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Abstract 

 The goal of this study was to evaluate different methods for quantifying 

evapotranspiration (ET) in commercial rice fields using different irrigation regimes. The rice 

fields were located in south central Arkansas. The different irrigation regimes were alternate 

wetting and drying (AWD) and continuous flooding (CF). Alternate wetting and drying and 

conventional flooding estimates of ET were 602 mm and 570 mm, respectively, based on field 

observations using eddy covariance. Models used to estimate ET estimated values between 498 

and 653 mm for the 2015 growing season. The Penman Monteith actual evapotranspiration 

model (PM AET) performed best when compared to the eddy covariance field observations from 

both irrigation regimes using an iteration of the Jarvis model for conductance, which was scaled 

using field observations of leaf area index (LAI). The Breathing Earth Systems Simulator 

(BESS), a global product based on remote sensing data, also served as an acceptable method to 

estimate ET, though its estimated ET of 498 mm indicates a low bias. AWD showed no 

significant reductions in ET when compared to CF throughout the growing season, including 

during periods where the AWD field was confirmed to have a water table depth below zero. This 

pattern was also consistent in observing the PM AET model over the same periods of time. The 

lack of changed ET rates while the water table was fluctuating implies that while the water table 

was below zero, the rice plants within the AWD field did not experience significant drought 

stress. Because the AWD plants retained a normal amount of stomatal activity and production, 

there were also no significant differences in yield (9.42 ± 0.82 t ha-1 in CF, 9.83 ± 1.02 t ha-1 in 

AWD). These results indicate that AWD did not induce drought stress within the plants while 

still being able to take advantage of seasonal rain fall to offset pumping costs.  
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Introduction 

 Arkansas produces 50% of the rice within the U.S., and the rice industry provides 

benefits to the state economically, accounting for 25,000 jobs and greater than $2 billion in 

revenue generated for the state (AR Rice, 2011). Rice production is water intensive when grown 

using continuous flood irrigation practices, which utilize continuous inundation to provide water 

for the crop and help prevent the growth of weeds. The generated flood is typically held for a 

majority of the growing season (May – late August) and can be supplied by groundwater or 

nearby surface water. The flood is typically applied once the rice plant achieves the desired stage 

and drained before harvest. The rice is allowed two weeks to dry after drainage before harvest. 

Conventionally managed rice can also require over 9 million liters of water per ha 

(Anders et al., 2012). Currently, water resources are being consumed at unsustainable rates 

within the Mississippi Delta region of Arkansas where rice is grown (Reba et al., 2013). 

Depletion rates amount to 8036 million gallons per day for the alluvial aquifer water supply and 

159 million gallons per day for the Sparta/Memphis aquifer (ANRC, 2015). Due to this 

depletion, the state of Arkansas is increasing efforts to conserve water and quantify water usage, 

particularly within agricultural irrigation (ANRC, 2014). 

To promote conservation of water within rice production, a number of methods and 

approaches are being applied, such as zero-grade leveling, which has been shown to reduce 

irrigation water use by up to 40% (Henry et al., 2016). One irrigation practice that has potential 

for water savings is Alternate Wetting and Drying (AWD). The AWD practice, unlike the 

continuous flood irrigation practice, allows periodic drying to occur once the plant has reached a 

specific stage of development. Ideally, in a controlled environment, the soil would be allowed to 

reach a specified moisture content during dry down, and then the flood would be reapplied. 
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AWD conserves water by taking advantage of rains during the growing season to offset pumping 

costs for the producer, sometimes reducing water use by up to 20% (Linquist et al., 2015; Carrijo 

et al., 2017; Pan et al., 2017; Lampayan et al., 2015). The level of drying that occurs is largely 

subjective and often depends on multiple factors, including infrastructure, plant variety, and 

water supply. 

 To evaluate the potential water savings associated with AWD, uncertainty must be 

reduced around terms within the rice system water balance. The basic water balance for rice 

includes irrigation water applied, precipitation, infiltration, runoff, drainage, and 

evapotranspiration. One of the key terms within this system is evapotranspiration (ET), 

consisting of evaporation and plant transpiration. Quantifying ET has the benefit of reflecting 

changes in above-ground water table. With the declining water table depth in AWD, the 

evaporation portion of ET should decrease as less water becomes available for evaporation. 

ET has been estimated a number of ways in the past, using a variety of instrumental, 

meteorological, and modeling approaches. In agriculture, ET instruments such as evaporation 

pans and atmometers have been used to estimate reference evapotranspiration (Allen & Pruitt, 

1991; Lamine et al., 2015). Other approaches involve the use of meteorological and 

biometeorological data to model actual or potential ET in the system, such as the Penman-

Monteith or Priestley-Taylor methods (Penman, 1948; Priestley & Taylor, 1972; Monteith, 

1981). Other approaches, such as eddy covariance, use advanced micrometeorological 

instrumentation to find the covariance between high frequency measurements of gas 

concentrations and high frequency vertical wind movements, which provides a calculated land-

atmosphere flux of a selected gas (Baldocchi et al., 1996; Timm et al., 2014). 
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1. Problem Definition 

1.1 Study Objectives 

The goal of the current study is to provide an estimate of ET for rice fields using different 

irrigation regimes and begin establishing the grounds for a full water balance within a rice 

growing system. We examine how ET varies between fields using continuous flood and AWD 

irrigation practices, and we also investigate possible drivers for these differences. For this 

experiment, ET will be estimated using the following methods (to be described later): 

• Eddy covariance (EC) 

• Penman-Monteith classical method (PM AET) 

• Penman-Monteith method as outlined in FAO Drainage Paper 56 (PM FAO56) 

• Priestley-Taylor method (PT) 

• Breathing Earth System Simulator (BESS) 

While the other methods utilize meteorological and biometeorological data to estimate 

ET, eddy covariance directly measures water vapor concentrations to estimate ET, making it 

distinctly different and suitable as an observational data set. We plan to reduce uncertainty 

associated with ET in the field sites by (1) establishing an estimate of ET from each model and 

field observations, (2) evaluate how models perform across different temporal scales and field 

conditions, (3) observe driving forces of ET within each model, and (4) correlate physiological 

development of the rice crop to different variables to improve model performance. 

1.2 Hypotheses 

 This study addresses three hypotheses, with H(O) representing the null hypothesis and 

H(A) representing the alternative. 
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H(O)1: Alternate wetting and drying allows for a decrease in the evaporation portion of ET due 

to the decreasing amount of water above the ground.  

H(A)1: AWD and CF had no significant differences in ET, likely due to the ratio of transpiration 

to evaporation, dissimilar planting densities, and the plant’s ability to still access water in 

the root zone. 

H(0)2: The model with the highest number of explanatory input variables will produce the best 

estimate of ET. 

H(A)2: Model complexity did improve performance, but the number of inputs was not as 

important as ensuring the model accounted for both the meteorological and physiological 

aspects of the rice canopy. 

H(0)3: Models utilizing the daily time scale will produce estimates of ET that are similar to 

models operating at the sub-daily time scale. 

H(A)3: Models using different time steps for data provided comparable seasonal estimates of ET. 

 

2. Materials and Methods 

2.1. Site Description 

The study site for this experiment is composed of two adjacent fields located in eastern 

Arkansas, USA near the village of Humnoke (34° 35’ 8.58” N, 91° 44’ 51.07” W). The fields are 

commercial scale (~24 ha each), and have been used to grow rice in continuous rotation. The 

fields are zero-graded with no slope within the area of the field. The soil within the fields is 

primarily characterized by poorly-draining clays mixed within a variety of soil types.  
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Rice grown within the fields is a hybrid variety (Clearfield XL745), and the typical 

growing season for rice in Arkansas extends from early April to September. Irrigation during the 

growing season relies on pumped surface water, which travels between fields using pipes and 

force of gravity. During the 2015 growing season, one field received alternate wetting and drying 

treatment while the other field received conventional flooding.  

Equipment within the fields, including instruments, were installed directly after planting, 

and instruments were only removed for harvest and maintenance. The instrumentation consisted 

of key eddy covariance components as well as a number of biometeorological sensors. Based on 

the requirements for the eddy covariance technique, the equipment was installed at the northern 

border of each field to capture the dominant southern winds during the growing season. 

2.2. Measurement of fluxes, microclimate, and plant parameters 

 The eddy covariance (EC) system provided measurements of sensible heat (H) and latent 

heat (LE flux). The EC system included a 3D sonic anemometer (CSAT3, Campbell Scientific, 

Inc., USA), an open-path infrared CO2/H2O analyzer (LI-7500, LI-COR, Inc., Lincoln, NE, 

USA), and an open-path CH4 analyzer (LI-7700, LI-COR, Inc., Lincoln, NE, USA). The EC 

system was mounted on a tripod, with the sensor height measuring 2.5 m above the surface of the 

rice field. Separation for the EC sensors was approximately 0.1 m and accounted for with 

frequency correction factors and signal lagging. For logging, the EC components used a 

designated analyzer interface unit (LI-7550, LI-COR, Inc., Lincoln, NE, USA). The unit 

recorded EC sensor outputs at 20 Hz and fluxes were calculated with Eddy Pro v. 6.2 software. 

Measured fluxes received quality control treatment based on turbulence and wind direction. 

Fluxes at the 30-min time scale underwent gap filling using artificial neural networks (Papale & 

Valentini., 2003). Net radiation was measured in 4-components (CNR4, Kipp & Zonen, Inc., 
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Netherlands, EUR) at a height of 2 m. Photosynthetically active radiation (PAR) was also 

measured using quantum sensors (LI-190SB, LI-COR, Inc., Lincoln, NE, USA) at 1.85 m. Soil 

heat flux measurements were collected using soil heat flux plates (HFP01, Hukseflux, 

Netherlands, EUR). Soil surface temperature and water temperature were measured using 

thermistors (CS-107 (BetaTherm 100K6A1IA), Campbell Scientific, Inc., USA). Air temperature 

and relative humidity were measured using a shielded probe (HMP155A, Vaisala, Finland, 

EUR). Volumetric water content measurements were collected using soil moisture probes (SDI-

12, Acclima, Sydney, AU). Water depth measurements were collected continuously using a 

piezometric sensor (Series 46x, Keller, USA). Other field parameters including plant density and 

bulk soil density were collected manually at different times during the growing season as well. 

2.3 Crop height and LAI model  

Plant height measurements were collected throughout the growing season, using a 10-

measurement average during each excursion. Leaf area index (LAI) was also measured in a 

similar manner using a handheld device (LI-2200, LI-COR, Inc., Lincoln, NE, USA). Estimating 

LAI and plant height throughout the growing season required the development of a growing-

degree-day (GDD) model (Yang et al., 1995). The growing degree day is a function of mean 

daily temperature and a base temperature, often selected as the minimum temperature for 

development to occur within a specific type of vegetation or crop (Equation 1). 

 𝐺𝐷𝐷 =
(𝑇𝑚𝑒𝑎𝑛,𝑑𝑎𝑖𝑙𝑦)

2
− 𝑇𝑏𝑎𝑠𝑒 (Equation 1) 

Where Tmean,daily represents the mean daily temperature and Tbase represents the minimum 

temperature required for plant development (12ºC for rice). A GDD value is calculated each day 
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of the growing season, with a total GDD value accumulating over time. In instances where the 

mean daily temperature was less than or equal to Tbase, the calculated GDD was set to zero.  

2.4 Evapotranspiration modeling methods 

 During the 2015 growing season, four key methods were used for estimating ET within 

the continuously flooded and alternate-wetting-and-drying fields. Each method was compared to 

eddy covariance observations, which provided direct measurements of ET for each field. Eddy 

covariance is a technique that uses the analysis of micrometeorological data to determine the 

fluxes occurring between the ground and atmosphere. The method observes the covariance 

between measured gas concentrations and changing 3D wind speeds to generate estimates of flux 

for different gases, including water vapor (Baldocchi et al., 1996). The eddy covariance method 

has the advantage of measuring at high frequencies and collecting a large, continuous data set 

while the equipment is deployed within the field. It should be stated that although eddy 

covariance provides direct measurements, it also has the potential to underestimate fluxes, 

including latent heat exchange (Foken et al., 2006).  

 Providing a diverse set of approaches will ideally limit the uncertainty of ET within each 

field while also showing how each method compares across different time and spatial scales. For 

this reason, the 4 elected methods differ in complexity and approach as well as spatial and 

temporal resolution. The methods include the PM AET approach, the PM FAO 56 approach, the 

Priestley-Taylor approach, and the Breathing Earth System Simulator based on remote sensing 

datasets. The methods are defined below: 

1. The Penman-Monteith for Actual ET (AET) (PM AET). This modeling method 

develops an estimate for actual evapotranspiration (AET) based on meteorological data 

and information about plant development within the system. The combination equation 



8 

 

(Equation 2) is based around the energy requirement to cause vaporization as well as the 

deficit of water necessary for removing vapor (Penman, 1948; Monteith, 1965). It will be 

used to evaluate data collected in real time from both fields at the 30-min time step. 

 𝝀𝑬𝑻 =
𝚫(𝑹𝒏 − 𝑮) + 𝒄𝒑𝒑𝒂

(𝒆𝒔 − 𝒆𝒂)
𝒓𝒂

𝚫 + 𝜸(𝟏 +
𝒓𝒔
𝒓𝒂
)

 (Equation 2) 

  Where, 

o 𝜆𝐸𝑇 latent heat flux, W m-2 

o 𝑅𝑛 net radiation, W m-2 

o 𝐺 soil heat flux, W m-2 

• Estimated ground heat flux G using ratio of G to net radiation, 𝑅𝑛 

as outlined in FAO-56 

o 𝑐𝑝 specific heat of air, J kg-1 C-1 

o 𝑝𝑎 mean air density, kg m-3 

o 𝑒𝑠 − 𝑒𝑎 vapor pressure deficit, kPa 

o 𝑟𝑠 bulk surface resistance, s m-1 

o 𝑟𝑎 aerodynamic resistance, s m-1 

o Δ slope of vapor pressure-temperature relationship, kPa C-1 

o 𝛾 psychrometric constant, kPa C-1 

2. Revised Penman Monteith FAO-56 Model (PM FAO56). Based on the work of 

Howard Penman, this modeling method generates an estimate of actual 

evapotranspiration that is based on meteorological variables as well as canopy 

characteristics within agricultural settings (Allen et al., 1998). The FAO-56 method 

(Equation 3) generates daily estimates of AET, and the estimated ET (mm day-1) is 

calculated using crop coefficients unique to the different developmental stages of a 

specific crop. For this method, several assumptions were made in relation to the reference 
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evapotranspiration and ground heat flux. Reference evapotranspiration requires 

measurements taken from a representative plot that adheres to FAO 56 standards so that 

all other assumptions inherent to the model hold. For this experiment, the measurements 

were instead taken directly from at the observed rice field as there was no suitable FAO-

56 reference grass or alfalfa site in the nearby area. Net radiation was estimated using 

“missing climate data methods” outlined in FAO 56 based on the location of the site as 

well as the day of year and daily ground heat flux G is assumed by FAO 56 to be a 

fraction of net radiation during the day (10%) and night (40%). Temperature, relative 

humidity, and wind speed measurements at the rice field were assumed to be 

representative of conditions surrounding an FAO 56 plot. 

 𝑬𝑻 = 𝑬𝑻𝟎 ∗ 𝑲𝒄 =
𝟎. 𝟒𝟎𝟖𝚫(𝑹𝒏 − 𝑮) + 𝜸(

𝑪𝒏
𝑻 + 𝟐𝟕𝟑)

(𝒆𝒔 − 𝒆𝒂)𝒖𝟐𝒎

𝚫 + 𝜸(𝟏 + 𝑪𝒅𝒖𝟐𝒎)
∗ 𝑲𝒄 

(Equation 3) 

Where, 

o 𝐸𝑇 evapotranspiration, mm day-1 

o 𝑅𝑛 net radiation, MJ m-2 day-1 

o 𝐺 soil heat flux, MJ m-2 day-1 

o 𝑒𝑠 − 𝑒𝑎 vapor pressure deficit, kPa 

o Δ slope of vapor pressure curve, kPa C-1 

o 𝛾 psychrometric constant, kPa C-1 

o T mean daily air temperature at 2m height, C 

o u2m wind speed at 2 m height, m s-1 

o Cd,Cn coefficients based on canopy development for tall alfalfa crop 

o Kc crop coefficient for converting reference ET to ET of study crop 

3. Priestley-Taylor (PT). The Priestley-Taylor method (Equation 4) provides the simplest 

approach to estimating actual evapotranspiration (AET) within our field site. The method 
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relies on measurements of available energy, temperature, and relative humidity. This 

method requires no input for specific crop characteristics or other landscape parameters. 

The Priestley-Taylor equation does utilize a coefficient, 𝛼, which represents the ratio of 

equilibrium ET to actual ET and historically valued at 1.26 (Stewart & Rouse, 1977). 

 
𝑬𝑻 = 𝑬𝑻𝒆𝒒 ∗  𝜶 =

∆

∆ + 𝜸
∗ (𝑅𝑛 − 𝐺) ∗ 𝛼 

(Equation 4) 

Where, 

o Δ slope of vapor pressure curve, kPa C-1 

o 𝛾 psychrometric constant, kPa C-1 

o 𝑅𝑛 net radiation, MJ m-2 day-1 

o 𝐺 soil heat flux, MJ m-2 day-1 

o 𝛼  Priestley-Taylor coefficient, 

4. Breathing Earth Systems Simulator (BESS). The BESS is a remote sensing approach 

for measuring ET and gross primary production (GPP) for multiple landscapes, including 

rice (Jiang & Ryu, 2016). BESS generates ET estimates across fine spatial scales (<1 

km2), including for the previous decade using legacy data. BESS is advantageous in that 

it requires very little input information from the user while still being able to derive 

accurate estimates of ET using a number of global databases, including MODIS products 

created to derive information from the landscape and surrounding atmosphere. This 

allows the user to observe larger spatial areas for trends while ensuring the integrity of 

the model is sound and consistent. 
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Three of the methods (Priestley-Taylor, PM AET, and PM FAO56) rely on direct measurements 

of variables from the field site, which are then used to calculate ET separately from the eddy 

covariance operations (Table 1).  

Table 1. Summary of outputs and time scales of key terms for actual evapotranspiration (AET) 

methods utilizing instrumental measurements  

Method Output 𝑇  𝑅𝑛 𝑅𝐻 
Wind 

speed 
Others 

Priestley-

Taylor 
AET 

Mean 

daily 

Mean 

daily 

Mean 

daily 
- Calibration coefficient (α) 

PM AET AET 

Mean 

30-

min 

Mean 

30-

min 

Mean 

30-

min 

Mean 

30-min 

LAI, plant height, surface 

conductance (gc) 

PM 

FAO56 
AET 

Mean 

daily 

Mean 

daily 

Mean 

daily 

Mean 

daily 
Crop coefficient (Kc) 

 

For the half-hourly (30-min) time scale, direct measurements were used with a sampling 

frequency of 20 Hz. Daily estimates of variables were calculated from the 30-min data collected 

over the growing season. 

2.5 Modeling approach and evaluation metrics 

  The models will first be used to establish a baseline amount of evapotranspiration from 

the conventionally flooded field. Understanding how each model behaves when irrigation is not 

limited will benefit any future comparisons by identifying key meteorological and biological 

drivers that should be similar across other regional fields, the majority of which are 

conventionally flooded. The models will then be applied to the AWD field to see if the changing 

water table can be linked to changes in key drivers within each model. Water table data will be 
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coupled to observational periods of eddy covariance ET data to classify periods of “wet” and 

“dry” between the AWD and CF fields. The “wet” classification represents periods where the 

water table in both fields is above the surface of the soil. The “dry” classification represents 

periods where the CF water table is above the surface of the soil while the AWD water table is 

below the surface of the soil. This process should reveal how water table affects ET across 

periods where canopy development is similar between the two fields. 

To reduce uncertainty surrounding ET associated with each irrigation regime, ET 

estimates were compared across multiple temporal scales, including half-hourly and daily 

periods. Key indicators of model performance were coefficient of determination (R2) and root 

mean square error (RMSE). While eddy covariance measurements were used as the 

observational dataset upon which to test model performance, models were also compared to one 

another to identify a potential consensus.  

 Another goal of this research is to model conductance as an input to the PM AET 

equation to improve model performance in both fields. Models for conductance were selected 

from literature and calibrated using data collected from each field. Performance was based on 

how well the modeled conductance output improved the PM AET equation when estimation ET 

via R2 and RMSE. Conductance models were selected individually based on performance within 

each irrigation regime and applied to the PM AET model for further comparison. 

2.6 Modeling crop coefficients 

 A crop coefficient was necessary to estimate actual evapotranspiration using the PM 

FAO56 method. Crop coefficient values have been given in the FAO 56 document for rice grown 

in different areas of the world (Doorenbros & Kassam, 1979; Doorenbros & Pruitt, 1977; 

Snyder, Shaw & Pruitt, 1989a). To improve the method, a localized crop coefficient was 
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estimated using field observations (Equation 5) and calculated reference ET (based on field 

measurements, not an FAO 56 standardized plot). 

 
𝐾𝑐,𝑙𝑜𝑐𝑎𝑙 =

𝐸𝑇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐸𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

 
(Equation 5) 

 The estimated crop coefficient provided evidence linking plant development terms not 

present within the model to the developing crop coefficient. Comparisons were made between 

the development of the plant via measurements of plant height and LAI to the estimated local 

crop coefficient. Because the previously mentioned terms are independent of the PM FAO56 

method, integrating them through the crop coefficient term could improve the estimation of ET 

as well. 

2.7 Modeling canopy conductance 

 Canopy conductance is a key term within the PM AET model which reflects biological 

mediation of the exchange of gases between the rice canopy and the surrounding atmosphere. To 

gain an estimate of canopy conductance within each field site, the PM AET model was first 

inverted to solve for canopy conductance, gc (Equation 6).  

 

1

𝑔𝑐
= 𝒓𝒔 =

(

 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

(

 
 
(
𝚫(𝑹𝒏 − 𝑮) + 𝒄𝒑𝒑𝒂

(𝒆𝒔 − 𝒆𝒂)
𝒓𝒂

𝝀𝑬𝑻𝒆𝒅𝒅𝒚 𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆
)− 𝚫 

)

 
 

𝜸

)

 
 
 
 
 
 
 

− 1

)

 
 
 
 
 
 
 
 

∗ 𝒓𝒂 (Equation 6) 
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During inversion, eddy covariance observations were used for the evapotranspiration 

term, but data from the gap filling procedure using artificial neural networks were removed. The 

calculated observed estimate of surface conductance is used in conjunction with terms linked to 

conductance (vapor pressure deficit, photosynthetically active radiation, etc.) to create a model 

which provides estimates of conductance based on the changing biometeorological conditions of 

the canopy throughout the growing season.  

The models applied to estimated canopy conductance varied in complexity and 

development, and were evaluated based on how well the modeled conductance fit the calculated 

conductance values. Each time series of modelled conductance was applied to the PM AET 

model, and the estimates of ET coming from the PMAET model were compared to one another. 

The methods for estimating conductance were multiple linear regression (MLR) of key variables 

and multiple iterations of the Jarvis Model (described below) for conductance. Model functions 

for each Jarvis approach were defined based on similar studies done in rice (Xu et al., 2017; 

Kotani et al., 2017). In this study, PAR was selected as a substitute for net radiation to better 

reflect plant activity (Campbell et al., 2001). Estimates of ET were calculated using the modeled 

conductance and compared to field observations to ascertain the impact of conductance on the 

model output.  

 The multiple linear regression model (Equation 7) provided estimates for conductance 

based on photosynthetically active radiation, vapor pressure deficit, and the estimated daily max 

of conductance based on values estimated from the inversion of the PM AET equation. The MLR 

model is defined as: 
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 𝑔𝑐,𝑀𝐿𝑅 = 𝑎 ∗ 𝑃𝐴𝑅 + 𝑏 ∗ 𝑉𝑃𝐷 + 𝑐 ∗ 𝑇 + 𝑑 (Equation 7) 

Where, 

• 𝑔𝑠,𝑀𝐿𝑅 is the modeled conductance value, mm s-1 

• 𝑇  is air temperature, C 

• 𝑃𝐴𝑅 is photosynthetically active radiation, 𝜇mols s-1 

• 𝑉𝑃𝐷 is vapor pressure deficit, kPa 

• 𝑑 is an offset for the model, mm s-1 

The standard Jarvis model for conductance (Equation 8) relates key variables linked with 

canopy conductance to the maximum observed conductance (Jarvis, 1976; Stewart, 1988). The 

key variables are integrated into the model through functions whose output ranges from zero to 

one, with each individual function also containing empirically fitted model parameters. For this 

study, the standard Jarvis model is defined as: 

 𝑔𝑐,𝐽𝑎𝑟𝑣𝑖𝑠 = 𝑔𝑐,𝑚𝑎𝑥 ∗ 𝑓(𝑃𝐴𝑅) ∗ 𝑓(𝑉𝑃𝐷) (Equation 8) 

𝑓(𝑃𝐴𝑅) = 1 − e(
−𝑃𝐴𝑅
𝑎1

)
 

𝑓(𝑉𝑃𝐷) = 1 − 𝑎2 ∗ 𝑉𝑃𝐷 

𝑓(𝑇) = 1 − 𝑎3 ∗ (25 − 𝑇)2 

Where, 

• 𝑎1, 𝑎2 are model constants 

• 𝑃𝐴𝑅 is photosynthetically active radiation, 𝜇mols s-1 

• 𝑉𝑃𝐷 is vapor pressure deficit, kPa 

• 𝑇 is air temperature, C 

• 𝑔𝑠,𝑚𝑎𝑥 is the estimated maximum daily conductance for a given 

day, mm s-1 



16 

 

The second form of the Jarvis equation (Equation 9) utilizes similar functions for the key input 

variables while also incorporating other field observations, including LAI to scale from leaf to 

canopy conductance (Xu et al., 2017; Ershadi, 2015). For this study, this form of the Jarvis 

model (dubbed the Scaled Jarvis model) for conductance is defined as: 

 𝑔𝑠,𝑋𝑢 = 𝑔𝑠,𝑚𝑎𝑥 ∗ 𝑓(𝑃𝐴𝑅) ∗ 𝑓(𝑉𝑃𝐷) ∗ 𝑓(𝑇) ∗ 𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒 (Equation 9) 

𝑓(𝑃𝐴𝑅) = 1 − 𝑒
(
−𝑃𝐴𝑅
𝑎1

)
 

𝑓(𝑉𝑃𝐷) = 1 − 𝑎2 ∗ 𝑉𝑃𝐷 

𝑓(𝑇) = 1 − 𝑎3 ∗ (25 − 𝑇)
2 

𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒 =

{
 
 

 
 
𝐿𝐴𝐼, 𝐿𝐴𝐼 ≤ 2
𝐿𝐴𝐼

2
, 2 < 𝐿𝐴𝐼 ≤ 4

2,         4 < 𝐿𝐴𝐼
 

 

   Where, 

• 𝑎1, 𝑎2, 𝑎3 are model constants 

• 𝑃𝐴𝑅 is photosynthetically active radiation, 𝜇mols s-1 

• 𝑉𝑃𝐷 is vapor pressure deficit, kPa 

• 𝑇 is air temperature, C 

• 𝐿𝐴𝐼 is leaf area index 

• 𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒 is the active portion of canopy leaf area index 

The final form of the Jarvis equation (Equation 10) utilizes specific inputs from 

temperature and contains a number of different functions for the typical variables, including 

PAR, VPD, and temperature, along with the maximum canopy conductance value. Hereafter, this 

method will be referred to as the “Jarvis-Stewart model”. 
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 𝑔𝑠,𝑋𝑢 = 𝑔𝑠,𝑚𝑎𝑥 ∗ 𝑓(𝑃𝐴𝑅) ∗ 𝑓(𝑉𝑃𝐷) ∗ 𝑓(𝑇) (Equation 10) 

𝑓(𝑃𝐴𝑅) =
𝑃𝐴𝑅 ∗ (𝑃𝐴𝑅𝑚𝑎𝑥 + 𝑎1)

𝑃𝐴𝑅𝑚𝑎𝑥 ∗ (𝑃𝐴𝑅 + 𝑎1)
 

𝑓(𝑉𝑃𝐷) = ((1 + (
𝑉𝑃𝐷

√𝑉𝑃𝐷
)
𝑎2

) ∗ (1 − 𝑎3)) − 𝑎3 

𝜏 =
𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡

𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛
 

𝑓(𝑇) =  
(𝑇 − 𝑇𝑚𝑖𝑛) ∗ (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

𝜏

(𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛) ∗ (𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡)𝜏
 

   Where, 

• 𝑎1, 𝑎2, 𝑎3 are model constants 

• 𝑃𝐴𝑅 is photosynthetically active radiation, 𝜇mols s-1 

• 𝑉𝑃𝐷 is vapor pressure deficit, kPa 

• 𝑇 is air temperature, C 

• 𝑇𝑚𝑖𝑛 is the minimum seasonal temperature, C 

• 𝑇𝑜𝑝𝑡 is the optimum seasonal temperature where conductance is 

most active, C 

• 𝑇𝑚𝑎𝑥 is the maximum seasonal temperature, C 

Each modeled conductance term was then used as an input into the PM AET model to 

estimate evapotranspiration at the 30-min time scale for the 2015 growing season. These 

estimates were compared to eddy covariance observations within the field that did not undergo 

gap filling via the artificial neural network. Estimation of the parameters for each model was 
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performed using a nonlinear fit function, which estimated the parameters as functional inputs 

used in calculating actual evapotranspiration within the PM AET model. To fit the parameters 

using a nonlinear fit with the PM AET model, eddy covariance estimates were used to simulate 

actual ET being measured using the PM AET equation. 

3. Results 

Each model was run using data collected from the 2015 growing season. A total cumulative sum 

was generated for each model throughout the entire growing season. Each model’s predicted 

outputs were compared with eddy covariance measurements to test their performance using 

simple linear regression. During this comparison, key inputs for the model were identified as 

sources of variance between the predicted values and the observations via residual analysis. The 

PM AET model was also analyzed during both dry (water table below zero) and wet (water table 

above zero) conditions due to its ability to predict ET at the sub-daily time scale and make use of 

water table measurements. 

3.1 Site and eddy covariance observations 

The accumulating GDD values were related to the measured plant parameters to develop 

a simple, nonlinear equation used to estimate LAI and plant height throughout the season (Figure 

1). 
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Figure 1. Phenological Development of Rice. 

A) Leaf Area Index (LAI) observations collected throughout the 2015 growing season with 

modeled values (red and blue lines) along with LAI estimated from the MODIS satellite 

product (green line).  

B) Plant height observations collected throughout the 2015 growing season and modeled values 

(red and blue lines). 

 

 The AWD field exhibited higher LAI than the CF during the latter portion of the growing 

season. The measured plant height within the AWD field was also numerically higher than the 

CF with significant differences during the latter portion of the growing season as well. The 

current crop and LAI models assume stable growth during the beginning of the growing season 

A) 

B) 
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without inflection, which could cause overestimation of ET during these early parts of the 

season. 

When numerically comparing AWD to the CF treatment, AWD showed greater ET (602 

mm) when compared to ET from the CF field (570 mm). The mean evapotranspiration rate for 

the growing season was 4.4 mm day-1 and 4.6 mm day-1 for the CF and AWD fields, 

respectively.  Table 2 shows the final estimates of ET for all methods during the 2015 growing 

season. 

Table 2. Summary of ET estimates for each method for 2015 growing season from each 

respective model applied. 

Method Time Scale 

CF Seasonal ET 

(mm) 

AWD Seasonal ET 

(mm) 

PM-AET Half-Hourly 512 534 

PM-FAO56 Daily 610 600 

Eddy Covariance Half-hourly 566 591 

Priestley-Taylor Daily 696 621 

BESS 8-Day mean 498 498 

 

To establish a truly conventional flood, the water table depth for the CF field could not 

fall below the ground level for a significant amount of time. However, the water table depth for 

the CF field did fall below zero at two points during the growing season for brief (< 1day) 

periods of time (Figure 2). 
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Figure 2. Daily ET estimates for both CF and AWD fields using ANN-gap filled eddy covariance 

coupled with 30-min water table measurements throughout the 2015 growing season. 

The residuals between the AWD and CF field also showed a significant trend as the 

growing season progressed (Figure 3). 

 

Figure 3. Residuals between the AWD and CF eddy covariance observations (no gap fill) across 

the 2015 growing season. 

 

To further explore field observations, the season was divided into periods of observation 

defined by the water table. The periods of observation were set at different periods during the 
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growing season to eliminate possible bias from the different stages of canopy development. The 

ET time series from the eddy covariance observations over the course of the season within both 

fields exhibited possible changing dynamics in the diurnal pattern of ET, which are evident in the 

smaller periods of observation (Figure 4). 

 

Figure 4. Half hourly eddy covariance observations for ET from both the conventionally flooded 

(blue) and AWD (red) fields from April 22nd to April 28th for the 2015 growing season. 

 

 During the period from April 22nd to April 28th, there was no available data for the water 

depth within each field, but the surface should not be inundated based on the plant’s growth 

stage and collected field notes. Because it was early in the growing season, we would assume 

that the state of the canopy was not a factor of change between ET occurring within each field. 

The comparison of ET during this period showed that the differences were minimal (Figure 5). 
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Figure 5. Comparison of half hourly eddy covariance observations in CF and AWD fields from 

April 22nd to April 28th during the 2015 growing season. 

  

 During the period between April 22 and April 28, the slope between AWD and CF was 

significant (p<0.05), meaning that ET measured in the CF field was 13% higher when compared 

to ET within the AWD field. In order to further investigate these small periods of interest, water 

table depth was incorporated into the selection process for periods of observation. Water table 

and soil moisture data were especially important in trying to evaluate the level of drying the field 

sites were experiencing, specifically within the AWD field (Figure 6). This data makes clear that 

there is a several day lag between a lowered water table and the corresponding reduction in 

volumetric water content. 
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Figure 6. The response of volumetric water content (right axis) to decline in water table (left 

axis) for the AWD field during the 2015 growing season. 

 

Water table data was collected for the rest of the growing season, beginning in May, so 

water table depth was added to the analysis for periods occurring after May 1st. The next period 

of interest occurred between June 5th and June 23rd, where the water table in the AWD field 

declined significantly for a period of almost 9 full days while the flood remained on the CF field 

(Figure 7). 

 

Figure 7. Half hourly ET and water table time series for the conventionally flooded (blue) and 

AWD (red) fields from June 5th to June 23rd during the 2015 growing season. 
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This period was most noticeably defined by the declining of the water table in the AWD 

field while the water table remained stable in the conventionally flooded field. From Figure 7, it 

appeared that the decline in water table also corresponded to an increase in the amount of 

evapotranspiration occurring in the AWD field. Despite the decline in the amount of available 

water for evaporation, the AWD field still showed similar rates of ET to the conventionally 

flooded field (Figure 8). 

 

Figure 8. Comparison of half hourly ET in both the CF and AWD fields from June 5 to June 23 

during the 2015 growing season. 

  

 For the period of June 5 to June 23, the slope between AWD and CF was significant 

(p<0.05), meaning ET during this period was 10% higher in the AWD field compared to the CF 

field. Using the water table data gathered over this period, the ET observations were divided into 

two groups of data with each group representing a different water table state for the AWD field 

(Figure 9). 
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Figure 9. Estimates of ET from EC observations from June 5 to June 23 divided into wet and dry 

classes based on the water table in the AWD field being above or below zero when compared to 

the CF field, which had a water table that was above zero over the same period of observation.  

 

 The next period was selected between July 18th and July 23rd of 2015 based on similar 

conditions to the period between June 5th and June 23rd of 2015, where the water table for the 

AWD field declined below zero for a period of 2 days while the conventionally flooded field 

remained above ground (Figure 10). 

 

Figure 10. ET and water table time series for the CF (blue) and AWD (red) fields from July 18 to 

July 23 during the 2015 growing season. 
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ET data collected over this period were compared similarly to previous periods, with 

rates being similar between the AWD and CF fields (Figure 11). 

 

Figure 11. Comparison of ET coming from the CF and AWD fields from July 18 to July 23 

during the 2015 growing season. 

 For the period of July 18 to July 23, the slope between AWD and CF was significant 

(p<0.05), meaning ET during this period was 10% higher in the AWD field compared to the CF 

field. The data was again separated into wet and dry classes as done previously in order to 

observe how the shift in water table affected ET being measured at each field (Figure 12). 
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Figure 12. Estimates of ET from EC observations from June 5 to June 23 divided into wet and 

dry classes based on the water table in the AWD field being above or below zero when compared 

to the CF field, which had a water table that was above zero over the same period of observation. 

 

3.2 Penman Monteith FAO 56-Crop Coefficient modeling 

The applied crop coefficient within the PM FAO56 model is determined over rice grown 

in different parts of the world. Diversity present in the different varieties of rice as well as unique 

canopy development patterns, which play a role in ET, could be dampened using a generalized 

coefficient. To improve the application of the crop coefficient within the PM FAO56 method, the 

eddy covariance observations were used with the PM FAO 56 equation to develop an estimated 

crop coefficient from field observations. The estimated crop coefficients for both irrigation 

regimes and the crop coefficient from PM FAO 56 model varied throughout the season (Figure 

13). 
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Figure 13. A comparison of the FAO 56 recommended crop coefficient values to crop coefficient 

calculated from field level observations using the PM FAO 56 equation with eddy covariance 

observations using data collected from the conventionally flooded field (blue) and AWD field 

(red). Smoothing uses a 10-day moving window. 

 

Comparing the estimated crop coefficient to the recommended values provided an R2 

value of 0.10 and a RMSE of 0.11 for the 2015 growing season within the conventionally 

flooded field. Comparing the differences between the estimated crop coefficient and FAO 56 

values to measured phenological variables showed that, for the CF field, much of the variance 

between the two crop coefficients could be explained through plant height and LAI, which are 

covariates (Table 3).  

Table 3. Statistics for the relationship between the estimated crop coefficient using the eddy 

covariance data and variables linked to rice plant development measured within the 

conventionally flooded rice field 

Phenological Variable (Daily) R2 p-value Slope 

LAI 0.25 <0.05 0.0765 ± 0.119 

Plant Height 0.29 <0.05 0.3134 ± 0.043 

Surface conductance 0.02 <0.05 0.0011 ± 0.003 

PAR 0.08 <0.05 0.0004 ± 0.084 
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The same phenological variables were compared to the differences in crop coefficient for 

the alternate wetting and drying field, and PAR was able to explain a significant portion of 

variance between the two crop coefficients. In contrast, plant height and LAI could not 

significantly explain the variance between estimated and FAO 56 recommended crop coefficient 

(Table 4). 

Table 4. Statistics for the relationship between the estimated crop coefficient using the eddy 

covariance data and variables linked to rice plant development measured within alternate wetting 

and drying fields 

Phenological Variable (Daily) R2 p-value Slope 

LAI 0.01 0.59 0.001 ± 0.019 

Plant Height 0.01 0.25 0.091 ± 0.079 

Surface conductance 0.01 0.24 -0.002 ± 0.002 

PAR 0.20 <0.05 -0.001 ± 0.0002 

 

Analysis showed that each field had different phenologically linked variables which 

explained the amount of variability between recommended and estimated crop coefficient. LAI 

and plant height were able to explain almost 30% of the variability in the CF field, while PAR 

was able to explain 20% within the AWD field. 

3.3 PM AET Equation-Conductance modeling 

 The PM AET model can improve upon the assumptions of the PM FAO 56 by not 

limiting conductance to a single, constant value (gs = 14 mm s-1). Conductance is a key term in 

the PM AET model, whose output is sensitive to changes in conductance throughout the entire 

growing season. This is evident based on a simple sensitivity analysis showing how a feasible 

range of conductance values (0 to 100) can affect ET estimates coming from the PM AET model 

when compared to the eddy covariance observations (Figure 14).  



31 

 

 

Figure 14. Sensitivity of the PM AET model to changes in conductance when compared to eddy 

covariance observations over the 2015 growing season for the AWD field. 

 

Based on the analysis in Figure 14, the selected conductance value of 14 mm s-1 is a good 

assumption for the PM FAO56 based on the given slope at that point (m=1). To improve the 

performance of the PM AET model, canopy conductance was estimated and modeled throughout 

the 2015 growing season using multiple approaches. The PM AET equation was used to 

calculated initial estimates of conductance by inverting the equation to solve for conductance 

using the biometeorological inputs, including field observations of ET from the eddy covariance 

system. The initial estimates of conductance suffered from the collective error from all the input 

data, which meant filtering was required to ensure that the conductance estimate was valid while 

also retaining a suitable amount of data. The data was filtered by removing 30-min data points 

that corresponded to lower levels of incoming shortwave radiation (<500 Wm-2) and lower levels 

of observed ET (<5 mm day-1) with the intention of capturing periods where canopy was not 

limited by solar radiation and active in the exchange of gases through the stomata. The initial 
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estimates of conductance from the inversion of the PM AET equation showed conductance 

values ranging between 0 and 30 mm s-1 with no clear, recognizable pattern throughout the 

growing season (Figure 15). 

 

Figure 15. Estimated conductance values from the inversion of the PM AET equation using 

filters for PAR and input ET for the CF (blue) and AWD (red) fields during the 2015 growing 

season.  

 

Filtering the data also revealed a suitable estimate for maximum conductance occurring at 30 

mm s-1, which was used later in the development of the Jarvis models for conductance. The 

parameters for the Jarvis models similar to one another in terms of order of magnitude across 

parameter type ( 

 

Table 5). The calculated parameters were dissimilar between each field and irrigation regime. 

The parameters also did not match well with those found in literature, but this is most likely due 

to the substitution of net radiation for PAR and the lack of a soil moisture content function. 
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Table 5. Calculated parameters (a1,a2,a3) for the applied Jarvis conductance models, including 

values found in literature. 

Model Field a1 a2 a3 

Standard Jarvis CF 1135.51 0.23 0.0010 

 AWD 775.33 0.32 -0.0092 

Scaled Jarvis CF 3183.96 0.18 0.0036 

 AWD 2488.66 0.27 0.0012 

Jarvis Stewart CF 682.08 0.59 -0.0615 

 AWD 229.79 1.87 -0.1836 

*Standard Jarvis-Lit. AWD 700 -0.046 0.045 

*Scaled Jarvis-Lit. AWD 100.6 0.051 0.0012 

     

* Literature (Xu et al.,2017) models shown in table also incorporated a function for field 

capacity/soil water content into their models, which would not replicate the models applied in 

this study. 

 

Despite the differences in parameters, some of the models still performed comparably 

between irrigation regimes. The performance across all models varied with respect to the 

modeled actual ET generated from the use of the modeled conductance within the PM AET 

equation (Table 6). 

Table 6. Comparison of PM AET projected ET based on different conductance models to eddy 

covariance observations for the 2015 growing season with the designated data mask and no gap 

filling. 

Model Field R2 RMSE (Wm-2) p-value 

MLR AWD 0.73 51.3 0 

 CF 0.79 60.2 0 

Jarvis AWD 0.84 66 0 

 CF 0.66 99.9 0 

Jarvis Stewart AWD 0.29 246 0 

 CF 0.84 69.8 0 

Scaled Jarvis AWD 0.84 67.3 0 

 CF 0.84 7 0 

 



34 

 

The Scaled Jarvis model performed well within both the CF and AWD field for the 2015 

growing season, so it was selected as the suitable model for conductance to be incorporated into 

the PM AET model. Features unique to the Scaled Jarvis model include the incorporation of LAI 

as a factor of influence for the Jarvis equation, which highlighted the differences in the canopy 

structure throughout the growing season. Performance was comparable between the two fields 

due to the similarity of other inputs in terms of VPD, temperature, and photosynthetically active 

radiation. 

3.4 ET Model results for the 2015 growing season 

 All models were applied to the continuously flooded and AWD rice fields to compare 

their estimates of evapotranspiration. The cumulative evapotranspiration throughout the 2015 

growing season for each model showed estimates of ET that were within the same order of 

magnitude, with model performance changing between fields (Figure 16). 

  

Figure 16. Cumulative ET from each model, including eddy covariance observations, within the 

conventionally flooded (left) and AWD (right) rice fields for the 2015 growing season (Apr 12 to 

Aug 18). 

 

The Priestley-Taylor model estimated the highest amount of ET within each irrigation 

regime. The EC observations also fell within the range of ET presented by the models. The PM 
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AET model provided the lowest amount of ET within each irrigation regime. Each model was 

compared to the field observations over the entire 2015 growing season, with varied performance 

in all models between the CF and AWD fields (Table 7 & Figure 17). 

Table 7. Comparison statistics for selected models to the eddy covariance observations for the 

2015 growing season in the alternate wetting and drying (AWD) and conventionally flooded 

(CF) fields 

Selected Model Irrigation Slope Intercept R2 RMSE (mm day-1) 

Priestley-Taylor AWD 0.75 1.10 0.39 1.33 

 CF 1.07 0.31 0.64 1.12 

PM FAO 56 AWD 0.59 1.66 0.68 0.98 

 CF 0.69 1.84 0.77 0.73 

PM AET  AWD 1.13 1.13 0.85 2.32 

 CF 1.21 -0.64 0.90 1.93 

 

Figure 17. Comparison of model output ET to eddy covariance observations of ET for the 2015 

growing season in the conventionally flooded (left) and AWD (right) rice fields. 
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3.5 Effects of inundation on PM AET model 

 

The PM AET model performance was also evaluated over the selected periods of 

observation used in examining the eddy covariance observations ( 

Table 8).  

Table 8. Model performance over the selected periods of observation for the 2015 growing 

season comparing PM AET model using Scaled Jarvis conductance to eddy covariance 

observations over the same period. 

Period 

Model 

Field 

Condition 
AWD Fit to EC CF Fit to EC 

Begin End AWD CF R2 

RMSE 

(Wm-2) R2 

RMSE 

(Wm-2) 

28-May 4-Jun Priestley-Taylor Wet Wet 0.82 13.97 0.58 26.08 

  PM Pseudo FAO 56 Wet Wet 0.75 4.59 0.49 6.78 

  PM AET Wet Wet 0.77 68.45 0.81 62.70 

12-Jun 22-Jun Priestley-Taylor Dry Wet 0.88 11.47 0.91 9.91 

  PM Pseudo FAO 56 Dry Wet 0.58 6.14 0.61 6.00 

  PM AET Dry Wet 0.96 30.25 0.92 43.02 

25-Jun 2-Jul Priestley-Taylor Wet Wet 0.71 42.32 0.70 12.38 

  PM Pseudo FAO 56 Wet Wet 0.22 4.96 0.42 4.21 

  PM AET Wet Wet 0.95 36.94 0.95 42.37 

20-Jul 23-Jul PM AET Dry Wet 0.98 25.32 0.97 29.91* 

29-Jul 1-Aug PM AET Dry Wet 0.98 24.59 0.98 28.94 

         
 

The PM AET model showed increased performance as the growing season progressed in 

both the AWD and CF fields, but performance was similar between the two fields in each given 

field condition. Because the conductance model did not have an input for soil water content, it is 

possible that the model did not distinguish differences in soil water content despite changes in 

temperature and relative humidity within the canopy. The PM AET model also showed no 

significant change between the AWD and CF ET over the periods of varying inundation, much 

like the eddy covariance observations. 
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The Priestley Taylor showed no changes in performance based on the differences in field 

condition throughout the entire growing season. Because some of the periods of observation 

were brief (< 2 days), the time scale of the Priestley-Taylor and PM FAO56 models limited 

meaningful analysis due to the small number of points. The PM FAO 56 model showed no 

change in performance between differing field conditions across the entire growing season. The 

poorness of fit during these periods is likely due to the small number of data points incorporated 

into the analysis.  

3.6 Comparison of EC observations to BESS 

 To derive estimates of ET for our field site using BESS, the selected site was 

approximately 1 km2 (Figure 18), which encompassed both the AWD and CF fields. The pixel 

encompassing the field site does contain images of rice, levees, and small farm roads, which 

could alter inputs such as LAI in some small fraction.  

 

Figure 18. Image of field site using MODIS for inputs into BESS (taken from MODIS & Google 

Maps). 

 

Because BESS estimates ET from the establishment of MODIS, we could put the 2015 

ET estimates from BESS into context for the previous 15 years (Figure 19): 

AWD 

CF 
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Figure 19. Comparison of ET from BESS in 2015 to the 15 year mean of ET estimated using 

BESS. 

 

According to BESS, ET from the 2015 growing season seems to have higher amounts of 

ET occurring earlier in the season when compared to the 15-year mean. This could be a product 

of an earlier planting date that occurred that year. BESS also provided estimates of ET well 

within the order of magnitude of the field observations for both irrigation regimes (Figure 20). 

 

Figure 20. Comparison of BESS ET to ET observed from eddy covariance stations for the 2015 

growing season. 
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Cumulative estimates of ET showed BESS underpredicting seasonal ET as well (Table 

2). The consistent underestimation was also valid when comparing the calculated 8-day mean of 

the eddy covariance observations to their BESS counterparts (Figure 21). 

  

Figure 21. Comparison of 8-day means between BESS and eddy covariance observations for the 

2015 growing season. 

 

When comparing LAI estimated over this time using the MODIS product to LAI 

measured directly from the field, the difference in values showed no strong correlation to the 

residuals between ET calculated from BESS and ET observed within the field. However, because 

LAI is an important component in accounting for transpiration occurring within the field, it 

should not be assumed that LAI has no significant effect on ET. It is possible that with better 

modeling of LAI based on field measurements taken on the ground, the model’s performance 

could be improved. 
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4. Discussion 

4.1 Effects of irrigation regimes on ET 

Based on the field observations, the AWD and CF fields produced the very similar ET for 

the 2015 growing season. Observational periods showed significant differences in ET within 

areas of dry down. However, the AWD field experience higher amounts of ET during two of the 

observational periods associated with the water table declining below zero, which does not agree 

the initial hypothesis involving available water and evaporation. During the early period of the 

growing season, both fields had similar water levels and LAI, which would suggest that ET 

between the two fields should be similar. During the latter portion of the season, as the canopy 

progressed rapidly in development, it is possible that transpiration accounted for a majority of 

the amount of ET occurring during this period, which would also explain why the rate of ET 

decline as the water table changed dramatically within the AWD field. However, the AWD field 

still showed higher amounts of ET during the latter portion of the growing season when 

compared to the CF field while the water table within the AWD field fell below zero at three 

points for extended periods of time.  

Because ET was not significantly different between the CF and AWD fields, it can be 

assumed that the amount of stomatal activity between the two fields was similar despite the 

changing water table. If the rice plants could stay active and produce comparable yields despite 

the declining water table, AWD could be a viable solution for water savings within this field site. 

As mentioned earlier, water savings for AWD are a direct result of the producer’s ability to take 

advantage of rains occurring during the growing season while the ground on the field remains 

dry. Any amount of rain captured within the field offsets the amount of water the farmer will be 

required to pump to keep the plants alive and active.  
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4.2 Model performance and selection   

Based on the analysis of each model across the growing season, the PM AET model 

provided the best estimate of ET across the entire growing season in all field conditions and 

irrigation regimes. This was likely due to the increased complexity of the model, which used 

inputs related to both the biological and meteorological conditions of the canopy to accurately 

estimate ET. Because of its ability to produce accurate estimates of ET using well defined and 

supported mechanics, the PM AET model should be used in future efforts to monitor ET in lieu 

of the Priestley-Taylor or PM FAO56 models.  

To improve the performance of the PM FAO56 model, a proper reference site must be 

used to calculate reference ET. Having a well-maintained FAO 56 alfalfa site is important in 

gaining an accurate estimate of both daily ET and crop coefficient. Drivers for the crop 

coefficient should also be more evident when using proper reference ET and field observations. 

Eddy covariance and lysimeters have served as suitable estimates of crop evapotranspiration, but 

correct reference ET is critical in estimating crop coefficient utilizing a suitable alfalfa site 

(Anderson et al., 2017; Tiyagi et al., 2000). The PM FAO56 crop coefficients showed similar 

patterns to the estimate of crop coefficient using eddy covariance observations. 

Biometeorological variables measured within the field (LAI, PAR, etc.) was also able to explain 

some of the variance between the estimates and recommended values. Incorporating these 

variables into a localized crop coefficient model could continue to improve the PM FAO56 

method within each field site. 

Within both iterations of the Penman Monteith equation, there is a critical assumption 

that the ground heat flux represents a constant fraction of net radiation throughout the entire 

season. However, the amount of ground heat flux occurring within the field is a function of water 
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table height and temperature as well. As the amount of available water decreases, there is a 

smaller buffer for heat flux, which would be reflected in the shifting of available energy (RN-G) 

throughout the day. It is also valid to say that in cases where the water table declined below the 

surface, the AWD field should have exhibited higher amounts of sensible heat flux and longwave 

net radiation (meaning decreased net radiation), which have been demonstrated in fields using 

AWD (Alberto et al., 2011). Specifically, in the study by Alberto, they observed net radiation as 

a key driver in ET, which is also consistent with the findings from the PM models in our field 

site. They also confirmed that the AWD rice as having lower amounts of ponding and lower LAI, 

leading to lower ET. In contrast, the drought stress observed within the fields led to lower yields, 

which was not the case in our study.  

The BESS product performed well given that the amount of input information was low, 

yet it was still able to generate a valid estimate of ET. Incorporation of field observations directly 

to BESS could help calibrate the product over rice and improve performance. BESS has the 

advantage over other models in its applied scope and use of legacy data.  

4.3 Modeling canopy conductance 

  

 The Scaled Jarvis model provided the best estimate for conductance within both irrigation 

regimes and was deemed suitable for adaptation into AR rice. Conductance was shown to be 

critical in the determination of actual ET from the PM AET when compared to the eddy 

covariance observations.  

5. Conclusions 

The model estimates were comparable to the eddy covariance observations in terms of 

magnitude, and the eddy covariance values fell within the range of ET predicted by the models. 
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The measured amounts of ET from eddy covariance for the AWD and CF fields were 591 mm 

and 566 mm, respectively. The eddy covariance estimates were similar to one another throughout 

the growing season, but they were also shown to be significantly different under smaller 

observational periods with differing levels of inundation. Yields measured between the fields 

were also statistically insignificant, but LAI was higher in the AWD field compared to the CF 

field. The experiment showed that despite a declining water table, stomatal activity displayed in 

the canopies via ET was undisturbed. Because AWD is associated with fear of possible drought 

stress, this study shows that a declination of the water table for a small period of time will not 

necessarily disrupt plant activity.  

The PM AET model performed the best in terms of estimating ET. The performance of 

the PM AET model was dependent on the incorporated conductance models, which were 

different for each field. The scaled Jarvis conductance model yielded the best estimates of ET for 

the AWD field while the Jarvis-Stewart model yielded the best estimates of ET for the CF field 

during the 2015 growing season. The primary differences between the conductance model inputs 

included the inclusion of LAI as a factor of change for the Scaled Jarvis model.  

The differences in the AWD field and the CF field were minimal in terms of ET. It is 

possible that due to a higher amount of plant surface area and density, as seen through LAI 

measurements and yield data, the AWD field could have produced higher amounts of ET due to 

higher amount of transpiration occurring. It is also possible that the plants were not limited in 

conductance of water between the canopy and the atmosphere due to the depth of the roots and 

the availability of water just underneath the ground.  
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