significantly more likely to run

in elections in time t+ 1, which is consistent with the literature.
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Caughey and Sekhon (2011) dispute Lee’s use of the regression discontinuity

design by claiming that those candidates who barely win elections are significantly

different in certain covariates than those candidates who barely lose elections;

they use this evidence to claim that candidates are able to sort across the victory

threshold in elections, which would invalidate the use of a regression discontinuity

design in the context of elections. However, Eggers et al. (2015) analyze a larger

sample of elections and show that this type of sorting occurs only in U.S. House

elections after 1946; all other elections in their sample do not exhibit this feature.

As such, they discuss the possibility that this perceived sorting occurs only due

to random variation. The regression discontinuity design in this paper does not

require that candidates not sort across the election-winning threshold; instead, we

assume that candidates do not sort across the zero-signal threshold.

Another implementation of the regression discontinuity design in elections

comes from Anagol and Fujiwara (2016), who investigate the effect of being the

runner-up in an election instead of finishing third. Using election data from

Brazil, India, and Canada, the authors find that being the runner-up confers a

significant positive effect on both the probability to run in future elections and

the probability to win future elections. As in their paper, I investigate the effect

of crossing a threshold on the probability of running in the subsequent election.

In both papers, the threshold across which candidates may not sort occurs away

from the election-winning threshold disputed in the literature: Anagol and Fujiwara

assume that candidates do not sort across the second-third threshold, while I

assume that candidates do not sort across the zero-signal threshold. Diermeier

et al. (2005) write a political economy model of congressional careers, where

they attempt to quantify an individual’s returns to a congressional career. In
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the model, they estimate the probability of winning an election, and include this

estimated probability in the candidate’s decision to run for office or pursue other

opportunities. However, in the model of the probability of winning the election,

the authors do not include information about vote share or vote share relative to

polling data. In this paper, I model candidates’ decisions to run again as a function

of their performance relative to expectations, and I investigate how these decisions

differ relative to a meets-expectations reference point.

Methodology and Data

Data

I obtain data on the true vote share received by candidates in elections

from the Federal Election Commission. I also use this FEC data to generate the

variable indicating whether the candidate ran in the subsequent election. Following

the approach in Downey (2017) to gathering polling data, I collect data for each

published poll available from www.realclearpolitics.com. I also enter demographic

data, such as gender, race, party affiliation, and incumbent status from the polling

data webpages. These data include the name and date of the poll, and, most

importantly, the poll share received by each candidate.

Unfortunately, the relative dearth of polling data is the limiting factor in

the data analysis. While there are 435 U.S. House seats up for election every two

years, the majority of the races are won by such a large margin that polls are

not conducted. According to ballotpedia.org, the average margin of victory in

House races was 35.8% in 2014 and 37.1% in 2016. Only 16 of 2016’s 435 House

races were decided by a margin smaller than five percentage points. Generally,

polls are conducted only for races that could plausibly be considered close prior
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to the election. I use all available polling data from realclearpolitics.com in my

analysis. The sample includes data from 321 polled elections spanning the years

2002, 2006, 2008, 2010, 2012, and 2014. Of these 321 elections, all but two include

poll share only for a Democrat and a Republican. In the other two races, a third

party candidate received a poll share. This means that the sample consists of

approximately 54 polled elections per election year, or that I have polling data

from, on average, 12.3% of U.S. House elections in this time period. As a result,

the margins in the elections used in the sample for this paper are necessarily closer

than the margins in an average U.S. House election.

Summary statistics for both groups of candidates are displayed in Table 1.

Winners—those candidates who become incumbents heading into the subsequent

election—run in the next election approximately four-and-a-half times as frequently

as losers. Each party comprises approximately half of each group.

TABLE 1.
Summary statistics

Winners Losers
Mean SD Min Max Mean SD Min Max

Ran in next election .829 .377 0 1 .180 .384 0 1
Signal .0319 .0646 -.199 .201 -.0326 .0636 -.201 .199
Female .153 .360 0 1 .238 .427 0 1
Black .0156 .124 0 1 .0186 .135 0 1
Democrat .486 .501 0 1 .508 .501 0 1

Observations 321 323

In absolute value, the largest signals received are close to .20: no candidate

in our dataset outperformed or underperformed expectations by more than 20

percentage points. While 20 percentage points represents a sizable deviation from

the poll, the majority of election results fall relatively close to the poll shares.
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Approximately 85% of observations (544 out of 641) receive a signal within

10 percentage points of zero, which means that the true election outcome was

within 10 percentage points of the polled outcome. As expected, the mean signal

for winners is positive, while the mean signal for losers is negative. The slight

difference in absolute value of the mean of the signal for the groups is a result of

the few third-party candidates who are additional losers in specific races. For third-

party candidates, the “main opponent” is defined as the opponent who received the

highest mean poll share prior to the election; I assume that these candidates use

the leader of the race as the proverbial measuring stick.

Model

I conceptualize a simple model of a candidate’s decision to run for a U.S.

House seat in time period t + 1 after having run for office in time period t. I

assume that candidates take their mean poll share relative to their main opponent’s

mean poll share as their expectation of the vote share they will receive in the

election; I assume also that candidates process their true vote share relative to their

opponent’s vote share as an objective signal about their desirability as a candidate.

With these two assumptions in mind, the candidate’s signal in time period t is:

(V SC − V SO)− (PSC − PSO),

where V SC is the candidate’s realized vote share, V SO is the opponent’s realized

vote share, PSC is the candidate’s mean poll share, and PSO is the opponent’s

mean poll share. After receiving the signal in time period t, the candidate must

make a decision to run in time period t+ 1.
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Empirical model

I use a regression discontinuity approach to estimate the effect of receiving a

positive signal relative to receiving a negative signal for both winners and losers.

One key facet of a regression discontinuity design is that individuals must not

be able to sort across the treatment threshold. As previously discussed, this

assumption has been contested in the context of election results; Caughey and

Sekhon (2011) argue that candidates are able to sort across the election-winning

threshold, while Lee (2008) and Eggers et al. (2015) argue that this type of

behavior is not possible.

In this framework, it is not important if candidates sort across the election-

winning threshold, but candidates must not sort across the zero-signal threshold.

Given how difficult it would be to sort across the election-winning threshold, it

is highly unlikely that candidates would be able to sort across the zero-signal

threshold. Even if this type of sorting were possible, candidates should be much

more interested in sorting across the election-winning threshold than they are in

sorting into a region where they receive a positive signal.

To formally test that no sorting occurs near the treatment, I implement both

a McCrary (2008) test and a similar test of the form described by Cattaneo et al.

(2018) designed to detect discontinuities in the density of the running variable. The

McCrary test discontinuity estimate of the log difference in the density function at

the zero-signal value is −7.64e−6, and the p-value for the Cattaneo, Jansson, and

Ma test is 0.986. Both of these tests suggest that no sorting occurs at the zero-

signal threshold. Figure 2 and Figure 3 present the kernel density of the signal

received for winners and losers, respectively. With no sorting present, this necessary

regression discontinuity assumption is satisfied.
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FIGURE 2.
Signal density for winners

FIGURE 3.
Signal density for losers
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– The base model estimates the linear probability model:

Pr(Yi = 1) =α + β1Si + β2Wi + β3Pi + β4WiSi

+ β5PiWi + β6PiSi + β7PiWiSi +Xiγ + εi,

where

– Yi is a dummy variable equal to one if the candidate runs in the subsequent

election and equal to zero otherwise.

– Si is the value of the signal received by the candidate.

– Wi is a dummy variable equal to one if the candidate wins the election and

equal to zero otherwise.

– Pi is a dummy variable equal to one if Si > 0 and equal to zero otherwise.

– Xi are controls, such as party, race, gender, and incumbency status.

The form of the estimation allows for easy interpretation of coefficients.

The interaction terms allow for the estimation of differentiated behavior between

groups. The coefficients can be interpreted as follows: the coefficient α is the

predicted probability of running again for losers who receive a negative signal just

to the left of zero. The sum α + β3 is the predicted probability of running again for

losers who receive a positive signal just to the right of zero. The sum α + β2 is the

predicted probability of running again for winners who receive a negative signal just

to the left of zero. The sum α + β2 + β3 + β5 is the predicted probability of running

again for winners who receive a positive signal just to the right of zero. The sum

β1 is the effect of the strength of the signal on the probability of running again for
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losers who receive a negative signal. The sum β1 + β6 is the effect of the strength

of the signal on the probability of running again for losers who receive a positive

signal. The sum β1 + β4 is effect of the strength of the signal on the probability of

running again for winners who receive a negative signal. The sum β1 + β4 + β6 + β7

is effect of the strength of the signal on the probability of running again for winners

who receive a positive signal. The sum β6 represents the difference between winners

and losers in the effect of signal strength on the probability of running again. This

coefficient is relevant to various hypotheses: if the probability of running again

increases as signal strength becomes more positive, β6 can provide evidence of the

good news-bad news effect (when β6 > 0) or of loss aversion (when β6 < 0).

Results

Main estimates

Table 2 presents estimates of the model by signal bandwidth; I restrict the

sample to those candidates receiving a signal within 15, 10, and 5 percentage

points of zero. Slightly more than half of the observations (53.6%) have a signal

within 5 percentage points of zero. Due to the nature of which elections get

polled, the dataset is already a subset of elections that are closer than the average

election; these sample restrictions further concentrate on specifically close elections.

Approximately 34.6% of observations are included in the within-five-percentage-

points subsample. In all estimates presented, I cluster the error term at the

candidate level (519 clusters), although clustering at the state level does not

produce substantively different results. All estimates include year fixed effects with

a base year of 2002.
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TABLE 2.
Mean poll share by signal bandwidth, clustered by candidate

Full sample Within 15% Within 10% Within 5%

Winner 0.632∗∗∗ 0.613∗∗∗ 0.591∗∗∗ 0.629∗∗∗

(7.15) (6.56) (5.93) (4.68)

Signal -0.0786 -0.218 -1.106 -2.568
(-0.16) (-0.38) (-1.13) (-0.85)

Winner * Signal -0.276 -0.713 -0.761 0.110
(-0.22) (-0.48) (-0.46) (0.02)

Positive 0.177∗∗ 0.189∗∗ 0.258∗∗∗ 0.200
(2.29) (2.16) (2.80) (1.46)

Winner * Positive -0.125 -0.112 -0.181 -0.121
(-1.15) (-0.95) (-1.47) (-0.68)

Positive * Signal -2.095∗∗ -2.150 -2.713∗ 4.168
(-2.07) (-1.45) (-1.72) (0.83)

Winner * Positive * Signal 1.786 2.239 4.474∗ -1.242
(1.07) (1.05) (1.94) (-0.19)

Vote differential 0.621∗∗ 0.693∗∗ 0.731∗∗ 0.878∗∗∗

(2.07) (2.22) (2.04) (2.82)

Female 0.0579 0.0585 0.0377 0.0638
(1.48) (1.48) (0.87) (1.11)

Asian -0.168 -0.185 -0.199 -0.0707
(-1.04) (-1.03) (-0.97) (-0.24)

Black 0.108 0.118 0.126 0.228
(0.80) (0.80) (0.84) (0.71)

Democrat -0.0325 -0.0289 -0.0171 -0.0366
(-1.10) (-0.95) (-0.50) (-0.84)

Incumbent winner -0.178∗∗∗ -0.186∗∗∗ -0.153∗∗∗ -0.159∗∗∗

(-3.86) (-4.02) (-3.23) (-2.70)

Incumbent loser -0.0162 -0.0160 -0.0353 0.0184
(-0.33) (-0.32) (-0.64) (0.25)

Constant 0.218∗∗∗ 0.212∗∗∗ 0.198∗∗∗ 0.146
(3.69) (3.35) (2.74) (1.30)

Observations 644 623 541 345

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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As expected, winners are much more likely to run in the subsequent election

than losers. However, winners appear to be almost completely unresponsive to the

signal received: the effect of the strength of the signal received on the probability of

running in the next election is statistically insignificant from zero both for winners

who receive a positive signal and winners who receive a negative signal. I estimate

a positive but statistically insignificant discontinuity for winners at a zero signal

value. All told, it appears that the signal received relative to expectations plays

almost no role in winners’ decisions to run in the next election. This result is

consistent with the idea that once candidates become incumbents, other factors—

job satisfaction, job performance, approval rating, etc.—determine whether the

candidate decides to run again.

In contrast to the winners, I do find evidence that the signal received has an

effect on the losing candidates’ chances of running in the subsequent election. In

the full sample, losing candidates who receive a positive signal are 17.7 percentage

points more likely to run in the subsequent election than losing candidates who

receive a negative signal. This effect is significant at the five percent level, and the

magnitude of the effect does not diminish in narrower signal bandwidths or vote

differential bandwidths. In fact, the estimated effect is larger in close elections than

in the full sample. To assuage concerns that the estimated effect may just be an

artifact of candidates preferring to run again if the election was close, I control for

vote differential.

For losers with a negative signal, the effect of the strength of the signal on the

probability of running again is not significantly different from zero across almost all

subsamples, and for losers with a positive signal, this estimated effect is negative

across almost all subsamples. This estimated negative relationship is perplexing.
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Additionally, the other groups in the sample also appear to be unresponsive to the

strength of the signal received. It is possible that those losers who outperform their

expectations by large margins run for “better” positions or move on to other career

opportunities based on the signal they received. The estimated slope for losers with

a positive signal within a 5% signal bandwidth is insignificantly different from zero,

which would support the hypothesis that this negative slope of the signal is driven

by those losers who are greatly outperforming expectations.

Graphically, the binary nature of the outcome variable makes it difficult to

visualize the estimated discontinuity. One way I depict the estimated discontinuity

is by estimating the model and predicting the probability of running in the

subsequent election for each candidate. I then plot these predicted probabilities

against the signal received. Figure 4 presents predicted probabilities for winners

within a 5% signal bandwidth, which looks extremely similar to the plot

for winners within a 15% signal bandwidth. Figure 5 presents the predicted

probabilities for losers within a 15% signal bandwidth, where the negative effect of

the signal strength for overperforming candidates is evident, and Figure 6 presents

the predicted probabilities for losers within a 5% signal bandwidth.
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FIGURE 4.
Predicted probabilities of winners

FIGURE 5.
Predicted probabilities of losers
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FIGURE 6.
Predicted probabilities of losers

A second way to visualize the discontinuity and test its robustness is through

nonlinear estimation. Using fractional polynomial estimation, I plot nonlinear fits

of the data for winners in Figure 7 and for losers in Figure 8. These estimations

replace the linear signal term from the main specification (Si) with two nonlinear

polynomial terms as specified. The polynomials are chosen using the fractional

polynomial optimization routine in STATA from the set of possible powers

{.5, 1, 2, 3, 4, 5}.

– Winners with a positive signal: S
(5,5)′

i β = β1S
5
i + β2S

5
i ∗ ln(Si)

– Winners with a negative signal: S
(2,2)′

i β = β1S
2
i + β2S

2
i ∗ ln(Si)

– Losers with a positive signal: S
(.5,.5)′

i β = β1S
.5
i + β2S

.5
i ∗ ln(Si)

– Losers with a negative signal: S
(2,2)′

i β = β1S
2
i + β2S

2
i ∗ ln(Si)
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Each nonlinear estimation includes all covariates from the main specification,

with the exception of terms including the indicator variables for winning the

election and for receiving a positive signal. The nonlinear estimated discontinuity

for losers is 0.40, or 40 percentage points. The estimated discontinuity for winners

is 0.26, or 26 percentage points. Both of these estimates of the discontinuity at the

signal value are larger than the estimated discontinuities from the linear model.

FIGURE 7.
Fractional polynomial estimation for winners
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FIGURE 8.
Fractional polynomial estimation for losers

The lack of any estimated positive effects of the strength of the signal on the

probability of running again for any of the groups of candidates fails to conform to

predictions about candidates either deriving utility from the strength of the signal

or updating their beliefs about the probability of winning based on the strength of

the signal, both of which predict positive slopes. Furthermore, there is no evidence

of the good news-bad news effect in this context. However, if it were the case that

candidates were entirely oblivious to the signal, estimates of both the effect of the

signal and of any discontinuity would be zero.

There are two potential explanations for the losers’ estimated discontinuity

at a zero signal value. Either losers update their beliefs about the probability of

winning the next election only as a result of receiving a positive signal, or losers

receive some utility boost from the positive signal, which then factors into their

expected utility calculations in the next time period. Updating beliefs would affect
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the expected probabilities in the expected utility calculation, while a utility term

would be additive. This utility discontinuity would support Diecidue and van de

Ven’s model of an aspirational utility level in which losing candidates then exhibit

attribution bias, as described by Haggag and Pope, with respect to the aspirational

utility term.

Once candidates lose while experiencing a positive signal, they form new

predictions about their utility of losing in a future election. Suppose that losing

candidates’ experienced utility of losing is given by

u(loset) = w(loset) + µ ∗ 1(signalt > 0),

where µ > 0 is the effect of receiving the positive signal. If a candidate loses with a

positive signal, the experienced utility of that loss is given by

u+(loset) = w(loset) + µ.

If the candidate does not realize that this experienced utility is larger as a result of

outperforming expectations, the candidate’s prediction of the utility of losing in the

next period becomes

E[u+(loset+1)] = u+(loset) = w(loset) + µ.

Candidates who lose while underperforming expectations do not experience the

additional utility from the positive signal, which means their experienced utility of

losing is given by

u−(loset) = w(loset).
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As a result, their predicted utility of running in the next election is

E[u−(loset+1)] = u−(loset) = w(loset).

The losing candidates outperforming expectations predict a higher utility level

from losing in the next election, which leads to a higher predicted utility level of

running in the next election. These candidates are then more likely to run in the

next election than their losing counterparts who underperformed expectations.

Robustness

As a check on the validity of the estimated discontinuity, I implement a

placebo treatment test by moving the treatment value of the signal and estimating

the resulting effect. This placebo treatment is for the full sample of the main linear

specification discussed in the previous section. Figure 9 plots estimated treatment

effects for each placebo treatment value from -.08 to .08. The estimated effect is

slightly larger at treatment values of .01 and .04, but only the estimated effects

at 0 and .01 are statistically significant from zero. While the treatment effect is

not perfectly maximized at a treatment value of zero, the shape of the plot of the

estimated treatment effects suggests that the discontinuity truly occurs at zero.
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FIGURE 9.
Placebo estimated treatment effects

Heterogeneity

Given that candidates display this discontinuity in the probability of running

again at a zero signal value, a natural follow-up question is whether different groups

of candidates exhibit the effect more strongly than others. Is this estimated effect

only the result of behavior by candidates of a certain party or incumbency status?

I investigate heterogeneity by estimating the model separately by party

and by incumbency status. I also estimate the model for smaller vote differential

bandwidths, which allows for investigation of the effect in close elections. A

candidate is an incumbent if the candidate was in office in time period t − 1, prior

to the election in time t in which the signal occurs. Table 3 presents estimates of

the model by vote differential bandwidth; Table 4 presents estimates by party by
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signal bandwidth; and Table 5 presents estimates by incumbency status by signal

bandwidth.

The estimated discontinuity for losers is larger in close elections than in the

full sample, as the effect size increases from 17.7 percentage points in the full

sample to 43.4 percentage points in the sample of elections in which the realized

vote differential is five percentage points or fewer. This means that performance

relative to expectations is even more important to candidate decisions to re-run if

the election is relatively close.

The losers’ estimated discontinuity remains positive for both Democrats

and Republicans across all signal and vote differential bandwidths. Splitting the

sample reduces the number of observations, but the estimated discontinuity remains

significant at the 1% level for Republicans in both the 5% and 10% vote differential

bandwidths and significant at the 10% level for Democrats in both vote differential

bandwidths. In each of the four bandwidths presented, the estimated effect is

larger for Republican candidates than for Democratic candidates. When I split the

sample by entrants and incumbents, the estimated discontinuity remains positive

across all groups and bandwidths, and remains statistically significant in most

bandwidths. Neither the incumbents nor the entrants exhibit a consistently larger

effect across all bandwidths. The heterogeneity analysis is limited by the sample

size, as splitting the data further decreases the power of the estimates.
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TABLE 3.
Mean poll share by vote differential bandwidth, clustered by candidate

Full sample Within 15% Within 10% Within 5%

Winner 0.632∗∗∗ 0.523∗∗∗ 0.479∗∗∗ 0.500∗∗∗

(7.15) (5.32) (4.51) (3.11)

Signal -0.0786 -0.123 -0.988 -3.630∗∗

(-0.16) (-0.21) (-1.25) (-2.00)

Winner * Signal -0.276 -0.124 -0.479 1.476
(-0.22) (-0.09) (-0.38) (0.66)

Positive 0.177∗∗ 0.187∗∗ 0.266∗∗∗ 0.434∗∗∗

(2.29) (2.28) (2.76) (3.02)

Winner * Positive -0.125 -0.162 -0.180 -0.172
(-1.15) (-1.43) (-1.42) (-0.94)

Positive * Signal -2.095∗∗ -2.310∗∗ -1.888 0.965
(-2.07) (-2.13) (-1.36) (0.41)

Winner * Positive * Signal 1.786 2.337 3.141∗ 0.462
(1.07) (1.32) (1.69) (0.16)

Vote differential 0.621∗∗ 1.427∗∗∗ 2.107∗∗∗ 4.012∗∗

(2.07) (3.41) (2.94) (2.21)

Female 0.0579 0.0774∗ 0.0729 0.106
(1.48) (1.75) (1.32) (1.37)

Asian -0.168 -0.173 -0.298 -1.131∗∗∗

(-1.04) (-0.94) (-1.54) (-10.35)

Black 0.108 0.122 0.0145 0.229
(0.80) (0.73) (0.10) (1.02)

Democrat -0.0325 -0.0211 -0.0336 -0.104∗

(-1.10) (-0.66) (-0.88) (-1.93)

Incumbent winner -0.178∗∗∗ -0.150∗∗∗ -0.166∗∗∗ -0.269∗∗∗

(-3.86) (-3.01) (-2.78) (-3.44)

Incumbent loser -0.0162 -0.0361 -0.0137 0.00942
(-0.33) (-0.70) (-0.23) (0.10)

Constant 0.218∗∗∗ 0.264∗∗∗ 0.224∗∗∗ 0.113
(3.69) (3.48) (2.71) (0.90)

Observations 644 557 419 223

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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TABLE 4.
Mean poll share by signal bandwidth, clustered by candidate

Rep., 10% Dem., 10% Rep., 5% Dem., 5%

Winner 0.621∗∗∗ 0.384∗∗ 0.749∗∗∗ 0.471∗∗

(4.81) (2.43) (4.30) (1.98)

Signal -1.224 -0.588 -6.417 1.765
(-0.90) (-0.41) (-1.32) (0.45)

Winner * Signal -0.0604 -2.816 4.175 -5.131
(-0.03) (-0.90) (0.68) (-0.71)

Positive 0.337∗∗ 0.223∗ 0.329 0.129
(2.42) (1.79) (1.52) (0.73)

Winner * Positive=1 -0.310∗ -0.00578 -0.233 -0.0195
(-1.82) (-0.03) (-0.90) (-0.07)

Positive * Signal -2.897 -2.973 8.696 -0.175
(-1.15) (-1.44) (1.02) (-0.03)

Winner * Positive * Signal 3.257 6.848∗ -8.094 9.276
(1.01) (1.78) (-0.84) (0.98)

Vote differential 1.264∗∗∗ 0.984∗∗∗ 0.895 0.438
(2.75) (2.60) (1.64) (0.91)

Female 0.0586 0.0384 0.0936 0.0228
(1.02) (0.56) (1.08) (0.28)

Asian 0 -0.212 0 -0.0543
(.) (-0.95) (.) (-0.17)

Black 0.202 0.0555 0.555 0.129
(0.98) (0.27) (1.50) (0.33)

Incumbent winner -0.163∗∗ -0.140∗ -0.0734 -0.218∗∗

(-2.12) (-1.84) (-0.80) (-2.20)

Incumbent loser 0.0321 -0.0890 0.113 -0.0433
(0.36) (-1.00) (0.93) (-0.37)

Constant 0.202∗∗ 0.200∗ 0.0900 0.0646
(2.40) (1.79) (0.66) (0.35)

Observations 269 269 172 172

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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TABLE 5.
Mean poll share by signal bandwidth, clustered by candidate

Inc., 10% Entrants, 10% Inc., 5% Entrants, 5%

Winner 0.348∗∗ 0.669∗∗∗ 0.554∗∗ 0.651∗∗∗

(2.01) (5.70) (2.53) (4.32)

Signal 0.241 -2.028 -6.602 -0.795
(0.18) (-1.54) (-1.37) (-0.21)

Winner * Signal -2.445 0.175 2.167 1.182
(-0.82) (0.10) (0.30) (0.24)

Positive 0.214 0.283∗∗∗ 0.510∗∗ 0.106
(1.19) (2.59) (2.17) (0.67)

Winner * Positive -0.162 -0.164 -0.432 0.0228
(-0.70) (-1.16) (-1.33) (0.12)

Positive * Signal -5.702∗∗ -0.945 -3.558 5.337
(-2.14) (-0.47) (-0.42) (0.95)

Winner * Positive * Signal 8.566∗∗ 1.946 10.13 -8.175
(2.02) (0.79) (0.94) (-1.16)

Vote differential 1.085 0.511 0.765 0.963∗∗∗

(1.64) (1.21) (1.11) (2.66)

Democrat -0.0630 -0.0150 -0.140 0.0266
(-0.79) (-0.32) (-1.33) (0.46)

Female 0.0795 0.0294 0.159 0.0629
(0.98) (0.58) (1.57) (0.95)

Asian -0.811∗∗∗ -0.0751 -0.752∗∗∗ 0.210
(-10.79) (-0.37) (-9.06) (1.08)

Black -0.0699 0.288 -0.267∗ 0.645∗∗

(-0.50) (1.41) (-1.91) (2.01)

Constant 0.236∗ 0.141 -0.0327 0.193
(1.94) (1.55) (-0.18) (1.48)

Observations 199 342 132 213

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Conclusion

To test ER’s lab results regarding the good news-bad news effect, I examine

U.S. House candidates’ decisions to run for the same office in the following election.

In the current election period, candidates hold expectations about their outcomes

in the form of the mean poll share. The election provides an unpredictable signal of

varying magnitude and valence, which informs the candidate about the outcome

relative to expectations. After receiving the signal, the candidate must decide

whether to run for the same office in the next period.

There is no evidence of a positive relationship between the value of the signal

and the probability that a candidate runs in the subsequent election, which means

a larger signal value does not necessarily correspond to a higher probability of

running again. These relationships are not as strongly identified as the estimates

of the discontinuity at the zero-signal value. Winning candidates appear not to

account for the signal value at all, as both estimated slopes and the estimated

discontinuity are insignificant from zero. Losing candidates display a full-sample

discontinuity of 17.7 percentage points, which means that losing candidates who

receive a slightly positive signal are significantly more likely to run for the same

office again than those losing candidates who receive a slightly negative signal,

and the estimated discontinuity is larger in narrower signal and vote differential

bandwidths. The model estimates that losing candidates who underperform

expectations almost never run in the subsequent election.

This discontinuity could result from an updating of beliefs about winning

the next election or from some utility derived from the signal itself. A utility

interpretation would mean that candidates receive some amount of utility from

obtaining a positive signal, which is consistent with Diecidue and van de Ven’s

39



model of an aspirational level utility and HP’s model of attribution bias. If losing

candidates who outperform their expectations do not realize that the utility they

experienced was larger as a result of outperforming expectations, these candidates

will predict higher utility levels when losing in the future than those candidates

who failed to meet their expectations. This difference in predicted utility levels

between groups of candidates is consistent with the estimated discontinuity: losing

candidates who receive slightly positive signals are estimated to be significantly

more likely to run in the next election than losing candidates who receive slightly

negative signals.

While I have assumed throughout this paper that the decision to run in the

subsequent election is the candidate’s, it is likely that the true decision is made

jointly between the candidate and the candidate’s party. If the candidate has most

of the power in making this decision, the utility interpretation could be correct. If

the party gets to make the final decision, this effect is likely the result of the party

believing that a candidate has a better chance of winning the next election if the

candidate received a positive signal in this election. Alternatively, the party could

observe that a candidate underperforms expectations and immediately decide to

replace the candidate in the subsequent election. It could also be the case that the

estimated discontinuity is a combination of effects: the candidate receives some

utility and becomes more likely to want to run again, and the party observes the

positive signal and believes that the candidate remains a good choice to run in

the next election. However, whether the decision is the candidate’s or the party’s,

the estimated discontinuity implies that a candidate with a lower vote share and a

positive signal may be more likely to run than a candidate with a higher vote share
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a negative signal, despite the fact that the candidate with the higher vote share is

of higher quality.
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CHAPTER III

THE EFFECT OF OPENING RECREATIONAL MARIJUANA MARKETS ON

DOMESTIC VIOLENCE

Introduction

The landscape of marijuana use in the United States has shifted considerably

over the past fifty years. In 1970, the federal government passed the Controlled

Substances Act1, which defined marijuana as a Schedule I drug and prohibited its

use. Since then, there has been a slow and steady liberalization of policy at the

state level. For example, in 1973, Oregon reduced the penalty for possession of

up to one ounce of marijuana to a maximum fine of $100, which began a trend of

states decriminalizing possession.2

The next major shift in marijuana law occurred in 1996, when California

passed Proposition 215, which legalized the use of marijuana for medical purposed

with a doctor’s recommendation3. Over the next fifteen years, fifteen additional

states, including Washington, Colorado, and Oregon, passed legislation legalizing

medical marijuana use.4 In 2012, Washington and Colorado became the first

states to pass laws allowing consumers to use marijuana recreationally, and the

first recreational marijuana stores in the United States opened on Jan. 1, 2014, in

1Government Publishing Office (1970)

2Single (1981)

3California Department of Public Health (2018)

4Anderson et al. (2015)
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Colorado.5 Recreational sales in California, the nation’s most populous state, began

on Jan. 1, 2018.6

Despite these widespread policy changes, the Drug Enforcement

Administration maintains a Schedule I classification for marijuana, which is

“defined as drugs with no currently accepted medical use and a high potential for

abuse.”7 However, a 2013 memorandum from the Department of Justice states,

“enforcement of state law by state and local law enforcement and regulatory

bodies should remain the primary means of addressing marijuana-related activity.”

However, the memo also states that the federal government may seek enforcement

if state enforcement efforts are not preventing certain harms, including distribution

to minors, diversion to states with no legal possession, violence, and revenue to

gangs.8

While the potential effects of recreational legalization have been widely

debated, the majority have not been studied. Understanding how these changes

in the availability of recreational marijuana affect social and public health outcomes

is crucial for voters and policymakers considering future laws and regulations. This

paper investigates the impact these recreational marijuana laws have on domestic

violence, an outcome that imposes high costs to society through economic, physical

health, and mental health channels (Max et al., 2004; Black, 2011; Sabia et al.,

2013; Breiding et al., 2008; Silverman et al., 2001; Aizer, 2011).

Using daily data on reports of crime incidents at the reporting agency level

from the FBI’s National Incident-Based Reporting System (NIBRS) from 2012 to

5McGhee and Ingold (2013)

6Nicolewski (2016)

7Drug Enforcement Agency (2019)

8Department of Justice (2013)
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2015, I employ a difference-in-differences model to estimate the effect of recreational

marijuana sales in Washington, Colorado, and Oregon on intimate partner violence

(IPV). Using a variety of state-specific time trends and year, month, day-of-

week, and agency fixed-effects, I find that IPV incidents increase by 2.9-6.2%

when recreational marijuana sales begin. I consider treatment at the state level,

the county level, and a distance-weighted measure of treatment. The results are

qualitatively similar across these definitions of treatment. While the estimated

effect is positive for each of the three reported severity levels of IPV (aggravated

assault, simple assault, intimidation), the effect is largest for intimidation incidents,

which are the least severe type.

The literature suggests that domestic violence responds to economic, social,

and psychological cues: Aizer (2010) uses administrative data on female assault

hospitalization to show that decreases in the gender wage gap lead to a drop in the

level of domestic violence against women; Card and Dahl (2011) use the NIBRS

data on intimate partner violence to show that domestic violence increases as

a result of unexpected losses in NFL games. Cesur and Sabia (2016) show that

assignment to combat status leads to an increased probability of domestic violence

committed by members of the military. These papers highlight mechanisms that

lead to domestic violence occurence: the relative bargaining power of women in

relationships and emotional cues that lead to anger affect the incidence rates of

intimate partner violence.

In light of these findings, it would not be surprising if domestic violence

also responded to health policy and changes in marijuana spending and use

in states that begin selling recreational marijuana. The introduction of a

recreational marijuana market likely has effects on the nature of intimate
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partners’ relationships. This could be a new source of conflict or a shared bonding

experience; couples could spend more or less time with each other; individuals’

behavior likely changes when consuming (or even planning to consume) marijuana.

Understanding both the effect of marijuana legalization on IPV and the mechanism

by which it occurs is central to the development of effective regulation in this new

market.

Recent literature (Crost and Guerrero, 2012; Crost and Rees, 2013; Anderson

et al., 2013) suggests that marijuana alcohol function as substitutes. This

mechanism would provide a clear pathway if the estimated effect of recreational

sales on IPV were negative. However, as the estimated effect is positive, there are

multiple potential mechanisms by which the beginning of recreational marijuana

sales could cause the incidence of domestic violence to increase. The introduction of

legal marijuana could introduce conflict within couples, especially if the couples

disagree about whether to use the drug. These conflicts could also exacerbate

arguments about money: if one partner wants to spend a portion of the budget

on marijuana, tension could rise, leading to more reported incidents. A second

mechanism is a simple exposure story: if recreational marijuana causes more

couples to spend time together at home instead of participating in separate or

public activities, domestic violence could increase as hours spent at home together

increase. This is especially true if couples move alcohol consumption from bars to

their homes. A third option is a direct effect through complementarity with alcohol:

if individuals are more likely to engage in heavy alcohol use as a result of their new

purchases of marijuana or if marijuana physically exacerbates the effects of alcohol,

this could lead to an increase in alcohol-related incidents.
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Other mechanisms could occur through reporting behavior, and not through

additional actual assaults. One channel is individual reporting: if individuals

were previously afraid or unwilling to report domestic violence because they had

marijuana in the house, they may become more willing to report these incidents

when they know that recreational marijuana is legal and less stigmatized. Another

channel is a change in police behavior. If law enforcement agencies no longer

allocate resources to policing marijuana possession, they may be able to respond

to more reports of domestic violence, which would show up as an estimated positive

effect. Even if agencies did not change enforcement behavior, it could be the case

that they change their reporting behavior. Using a variety of additional datasets

and alternative specifications, I attempt to disentangle there potential mechanisms.

The mechanism most consistent with the evidence is an increase in relationship

conflict, but it is possible that multiple mechanisms simultaneously affect the

reported incidence of intimate partner violence.

The paper proceeds as follows: Section 2 lays out relevant literature

regarding effects of marijuana legalization, domestic violence, and the complicated

relationship between marijuana and alcohol, as well as various potential hypotheses

about mechanisms through which recreational marijuana legalization could affect

reported intimate partner violence. Section 3 discusses the data used and describes

the model, including a variety of ways to define treatment for a given agency

in the sample. Section 4 presents results from the main specification. Section 5

incorporates additional datasets to investigate the likelihood of each proposed

mechanism; Section 6 concludes.
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Literature

Marijuana

There is a significant body of literature investigating the relationship between

marijuana legalization, marijuana use, and important social, criminal, and public

health outcomes. In general, these studies have focused on the effects of medical

marijuana legalization laws. Medical marijuana legalization in the United States

began in 1996, when California passed Proposition 215, which allowed consumers to

legally purchase marijuana for medical purposes with a doctor’s recommendation.9

By 2018, 31 states and the District of Columbia had laws in place that allow for the

legal use of medical marijuana.10

In contrast, recreational marijuana legalization has been a recent development

in the United States. In November 2012, both Colorado and Washington passed

legislation that provided a framework for future legal recreational marijuana sales.

Consumers in Colorado could begin purchasing recreational marijuana on Jan.

1, 2014, when stores opened in Breckenridge, Central City, Denver, Edgewater,

Idaho Springs, Northglenn, Pueblo West, and Telluride (McGhee and Ingold, 2013).

In Washington, recreational shops opened on July 8, 2014 in over a dozen cities

(Baca, 2014). Oregon’s Measure 91, which passed in November 2014, legalized the

recreational use of marijuana, and on Oct. 1, 2015, medical marijuana dispensaries

began recreational sales to consumers.11

While Anderson et al. (2014a) point out that “the legalization of marijuana

for medicinal purposes approaches de facto legalization of marijuana for

9California Department of Public Health (2018)

10National Conference of State Legislatures (2019)

11Oregon Liquor Control Commission (2019)
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recreational purposes,” there are almost assuredly many consumers who purchase

recreational marijuana who were not purchasing medical marijuana prior to these

law changes. These consumers may previously not have purchased marijuana from

a medical dispensary due to lack of a prescription from a doctor, an unwillingness

to lie to a doctor to obtain a prescription, or the social stigma associated with

using a previously illegal drug; this population of individuals who previously

did not purchase medical marijuana is now treated by the policy change. Other

individuals who previously purchased marijuana through black market channels

may substitute away from illegal purchases to legal purchases of the drug.

Previous studies have investigated many social and public health effects

related to the institution of these medical marijuana laws. Marijuana legalization

could be significantly detrimental to social welfare if these laws lead to increases

in crime or negative public health outcomes. However, much of the literature

regarding medical marijuana laws has found positive effects for society. Some of the

social benefits attributed to medical marijuana laws include a decrease in alcohol-

related traffic fatalities (Anderson et al., 2013), a reduction in the suicide rate

among men between the ages of 20 and 39 (Anderson et al., 2014b), and a lowered

probability of obesity (Sabia et al., 2017). Additionally, Anderson et al. (2015)

do not find evidence that medical marijuana laws lead to increased marijuana use

among teenagers, and Ullman (2017) finds that medical marijuana legalization

leads to a decrease in absences from work due to sickness.

Since recreational marijuana sales have begun very recently, far less literature

exists documenting the effects of the opening of recreational marijuana sales

markets. Anderson et al. (2014a) discuss a potential “worst-case scenario” of

recreational marijuana legalization through the lens of research documenting effects
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on marijuana price, marijuana use, alcohol use, and crime; they conclude that they

expect recreational marijuana legalization to lead to increased marijuana usage and

decreased alcohol usage. Finally, they predict that the net public health benefits

resulting from such a policy will be positive.

Domestic violence

According to the National Coalition Against Domestic Violence, more

than 10 million men and women are physically abused by an intimate partner

each year; one in three women and one in four men have been victims of some

form of physical violence by an intimate partner.12 Domestic violence has both

direct and indirect welfare consequences for victims. Max et al. (2004) use data

from the National Violence Against Women Survey to estimate that the total

cost of intimate partner violence in the United States in 1995 was $5.8 billion.

These costs include physical and mental health care services, as well as lost

productivity resulting from injury or death. This estimate increases to $9.7

billion when the costs are considered in 2018 dollars. The CDC notes that these

are likely underestimates, as the total estimated cost does not include costs

incurred by the criminal justice system.13 Black (2011) provides an overview of

the literature linking intimate partner violence to adverse mental and physical

health consequences. Victims of domestic violence experience a litany of additional

health effects, including additional mental health, cardiovascular, reproductive, and

immune problems. Sabia et al. (2013) show that women who are victims of sexual

violence have decreased labor market participation rates and wages.

12National Coalition Against Domestic Violence (2019)

13Centers for Disease Control and Prevention (2019)
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Aside from direct welfare, productivity, and medical costs, indirect costs

for victims of intimate partner violence exist as well. Breiding et al. (2008) use

data from the Behavioral Risk Factor Surveillance System to conclude that being

a victim of intimate partner violence is associated with increases in health risk

behaviors, such as smoking, binge drinking, and failing to regularly visit a doctor.

Silverman et al. (2001) conclude that experiencing dating violence increases the

rates of many risky behaviors, including unhealthy weight control behaviors,

pregnancy, and suicidality, in adolescent girls. Aizer (2011) estimates that a mother

being hospitalized during pregnancy as a result of an assault decreases the birth

weight of a child by 163 grams.

A body of psychology literature investigates the relationship between

marijuana use and domestic violence. Moore and Stuart (2005) and Testa and

Brown (2015) discuss cross-sectional studies that imply a positive correlation

between marijuana use and intimate partner violence. Moore and Stuart mention

three possible mechanisms: psychopharmological; violent behaviors occurring in

the context of obtaining illegal substances; and general deviance, which essentially

posits that some individuals are predisposed to deviant behavior, making them

more likely to engage in both marijuana usage and violence. Testa and Brown

discuss several studies that show a positive association between marijuana usage

and intimate partner violence, but they acknowledge that the mechanism through

which this might occur is not well understood. They also note that the effects are

attenuated when controlling for factors like antisocial behavior, other substance use,

and psychopathology. Marijuana use may also affect parenting behavior; Freisthler

et al. (2015) survey individuals and find that marijuana use is positively related to

child physical abuse.
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Crane et al. (2016) study behavioral outcomes, such as satisfaction, anger

experience, and relationship quality, relative to couples’ marijuana use. The paper

finds that when both partners in a couple use or abstain from marijuana, the

couple displays better conflict resolution behavior than when only one partner in

a relationship uses the drug. This finding is consistent with the idea that marijuana

use by a single partner could increase conflict within a relationship. While these

studies suggest links between marijuana use and domestic violence, none present

causal evidence of the effect of a change in access to marijuana on intimate partner

violence for a population.

Alcohol

Alcohol is a potentially crucial actor in the relationship between marijuana

and domestic violence. The literature generally agrees that increased use of alcohol

leads to increases in violent crimes. Markowitz (2005) uses data from the National

Crime Victimization Survey to show that increases in the beer tax rate decrease

the probability of victimization as a result of assault. Markowitz et al. (2012)

find evidence of a similar negative relationship between alcohol prices and the

probability of assault victimization, although they find that other alcohol-related

policies, such as drunk driving laws and penalties, do not affect these victimization

probabilities. Carpenter and Dobkin (2015) use a regression discontinuity approach

at the minimum legal drinking age to estimate the effect of crossing the legal-

drinking-age threshold on crime; they find that many types of crime, including

violent crime, increase across this threshold. This finding is corroborated by

Callaghan et al. (2016) using evidence from the minimum legal drinking age

threshold in Canada.
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While the literature presents clear evidence that alcohol increases violent

crime, the relationship between alcohol use and marijuana use is much more

contested. Pacula and Sevigny (2014) and Guttmannova et al. (2016) provide

overviews of the literature on whether alcohol and marijuana are complements or

substitutes. Pacula (1998) uses National Longitudinal Survey of Youth data to

estimate individual demand equations for alcohol and marijuana; she finds that

alcohol and marijuana function as complements. Williams et al. (2004) find that

alcohol-restriction policies decrease marijuana use, which would imply that alcohol

and marijuana are complements.

More recent evidence has generally favored the idea that alcohol and

marijuana function as substitutes. Crost and Guerrero (2012) implement a

regression discontinuity design at the minimum legal drinking age and find that

marijuana consumption decreases across this threshold, while Crost and Rees

(2013) use National Longitudinal Survey of Youth 1997 data and a regression

discontinuity approach to show that alcohol and marijuana are not complements.

Anderson et al. (2013) argue that their finding of medical marijuana legalization

decreasing alcohol-related traffic fatalities provides evidence that alcohol and

marijuana are substitutes.

It may be the case that alcohol and marijuana interact differently for different

segments of the population. Wen et al. (2015) discuss the possibility that marijuana

and alcohol, especially high-dose consumption of alcohol, may act as substitutes for

individuals seeking mild relaxation while acting as complements for individuals

using higher doses while seeking a more intense euphoria. Additionally, they

estimate that passage of medical marijuana laws is associated with a 10% increase

in binge drinking and an 18-22% increase in simultaneous marijuana and alcohol
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use, which is consistent with their hypothesis that alcohol and marijuana may

function as complements for heavy users of the substances. Additional evidence

to support this hypothesis comes from Kerr et al. (2017), who find that after

recreational marijuana legalization, Oregon college students’ usage of marijuana

increased only for those students who had reported recent heavy use of alcohol.

Subbaraman and Kerr (2015) analyze National Alcohol Survey data and find

that individuals who consume both marijuana and alcohol tend to consume them

simultaneously; additionally, they find that simultaneous use of these substances

increased the odds of self-harm, social consequences, and drunk driving relative to

the use of only alcohol.

One potential pathway is a physiological complementarity between alcohol

and marijuana. In an experimental setting, Lukas and Orozco (2001) find that

subjects who consume ethanol in addition to tetrahydrocannabinol (THC)–the

active ingredient in marijuana– experience greater euphoria and higher levels

of plasma THC than subjects who consume placebo ethanol. This suggests a

pharmacological complementarity between the two drugs: consuming ethanol may

increase the body’s absorption of THC.

Hypotheses

Based on the literature, there are competing predictions of the effect of

recreational marijuana legalization on domestic violence. Multiple mechanisms

could cause domestic violence to decrease when recreational sales begin, while a

number of other mechanisms could produce the opposite effect.
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Substitution from alcohol

If alcohol use increases the likelihood of domestic violence, and if alcohol and

marijuana function as substitutes, then the story is similar to the traffic fatality

story told by Anderson et al. (2013): legalizing recreational marijuana causes

substitution away from alcohol, which lowers domestic violence incidence. Card and

Dahl (2011) find that alcohol-related intimate partner violence incidents are more

affected by upset football losses than those incidents not involving alcohol, although

they note that the power of the model is limited due to potential underreporting of

the involvement of alcohol in domestic disputes.

Direct incapacitation

Another mechanism through which recreational legalization could decrease

domestic violence is a direct incapacitation effect. Marijuana is generally used to

induce relaxation and mild euphoria; these effects may inhibit a person’s desire or

ability to commit violent acts on partners. Anecdotally, individuals may be less

inclined to commit violent acts if, after using marijuana, they just want to sit on

the couch and watch TV. This incapacitation mechanism is distinct from a possible

substitution mechanism: users of alcohol who substitute away from marijuana

may encounter both the substitution (decreased alcohol usage) and incapacitation

(relaxation) effects, but individuals who were not previously using alcohol may

experience only an incapacitation effect. This type of incapacitation could affect

both offenders and victims: if offenders are incapacitated, they may commit fewer

assaults; if victims are incapacitated, they may be less likely to report an incident

to a law enforcement agency.
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Complementarity with heavy alcohol use

On the other hand, if marijuana and heavy alcohol use function as

complements, as described by Wen et al. (2015), Kerr et al. (2017), and

Subbaraman and Kerr (2015), then the advent of recreational marijuana sales

may spur individuals to simultaneously consume marijuana and large amounts

of alcohol, which subsequently leads to an increase in intimate partner violence

incidents. These substances could also interact differently across different

situations: perhaps alcohol and marijuana function as substitutes in social

situations or instances where consumers are outside of the home, while functioning

as complements when consumed privately.

Conflict within a relationship

The ability to purchase recreational marijuana may also inject additional

conflict into a relationship, especially if there is already conflict about budget

allocation. While Crane et al. (2016) do not discuss budgets, they do find that

relationships tend to function better when both partners either use marijuana or

abstain from marijuana use. In a situation where only one partner wants to spend

a portion of the couple’s monthly budget on marijuana at the newly opened store, a

natural consequence would be increased tension, conflict, and perhaps violence.

Increased exposure

Once a marijuana market opens, it could be the case that many individuals

choose to consume marijuana at home instead of participating in other forms of

recreation outside the home. Domestic violence could increase if many individuals

choose to stay home instead of going out to a bar, especially if those individuals

55



choose to stay home and drink alcohol instead of going to bar. Spending more

time at home with a partner would mechanically increase the number of domestic

violence incidents.

Methodology and Data

Data

I use the FBI’s National Incident-Based Reporting System (NIBRS) data as

my source for reported domestic violence incidents.14 Unlike the FBI’s Uniform

Crime Reporting (UCR) data, which tracks only arrests, the NIBRS data provides

detailed information about reported crime incidents. For reporting purposes,

the NIBRS defines an incident as “one or more offenses committed by the same

offender, or group of offenders acting in concert, at the same time and place.”

Importantly, many incidents reported in the NIBRS data do not results in arrests,

which means that less-severe incidents are still recorded.

The NIBRS has multiple attractive features for use in this analysis. The most

important of these is the level of detail about both the victim and the offender;

specifically, the inclusion of a variable labelling the relationship of the victim to

the offender allows for the separation of assault incidents into those involving an

intimate partner and those that do not. I follow Card and Dahl (2011) in defining

intimate partner violence incidents: an “intimate partner” is defined as a victim

whose relationship to the offender is spouse, common-law spouse, ex-spouse,

boyfriend/girlfriend, or homosexual relationship; a domestic violence incident

occurs when a victim of this sort experiences some form of assault. Specifically,

14This data was accessed through the University of Michigan’s Inter-university Consortium for
Political and Social Research’s National Archive of Criminal and Justice Data.
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I define the incident as intimate partner violence if the reported UCR offense

codes for a given victim represent an assault and if the victim’s relationship to any

offender falls under the intimate partner classification, as defined above.

Assaults are classified into three categories in the data: aggravated assault,

simple assault, and intimidation. Aggravated assault occurs when “the offender

uses a weapon or displays it in a threatening manner, or the victim suffers obvious

severe or aggravated bodily injury.” Simple assault is “an unlawful physical attack

by one person upon another where neither the offender displays a weapon, nor the

victim suffers obvious severe or aggravated bodily injury.” Finally, intimidation

occurs when an offender “unlawfully place(s) another person in reasonable fear

of bodily harm through the use of threatening words and/or other conduct, but

without displaying a weapon or subjecting the victim to actual physical attack.”

These distinct levels of severity allow me to investigate how the effect of the

beginning of recreational sales varies by incident type. The vast majority of

incidents in the dataset are simple assault; these make up 75.3% of incidents.

Aggravated assault and intimidation comprise similar portions of the remainder,

as 12.7% of incidents are classified as aggravated assault, while 12.1% of incidents

are classified as intimidation.

A second attractive property of the NIBRS data is its frequency: the timing

of each incident is reported to the day and hour. As a result of this, I can narrow

the bandwidth of the sample around the date of treatment in each treated state.

Additionally, this temporal granularity allows me to investigate the heterogeneity of

the estimated effect by day of week and time of day.

One drawback of the NIBRS data is that law-enforcement agencies voluntarily

report incidents, which means that only populations in specific jurisdictions are
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included in the data. Some states, notably including California, do not participate

in the program at all. However, the FBI estimates that approximately 30% of

the US population is covered by law enforcement agencies that report crime

incidents to the program. My sample runs from the beginning of 2012, in which

6,115 agencies covering 90,290,162 people reported incidents, to the end of 2015,

in which 6,648 agencies covering 96,087,615 people reported incidents. Relative to

earlier years of the NIBRS program, there is very little change in the population

covered during this sample. Colorado is one of 16 states that reports all of its crime

through NIBRS, while the program covers a larger proportion of the Washington

(approximately 74%) and Oregon (approximately 42%) populations than the

population covered in the average state. Unfortunately, Portland, the largest city

in Oregon, does not report crime data to NIBRS. 15 My sample runs from the

beginning of 2012 to the end of 2015.

Due to the size of the NIBRS dataset, each year of data is broken up into

multiple segments for easier use. Each incident in the dataset is assigned an

incident number, which can be used to link incidents across different segments

of the data. While the NIBRS codebook maintains that these incident numbers

are unique, duplicate observations and incident numbers exist in the data. Some

observations with the same incident number are perfectly duplicated, including

the victim sequence number; some observations with the same incident number

are duplicated across agencies, while all other reported values are the same; and

some incident numbers span large numbers of observations across states, times,

types of crimes, and victims, even for victims with the same victim sequence

number. Duplicated observations comprise approximately 1% of the sample. For

15Federal Bureau of Investigation (2012, 2015)
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observations that are duplicated perfectly or across agencies, I keep one copy and

discard duplicates. I drop incident numbers that span multiple incidents, as shown

by duplicate victim sequence numbers within an incident at different places and

times.

A second important data cleaning consideration is the presence of a “report

date indicator” variable. The NIBRS data contains an incident date variable, which

reports when the incident occurred. However, if the report date indicator variable

in the administrative segment is turned on, the incident date variable actually

represents the date on which the incident was reported to the law enforcement

agency, not the date on which the incident occurred. No variable is included to

indicate the date on which the incident was reported to have occurred, which

means that for each incident, the data includes either the incident date or the

date on which the incident was reported, but never both. These “reported date”

incidents make up approximately 12% of the sample. While I do not have reason to

believe this indicator varies systematically across treatment, I drop these “reported

date” incidents from the sample to eliminate a source of measurement error in the

dependent variable. In general, including these reported date incidents slightly

increases the estimated treatment effect but does not qualitatively change the

results.

Model

I specify a difference-in-differences model for the number of intimate partner

violence incidents reported by a given law enforcement agency on a given day in the
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sample period. This model takes the form

µit = α + β1Tit + θi + δt +Xitγ + εit,

where µit represents the number of intimate partner violence incidents reported

by agency i on day t, θi represents an agency fixed-effect, which controls for time-

invariant characteristics that vary across agencies, and δt represents a variety of

time fixed-effects. In the main specification, I include time controls for year fixed-

effects, month fixed-effects, day-of-week fixed effects, and the full set of holiday

dummies used by Card and Dahl (2011).19 I also include an indicator variable

representing if the law making recreational marijuana legal in a given state has

passed. The matrix Xit includes controls that vary by time and agency, including

demographic controls (state-month-level population, unemployment20, fraction

of the population that is female, fraction of the population that is black, and

average age)16, indicator variables for the date of a Super Bowl played by teams

representing the state in which the agency lies, and state-specific time trends. I

explore three methods of defining the treatment variable Tit: state-level treatment,

county-level treatment, and a distance-weighted treatment method. I discuss these

treatment options in more detail in the following section.

19These include indicators for Christmas Day, Christmas Eve, New Year’s Day, New Year’s
Eve, Halloween, Valentine’s Day, St. Patrick’s Day, Columbus Day, Memorial Day, Labor Day,
Veterans’ Day, and Thanksgiving.

20State-month-level unemployment data comes from the Federal Reserve Economic Data
website, https://fred.stlouisfed.org/

16Population and demographic data come from the Current Population Survey via the
Integrated Public Use Microdata Series: Sarah Flood, Miriam King, Steven Ruggles, and J.
Robert Warren. Integrated Public Use Microdata Series, Current Population Survey: Version 4.0
[dataset]. Minneapolis, MN: University of Minnesota, 2015. http://doi.org/10.18128/D030.V4.0.
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Defining treatment

As the goal of this paper is to investigate the effect of the availability of

recreational marijuana on domestic violence, treatment should occur when an

agency or county is first exposed to legal recreational sales. It is not obvious that

there is a “right” way to define treatment in this situation. Defining treatment at

the state level imposes treatment on all consumers in a state, even those who live

quite far from a recreational store, while defining treatment at the county level

treats many consumers who live near a store in an adjacent county as untreated.

I estimate models using three different definitions of treatment. The first of

these is treatment at the state level, which means that every reporting agency

in a state is defined as being treated on the first day of legal recreational sales

occurring anywhere in that state. This method will likely underestimate the effect

of the policy, since many agencies that are geographically distant from functioning

recreational stores are included in the treatment group.

The second method of defining treatment is at the county level. In this case,

an agency is defined as being treated on the first day of the first month in which

the county containing the agency reported tax revenue to the state government.

While this method allows treatment to vary across time within a given state,

counties without operational stores will be part of the control group, even if those

counties border counties in which recreational sales have begun. Consumers in

these counties can easily drive to the store in the next county, which makes it likely

that these “control” counties are actually significantly treated. As is the case with

treatment at the state level, this definition of treatment will likely underestimate

the true effect of the policy. Agencies that span the entire state, such as state
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police, are coded as being treated on the first day of recreational sales occurring

anywhere in the state.

In an attempt to balance the issues of imposing treatment on agencies that

are likely untreated and assigning control status to agencies that are likely treated,

I construct a distance-weighted treatment variable. Using population-weighted

county centroids from the U.S. Census Bureau17, I calculate the distance from

the centroid of county i to the centroid of each other county j, for all county pairs

i, j in the sample. I then calculate each county’s distance to the nearest county

with an active recreational sales market in a given month. This process results in a

treatment variable Tit for each county:

Tit =


1, if agency i is in a county with an active recreational market in time t

1
1+.0009d2it

, if agency i is not in a county with an active recreational market in time t,

where dit is the minimum distance to the population-weighted centroid of a county

with an active recreational market in time t.

This distance-weighting function means that any county with active

recreational sales is defined as fully treated. I choose the form of the distance-

weighting function so that treatment level decreases non-linearly, and I choose

the scale parameter so that the treatment variable takes on a value of .1 for a

county that is 100 miles away from the nearest county with an active recreational

market. A county is essentially “half-treated” (where Tit = .5) if it is located 33.3

miles from the nearest treated county. Allowing treatment to be continuous allows

each county to be partially treated according to its distance, rather than enforcing

17Population-weighted centroid data comes from
https://www.census.gov/geo/reference/centersofpop.html
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binary treatment status. Additionally, this distance-weighted treatment variable

decreases at a decreasing rate, which is consistent with the idea of non-linear travel

costs to consumers. Since the choice of distance-weighting function is arbitrary, I

also estimate the model using alternative scale parameters in the distance-weighting

function. Changes to the distance-weighting function do not qualitatively change

the results.

While defining treatment at the state or county level crisply defines

boundaries and doesn’t allow for spillover treatment effects, using a distance-

weighted treatment allows areas across state borders to be considered in the

treatment group. This is especially important considering that Hansen et al.

(2017) show that there is significant diversion of recreational marijuana sold in

Washington across the Oregon border in the months following the opening of the

recreational marijuana market in Washington.

Results

Main estimates

In Table 6, I present the difference-in-differences estimates of the pooled

treatment effect among Colorado, Washington, and Oregon by the order of the

state-specific time trend used in the model. This model uses the full sample of

data, which consists of all agency-day counts of domestic violence incidents from

January 1, 2012 to December 31, 2015.

With state-specific linear time trends included in the model, the pooled

treatment effect of the beginning of recreational sales is 0.0104, which means that

being in a state that has begun the sale of recreational marijuana increases reports

of domestic violence by 0.0104 incidents per agency per day. The estimated pooled
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TABLE 6.
Estimated effect of the beginning of recreational marijuana sales by definition of

treatment variable, standard errors adjusted for clustering at the level of treatment

(1) (2) (3) (4) (5)
Treatment: Pooled State County Distance1 Distance2 Separate State

Legalization -0.0009 0.001 0.0009 0.001 -0.002
(-0.22) (0.16) (0.11) (0.16) (-0.51)

Market opens 0.0104∗∗∗ 0.0213 0.0177∗ 0.0205
(4.99) (1.54) (1.72) (1.59)

Percentage change 2.9% 6.2% 5.2% 6.0%

CO market opens 0.0120∗∗∗

(3.49)

Percentage change 3.0%

WA market opens 0.0088∗∗∗

(6.02)

Percentage change 2.5%

OR market opens 0.0229∗∗∗

(5.46)

Percentage change 11.0%

Observations 3434302 3429594 3429594 3429594 3434302
Number of clusters 36 1678 6623 6623 36

t statistics in parentheses

All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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treatment effect is statistically significant at the 1% level when standard errors

are clustered at the state level and statistically significant at the 10% level when

standard errors are clustered at the agency level. The average law enforcement

agency in the sample reports 0.338 incidents of domestic violence per day; this

means that the estimated treatment effect from the model with a linear time trend

represents a 2.9% increase in the number of reported incidents. The estimated

treatment effect remains positive, statistically significant, and of similar magnitude

when the model is instead estimated with quadratic, cubic, or quartic state-specific

time trends. These estimates can be found in Appendix Table 1. Notably, while

the estimated effect of the opening of the recreational market is positive and

statistically significant, the estimated effect of legalization–when the law passes

making recreational use acceptable, but without active legal recreational markets–is

virtually zero in every specification.

In the main specification, treatment occurs at the state-day level on the first

day of recreational sales anywhere in the treated state. The table also presents

estimates of the treatment effect using the previously discussed alternative methods

of treatment, county-level and distance-weighted; the standard errors are adjusted

for clustering at the level of treatment, which is the county level. The estimated

effect size for all three specifications is larger than the estimated effect size when

treatment occurs at the state. These effects are now less statistically significant;

the first distance-weighted treatment estimate is statistically significant at the 10%

level, while the estimates for county-level treatment and the alternative distance-

weighted treatment are close to statistical significance (t-statistics of 1.54 and 1.59,

respectively). The first distance-weighted treatment is defined by the function

1
1+.0009d2it

, where djt is the minimum distance to the population-weighted centroid
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of a county with an active recreational market in time t, which means that a county

100 miles from the nearest county with an active recreational market is .1 treated.

The alternative distance-weighted treatment is defined by the function 1
1+.0036d2it

,

where djt is the minimum distance to the population-weighted centroid of a county

with an active recreational market in time t, which means that a county 50 miles

from the nearest county with an active recreational market is .1 treated.

I also present estimates of the treatment effect in each of the three treated

states separately using the full sample of data. The estimated treatment effects are

0.0120 in Colorado, 0.00883 in Washington, and 0.0228 in Oregon. These estimates

are all statistically significant at the 1% level. Relative to the mean number of

reported domestic violence incidents at the agency-day level in each state, these

estimates correspond to increases in reported incidents of 3.0% in Colorado, 2.5% in

Washington, and 11.5% in Oregon.

Additionally, I estimate a Poisson regression model using the full sample of

observations. The incidence-rate ratio, which is the exponentiated coefficient from

the Poisson regression, allows for interpretation of effects as changes in relative

rates of the event in question caused by a one-unit change in the given independent

variable. The estimated treatment effect is the incident-rate ratio minus one, which

allows the coefficient to be interpreted as the percentage change in the dependent

variable, domestic violence incidents. The estimated treatment effect from the

Poisson model incorporating state-level treatment and linear state-specific time

trends is 0.0305, which represents a 3.1% increase in domestic violence incidents

in treated states after treatment occurs, and this estimated treatment effect is

statistically significant at the 10% level. Appendix Table 2 provides Poisson

estimates of the treatment effect by definition of treatment and order of state-
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specific time trend. These estimated treatment effects range from a 2.9% increase

in domestic violence incidents (state-level treatment with quadratic state-specific

time trends) to a 6.4% increase (county-level treatment with quartic state-specific

time trends).

Robustness

One potential concern is that agencies could change their reporting behavior

across treatment, so that the effect is caused by small agencies that previously

did not report incidents beginning to report. If this changes systematically across

treatment, agency fixed-effects, which assume that the level differences are time-

invariant, will not account for the issue. Table 7 provides estimates of the effect

by sub-samples of agencies by the percentiles of the number of days in the four-

year sample on which they report any crime. The estimated effects remain positive,

statistically significant, and unchanged across agency reporting percentiles.

TABLE 7.
Estimated effect of the beginning of recreational marijuana sales on IPV, full sample by
agency reporting percentile, state-level treatment, standard errors adjusted for clustering

at the state level

(1) (2) (3) (4) (5)
All agencies Top 75 Top 50 Top 25 Report every day

Legalization -0.0009 -0.00184 -0.00146 0.00483 0.0600
(-0.22) (-0.25) (-0.14) (0.26) (1.00)

Market opens 0.0104∗∗∗ 0.0133∗∗∗ 0.0211∗∗∗ 0.0374∗∗∗ 0.0786∗∗∗

(4.99) (4.92) (4.29) (4.88) (5.20)

Percentage change 2.9% 3.1% 4.1% 4.5% 4.8%
Observations 3434302 2576436 1720058 863637 243925

t statistics in parentheses
All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Another potential concern is that many states may not represent good

control groups for Colorado, Washington, and Oregon. For instance, we may not

expect Alabama to be similar to the states that have voted to legalize recreational

marijuana sales. In Table 8, I present estimated treatment effects by order of time

trend when estimating the model using only Colorado, Washington, and Oregon. In

this model, the two states whose treatment statuses remain constant through the

treatment date in the third state act as the controls for the treated state. These

estimated effects are not statistically significant, but they remain positive and of

similar magnitudes to the estimated effects when the entire sample of states is

included as controls. With linear state-specific time trends, the estimated effect

represents a 3.0% increase in incidents, which is almost identical to the estimated

effect in the full model.

TABLE 8.
Pooled state-level treatment by order of time trend, clustered by state, sample includes

only CO, OR, WA

(1) (2) (3) (4)
Linear Quadratic Cubic Quartic

Market opens 0.0109 0.00719 0.00889 0.00685
(1.86) (1.43) (2.09) (0.78)

Percentage change 3.0 2.0 2.5 1.9
Observations 331058 331058 331058 331058

t statistics in parentheses

All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Next, I investigate the treatment effect in each state in a narrower time

bandwidth. For each treated state, I estimate the model using data in a 120-

day window around the state-level treatment date: the subsample begins 60 days

prior to the beginning of recreational sales in the state and ends 60 days after the
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beginning of recreational sales. In Colorado, this window runs from November

2, 2013 to March 1, 2014; in Washington, the window runs from May 9, 2014 to

September 6, 2014; and in Oregon, the window runs from August 2 to November

29. In each bandwidth, recreational sales policy changes only in the treated state

at the time of treatment. These estimates, which include state-specific linear time

trends, can be found in Table 9.

TABLE 9.
Estimated effect of the beginning of recreational sales on IPV, 60-day bandwidth,

state-level treatment, by allowing time trend of treated state to break

(1) (2) (3)
Colorado Washington Oregon

No trend break 0.0562∗∗∗ 0.0423∗∗∗ 0.0351∗∗∗

(3.63) (7.41) (6.63)

Percentage change 14.1 12.0 17.7
Trend break 0.0559∗∗∗ 0.0422∗∗∗ 0.0349∗∗∗

(3.61) (7.47) (6.57)
Observations 264906 296594 294731

t statistics in parentheses

All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In each of the three states, the estimated treatment effect is larger in the

narrower bandwidth than in the full sample: the estimated effects are 0.0562,

0.0423, and 0.0351 in Colorado, Washington, and Oregon, respectively. These

effects represent a 14.1% increase in reported domestic violence incidents in

agencies in Colorado, a 12.0% increase in reported incidents in Washington, and

a 17.7% increase in reported incidents in Oregon. All of these estimated effects

are statistically significant at the 1% level. I also estimate the model for each

state in the narrower bandwidth using a Poisson specification. The estimated
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effects relative to the mean of reported incidents are 16.7% in Colorado, 11.8% in

Washington, and 15.2% in Oregon.

Up to this point, I have enforced on this model the assumption that the state-

specific linear time trends in the treated states are the same in the pre-treatment

and post-treatment periods. Table 9 also displays estimates for each state when

this assumption is relaxed, and the treated state is allowed to have separate pre-

treatment and post-treatment linear time trends. In each of the three treated

states, allowing the time trend to break at the treatment date has little impact

on the estimated treatment effect and does not affect the estimated statistical

significance of the result.

I provide a visual characterization of the effect in Figure 10 and Figure 11.

Here, I estimate the model in the 120-day window around treatment for each state

without including a treatment variable. Figure 1 plots the smoothed empirical

density of the sum of the residuals from the without-treatment model for each of

the three treated states, as well as an identical plot for the pooled residuals from

the treated states. While the combined distribution does not perfectly shift to the

right, multiple portions of the distribution shift to the right, which corresponds to

the positive estimated treatment effect. In Figure 2, I present the pooled empirical

CDF of these residuals for the treated states when the model is estimated without

treatment; this figure makes it more obvious that the distribution of these residuals

has shifted to the right following the treatment date.
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FIGURE 10.
Density of residuals of model without treatment
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Cumulative density of residuals of model without treatment
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Potential Mechanisms

Is the estimated effect merely due to changes in reporting?

Victim reporting

One possibility is that the introduction of recreational marijuana sales does

not actually cause more domestic violence incidents. Instead, it could be the

case that individual victims are more likely to report incidents once the stigma

of marijuana use has diminished. For instance, a victimized individual may

previously have refrained from calling the police about a crime due to the presence

of marijuana in the home. Because the estimated effect of recreational sales on

domestic violence represents the increase in incidents reported by law enforcement

agencies, this effect is composed of both the actual increase in incidents that occur

and any potential increase in reporting of incidents that would have occurred

absent treatment.

If the increase in reported incidents were driven by changes in individual

reporting behavior, we would expect to see the largest estimated effects for

groups that previously underreported these types of incidents. I use data from

the National Crime Victimization Survey18 from 2007-2015 to determine reporting

rates for the types of intimate partner violence incidents taken from the NIBRS

data. This survey is a questionnaire conducted by the Bureau of Justice Statistics

to measure crime victimization, and it includes a variable specifying whether the

incident described by the respondent was reported to the police.

18This data was accessed through the University of Michigan’s Inter-university Consortium for
Political and Social Research’s National Archive of Criminal and Justice Data.
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I investigate how the treatment effect varies across severity levels of assault.

As mentioned earlier, the three categories coded in the data are aggravated assault,

simple assault, and intimidation. Table 10 presents estimated effects effects by

type of intimate partner violence for the county- and distance-weighted treatment

definitions clustered at the county level, which provide the most conservative

estimates of statistical significance. While each type of assault increases when

recreational sales begin, the largest effect size in term of percentage change from

the mean occurs in intimidation, which is the least severe category. Interestingly,

the middle category, simple IPV, sees the smallest increase.

TABLE 10.
Estimated effect by severity level of IPV, county and distance-weighted treatment,

clustered at treatment level, state-specific linear time trends

(1) (2) (3) (4)
IPV Agg. IPV Sim. IPV Int. IPV

County-level treatment 0.0211 0.00443∗∗∗ 0.0131 0.00355∗

(1.53) (3.03) (1.07) (1.96)

Percentage change 6.2% 9.8% 4.9% 13.3%
Distance-weighted treatment 0.0177∗ 0.00264 0.0108 0.00430∗∗

(1.72) (1.58) (1.19) (2.22)

Percentage change 5.2% 5.8% 4.0% 16.2%
Alternative distance-weighted treatment 0.0205 0.00360∗∗ 0.0130 0.00399∗∗

(1.59) (2.37) (1.13) (2.23)

Percentage change 6.0% 7.9% 4.9% 15.0%
Observations 3429594 3429594 3429594 3429594

t statistics in parentheses
All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

This pattern may indicate that the total effect is a composite of multiple

mechanisms. Intimidation, as the least severe type of IPV, is the most marginal

category. Individuals who previously would not have reported assaults may have

been more likely not to report instances of intimidation, while reporting a higher
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fraction of the simple assaults that truly occurred and an even higher fraction of

the aggravated assaults that occurred. The effects from this mechanism would be

largest for intimidation and smallest for aggravated assault.

Another way to investigate individual underreporting is to look at incidents

involving drugs. If domestic violence incidents involving drugs were reported less

frequently than similar incidents not involving drugs, the estimated increase in

intimate partner violence could result from increased reporting by victims of drug-

using offenders. However, this does not appear to be the case. The NCVS data

includes a question about whether the offender of the crime was using any drugs at

the time of the offense. From 2007 to 2015, victims of intimidation, simple assault,

or aggravated assault by intimate partners were more likely to report the incident

to the police (63.3%) if the offender was using drugs than if the offender was

not using drugs (57.7%). There is no evidence that incidents involving drugs are

underreported relative to those incidents not involving drugs; in order for the main

estimated effect to be driven by changes in victim reporting behavior, victims of

drug-using offenders (who already reported crimes at a higher rate) would have to

differentially increase their reporting relative to victims of non-drug-using offenders.

Another possibility is that certain demographic groups are more likely to

underreport these types of incidents than others. If these underreporting segments

see the largest increase in domestic violence incidents, it could provide support

for the idea that the estimated effect is truly just a change in individual reporting

behavior.

In the NCVS data, black victims are more likely to report incidents to the

police than white victims across all types of violent crime. Specifically, for the years

2007-2015, black victims report intimidation, simple assault, or aggravated assault
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TABLE 11.
IPV by victim race, full sample, state-specific linear time trends

(1) (2) (3) (4)
All White Black Other

Legalization 0.00155 0.00265 0.000966 0.000168
(0.43) (1.24) (0.45) (0.45)

Market opens 0.0126∗∗∗ 0.00626∗ 0.00496∗∗∗ 0.00125
(4.48) (1.99) (3.51) (1.31)

Percentage change 3.5% 2.6% 4.5% 18.9%
Observations 3834926 3834926 3834926 3834926

t statistics in parentheses

All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

by an intimate partner to the police 65.4% of the time, while white victims (58.6%)

and victims of other races (59.2%) report these crimes at lower rates. However,

the estimated effect of the recreational marijuana market opening is larger in

percentage terms (4.5%) for black victims than for white victims (2.6%). Table

11 presents the estimated effect of the market opening by race; while the estimated

effect is extremely large in percentage terms (18.9%) for victims of other races, the

estimated effect is not statistically significant from zero. Additionally, these victims

of other races account for under 3.5% of the total pre-treatment incidents.

Based on these data on reporting behavior by type of victim, it does not

appear to be the case that the estimated increase in domestic violence incidents

is being driven by groups that were previously reporting incidents less frequently

than the average level of victim reporting.

Police enforcement

Another potential mechanism for the estimated increase in domestic violence

incidents is through police resources: if law enforcement agencies were previously
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devoting employee-hours to policing drug crimes in a way that kept them from

responding to all domestic violence calls, a shift from drug enforcement to

enforcement of other crimes could manifest as an increase in domestic violence.

While the NIBRS data represent any incident to which a law enforcement agency

arrived, I do not have data on what fraction of domestic violence calls to an

emergency number receive a response in the form of an officer.

One important aspect of pinning down the mechanism of this positive effect

is understanding effect heterogeneity. If the estimated treatment effect were due

to a shift in police reporting behavior, we would expect to see similar estimated

treatment effects across all days of the week and across all times of day. However,

this is not the case. The estimated effect is larger on weekends and in the evenings.

In Table 12, I present estimated treatment effects by day of the week, as well

as the percentage change from the mean that each of the effects represents. The

estimated positive effects are concentrated on the weekend: the largest estimated

effect (12.9%) occurs on Sunday; the next-largest estimated effect, which occurs

on Saturday, is barely half as large (6.6%). The next two largest effects occur on

Friday and Monday, each of which contain a portion of the weekend. Friday night

after individuals return from work represents the beginning of the weekend, and the

early hours of Monday morning (after 12 a.m. Sunday night) represent the end of

the weekend. Table 13 presents similar estimates for weekdays relative to weekends.

The way in which the estimated treatment effect is distributed throughout

the week suggests that the mechanism is not purely a reporting story, either on

the part of individuals or on the part of law-enforcement agencies. In order for

the effects to be caused only by changes in reporting, either individuals or law-

enforcement agencies would need to differentially change their reporting behavior
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TABLE 12.
Full sample IPV by day of week, distance-weighted treatment, standard errors adjusted

for clustering at the county level

(1) (2)
Estimated effect Percentage change

Monday 0.0132 4.3%
(1.00)

Tuesday -0.00566 -1.9%
(-0.55)

Wednesday -0.00222 -0.7%
(-0.21)

Thursday 0.00813 2.7%
(0.69)

Friday 0.0157 4.9%
(1.51)

Saturday 0.0271 6.6%
(1.08)

Sunday 0.0582∗ 12.9%
(1.68)

Observations 3429594

t statistics in parentheses

All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE 13.
Full sample IPV by weekend, distance-weighted treatment

(1) (2) (3)
Clustered by state Clustered by county Clustered by agency

Weekday 0.00764 0.00764 0.00764
(1.46) (0.97) (1.01)

Weekend 0.0314 0.0314∗ 0.0314
(1.44) (1.71) (1.59)

Observations 3429594 3429594 3429594

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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by day of the week after treatment. While this is theoretically possible, it is

unlikely. Neither group should be expected to increase reporting on the weekend

but not during the week. However, while this is evidence that the mechanism is not

purely reporting, it does not explicitly rule out an impact of a change in reporting

behavior.

While this pattern does not pin down the mechanism of the effect, it is

consistent with multiple other potential mechanisms. The largest increases in

reported incidents could occur on the weekends if individuals spend more time at

home in order to use marijuana, if conflicts about a partner purchasing marijuana

occur more frequently on the weekend, if individuals consume marijuana and large

quantities of alcohol together on the weekends, or some combination of these

three behaviors. Specifically, it is easy to imagine and individual who, without

available recreational marijuana, would have spent some or all of the weekend doing

some activity away from home. Once sales begin and this individual has access to

marijuana, he or she decides instead to spend that time at home using marijuana

and, as suggested by Wen et al. (2015), alcohol.

In Table 14, I present estimates of the effect size by time of day; I divide the

day into six parts: early morning (12 a.m.-4 a.m.), morning (4 a.m.-8 a.m.), late

morning (8 a.m.-12 p.m.), afternoon (12 p.m.-4 p.m.), evening (4 p.m.-8 p.m.) and

night (8 p.m.-12 a.m.). Incidents are assigned to specific day-part categories based

on the incident hour variable in the NIBRS dataset. The estimated effect is positive

for the late morning, afternoon, evening, and night segments, and the largest effect

sizes by percentage change from the pre-treatment mean occur in the afternoon,

evening, and pre-midnight hours. The largest estimated effect does not occur after

midnight, when we would expect to see individuals using marijuana, alcohol, or
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both simultaneously; this implies that the effect is not being caused by a direct

effect of consumption of marijuana. Instead, it seems as though the largest effect

occurs at times when individuals are likely purchasing marijuana: during the day

and after work or school.

TABLE 14.
IPV by time of day, full sample, clustered by state

(1) (2)
Estimated effect Percentage change

12 a.m.-4 a.m. -0.000416 -0.6%
(-0.24)

4 a.m.-8 a.m. 0.00000657 0.02%
(0.01)

8 a.m.-12 p.m. 0.00152∗ 3.4%
(2.01)

12 p.m.-4 p.m. 0.00269 5.0%
(1.08)

4 p.m.-8 p.m. 0.00293∗∗∗ 4.1%
(3.57)

8 p.m.-12 a.m. 0.00592 6.1%
(1.63)

Observations 3429594

t statistics in parentheses

All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

One method to get at the question of police resources is to look at data from

traffic stops in the states that began selling recreational marijuana. I use data

from the Stanford Open Policing Project19 to estimate the effect of legalization

and recreational sales beginning on traffic stops, searches, and contraband found

19https://openpolicing.stanford.edu/
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by state police in Washington and Colorado.20 While state police are likely not

responding to the majority of domestic violence calls, a decrease in traffic stops

when recreational sales begin could indicate that law enforcement agencies have

substituted some fraction of their time from policing traffic violations to enforcing

other types of crime, like domestic violence.

In Table 15, I present the estimated effects of both the legalization of

marijuana and the beginning of recreational sales in Washington on the total

number of traffic stops, the total number of searches, and the total number of times

contraband was found. Table 16 presents the same estimated effects for Colorado.

In both tables, the model uses data from 2012-2015 and includes year, month, and

day-of-week fixed effects.21

TABLE 15.
Traffic stops, searches, and contraband found in Washington, 2012-2015

(1) (2) (3)
Stops Searches Contraband

Legalization -30.23 -13.87∗∗∗ -6.868∗∗∗

(-0.39) (-4.20) (-7.99)

Percentage change -0.92% -15.6% -45.5%

Market opens 1.242 -0.596 0.271
(0.03) (-0.36) (0.63)

Percentage change 0.04% -0.72% 2.2%
Observations 1461 1461 1461

t statistics in parentheses

All models include year, month, and day-of-week fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

20While the website provides a file for Oregon, all of the necessary variables are empty.

21The Washington data erroneously duplicates all stops in the month of April in 2015; the
results are strikingly different if these are not corrected.
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TABLE 16.
Traffic stops, searches, and contraband found in Colorado, 2012-2015

(1) (2) (3)
Stops Searches Contraband

Legalization -58.11 -2.905∗∗∗ -2.275∗∗∗

(-0.96) (-5.43) (-5.83)

Percentage change -4.9% -50.3% -66.1%

Market opens 12.79 -0.723 -0.293
(0.13) (-0.82) (-0.46)

Percentage change 1.10% -14.8% -10.1%
Observations 1461 1461 1461

t statistics in parentheses

All models include year, month, and day-of-week fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The pattern of changes seen at the times the laws take effect and the times

when recreational sales begin is consistent across Colorado and Washington. In

both states, the number of searches and the number of times contraband is found

decrease dramatically when the law legalizing marijuana use takes effect, but there

is almost no change when recreational sales begin. The number of daily stops

decreases by a relatively small fraction in both states when the laws take effect,

and there is no evidence that the number of stops changes in either state when

recreational sales begin. In terms of police resources, these estimates suggest that

while some police time constraint could be slackened when legalization takes effect,

it is not the case that fewer traffic stops are happening once recreational sales

begin.

Another way to investigate whether the estimated effect could be caused by

changes in police enforcement behavior is to look at crimes police respond to in

similar ways to domestic violence. Using the NIBRS data, I estimate the model
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using non-intimate-parter home assaults, which should be the most similar crime to

intimate partner assaults.

Both crimes require some sort of call to police, who must then respond and

file a report about the incident. If the estimated increase in intimate partner

violence incidents is caused by additional available police resources, we should

see similar increases in non-intimate-partner home assaults. However, this is not

the case. Table 17 presents these estimates, which show that there is virtually no

change in non-intimate-partner home assaults when recreational sales begin.

TABLE 17.
IPV and non-IPV home assaults, full sample, clustered by state

(1) (2)
IPV Non-IPV home assaults

Legalization 0.00155 0.00817
(0.43) (1.26)

Market opens 0.0126∗∗∗ 0.000813
(4.48) (0.18)

Observations 3834926 3834926

t statistics in parentheses

All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Neither of these techniques suggest that there is increased police enforcement

of crimes that were already happening prior to the advent of the recreational

marijuana market. Additionally, Law Enforcement Officers Killed or Assaulted

(LEOKA) data, which provide the number of officers hired in each state in each

year, do not show a consistent upward trend in hiring in treated states during the

years in the sample. In sum, there does not appear to be any evidence that the

estimated increase in domestic violence is merely additional enforcement of pre-

existing crimes.
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Is there increased conflict within relationships?

If the estimated increase in domestic violence incidents does not stem from

changes in police or individual reporting behavior, it must be the case that more

of these incidents truly occur once recreational sales of marijuana begin. One

potential source of new or increased conflict within a household comes from

the introduction of a new pressure on the household’s budget constraint: the

legal availability of recreational marijuana expands the household’s choice set,

and purchasing marijuana requires using some portion of the budget that was

previously devoted to some other expense. If one individual in the household

spends money previously used for necessities on marijuana, tension will increase,

and in some cases, this will lead to an increase in domestic violence incidents.

To investigate changes in household expenditure in states in which

recreational sales begin, I use data from the Consumer Expenditure Survey,22 in

which American consumers fill out a detailed diary of all expenditures over a two-

week period. These expenditures are classified by Universal Classification Code,

which provides extremely fine categorization of expenses.

Each of the two weeks of an individual’s diary are assigned separate

identification codes in the data; however, because the data does not identify the

specific start date within a month, I collapse an individual’s two diary-weeks into

one observation per individual. Each observation then consists of an individual

diary and is assigned to the month in which the majority of diary days occurred.28

The finest level of geographic information available is the individual’s state. An

22Data taken from the Bureau of Labor Statistics’ public-use microdata data files page at
https://www.bls.gov/cex/pumddata.htm.

28For example, a diary recording expenditures on 8 days in May, 2013 and on 6 days in June,
2013 is assigned to May, 2013.
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observation is then considered treated if the individual comes from a state with an

active recreational market. I partition the set of expenditures into broad categories:

food, alcohol, housing, apparel, transportation, entertainment.23

One important consideration when using this dataset is the size of outliers

relative to normal expenditures within categories. For example, one household in

the dataset made a $167,500 retirement contribution during its two-week diary

period, while another household spent $3,995 on a catered affair at a restaurant.

While these are likely genuine data (as opposed to data-entry errors), it is unlikely

that these are regular expenses that are truly representative of the household’s

spending habits. I investigate the data across three methods of dealing with these

outliers: using the full sample, in which case the outliers are treated as true data

and not amended; winsorizing the data by category, in which case the extreme

values of the data above a certain percentile are replaced with the value of the

cutoff percentile; and trimming the data by category, in which case observations

above a certain percentile are dropped from the sample.

Another important consideration is how “smooth” expenditures are within

each category. Many household expenditures are both large and infrequent,

like the previously mentioned retirement contribution or purchasing a house in

cash during the diary period. Two rough methods of “smoothness” of various

categories of expenditures are the standard deviation of expenditure divided by

the mean of expenditure and the percentage of zeroes within a given category. For

example, savings is the least “smooth” of the categories: the standard deviation

of expenditure is 36 times as large as the mean, and 79.7% of the observations

23I treat any catered affairs at restaurants as entertainment, not food expenditure, as these
are infrequent events that can cost many multiples of an individual’s food purchases for the diary
period. Two additional categories, housing and savings, exhibit large outliers.
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are zeroes. At the other end of the spectrum, food is the “smoothest” category

by a large margin. The standard deviation of food is smaller than the mean (in

every other category, the standard deviation is at least twice as large as the mean),

and only 0.75% of diaries report zero food expenditures (the category with the

second-fewest zeroes, housing, sees no expenditures reported 11.2% of the time). As

a result, we should expect the estimated effects for the food category to be the least

responsive to various methods of dealing with outliers, and this is indeed the case.

More importantly, food is likely to be a frequent expense whose budget is

reasonably fungible. It is also a necessity, and changes in food expenditures could

certainly cause strife within a household. In Table 18, I present the estimated

effects of legalization and the start of recreational sales on expenditures for six

categories in the data, excluding housing and savings.24 This table uses data from

which observations above the 99th percentile of each category have been trimmed;

the same tables using the full and winsorized datasets are available in the appendix.

All models include year, month, and state fixed effects. Treatment is pooled across

treated states.

TABLE 18.
Consumer expenditure by category, pooled treatment, trimmed at 99, clustered by state

(1) (2) (3) (4) (5) (6)
Food Alcohol Healthcare Entertainment Transportation Apparel

Legalization 9.989 5.284∗∗∗ -9.029 23.63 61.81∗∗∗ 15.01∗

(0.70) (3.89) (-1.61) (1.35) (5.26) (1.91)

Market opens -34.20∗∗∗ -4.187∗∗∗ -6.170∗∗∗ 22.12 -0.221 -10.59∗

(-4.25) (-3.35) (-2.99) (1.37) (-0.07) (-1.86)
Observations 20302 20302 20302 20302 20302 20302

t statistics in parentheses
All models include year, month, and state fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

24Housing is likely less fungible than the categories presented; the vast majority (79.7% of
households) report $0 in savings during the diary period.
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While significant effects are estimated for multiple categories, many of these

estimates (and their precision) fluctuate significantly depending upon the method

of dealing with outliers in the data. However, the estimated effect of beginning

recreational sales on food expenditure is extremely stable across these methods.

In the table provided, the estimated effect represents an average decrease in

food expenditures of $34.20 per two-week diary entry in households treated by

the opening of recreational marijuana markets. Appendix Tables A.3 and A.4

show that these estimates are relatively stable across various percentiles of both

winsorization and trimming. Appendix Tables A.5 and A.6 present expenditure

categories for the full sample and the winsorized sample. Additionally, in each of

the estimated models, the estimated negative treatment effect is composed of an

estimated negative treatment effect on food expenditures in each of the treated

states.

The estimated decrease in food expenditures is larger for households in the

bottom tercile of the income distribution. Table 19 presents the estimated effect of

recreational markets opening on food expenditures using an interaction between

treatment and an indicator variable denoting whether the household is in the

bottom third of the income distribution, as calculated from the before-tax income

variable in the consumer expenditure data.25 The estimated differential effect for

low-income households relative to households in the top two-thirds of the income

distribution is statistically significant and approximately three times as large as the

estimated effect for households not in the bottom tercile.

25A small fraction (37 observations) of the household are listed with negative before-tax
incomes; the second column of Table 19 presents estimates with these negative-income households
dropped from the sample. The estimated effects are qualitatively unchanged.
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This larger decrease in food expenditures for low-income households is

consistent with a conflict mechanism: low-income households’ budget constraints

likely bind more tightly than the budget constraints of high-income households, and

a larger food expenditure effect likely causes more strife in a low-income household

than a high-income household. Although there is no way to match incomes to

victims in the NIBRS data, this suggests that the estimated increase in intimate

partner violence is largely driven by low-income households.

TABLE 19.
Food expenditure by before-tax income tercile, pooled treatment, clustered by state

(1) (2)
Full sample Non-negative incomes

Legalization 1.264 5.521
(0.10) (0.40)

Market opens -13.08 -13.03
(-1.38) (-1.38)

Bottom tercilexLegalization 27.37∗ 27.91∗

(1.81) (1.84)

Bottom tercilexMarket opens -44.82∗∗∗ -44.80∗∗∗

(-2.81) (-2.82)
Observations 20507 20470

t statistics in parentheses

All models include year, month, and state fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

While the estimated effect may seem large in dollar terms, it is not

unreasonable given other estimates of marijuana expenditure. For example, Kilmer

(2016) estimates that residents of Vermont (in which recreational sales are not

legal) spend $125 million to $225 million on marijuana each year. This result

implies that the average person spends $200-$360 per year on marijuana, or $17-

$30 per person per month. Once we account for the facts that many households are
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composed of multiple individuals and that many individuals in treated states begin

to purchase marijuana once legal sales begin, the estimated effect size–an average

household decrease of $68.40 in food expenditures over a four-week period–seems

much more reasonable.

These estimates provide evidence that treated households spend significantly

less money on food once recreational marijuana markets open in their states.

This reduction in food expenditure is likely to be a source of conflict among

budget-constrained households, especially those households in the bottom of the

income distribution. This suggests that at least a portion of the estimated increase

in domestic violence incidents can be attributed to increased conflict within

relationships as a result of financial conflict caused by substitution of expenditure

from the household’s food budget to marijuana.

Is the effect caused by individuals spending more time at home?

Another possibility is that when recreational sales start, some individuals

choose to purchase marijuana and consume it at home rather than doing

recreational activities away from home (like going to a bar, for instance). If this

were the case, domestic violence could be occurring at the same rate, conditional

on victim and perpetrator time spent together, as before the policy change took

effect, but the larger population at home with partners would mechanically lead to

an increase in the number of incidents. This mechanism is not consistent with the

estimated heterogeneity of effect by time of day: there is no estimated increase in

IPV from 12 a.m.-4 a.m., when this type of substitution would likely occur.

To investigate this effect, I estimate the treatment effect of the opening of

recreational markets on assaults at bars/nightclubs, as determined by the location
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type variable in the NIBRS dataset. Assaults are defined exactly as they are in the

main specification: the variable consists of aggravated assaults, simple assaults, and

intimidation. These results are presented in Table 20.

If it were the case that individuals substituted away from bars to staying

home, there should be a mechanical reduction in bar assaults that corresponds with

the estimated increase in domestic violence incidents. Instead, as seen in the table,

the estimated effect of the beginning of recreational sales on bar assaults is slightly

positive and statistically insignificant from zero. This implies that there is not a

mechanical exposure effect as a result of substitution away from other recreational

activities.

TABLE 20.
IPV and bar assaults, full sample, clustered by state

(1) (2)
IPV Bar assaults

Legalization 0.00155 0.000391
(0.43) (1.01)

Market opens 0.0126∗∗∗ 0.00137
(4.48) (1.40)

Observations 3834926 3834926

t statistics in parentheses

All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Is there a direct effect of marijuana consumption?

Another possible mechanism that could cause an increase in intimate partner

violence incidents is a complementary relationship between marijuana use and

alcohol use: if marijuana use leads to more violence, or if it exacerbates the effect of

alcohol use. Past literature (Card and Dahl, 2011) suggests that a complementarity
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with alcohol could produce an increase in violent behavior. I investigate whether

there is evidence of this effect through the consumer expenditure survey data and

the uniform crime reporting data.

In the offender segment of the NIBRS, there exist variables documenting

whether the officer reported the offender as being under the influence of alcohol

or under the influence of drugs. However, these variables are likely subject to

significant underreporting by law enforcement officers who respond to incident

reports, as discussed in Card and Dahl (2011) and Lindo et al. (2018). In Table 21,

I present estimated effects of the opening of the recreational marijuana sales market

on IPV incidents marked as associated with alcohol use and drug use. The effect on

alcohol-related incidents is small, positive, and statistically insignificant, while the

effect on drug-related incidents is small, negative, and statistically insignificant. It

is important to note that officer reporting behavior of these variables may not be

constant across treatment; once recreational sales of marijuana begin, officers may

be more likely not to note the presence of marijuana in their report. While both

of these estimated effects would suggest that the estimated increase in domestic

violence incidents are not caused by a direct effect of marijuana and alcohol

complementarity, these indicator variables are likely not very reliable.

While the consumer expenditure model using data trimmed at the 99th

percentile estimates a significant negative effect of the opening of the recreational

market on alcohol expenditure, other methods of dealing with outliers (using the

full data set and winsorization) do not estimate an effect statistically different

from zero. Table 22 depicts the instability of these effects across a various trim

percentiles; the estimated effect is also not consistent across various winsorization

percentiles. Despite the inconsistency of these estimates, none of the models
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TABLE 21.
Estimated effect of the beginning of recreational sales of marijuana on IPV by type,
state-level treatment, state-specific linear time trends, standard errors adjusted for

clustering in state

(1) (2) (3)
IPV Susp. alc. Susp. drugs

Market opens 0.0104∗∗∗ 0.0007 -0.0001
(4.99) (0.35) (-0.41)

Observations 3429960 3429960 3429960

t statistics in parentheses

All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

estimate a significant positive effect on alcohol expenditure. This implies that the

increase in domestic violence incidents is not driven by households consuming more

alcohol and subsequently committing more violent crime.

TABLE 22.
Alcohol expenditure by trim percentile, pooled treatment, clustered by state

(1) (2) (3) (4)
99th 95th 90th 80th

Legalization 5.284∗∗∗ 2.275∗ 1.910∗∗∗ 0.0864
(3.89) (1.89) (7.28) (0.12)

Sales start -4.187∗∗∗ 1.708 -1.357 -0.998∗∗

(-3.35) (1.62) (-0.69) (-2.17)
Observations 20302 19482 18457 16406

t statistics in parentheses

All models include year, month, and state fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

I also estimate the effect of the opening of the recreational marijuana market

on DUI arrests using UCR arrest reports26 as the dependent variable. I present

these results in Table 23. These estimated effects of the opening of recreational

26This data was accessed through the University of Michigan’s Inter-university Consortium for
Political and Social Research’s National Archive of Criminal and Justice Data.
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sales markets are slightly positive, but not statistically significant from zero. These

results are not consistent with the story told in Anderson et al. (2013) regarding

traffic fatalities: medical marijuana legalization causes individuals to substitute

away from alcohol to marijuana, which decreases drunk driving and alcohol-related

traffic fatalities. However, it it important to note that the UCR data does not

specify a separate category of arrest for driving under the influence of non-alcohol

drugs, so any arrests for driving under the influence of marijuana are included in

this arrest category. As such, it may be the case that drunk driving decreases while

driving under the influence of marijuana increases, but this is inconclusive.

TABLE 23.
Pooled full sample UCR DUI arrests by sample of agencies, clustered by state

(1) (2)
All agencies Agencies reporting every day

Legalization 0.770∗∗ 1.868
(2.44) (1.23)

Market opens 0.391 1.340
(1.05) (0.92)

Observations 286527 64978

t statistics in parentheses

All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

As discussed previously, the estimated increase in intimate partner violence

incidents is largest in the afternoon, not at night. This provides additional evidence

that the result is not working through a direct effect of complementary usage of

marijuana and alcohol.

Additionally, if the true mechanism were a direct effect of increased marijuana

purchases leading to increased alcohol consumption and domestic violence incidents,

we would expect to see the estimated increase in incidents increasing over time.
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Instead, as discussed previously, the estimated effect is larger in the 60-day window

around the opening of the market than in the full sample, which implies that the

effect is diminishing over time, not growing.

The consumer expenditure data does not suggest that individuals spend

more money on alcoholic beverages once the recreational market opens, and the

uniform crime reporting data does not suggest that individuals are more likely to

be arrested for DUI once sales start. The estimated effect is not largest at night,

when we expect individuals to be consuming marijuana and alcohol simultaneously.

Finally, the estimated effect of sales starting on intimate partner violence incidents

does not grow over time. Together, these pieces of evidence suggest that the

increase in domestic violence incidents are not caused by a direct effect of increased

alcohol use as a result of the beginning of recreational sales of marijuana.

Conclusion

Using the FBI’s NIBRS data on reported crime incidents from 2012-2015, I

estimate the effect of the opening of the recreational marijuana market on intimate

partner violence incidents reported by law enforcement agencies; I find that the

beginning of recreational sales of marijuana in a treated state is associated with

a 2.9-6.2% increase in the number of domestic violence incidents reported. This

increase occurs only when recreational markets open, and there is no estimated

effect of the passage of laws that legalized recreational marijuana.

The effect could be caused by a variety of mechanisms, including conflict,

exposure, changes in reporting behavior, and the direct effect of complementarity

between marijuana use and heavy alcohol use. Using a number of additional

datasets, I investigate these mechanisms. The supporting evidence is most

93



consistent with a conflict mechanism: individuals–specifically those in low-income

households whose budget constraint binds tightly–spend some of the household

budget on food, which causes conflict within relationships. As a result, increased

tension between partners causes an increase in intimate partner violence incidents.

The evidence presents a somewhat surprising picture: opening legal

recreational marijuana markets leads to an increase in domestic violence, while

legalizing recreational marijuana use does not. This suggests that the effect

probably has little to do with marijuana at all: instead, partners do not match

on preferences for the good sold in the new market, and conflict results. Indeed,

future work could explore the question of whether the expansion of markets of

other controversial goods or products produces similar effects.

In the longer term, potential partners will likely begin to sort along this

preference dimension in ways they had not previously, causing the effect of opening

the new market to diminish over time. Couples may also separate or divorce

at a higher rate in the short term. In the long run, individuals would learn to

incorporate this specific type of preference into their matching behavior, at which

point conflict would likely return to its pre-treatment levels.

While this paper is not a comprehensive analysis of the costs and benefits

of recreational marijuana legalization, it provides information on one important

outcome. This estimated effect may be surprising to some, as the hypothesized

substitution between alcohol and marijuana would predict a decrease in domestic

violence incidence when recreational sales begin. As such, this result represents

a potentially unanticipated and previously unconsidered social cost associated

with legalizing recreational marijuana. As policymakers and voters consider the

social costs and benefits of future marijuana liberalization legislation, they should
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take into consideration that the evidence from this study suggests that opening a

recreational marijuana sales market in a state leads to increased reported intimate

partner violence incidents, and that these additional reports are likely additional

actual assaults.
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CHAPTER IV

TYING EACH OTHER TO THE MAST: COMMITMENT DEMAND IN GROUP

TASKS

This is unpublished co-authored material with Michael Kuhn and Jeffrey Naecker.

Introduction and Literature

Individuals with time-inconsistent preferences may be aware of these

inconsistencies. For instance, someone may decide on an exercise plan in which she

wakes up early to go the gym three days per week. In the present, the individual

has ascertained that the benefits from this future action outweigh the costs. When

the time comes to wake up and work out, however, she may want to hit the snooze

button and go back to sleep. In this new present, the individual has decided that

the costs (getting out of bed) outweigh the benefits. If the individual is aware

of potential time inconsistencies in her preferences, she may seek a commitment

device: she may be willing to make some payment in order to change the prices

of her future choices so that she can follow through on the action her present self

prefers. Strotz (1955) pioneered the idea of these time inconsistencies in utility

maximization, and O’Donoghue and Rabin (1999) formalize the idea of naive

(unaware of these inconsistencies) and sophisticated (aware of these inconsistencies)

consumers.

Bryan et al. (2010) provide an overview of the literature on commitment

devices; there is anecdotal evidence of time inconsistency of preferences in domains

from smoking to New Year’s resolutions to weight loss. Laboratory experiments

have found that individuals demand commitment in situations like choosing
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movie titles and avoiding sugary foods. Thaler and Benartzi (2004) formulate a

retirement savings plan that increases contributions over time automatically to act

as a commitment device for employees to increase their savings rates; Giné et al.

(2010) conduct an experiment in which individuals choose to take the opportunity

to commit to a savings plan to quit smoking.

Some literature investigates the behavior of individuals in rotating savings

and credit associations (ROSCAs), which provide informal savings mechanisms

for individuals in settings without access to formal banking services. In these

situations, a group of individuals will meet on a regular basis to contribute

money into a collective “savings pot.” At each meeting, a different individual

takes home the entirety of the contributions. Gugerty (2007) uses data from

ROSCAs in Kenya to argue that these groups serve as a collective commitment

mechanism for individuals with time-inconsistent preferences, and Basu (2011)

models these ROSCAs as commitment devices. However, in situations involving

saving in underdeveloped nations, there are benefits to participation beyond mere

commitment: taking part in a ROSCA decreases the likelihood that those funds

will be used by another family member or stolen.

While there has been significant research conducted on individual

commitment choices and follow-through, less work has been done on joint

commitment decisions. Specifically, there is little laboratory evidence of whether

commitment behavior changes when the commitment decision is undertaken

bilaterally. Consider, for instance, the example of deciding to commit to a regular

exercise plan with a gym buddy instead of committing to the same exercise regimen

alone. Do individuals demand these type of arrangements? Does this type of group
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commitment lead to greater follow-through of the desired action (in this case,

getting to the gym) than individual commitment?

In this paper, we conduct an experiment to estimate the effect of group

commitment settings on commitment demand relative to individual commitment

demand. We recruit individuals from Amazon’s Mechanical Turk to complete an

initial task and verify that the individuals would like to complete the same task

in the future. Once subjects have indicated that they would like to complete the

future task, they are randomized into one of a number of treatments and presented

with the opportunity to demand commitment.

When considering the effect a partner may have on an individual’s

commitment choice, there are a number of possible motivations in play. Subjects

may strategically attempt to manipulate partners’ follow-through rates using

the subject’s own choice of commitment; subjects may not want to let down the

“team”, as described in Babcock et al. (2015); subjects may not want to demand

commitment due to the risk of a partner not following through on the future task;

and subjects may want to increase commitment demand if the choice is publicly

observable, as described in Exley and Naecker (2016). We design four different

group treatments, which we call joint, asymmetric, separate-with-knowledge, and

separate-without-knowledge, to try to disentangle the various motivations driving

any overall group effect.

Subjects demand significantly less commitment in all group treatments than

they do in individual treatments. Of a possible $2.25 budget available to them,

subjects in the individual treatment demand an average of $0.95 of commitment

(42%), while individuals in group treatments demand an average of $0.25 of

commitment (10%); none of the average commitment demands for the various
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group treatments are statistically significant from each other. Similarly, subjects in

the individual treatment demand some positive amount of commitment 52% of the

time, while subjects in group treatments demand positive commitment only 21% of

the time. Given the construction of the treatments, the large negative effect can be

attributed to the team motivation: how a subject’s commitment choice affects the

partner’s payoffs.

Experimental Design

In this project, we conduct an experiment in which we manipulate the type of

commitment decisions available to participants. We randomly assign individuals

to treatments in which the payoffs for completing a future task depend upon

the actions of randomly assigned partners in various ways. Using a number of

treatments, we attempt to determine the effects of a number of motivations for

commitment demand: the risk of a partner defaulting on the future task; the

public knowledge of the individual’s commitment choice; the strategic motivation

to manipulate a partner’s behavior; and the desire not to let down the team.

Our subject pool consists of individuals recruited from Amazon’s Mechanical

Turk web service, which allows requesters to post human intelligence tasks (HITs)

for workers (”Turkers”) to complete in exchange for payment. These tasks can

include work like completing surveys, image classification, and data processing.

For our purposes, this method of recruiting participants allows us to find a large

pool of subjects whom we can easily pay for their time. Additionally, we can use

the Mechanical Turk API to contact these workers with links to the future task.1

1All interactions with Mechanical Turk and the subjects occurred through the Mechanical
Turk API using the mTurkR package in R, including publication of HITs, contacting of workers,
and granting of bonuses.
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The initial HIT on Mechanical Turk tells participants that it will take

approximately 15 minutes to complete the task, and that they will receive $2 for

their participation.2 Guidelines for being a good requester suggest paying workers

at least the federal minimum wage ($7.25/hr) for their time, although many

requesters pay significantly less.3 We decide on this payment both to comply with

good requester practice and to incentivize workers to do the future task: in order

for subjects to make any decisions about committing to a future task, they must

first have decided that they would like to complete the same task again.

Once a worker has accepted the HIT, the page redirects to a Qualtrics survey

in the participant’s browser window. After a few demographic questions4, we

provide subjects with a description of the main task. This task consists of counting

the number of zeros in 10 10x15 tables5, where each cell contains either a zero or

a one. Participants may not move on to the next table until they have entered the

correct answer. We intend the task to fulfill two requirements: it should be tedious,

so that completing an identical future task is not costless to participants; but it

should not be so challenging or unpleasant that subjects choose not to complete it

again in the future.6 The actual nature of the task has no bearing on our question:

we merely want subjects to choose to complete the future task and subsequently to

decide on a level of commitment.

2We restrict our HIT to be available to Turkers in the United States with at least an 80%
HIT approval rate using the qualification requirements feature. Additionally, participants who
completed the task in a pilot version or earlier batch of the survey are prevented from accepting
the HIT again.

3http://turkrequesters.blogspot.ca/2012/09/tips-for-academic-requesters-on-mturk.html;
http://wiki.wearedynamo.org/index.php/GuidelinesforAcademicRequesters

4Participants are asked for their age, sex, and highest completed level of education.

5Each page of the survey shows only one table.

6The initial version of this project included simple arithmetic problems, but we decided to
exchange these for a more onerous task.
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When an individual has correctly completed all of the tables, we ask if the

subject would like to complete an identical task three weeks in the future for $2.25

and an additional $1 bonus to the Make-a-Wish Foundation. We select the value

of $2.25 for two reasons: first, we think that individuals are more likely to want

to do the future task if the payment is larger than the payment for the original

point, since subjects’ references points are likely to be $2; second, when we ask

subjects to choose a level of commitment, the heuristic of choosing an even number

($2) will not lead to a zero-commitment choice as it would if the zero-commitment

payment choice were $2. In general, subjects are quite willing to agree to do the

future task. Of 809 participants who completed the survey in the main body of

the experiment, 767 chose to do the future task (94.8%). This is important, as it

provides a sizable sample while paying relatively few workers who do not provide

commitment choices. Individuals who choose not to complete the future task are

thanked for their time, and their surveys are redirected to the submission page on

Mechanical Turk.7

Once subjects have indicated that they would like to complete the future

task, they are randomized into one of five treatments, which we call individual,

joint, asymmetric, separate-with-knowledge, and separate-without-knowledge. In

each treatment, participants are told that they will receive an email within 48

hours that contains a link to the Qualtrics survey containing the future task, which

will not become open for three weeks. Subjects must correctly answer two simple

comprehension questions about the timing of the follow-up task to progress past

the instructions page. Each subject subsequently receives an additional email 24-

48 hours before the follow-up task becomes active with a simple reminder that the

7Once surveys are completed and HITs are submitted to Mechanical Turk, HITs are auto-
approved after one hour.
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window for the follow-up task will begin shortly. However, this reminder email does

not contain a new link to the survey, so participants must either save the previous

link or return to the original email to access the follow-up task.

Treatments

There are a number of motivations that could affect subjects’ decisions about

commitment in individual versus group scenarios, and we design the treatments to

try to capture these different motivations. We label these motivations as follows:

1. Team: when a partner’s payoff depends up on the subject’s follow-through,

we expect that individuals will not want to let down the “team.”8

2. Public: when an individual’s commitment choice is made observable to a

partner, we expect that subjects will increase commitment demand.9

3. Strategic: when an individual’s payoff depends upon the follow-through of

an anonymous partner, individuals may be able to manipulate the partner’s

follow-through rate by selecting a higher level of commitment.

4. Risk: when an individual’s payoff depends upon a partner completing a

follow-up task, we expect the subject to demand less commitment to mitigate

exposure to the risk that the partner fails to complete the task.

In the individual treatment, subjects are told that if they complete the future

task, they will receive a payment of $2.25, and that we will donate $1 to the Make-

a-Wish Foundation on their behalf. They also learn that if they do not complete

the task, they will receive $X, and the Make-a-Wish Foundation will not receive

8As seen in Babcock et al. (2015).

9As seen in Exley and Naecker (2016).
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the donation ($0). For each of the treatments, the instructions page specifies that

subjects will make a choice of $X on the following page, and the payoffs for all

possible outcomes are shown in both table form and descriptive text. Once the

individual has advanced to the next page, a price list is shown: subjects must select

$X to be any value from $0 to $2.25 in $0.25 increments.10 We include timing

questions for both the instructions page and the choice page in an attempt to

determine which subjects sped through questions to finish the survey as quickly

as possible, without regard for the choice they are asked to make. Commitment

demand in the individual treatment is the baseline from which we can estimate the

effects of various group treatments on commitment demand.

We call the second treatment the joint treatment. In this case, individuals

are told that they will be randomly assigned a partner who has also agreed to

complete the future task. Each partner makes a commitment choice of $X, and one

of the choices is randomly selected as the commitment level for the pair. If both

partners complete the follow-up task, each partner receives $2.25 and the Make-a-

Wish Foundation receives $1. If at least one of the partners fails to complete the

follow-up task, each partner receives $X and the Make-a-Wish Foundation receives

$0. Subjects are told that they will learn their partner’s selected value of $X in

the email they receive, and that their partners will also learn their selected value

of $X.11 In this treatment, partners’ payoffs are dependent upon subjects’ follow-

through (team); subjects can attempt to influence partners’ follow-through through

choice of $X (strategic); partners learn subjects’ choice (public); and subjects are

10When we discuss “commitment,” we mean the value of $(2.25-X), which is the dollar amount
the partner has “committed.”

11The emails sent to participants specify the individual’s chosen value of $X, the partner’s
chosen value of $X, and the randomly selected $X that will hold for the pair.
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exposed to the risk that their partners may not complete the future task, which

affects the subject’s payoffs (risk). This treatment is designed to subsume all of the

motivations in the group scenario.

The third treatment is asymmetric: individuals are randomly assigned a

partner who has chosen to do the future task, but only one partner is chosen to

have the responsibility of completing the follow-up task. Each partner selects a

value of $X, and one partner is randomly selected to receive the email containing

the link to the follow-up task. If the randomly selected partner completes the

task, each partner receives $2.25 and the Make-a-Wish Foundation receives $1.

If the randomly selected partner fails to complete the task, each partner receives

the selected partner’s choice of $X and the Make-a-Wish Foundation receives $0.

Subjects are told that they will learn their partner’s selected value of $X in the

email they receive, and that their partners will also learn their selected value of

$X.12 In this treatment, subjects’ partners learn the choice of $X (public) and

subjects who are chosen can let down the team if they fail to complete the task

(team), but a subject’s choice of $X cannot influence the partner’s payoffs (no

strategic) or expose the subject to additional risk of lower payoffs if the partner

fails to complete the task (no risk).

In the separate-without-knowledge treatment, individuals are again randomly

assigned a partner. Here, each subject selects a value of $X that does not apply

to the subject’s partner. If both partners complete the future task, each partner

receives $2.25 and the Make-a-Wish Foundation receives $1. If at least one of the

partners does not complete the follow-up task, each partner receives the his/her

12The emails sent to participants specify whether the participants has been selected as the
partner to complete the future task, the individual’s chosen value of $X, the partner’s chosen
value of $X, and the $X that will hold for the pair.
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own chosen value of $X. In this way, each subject’s payoffs depend only on the

partner’s follow-through, not on the partner’s commitment choice. Subjects are

explicitly told that they will not learn their partner’s chosen value of $X, and that

their partners will not learn their chosen values. In this treatment, subjects may

care about letting down the team by not following through (team) and are exposed

to risk that their partners will not complete the task (risk), but their commitment

choices are not divulged to their partners (no public) and their commitment choices

do not strategically affect their partners’ payoffs (no strategic).

Finally, the separate-with-knowledge treatment is identical to the separate-

without-knowledge treatment, with the exception of the fact that subjects are

explicitly told that both partners will learn both partners’ commitment choices.

Here, subjects may care about letting down the team by not following through

(team); they are exposed to risk that their partners will not complete the task

(risk); and their commitment choices become observable (public); however, these

commitment choices still do not strategically affect their partners’ payoffs (no

strategic).

Results

We estimate the basic model

Ci = α + βJJi + βAAi + βSKSKi + βSSi + εi,

where:

– Ci is the commitment demanded in dollars by individual i;
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– Ji is equal to 1 if individual i is in the joint treatment and equal to 0

otherwise;

– Ai is equal to 1 if individual i is in the asymmetric treatment and equal to 0

otherwise;

– SKi is equal to 1 if individual i is in the separate-with-knowledge treatment

and equal to 0 otherwise;

– Si is equal to 1 if individual i is in the separate-without-knowledge treatment

and equal to 0 otherwise.

The omitted category is the individual treatment, which allows us to interpret

the intercept as the mean commitment demand for subjects in the individual

treatment. Given these estimated coefficients and the design of the experiment,

we can calculate the effects on commitment of the different possible motivations as

follows:

– Strategic = βJ − βSK

– Risk = βSK − βA

– Public = βSK − βS

– Team = βS − Risk = βS − (βSK − βA) = βS − βSK + βA

In this section, we present our main findings. Table 24 contains simple

summary statistics of the sample.13 Mean commitment across all treatments is

$0.39, or about 17% of the $2.25 budget available for commitment; additionally,

13The survey data comes from two batches: one batch began on March 19-20, 2019; the second
batch began on March 25, 2019.
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across all treatments, 27.5% of subjects demand some non-zero level of

commitment. In terms of demographics, 58.4% of the subjects are male, and

the average age is 35.6 years old. We also ask about education level: the most

commonly reported education level is “College (bachelor’s degree),” which

comprises 45.5% of individuals who agreed to complete the future task.

TABLE 24.
Summary statistics

Statistic N Mean St. Dev. Min Max

Commitment 767 0.390 0.748 0 2.25
Non-zero commitment 767 0.275 0.447 0 1
Male 767 0.584 0.493 0 1
Age 767 35.641 10.840 18 75

In Table 25, we present the main results. Column 1 includes only treatment

assignment as explanatory variables; mean commitment for subjects in the

individual treatment is $0.95, which represents 42% of the available $2.25 budget.

Commitment demand is significantly lower for each of the group treatments: for

the joint treatment, mean commitment is $0.29, which is 13% of the budget;

for the asymmetric treatment, mean commitment is $0.24, which is 11% of the

budget; for the separate with knowledge treatment, mean commitment is $0.28,

which is 12% of the budget; for the separate without knowledge treatment, mean

commitment is $0.19, which is 9% of the budget. In columns 2, 3, and 4, we include

sex, education level, and age, respectively. Figure 12 presents a bar graph of mean

commitment levels chosen by treatment, while Figure 13 presents empirical CDFs

of the commitment choices by treatment.

The inclusion of these additional demographic controls does not affect our

results: the individual commitment level remains much larger than any of the
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TABLE 25.
Commitment demand by treatment

Dependent variable:

Commitment (in dollars)

(1) (2) (3) (4)

Constant (Individual) 0.953∗∗∗ 0.916∗∗∗ 0.968∗∗∗ 1.068∗∗∗

(0.056) (0.063) (0.097) (0.131)

Joint −0.664∗∗∗ −0.667∗∗∗ −0.671∗∗∗ −0.667∗∗∗

(0.079) (0.079) (0.080) (0.080)

Sep. with knowledge −0.673∗∗∗ −0.673∗∗∗ −0.679∗∗∗ −0.673∗∗∗

(0.079) (0.079) (0.080) (0.080)

Sep. without knowledge −0.760∗∗∗ −0.765∗∗∗ −0.765∗∗∗ −0.766∗∗∗

(0.079) (0.079) (0.080) (0.080)

Asymmetric −0.718∗∗∗ −0.715∗∗∗ −0.719∗∗∗ −0.717∗∗∗

(0.079) (0.079) (0.079) (0.079)

Male 0.065 0.064 0.058
(0.051) (0.051) (0.051)

College −0.078 −0.084
(0.086) (0.086)

Masters −0.035 −0.034
(0.107) (0.107)

Some college −0.009 −0.012
(0.090) (0.090)

PhD −0.366 −0.367
(0.233) (0.233)

Professional −0.201 −0.207
(0.274) (0.274)

Age −0.003
(0.002)

Observations 767 767 767 767

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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FIGURE 12.
Mean commitment by treatment
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FIGURE 13.
CDFs of commitment by treatment

group treatment effects. While it appears that higher levels of education may have

small negative effects on commitment demand, none of these estimated effects are

statistically significant from zero14; similarly, while it appears age may have a small

14Interestingly, all 10 subjects with a PhD selected no commitment, but there are too few in
the sample to precisely estimate any potential effect.
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negative effect on commitment demand, the effect is not statistically significant

from zero.

Given our estimated effects on commitment demand, we can calculate each

of the motivational factors discussed previously. In Table 26, we present these

estimated factors for the main model that includes only treatment variables. Given

the large negative coefficients on each of the group treatment variables, the large

negative team estimate is not surprising. Additionally, this is the only estimated

effect that is statistically significant from zero. This team effect represents how

the subject’s propensity to let down a partner by failing to complete the follow-up

task affects the subject’s commitment demand. One potential explanation for this

large negative effect is that subjects may anticipate higher follow-through rates in

joint treatments than in individual treatments. If this were the case, there would be

little need for commitment, since the subject believes it extremely unlikely that she

fails to complete the future task.

TABLE 26.
Calculated factors, only treatment variables

Factor Effect p-value

1 Risk 0.009 0.5771
2 Strategic 0.044 0.9061
3 Team −0.804∗∗∗ 7.0e−13

4 Public 0.087 0.2745

While we are most interested in the effect of treatment on commitment

demand, we can also investigate how the chances that a subject selects a positive

level of commitment vary with treatment. Table 27 presents estimates of the

effect of treatment on the probability that a participant selects a non-zero level

of commitment. Consistent with the observed effects on levels of commitment
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selected, participants in the individual treatment select a positive amount of

commitment much more frequently (52% of the time) than individuals in any of the

group treatments. In all models, any of the group treatment variables have large,

negative, statistically significant effects on the probability of non-zero commitment.

Figure 14 presents a bar graph of the fraction of subjects who select a positive

amount of commitment by treatment.

TABLE 27.
Probability of non-zero commitment by treatment

Dependent variable:

Non-zero commitment

Linear Logit Probit

(1) (2) (3)

Constant (Individual) 0.519∗∗∗ 0.078 0.049
(0.035) (0.161) (0.101)

Joint −0.286∗∗∗ −1.265∗∗∗ −0.775∗∗∗

(0.049) (0.250) (0.150)

Sep. with knowledge −0.296∗∗∗ −1.322∗∗∗ −0.809∗∗∗

(0.049) (0.253) (0.152)

Sep. without knowledge −0.323∗∗∗ −1.489∗∗∗ −0.905∗∗∗

(0.049) (0.260) (0.154)

Asymmetric −0.318∗∗∗ −1.456∗∗∗ −0.886∗∗∗

(0.049) (0.258) (0.153)

Observations 767 767 767

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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FIGURE 14.
Non-zero commitment by treatment

One concern we have is that some subjects may not pay attention to the

instructions and attempt to click through the survey as quickly as possible. We

included timing questions on the instructions page in the survey, which allows us to

split the sample by minimum time thresholds. We estimate the model for various

minimum time-on-instructions cutoffs and present these results in Table 28, where

it appears that the main results are stable across these various truncated samples.

In general, our main findings of large negative effects of any group treatment on

commitment demand are robust across all models and sample subsets.

Commitment demand in the individual treatment increases as the minimum

time threshold increases; we estimate this effect directly in Table 29, which

includes the time spent on the instructions page as an independent variable. The

estimated effect is positive, nears statistical significance at the 10% level, and can

be interpreted to say that taking an additional 6 seconds on the instructions page

increases commitment by $0.01.
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TABLE 28.
Commitment by minimum time on instructions

Exclude fastest

1% 5% 10% 20%

Constant 0.957∗∗∗ 0.979∗∗∗ 1.011∗∗∗ 1.066∗∗∗

(0.056) (0.057) (0.059) (0.063)

Joint −0.666∗∗∗ −0.682∗∗∗ −0.722∗∗∗ −0.760∗∗∗

(0.079) (0.081) (0.083) (0.087)

SepWith −0.684∗∗∗ −0.724∗∗∗ −0.761∗∗∗ −0.812∗∗∗

(0.080) (0.081) (0.083) (0.088)

SepWithout −0.767∗∗∗ −0.793∗∗∗ −0.839∗∗∗ −0.879∗∗∗

(0.080) (0.082) (0.083) (0.088)

Asymmetric −0.727∗∗∗ −0.764∗∗∗ −0.812∗∗∗ −0.916∗∗∗

(0.079) (0.081) (0.084) (0.091)

Observations 759 728 690 613

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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TABLE 29.
Commitment by time on instructions and choice

Dependent variable:

Commitment

(1) (2)

Constant 0.920∗∗∗ 0.969∗∗∗

(0.060) (0.060)

Joint −0.680∗∗∗ −0.654∗∗∗

(0.080) (0.080)

SepWith −0.687∗∗∗ −0.660∗∗∗

(0.080) (0.081)

SepWithout −0.773∗∗∗ −0.750∗∗∗

(0.080) (0.080)

Asymmetric −0.725∗∗∗ −0.707∗∗∗

(0.079) (0.080)

TimeOnInstructions 0.002
(0.001)

TimeInstructionsChoice −0.0004
(0.001)

Observations 767 767

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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We also investigate the follow-through of subjects on the future task that

they previously agreed to complete. In the individual treatment, 26.6% of subjects

completed the future task; the effect of each group treatment is small, positive,

and not statistically significant from zero. In Table 30, we present estimates of the

effect on follow-through of being in any group treatment relative to being in the

individual treatment. The estimated effect is positive (5.0 percentage points in the

full sample, 5.9 percentage points for subjects who took at least 10 seconds on the

instructions page), but it is not statistically significant from zero. In general, the

results suggest that being assigned to any group treatment increases follow-through

rates.

TABLE 30.
Follow-through by individual versus group

Dependent variable:

Completed future task

Full sample Time > 10

Constant 0.266∗∗∗ 0.296∗∗∗

(0.037) (0.044)

AnyPartner 0.050 0.059
(0.042) (0.050)

Observations 691 544

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The formulation of the joint treatment allows us, for a small subset of the

sample, to estimate the causal impact of commitment on follow-through. For

individuals who are assigned the joint treatment and whose commitment choice

differs from the group’s randomly selected commitment level, both the treatment

and the level of commitment have been exogenously assigned. Table 31 presents

the estimated causal effect of commitment on follow-through for these subjects; the

estimated effect is positive, but not statistically significant. The coefficient can be

interpreted to say that an additional dollar of commitment increases a subject’s

probability of completing the future task by 4.9 percentage points.

TABLE 31.
Effect of commitment on follow-through, joint treatment

Dependent variable:

Completed future task

Constant 0.327∗∗

(0.122)

Commitment 0.049
(0.115)

Observations 33

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Conclusion

We design and implement an experiment in which subjects complete a task

and have the opportunity to demand commitment across an individual treatment

and a variety of group treatments. The treatments are designed to tease out the

separate effects of a number of possible motivations the subjects could have for
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commitment: strategic incentives, risk, public observability of the choice, and the

desire not to let down the team by failing to follow through on the future task. We

find that both commitment demand and the fraction of subjects who demand some

level of commitment are significantly larger in the individual treatment than in

any of the joint treatments. There is some evidence that being in a joint treatment

leads to a higher follow-through rate on the future task, but this estimated effect is

not significant.

Given the experimental design, we find that the risk, strategic, and public

factors are not statistically significant from zero, although we do estimate a positive

public factor, which is consistent with the findings of Exley and Naecker (2016).

However, the large negative effect of being assigned to any group treatment poses

new questions. Evidently, the effect on a partner’s payoffs as a result of a subject’s

potential failure to follow through on the future causes subjects to demand

significantly less commitment. This could be the result of subjects anticipating that

follow-through rates will be higher in these treatments, which would lead to little

need for commitment devices. If subjects expect that they will always complete the

future task, we would expect commitment demand to be zero.

Moving forward, we should elicit information about subjects’ beliefs about

both their own follow-through rates and the follow-through rates of partners. We

discussed including these types of questions in the initial study, but we decided

to omit them for fear of priming subjects about the types of choices they were

making. If we could determine that subjects’ beliefs about their own follow-through

rates (and, potentially, partners’ follow-through rates) differed significantly across

individual and group treatments, that could further speak to the mechanism of the

negative group treatment effect on commitment demand.
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CHAPTER V

CONCLUSION

I empirically investigate individual behavior in a number of real-world settings

to determine whether these decisions are consistent with models from behavioral

economic theory.

In Chapter II, I estimate the effect of outperforming or underperforming

expectations on U.S. House of Representatives’ decisions to run again in the next

election. While candidates likely try to sort across election-winning thresholds of

vote share, they are unlikely to intentionally sort across the zero-signal threshold.

Although there appears to be no effect of outperforming expectations for winning

candidates, losing candidates who outperform expectations exhibit a significant

positive discontinuity in the probability of running in the next election; this type of

behavior is consistent with theories of attribution bias and aspiration-level utility.

Chapter III uses granular data on reported crimes to examine the effect of

opening recreational marijuana markets on reported domestic violence incidents in

Colorado, Washington, and Oregon. I estimate positive effects in all three states,

and I employ a number of different datasets to provide additional evidence for the

most likely mechanism. The estimated effects are concentrated on times of day and

days of week in which individuals are likely to purchase marijuana, and estimates

from Consumer Expenditure Survey data suggest that household food expenditures

decrease when marijuana sales start. These, combined with additional evidence,

suggest that household budget conflict is the most likely channel for the observed

results.
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Finally, in Chapter IV, which is co-authored with Michael Kuhn and Jeffrey

Naecker, we design an experiment to elicit commitment demand from subjects in

group commitment settings. Using Amazon’s Mechanical Turk and Qualtrics, we

have subjects perform a task, agree to perform the task again, and then select

a level of commitment for a variety of treatments. We design the experiment to

separate possible motivations described in the behavioral economics literature;

we find that there is a large negative effect of being assigned to any partner on

commitment demand, and we suggest that this is evidence that individuals do

not want to let down the “team.” Additionally, there is weak evidence that higher

commitment increases follow-through on the follow-up task.
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APPENDIX

SUPPLEMENTAL TABLES

TABLE A1.
Estimated effect of the beginning of recreational marijuana sales, full sample by order of

time trend, state-level treatment, standard errors adjusted for clustering by state

(1) (2) (3) (4)
Linear Quadratic Cubic Quartic

Market opens 0.0104∗∗∗ 0.0129∗∗∗ 0.0134∗∗∗ 0.0126∗∗

(4.99) (3.58) (3.41) (2.54)

Percentage change 2.9% 3.5% 3.7% 3.5%
Observations 3434302 3434302 3434302 3434302

t statistics in parentheses

All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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TABLE A2.
Pooled Poisson estimates of the effect of the recreational sales market opening by order of

state time trend by level of treatment

(1) (2) (3) (4)
Linear Quadratic Cubic Quartic

State-level treatment 0.0305∗ 0.0290∗ 0.0326∗ 0.0308
(1.72) (1.70) (1.71) (1.32)

County-level treatment 0.0478∗ 0.0526∗ 0.0558∗∗ 0.0640∗

(1.74) (1.78) (1.98) (1.85)

First distance-weighted treatment 0.0418∗ 0.0442∗ 0.0511∗∗ 0.0555∗∗

(1.79) (1.86) (2.41) (2.24)

Second distance-weighted 0.0471∗ 0.0508∗ 0.0561∗∗ 0.0634∗∗

(1.77) (1.81) (2.14) (1.99)
Observations 3097018 3097018 3097018 3097018

t statistics in parentheses

All models include year, month, day-of-week, and agency fixed effects
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE A3.
Food expenditure by winsorization percentile, pooled treatment, clustered by state

(1) (2) (3) (4) (5)
Full sample 99th 95th 90th 80th

Legalization 11.39 10.74 10.86 10.77 11.26
(0.69) (0.68) (0.77) (0.87) (1.21)

SalesStart -27.36∗ -28.81∗∗ -28.27∗∗ -27.15∗∗ -25.09∗∗

(-1.92) (-2.26) (-2.59) (-2.39) (-2.56)
Observations 20507 20507 20507 20507 20507

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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TABLE A4.
Food expenditure by trim percentile, pooled treatment, clustered by state

(1) (2) (3) (4) (5)
Full sample 99th 95th 90th 80th

Legalization 11.39 9.989 5.933 12.89∗∗ 11.99∗∗

(0.69) (0.70) (0.48) (2.07) (2.45)

SalesStart -27.36∗ -34.20∗∗∗ -27.84∗ -18.11 -26.23∗∗

(-1.92) (-4.25) (-1.94) (-1.45) (-2.60)
Observations 20507 20302 19482 18457 16406

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE A5.
Consumer expenditure by category, pooled treatment, clustered by state

(1) (2) (3) (4) (5) (6)
Food Alcohol Healthcare Entertainment Transportation Apparel

Legalization 11.39 -3.102 -27.15∗ 51.49 126.8 29.50∗∗∗

(0.69) (-1.09) (-1.74) (1.38) (1.63) (2.97)

SalesStart -27.36∗ 1.197 0.181 81.25 -36.36 -7.297
(-1.92) (0.30) (0.01) (0.70) (-0.58) (-0.71)

Observations 20507 20507 20507 20507 20507 20507

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE A6.
Consumer expenditure by category, pooled treatment, winsorized at 99, clustered by state

(1) (2) (3) (4) (5) (6)
Food Alcohol Healthcare Entertainment Transportation Apparel

Legalization 10.74 0.140 0.104 41.88 56.67∗∗∗ 25.62∗∗∗

(0.68) (0.08) (0.01) (1.59) (4.28) (3.07)

SalesStart -28.81∗∗ -1.722 -11.14 30.15 15.03∗∗∗ -13.76∗∗∗

(-2.26) (-0.74) (-1.17) (0.52) (3.19) (-8.81)
Observations 20507 20507 20507 20507 20507 20507

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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