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Andis, Adam, M.Sc., Spring 2016     Environmental Studies 

Performance Measures of Road Crossing Structures from Relative Movement Rates of Large 

Mammals 

Chairperson: Len Broberg, PhD, JD 

 

In recent decades, there has been an increase of engineering projects that seek to mitigate the 

barrier effect roads impose on wildlife by installing wildlife crossing structures that promote 

permeability of the road corridor. The 41 fish and wildlife crossing structures installed along a 

90km stretch of US Highway 93 on the Flathead Indian Reservation in western Montana, 

represent one of the most extensive of such projects in North America. As mitigation efforts are 

increasingly considered and implemented in road construction projects, the need to assess 

these structures’ effectiveness grows. This study is the first to compare observations of animal 

movement rates at structures to expected frequencies estimated from observations using the 

same sampling methodology, within the same time-step, and in contiguously adjacent habitat. I 

investigated performance measures of wildlife use for 15 congruent crossing structures 

installed on US Highway 93 on the Flathead Indian Reservation between Evaro and Polson, 

Montana for one field season between April and November 2015. Across all structures studies, 

large mammals were 2.6 times more likely to use crossing structures. As groups, deer and 

carnivores were 2.7 and 1.7 times as likely to use structures on average, respectively. Despite 

significantly positive corridor-wide performance, differentials for individual crossing structures 

varied considerably from -1.15 to 6.46 average movements per day. This highlights the 

importance of using many congruent structures as replicates to determine performance 

measures. This study illustrates an efficient and rigorous methodology for rapidly assessing the 

performance of wildlife crossing structures that can be applied to mitigation projects at any 

scale.  
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1. Introduction 

As human populations grow and expand, transportation infrastructure connects 

disparate human communities while simultaneously disconnecting wildlife populations. At 

over 6.5 million km in length within the United States alone (USDOT 2014) and a forecast 

of 25 million km globally by 2050 (Dulac 2013), the road system is easily the most 

extensive, direct impact humans have on the ecosystem (Forman 2003). Forman (1998) 

described the relationship between the road system and the environment as two giants in 

an uncomfortable embrace—with the road network superimposed upon preexisting, 

ecological dynamics of the land. Roads and their associated impacts affect wildlife in 

myriad ways. Roads create direct habitat loss; induce avoidance behavior by wildlife; lead 

to direct mortality; subdivide populations; alter landscape scale spatial patterns, inhibiting 

wildlife movement; and provide a vector for the introduction of invasive species, poaching, 

and further development; to name only a few effects (Forman & Alexander 1998; Trobulak 

& Frissell 2000; Forman et al. 2003; Coffin 2007). 

Although most roads in the U.S. were built in an era prior to ecological 

understanding of their impacts (Forman 1998), in recent decades the threat of roads to 

wildlife populations has been increasingly addressed through the inclusion of animal 

crossing features into road planning projects (Glista et al. 2009; Grilo et al. 2010; Kociolek 

et al. 2015). Unfortunately, wildlife and ecosystem concerns typically do not enter road 

planning projects until very late in the process when budgets are already stretched and 

physical or design limitations may already be in place (Cramer & Bissonette 2007). 

Projects, therefore, tend to bias mitigation toward traditional transportation priorities, 
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such as efficiency and safety (for instance, by reducing the presence of wildlife on roads 

and wildlife-vehicle collisions) rather than ecological or environmental priorities.  

The reconstruction of US Highway 93 (US93) in western Montana is an exemplar of 

wildlife mitigation efforts that incorporated ecological values into the earliest stages of 

planning (Kroll 2015). In designing the new highway, planners endeavored to protect the 

“integrity and character” of the landscape, “premised on the idea that the road is a visitor 

and that it should…be respectful of the land and Sense of Place” of the Confederated Salish 

and Kootenai Tribes’ culture (Marshik et al. 2001: 248). This included a goal to mitigate 

habitat fragmentation and restore connectivity of wildlife species that are considered both 

natural and cultural resources for the Tribes (Marshik et al. 2001; Hardy et al. 2007). 

Between 2005 and 2010, 41 fish and wildlife crossing structures and approximately 28.0 

km (17.4 miles) of wildlife exclusion fencing (along 14.0 km of road) were installed on a 90 

km (56 mile) stretch of US 93 from Evaro to Polson, Montana (Huijser et al. 2015).  

Roads do not only affect the land directly beneath them—their impact bleeds out 

from the road itself as direct alterations result in secondary and tertiary effects. This area 

encumbered by this dispersed impact is called the “road effect zone” (Forman 1999). The 

road effect zone can be quite expansive for large mammals at the population scale with up 

to 38% reductions in animal abundance as far away as 17 km from road infrastructure 

(Benitez-Lopez et al. 2010).  The road effect zone contracts when considered at the scale of 

individual animal behavior, however. It has been shown that mule deer exhibit road 

avoidance primarily within 200m of roads and in open cover (Rost and Bailey 1979). 

White-tail deer, in contrast, exhibit very little road avoidance (Carbaugh et al. 1975). In 

general, ungulate species exhibit avoidance at very local scale (Dyer et al. 2001, Papouchis 
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et al. 2001, Sawyer et al. 2007, Keller and Bender 2007, Meisingset et al 2013). While the 

road effect zone may completely exclude some animals, it is clear that many develop at 

least a limited tolerance. Crossing structures like those installed in the US 93 

reconstruction are primarily intended for those tolerant animals found within the road 

effect zone in close enough proximity to benefit from uses of such measures. 

The structures vary considerably in design and allow animals to pass under (i.e. 

underpasses, culverts, over-span bridges, etc.) or over (i.e. “animal bridges”) the road 

corridor (Huijser et al. 2008 and Glista et al. 2009 provide good overviews of structure 

designs used globally). A few large projects employing crossing structures intended to 

ameliorate the effect of roads on wildlife have been completed (e.g. Canada (Clevenger et al. 

2002), Florida (Foster & Humphrey 1995), and Arizona (Dodd et al. 2007)) or planned 

(Washington (WSDOT 2008)) in the North America; however, the US93 project from 

Hamilton to Polson, is one of the most extensive to date. Despite the increased adoption 

and implementation of mitigation measures and considerable monetary investments, 

performance standards for the majority of crossing structure designs have not been 

investigated. This makes US 93 an important venue to improve our understanding. 

In this study, I asked the following questions: 

 Are underpasses designed for large mammals used at similar rates as random 

points in the immediately surrounding habitat? And,  

 How does this vary by species or clade? 

A number of methods have been used to assess the effectiveness of road mitigation 

measures and moves have been made to standardize these methods (van der Grift and van 

der Ree 2015). Specifically on the US 93 corridor, studies have monitored reduction in 
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wildlife-vehicle collision, crossing rates (Huijser et al. 2015) and acceptance rates (Purdum 

2013) at many of the project’s structures. These studies are valuable; however, none 

directly assess the extent a structure contributes to wildlife movement through the 

structure in relation to animals’ unobstructed movements in the surrounding habitat. 

Studies from other projects have addressed this question through before-after or control-

treatment designs to establish expected crossing frequencies. Huijser et al. (2008) point 

out that for these studies to be informative, they must account for spatial (between 

treatment and control sites) and temporal (between before and after) variability, for 

instance, population size, traffic volumes, etc. that may confound comparisons. Previous 

studies have employed abundance estimates (from, for instance, DNA, tracking beds, 

cameras, scat counts, observational transects, radio telemetry, etc.) to interpolate expected 

crossing rates (van der Ree et al. 2007). These methods can be spurious because detection 

rates and confidence in estimators vary, especially across time and across species.  

Van der Grift and van der Ree (2015) suggest that control plots should be 

established well outside of the road effect zone in order to establish comparison to pre-

road conditions. In the case of this study, the primary goal was to investigate how crossing 

rates compare to movements in habitat within the road effect zone, not to pre-road 

conditions; so, I chose to survey the roadside area that included the road effect zone. The 

animals that approach the structures are already road effect tolerant, are most likely to 

cross through the structures, and generally represent species that we are most concerned 

with. A strength of this study is the use of the same detection methods in the same time 

step to both measure observed crossing rates and estimate expected crossing frequencies 

from adjacent reference plots. 
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2. Methods 

I monitored 15 wildlife crossing structures along US Highway 93 on the Flathead 

Indiana Reservation in western Montana (Figure 1). This 90.6 km (56.3 mi) section of 

highway from Evaro to Polson, MT was slated for reconstruction in 2000 and to date 

includes 41 wildlife crossing structures of various designs from small box culverts to a 

vegetated overpass, as well as disjointed wildlife fencing (Huijser et al. 2015). 

The road runs north-south through the Flathead Valley, along the base of the 2,993 

m (9.828 ft) Mission Range and Rattlesnake Range which bound the valley to the east and 

southeast. Flathead Lake lies at the northern terminus of the road section and the 

Rattlesnake Divide Mountain Range to the south. The road runs through a heterogeneous 

landscape comprised of shrub, grassland, wetland habitats and agricultural lands in the 

valley bottom and forest habitat dominated by Ponderosa pine (Pinus ponderosa) near the 

Evaro area (see Supplemental Materials A). The road bifurcates a large wetland complex in 

the Ninepipes area that has not yet been reconstructed to include wildlife crossing 

structures. 

This section of highway receives an average of 7,059 vehicles per day (MDT 2014). 

The roadway design includes both divided and undivided, 4 and 3 lane highway and 

accommodates a maximum speed limit of 70 miles per hour (113 kmh), reducing to 25-45 

mph (40-72 kmh) in towns.  

In order to assess the effectiveness of the road project’s goal to decrease 

fragmentation, wildlife presence and behavior was monitored between March and 
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November 2015 and observed crossing rates were compared to expected rates to calculate 

performance measures for species (Hardy et al. 2004; van der Grift 2013).  

Fifteen structures representing the most common design: elliptical corrugated metal 

underpasses with entrances approximately 7.32m wide by 5.55m high (width range = 

6.86m to 7.95m, height range = 3.65m to 5.55m) and 25.6m long (length range = 14.6m to 

40 m), were monitored (Table 1). All structures include concrete retaining walls that 

extend out from the structure at approximately 35 degree angle to the road and extend to 

approximately 10m. Trail cameras (HyperFire PC900 ReconyxTM; Holmen, WI) were placed 

at the structure and in the adjacent habitat approximately 1m from the ground (Figure 2). 

This model of camera emits no visible flash; provides for infrared illumination up to a 

distance of 50ft; utilizes an appropriate sense range, trigger speed, and recovery time for 

capturing medium and large mammals; and operates within weather ranges typical of the 

field site. A point 10m from the cameras was demarcated with a stake, and only animals 

and their associated group that crossed within 10m were considered for analysis. The 

entrances to the structures are generally slightly shorter than 10m. In order to maintain 

consistent measurements, I moved the camera out from the entrance along the angled 

retaining wall until a 10m viewing distance parallel was reached (usually 1-2m from the 

entrance). A stake was placed at the 10m distance along the opposite retaining wall and 

records were analyzed exactly as those in the surrounding. This standardized the 

observational range between structure entrances and control plots and limited 

observations to those well within the camera’s detection range. 

I defined a structure’s success at mitigating the road barrier, as observing equal 

movement rates at the structure and in the surrounding environment (see Figure 3). In 
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other words, an animal should be just as likely to move past a random point in the habitat 

as through a crossing structure. At structures associated with sufficient lengths of wildlife 

exclusion fencing, animals are limited to movements in the surrounding (movement type a 

in Fig. 3) or crossing through the structure (movement type b in Fig. 3). Animals at sites 

without sufficient exclusion fencing also have the opportunity to cross the road at-grade 

(movement type c in Fig. 3). If the proportion of animal movements in the surrounding 

habitat is greater than those observed at the structure (b–(a+c) < 0), the structure is not 

completely successful in encouraging animal passage. In this case, some animals are either 

choosing to cross at grade or choosing not to cross the road. In the best case, animals will 

chose to preferentially use the crossing structure rather than crossing at grade or avoiding 

the road corridor (b–(a+c) > 0). A null model study design was employed to test the 

hypothesis that movements at crossing structures did not significantly differ from expected 

(calculated from control plots) (Hardy et al. 2004).  

Van der Grift et al. (2013) and Huijser et al. (2008) point out the potential for 

confounding variables to vitiate the inferences made from such studies. The current study 

attenuated this problem by a.) selecting control plots immediately adjacent to and 

corresponding to the structure being tested to minimize landscape variability, b.) 

monitoring control plots and structure in the same time-step to minimize temporal 

variability, and c.) selecting structures with very similar designs to limit variability of 

physical attributes. This is the first study using remote cameras to compare observations of 

animal use at structures to expected frequencies estimated from observations using the 

same sampling methodology, within the same time-step, and in contiguously adjacent 

habitat. 
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Control plots were established in the habitat immediately adjacent to the structure 

by randomly selecting points at least 50m apart within a 300m by 300m area centered at 

the structure (following previous methodology by Purdum (2013))(see Figure 2). The 

300m boundary reflects the minimum daily active radius of the most common species of 

concern, white-tailed deer (Dusek et al. 1989). The sampling unit (herein referred to as 

movements per day) was calculated by averaging the number of movements recorded 

across a subset of cameras (i.e. only cameras at structure entrances, only cameras from 

control plots, or only cameras from control plots on one side of the road) and dividing by 

the number of days that the cameras recorded at the site and the number of cameras in 

each subset by location (see equation)

∑
𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠𝑖

𝑑 ∗ 𝑐

𝑑

𝑖=1

  
d = full 24-hour days recorded 

c = fully functioning cameras at site 

 

A movement was defined as any animal recorded within 10m of the camera, 

separated by at least 5 minutes from the next observation. Allen (2011) found that, in the 

same study area, for groups of the three most common species (white-tailed deer, mule 

deer, and bear), either all or none of the groups crossed through road crossing points. 

Therefore, for obvious groups of animal observed at control sites, all animals in the group 

were recorded as individual movements if at least one animal crossed within 10m, even if 

the others did not. This calibrates movements in the control plots to animal movements at 

the structure where the retaining wall forces all animals in the group to enter within the 

10m distance and eliminates a bias toward success in performance measures. 

A minimum expected crossing rate was established using methodology similar to 

van der Grift et al. (2013) and defined as the mean observed movements per day at the 
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control plots. This rate provides an estimate of movements of type a (and c where 

structures associate with fencing) from Figure 3. Comparison of expected crossing rates 

and observed crossing rates at the structure (movement type b in Fig. 3) yielded a 

performance measure for each species or species group (Table 2). 

As an ancillary test to determine how much influence avoidance of the road effect 

zone had on the movement patterns observed within the 300 corridor, I plotted the 

average daily movements recorded by each camera at control plots against the distance 

from centerline of the road and fit a linear model of the relationship (Figure 4).  

For many sites, habitat and other variables that may impact animal behavior differ 

between sides of the road at the same site. Therefore, I conducted further analysis using 

two-sided paired t-tests computed to compare observations from control plots on either 

side of the road to the structure independently to investigate the potential that side-

specific habitat preferences may influence overall performance measures for a given 

structure (Table 3). 

The presence of wildlife exclusion fencing and fencing length is also variable 

between sites and could have an impact on animals’ use of the crossing structures (Huijser 

et al. 2016). To examine the effects of fencing on wildlife movement rates, I tested for 

correlation between the distance to the nearest alternative crossing opportunity and 

movement differentials between the structure and control plots (Figure 5). At structures 

associated with exclusion fence, I defined the nearest crossing opportunity as either the 

nearest fence end or the nearest alternative crossing structure, depending on which was 

closer. For structures without fences at which animals can cross at-grade, I defined the 

distance to the nearest alternative as 0m. 
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A final, overall performance measure of all structures surveyed corridor-wide was 

conducted for large mammals, deer and carnivores subsets using boostrapping procedures 

(Efron & Tibshirani 1993), resampling sites and then days at each structure with 

replacement over 100,000 iterations to compute the mean movements per day at the 

structure and in the control plot. Bias-corrected and accelerated boostrap 95% confidence 

intervals were further calculated. Performance measures for individual species (white-

tailed deer, mule deer, black bear, coyote, and bobcat) were computed using identical 

procedures, but with 10,000 iterations. Only structures at which at least 3 observations of 

the species or group in question occurred were used in the corridor-wide assessment. 

All statistical analyses were conducted using R version 3.2.3 (R Core Team 2015). 

Hypothesis tests using two-sided paired tests of movements per day were calculated for 

each site. Residual plots and Q-Q Normal plots of the residuals were plotted to assess the 

normality of the distribution of the paired differences. For analysis of subsets of data in 

which normality of the distribution was questionable (for instance, when subsetting by 

species or side of the road), Wilcoxon exact two-sided rank tests were calculated using 

package “exactRankTests” in R (Hothorn and Hornik 2015). Prior to any analysis, 

collinearity between days was tested using autocorrelation analysis.  

 

3. Results 

During the study, each of 15 structures and adjacent habitat were observed for a 

median of 14 days (range = 12 to 20).  Only movements occurring on days in which 

cameras recorded full, 24-hour periods and from cameras that recorded for the full tenure 

at the site were considered in the analysis.  
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Each unique movement record was aggregated by species and summed for each day. 

A wide variety of wild species (excluding human, domestic pets, and livestock) were 

observed, including white-tailed deer (Odocoileus virginianus), mule deer (Odocoileus 

hemionus), black bear (Ursus americanus), moose (Alces alces), elk (Cervus canadensis), 

coyote  (Canis latrans), bobcat (Lynx rufus), raccoon (Procyon lotor), striped skunk 

(Mephitis mephitis), American badger (Taxidea taxus), mountain cottontail rabbit 

(Sylvilagus nuttallii), red squirrel (Tamiasciurus hudsonicus), bat (sp. unknown), ring-

necked pheasant (Phasianus colchicus), turkey (Meleagris gallopavo), grouse (sp. 

unknown), magpie (Pica hudsonia), great blue heron (Ardea herodias), western 

meadowlark (Sturnella neglecta), starling (Sturnus vulgaris), red-tailed hawk (Buteo 

jamaicensis), Canada goose (Branta canadensis), and great-horned owl (Strix nebulosa) 

(Table 4). Two mountain lions (Puma concolor) observations were recorded; however, they 

were not included in the analysis as they fell on partial days or from malfunctioning 

cameras. 

Wild species were grouped by guild for further analysis. Groupings included Large 

Mammals (white-tailed deer, mule deer, moose, elk, black bear, coyote, bobcat, raccoon, 

badger, and striped skunk), Carnivores (order Carnivora—black bear, coyote, bobcat, 

raccoon, badger, and striped skunk), and Deer (white-tailed and mule deer). An ungulate 

group (including both deer species, moose, and elk) was considered, but because moose 

and elk comprise only less than 1% of total ungulate observations and deer are the main 

species of concern for the Department of Transportation, only deer species were analyzed 

(Table 4).  
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A total of 2926 wild animal movements were recorded (at the structures and 

control plots), with large mammal movements comprising 2798 (95.6%) (Table 4). Deer 

(white-tailed and mule deer) comprised 94.0% of large mammal observations, while 

carnivores comprised 5.9% and other ungulates (moose and elk) comprised 0.1%. Of the 

total movements recorded, 886 (30.3%) were observed at crossing structures and 2040 

(69.7%) were observed at control sites. The number of total movements recorded varied 

among the sites (mean = 193, max = 381, min = 34). The number of movements per day 

also varied among sites (mean = 1.22, SD = .84, max = 2.47, min = 0.23). 

I performed a two-sided paired t-test on the daily differential between movements 

per day at the structure and corresponding control plots to test the hypothesis that daily 

movements at the structure did not significantly differ from expected values at control 

sites. The average differential use by large mammals varied among structures (mean = 

1.26, SD = 2.15, max = 6.45, min = -0.14), but at the majority of structures (11 of 15) large 

mammals showed positive performance differentials (Table 2, Figure 6.1). Most structures 

(n = 8, 53.3%) did not exhibit differential use by large mammals that significantly deviated 

from zero. Many structures (n = 6, 40%) did exhibit strong (p < .001) to moderately strong 

(p < .05) evidence to suggest that large mammals tend to move through the crossing 

structures more frequently than observed in the surrounding habitat. 

When partitioned by guild, deer exhibited a positive performance differential for 

most structures (10 of 15)(Table 2, Figure 6.2). Results of hypothesis tests show that deer 

exhibit a significant, negative use differential for only one structure (Structure 12), and 

significant, positive values for 5 structures (Structures 2, 6, 13, 14, 15). Result for the 
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remaining nine structures did not provide evidence to suggest that use differentials differ 

from zero (Table 2). 

Average daily differential use of structures by carnivores was closer to zero and 

varied less (mean = 0.04, SD=1.3, max= 0.40, min= -0.09)(Table2, Figure 6.3). Two sites, 

structures 1 and 13, were excluded from the carnivore analysis due to a lack of carnivore 

observations (n=0 and n=1, respectively). Hypothesis testing for two structures (number 

11 and 14) suggests evidence (p=.01) that carnivores use the structure less than the 

surrounding habitat, while only one structure (number 5) shows evidence for positive 

differential use at the structure (Table 2). Most structures (n=10, 76.9%) did not show 

evidence that carnivore movement differentials differed from zero.  

Corridor-wide, large mammals showed a significant propensity to use the structures 

and were 2.55 times more likely to move through the structures than at a random point in 

the surrounding environment (Table 6). I further subset animals by groups and species, 

only including structures at which the species or group occurred during the sampling 

period. Deer, as a group, exhibited similar performance ratios to large mammals and were 

2.72 times more likely to use the structure. Carnivores utilized the structures 1.67 times as 

often as expected. Performance ratios for White-tailed deer were similar to the Deer group 

at 2.58, however, Mule deer showed an impressive 20.37 times greater likelihood to use the 

structures than expected. All individual carnivore species exhibited performance ratios of 

close to zero (<0.001). 

Figure 4 shows the relationship of the road effect zone on movement rates recorded 

at individual cameras within control plots. I found no evidence of correlation between the 

rate of large mammal movements observed at each camera placement and its distance from 
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the road. A linear regression line fitted to the overall data exhibits very little evidence of an 

effect of distance from the road with an increase of just 0.02 movements per day for every 

100m increase in distance (R2=0.018, p=0.11). When considering only camera locations 

with greater than 50% canopy cover, there is a negative relationship between distance 

from the road and movements observed, with a decrease of 0.02 movements per day for 

every 100m increased away from the road (R2=.010, p=.43). Camera locations with less 

than 50% canopy cover showed a statistically significant increase as intuitively expected, 

but of only 0.01 movements per day for every 100m increase in distance (R2=.126, p=.001). 

Figure 5 shows the relationship of the movement differential between the structure 

and control plots for each site for both deer and carnivores when presented with 

increasing distances to the nearest crossing opportunity. Deer showed no evidence of a 

relationship between the distance to the nearest alternative crossing opportunity and 

differential movement rates (R2=0.029, p=0.55). Carnivores exhibited evidence (R2=0.61, 

p=0.002) of a positive relationship, with an increased differential of just 0.04 for every 

100m increase in distance to nearest alternative.  

 

4. Discussion 

The lack of strong evidence for a road-effect gradient within the 300m distance 

surveyed indicates that the population of large mammals considered in this study did not 

avoid the road in the distance sampled. Visual and auditory stimuli have been linked with 

animals’ avoidance of roads (Foreman and Alexander 1998), however the scale at which 

noise contributes to behavioral responses is inconsistent (Iglesias et al. 2012). Therefore, 

in more open habitats in which noise travels farther and in which lines of sight are longer, 
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the road-effect zone should protract. So, it is intuitive that I found a positive association 

between the distance from roads and average daily movements recorded in open habitats 

(< 50% cover) and no evidence for a significant association in closed habitats (> 50% 

cover) (Figure 5). The association in open habitats, although statistically significant, is 

weak and biologically insignificant. 

Wildlife crossings can provide conservation value in many ways and at many scales, 

however determining the conservation value of a given project depends on the intended 

purpose of the crossing structure (Clevenger and Waltho 2005). In the case of the US 93 

project, mitigation efforts had two goals: 1.) minimize wildlife-vehicle collisions, and 2.) 

minimize habitat fragmentations, especially by allowing alternatives to at-grade crossings 

(Marshik et al. 2001; Hardy et al 2007; Huijser et al. 2015).  

Overall, as a group and across all sites, large mammals were about 2.55 times more 

likely to move through the crossing structure than the surrounding environment with an 

average positive differential of 0.1 movements per day (se=0.08)(Table 6.). This suggests 

that the structures are fulfilling at least one of their intended purposes: to decrease 

fragmentation due to road barrier effects by promoting movement through the structures; 

however, it should be considered that this “corridor-wide” analysis only applies to road 

lengths that include underpasses, which are only a fraction of the total road length. 

Analysis considering individual structures also lends evidence of success, with only one 

structure, number 12, exhibiting a significantly negative movement differential for large 

mammals (Table 2). 

By pooling movements per day, respectively, of each of the most common species 

(white-tailed deer, mule deer, black bear, coyote, and bobcat) across all sites at which that 
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species occurred, I was able to see corridor-wide associations between movements at the 

structures for each species. With the exception of coyote, all species exhibited a positive 

average association with the structures compared to control plots. Corridor-wide, both 

deer species were more likely to move through the structure than control plots. Mule deer 

showed the strongest positive value, and were 20.37 times more likely to move through the 

structure than through the control plots with 0.12 more movements per day at the 

structure on average (se=0.19), while white-tailed deer were only 2.58 times more likely 

(Table 6). Mule deer’s affinity for moving through US93 structures is surprising in light of 

studies that have shown mule deer to exhibit low acceptance rates at structure entrances 

compared to white-tailed deer (Gagnon et al. 2011; Purdum 2013). This might indicate that 

mule deer are more likely to use the structure to cross the road, but are more reticent of 

structures overall. Some of the discrepancy may also be accounted for by the variability in 

structure design examined in these studies and a difference in the approach distance used 

to calculate acceptance rates (Purdum 2014). Purdum (2014) surveyed a wide range of 

structure designs in his analysis including an over-span bridge and a vegetated overpass 

which correlated highly with white-tail deer acceptance rates. Lack of an exit-view and 

length of the structure correlated negatively with mule deer acceptance rates (Purdum 

2014). Gagnon et al. (2011) studied structures that were on average 4 times longer than 

those studied on US 93. Limiting my study to relatively short structures and reducing 

structural variation which excluded structures highly preferred by white-tail deer, may 

account for the relatively high differential for mule compared to white-tail deer. It should 

also be noted that Mule deer only occurred at 5 structures, which is a small sample for this 

type of analysis. Two of the three most common carnivore species (black bear and bobcat) 
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also exhibited a positive association for moving through the structure versus control plots, 

while coyote showed a slightly negative association (Table 6). None of the carnivore ratios 

differ substantially from zero; however, this may be due to low observation rates for these 

species in general, and a longer study period might illuminate trends more adequately. 

Numerous studies have shown that large mammals, when presented with a linear 

barrier of variable resistance, will travel to find optimum sites to cross (e.g. Whittington 

2004; Clevenger and Waltho 2005; Meisingset et al. 2013). Meisingset et al. (2013) found 

that the habitat type adjacent to a road influences crossing rates, with red deer crossing 

more frequently at flat, forested habitat than in rugged terrain or pastures. At some sites 

along the US 93 project corridor, habitat within the 300m control plot boundaries varied 

substantially between sides of the highway. For instance, in the Ravalli Curves section of 

the highway (sites number 5, 6, and 7) the west side of the road is characterized by flat, 

often wet, wooded and grassy riparian habitat, while the east side is characterized by steep, 

dry, pastures and brushy vegetation. Also, habitat in the Post Creek area (sites number 13 

and 14) is characterized by grasslands and streamside habitat on the west side of the road 

and developed agricultural fields on the eastern side. 

If habitat preferences lead animals to move about more frequently on one side of the 

highway, but much less frequently or along only a few defined trails on the opposite side, 

the negative differential in movement from one side of the highway could cancel out the 

positive differential from the other (or the reverse). In addition to habitat leading up to a 

structure, the entrance of the structure itself can influence animal movement. For instance, 

Gagnon et al. (2011) and Purdum (2013) both found that the ability to see through a 

crossing structure to the exit influenced acceptance rates. Along the length of the project 
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corridor, animals have multiple options for crossing the road because fencing sections are 

not contiguous or absent, or where long sections of fencing is present, structures are close 

enough for animals to easily reach a nearby structure. When animals are presented with 

multiple crossing options within their daily active radii, they may exhibit assortative 

selection for given directionality. For instance, if habitat leading up to a structure entrance 

or structural attributes at the entrance are more favorable on one side than the opposite, 

animals may exhibit a crossing preference for only one direction and instead opt for a more 

favorable alternative crossing point to return.  

In order to test if the effect of habitat on one side of the road was masking a 

significant overall pattern, I conducted hypothesis tests for movements independently for 

each side of the road compared to those at the structure (Table 5). By evaluating movement 

rates of each side independently, it is clear that in some cases, frequency of animal use 

varies with respect to habitat or structure variables on a particular side of the road; 

however, the sign of the association matched for both sides in every case. Thus, there does 

not seem to be a strong effect of side-specific features driving animal movement patterns 

for the structure included in this study. 

It has been suggested that the use of tunnels by predators may prevent use of the 

same tunnels by prey species (Little et al. 2002; Mata et al. 2015). Purdum (2013) found 

that, along the US93 corridor, bobcat, black bear, and coyote tended to use the same 

structures. If the presence of predators negatively affects prey species, we would expect to 

see an inverse usage rate between carnivores and deer at an individual structure, which to 

some extent does seem to hold true, especially for close structures in which animals can 

easily choose to use a separate structure. Structures number 5 and 6 are adjacent and only 
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965m apart with wildlife exclusion fencing running almost continuously between (Figure 

6.2 and 6.3). At structure 5 where carnivore use is highest, deer use is relatively low, 

whereas at structure 6 deer use is relatively very high while carnivore use is low (Figure 

6.2 and 6.3). In contrast, structures number 14 and 15 are also very close, just 305m apart. 

Deer use at structures 14 and 15 remained constant despite large variability in carnivore 

use (Figures 6.2 and 6.3). Studies with longer observational windows should be conducted 

at these sites to test if use of predators influences deer crossing decisions. 

More data should be collected and multivariate analysis needs to be conducted to 

determine what elements of crossing design or habitat features associated with the 

installation location of the structures promotes greatest permeability. In the case of the US 

93 project, animals have multiple options for crossing the road because fencing sections 

are not contiguous or absent (Huijser et al. 2016). Where long sections of fencing has been 

installed, structures are close enough for animals to easily reach a nearby structure. When 

animals are presented with multiple crossing options within their daily active radii, they 

may exhibit selection for given directionality. Further studies using telemetry or visual 

tagging and camera traps needs to be conducted on similar sections of road with high 

densities of crossing structures and demonstrable side-specific crossing rates.  

I tested the most obvious factor, distance to nearest alternative crossing structure 

and found no correlation for large mammals as a whole (Figure 4). When analyzed by clade, 

carnivores showed a statistically significant relationship with increased fencing barriers 

while deer showed no significant relationship (Figure 4). These results do not necessarily 

indicate that deer have no relationship to fencing. Fences were installed in locations along 

the corridor with known, high on-road mortality rates and were not included in areas 
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where project planners thought they would be unnecessary for effective mitigation (Hardy 

et al. 2003; Huijser et al. 2015). Therefore, fence locations are already associated with 

locations at which habitat or road features promote the use of alternative crossings, and 

the corollary, fences are absent from locations where habitat and road features discourage 

crossings. Therefore, the intentional placement of fencing certainly confounds any 

association.  

There are many benefits to the study design employed in this thesis. Using the same 

sampling method in the same time-step between the structure and control plots, and using 

relative rates, controlled for many potentially confounding variables like daily fluctuations 

in animal movement, temporal variations across different days or even years for historic 

data. Sampling across the putative road effect gradient for 300m immediately adjacent to 

the road controlled for habitat variation between control plots and the structure site. Also, 

the use of cameras provided much more definitive observations compared with tracking 

beds, pellet counts, and other remote sampling methods used in other road ecology studies. 

Finally, the shear abundance of structures in the US 93 corridor allowed for sampling of 

many, almost identically designed structures. To my knowledge, no other study has 

sampled so many congruent structures. Unlike other studies that sampled various 

structure designs and non-cotemporaneous sampling periods, this study provides more 

robust data for future multivariate analysis to consider the effect of habitat, fence length, 

and other variables of interest. 

Due to the limited survey time at each site, this study is limited in extending 

inference across years and seasons. Replication of the study in subsequent years would 

provide stronger inference for trends across time. 
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Observation rates for carnivore species and especially cryptic carnivores like 

bobcats and mountain lions were considerably low. Future studies at sites with 

demonstrated carnivore presence for longer intervals would need to be conducted for 

more robust analysis of trends in carnivore use. The observation rates from this study 

could be used to inform a power analysis to determine the most effective sampling interval 

for future studies. 

 

Acknowledgements: 

The unprecedented, high density of wildlife crossing structures on the Flathead Reservation 

provided an incomparable study system for this project. Therefore, I am sincerely grateful to the 

Confederated Salish and Kootenai Tribes (CSKT) for permission to conduct research on tribal lands, 

to the Montana Department of Transportation for permission to conduct research at the structures 

and in the highway right of way corridor, and to the many private landowners who allowed me to 

access their lands to install wildlife cameras.  

This project was funded, in part, through grants provided by the B and B Dawson Fund and 
funds from the Western Transportation Institute at Montana State University. 

I would like to thank Marcel Huijser from Western Transportation Institute for his input, 

guidance, and logistical support of the project and Whisper Camel-Means of CSKT Natural 

Resources Department Wildlife Program for helping with project logistics and sharing camera data. 

I thank Len Broberg for his continual support as my academic advisor and committee chair. In 

addition, I thank Marcel Huijser and Natalie Dawson for serving as members on my committee. The 

statistical analysis included in this thesis benefited entirely from the input of Dave Patterson and 

Jon Graham from the University of Montana, Department of Mathematics. Liz Fairbank and 

Jeremiah Purdum deserve a special thanks, as their prior research formed the foundation upon 

which this project was built. I am indelibly thankful for project interns Jacob Hardy, Ian Hamilton, 

Katie Jacquet, and Brennan Boots without whom this project would have been completely 

impossible. I will never be able to repay them for the hours of hiking, the sweat from carrying heavy 

loads, the lost socks, and many pairs of ripped jeans, nor can I thank them enough for their 

indefatigable work ethic, positive attitudes, and ardent interest in the success of this project. 

Thanks also extends to the many other volunteers who helped out during field days.  

My partner, Bayla Arietta, earned a very special thanks for her patience in my absence 

during field work and for serving me meals during too many all-night data entry sessions. Finally, I 

thank my father who inspired in me an unabashed awe and lifelong curiosity in the natural world; 

and who, if he were still here, would have been incredibly proud of this project.  

  



  
 

15 
 

 

Figure 1. Map of the Flathead Indiana Reservation in western Montana showing major highways 

including US93 and the location of 41 fish and wildlife crossing structures.  
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Table 1. Physical attributes of elliptical, corrugated metal wildlife crossing structures 
surveyed on US 93 through the Flathead Indian Reservation, Montana.  
 
 
 
Site Name 

Site 
Code 

Struct. 
Num. Width (m) Height (m) Length (m) 

F
en

ci
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ea

r 
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n

st
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ed

 

North Evaro NEV 1 7.75 5.10 25.8 N 2010 
Finley Creek #1 FC1 2 7.95 5.55 32.0 Y 2010 
Finely Creek #2 FC2 3 7.95 5.55 21.9 Y 2010 
Finely Creek #3 FC3 4 7.75 5.10 24.7 Y 2010 
Ravalli Curves #1 RC1 5 6.86 4.78 22.0 Y 2006 
Ravalli Curves #2 RC2 6 6.86 4.78 25.6 Y 2006 
Copper Creek COPC 7 7.75 5.10 18.3 Y 2006 
Ravalli Hills #1 RH1 8 7.30 5.20 39.0 Y 2007 
Ravalli Hills #2 RH2 9 7.30 5.20 31.2 Y 2007 
Pistol Creek #1 PIC1 10 7.30 5.20 40.0 N 2007 
Pistol Creek #2 PIC2 11 7.30 5.20 40.0 N 2007 
Sabine Creek SABC 12 7.32 3.65 14.6 Y 2007 
Post Creek #1 POC1 13 7.32 4.75 28.8 Y 2007 
Post Creek #2 POC2 14 7.32 4.75 22.0 Y 2007 
Post Creek #3 POC3 15 7.32 3.90 19.5 Y 2007 
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Figure 2. Camera placements in relation to a highway wildlife crossing structure.* 
Twelve HyperFire PC900 ReconyxTM trail cameras (dark squares indicate cameras, light blue indicates approximate 40 

degree sampling window) were installed at each site for approximately two weeks. Two cameras were installed at the 

structure to capture animal movements entering and leaving in the structure. Ten cameras were placed in control plots 

with five cameras installed at random points at least 50m apart within a 300m square area adjacent to each side of the 

structure. Cameras were installed approximately 3m from the ground and a marker was installed to demarcate a 10m 

viewing distance commensurate with the viewing distance of the cameras at the structure entrance. At the structure 

entrances narrower than 10m, the camera was moved outward along the retaining wall (solid red lines) until a 10m 

distance parallel to the road between the camera and opposite retaining wall could be attained to match all view 

distances.  

* Figure is not drawn to scale. 
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Figure 3. Animal movements in relation to a road with a wildlife crossing underpass and partial wildlife 

exclusion fencing.  
When encountering a road barrier, animals can react in three basic ways: the animal may choose not to cross the barrier 

due to exclusion fencing (red crosshatches)(a1) or negative behavioral response (a2), the animal may cross through the 

structure (b), or the animal may cross at an alternative location (c)(either at-grade as shown or through a different 

nearby crossing structure). 

  

a1 
a2 

b 

c 
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Table 2. Average daily differential use of structures versus surrounding habitat for large mammals, deer, and 
carnivores. 
 

  Large Mammals Deer Carnivores 

Site 
Structure 
Number 

Average 

Difference SE P-value 
Average 

Difference SE P-value 
Average 

Difference SE P-value 

NEV 1 0.29 0.47 0.484 0.30 0.47 0.484 NA NA NA 

FC1 2 5.68 0.79 0.001 5.65 0.83 0.001 0.04 0.07 0.533 

FC2 3 -0.41 0.35 0.823 -0.47 0.31 0.852 0.02 0.09 0.813 

FC3 4 0.54 0.39 0.374 0.50 0.39 0.373 0.05 0.04 0.219 

RC1 5 1.60 0.55 0.050 1.20 0.51 0.173 0.40 0.14 0.008 

RC2 6 6.46 2.06 0.006 6.56 2.02 0.006 -0.07 0.07 0.294 

COPC 7 0.02 0.15 0.357 -0.15 0.07 0.317 0.17 0.13 0.175 

RH1 8 0.94 0.36 0.107 0.89 0.37 0.220 0.05 0.08 0.497 

RH2 9 -0.15 0.18 0.144 -0.08 0.16 0.273 -0.07 0.05 0.111 

PIC1 10 -0.21 0.16 0.893 -0.22 0.15 0.593 -0.02 0.06 0.691 

PIC2 11 0.04 0.30 0.156 0.13 0.30 0.496 -0.09 0.03 0.005 

SABC 12 -1.15 0.29 0.033 -1.09 0.29 0.039 -0.05 0.04 0.205 

POC1 13 0.15 0.61 0.005 0.16 0.61 0.005 NA NA NA 

POC2 14 2.39 1.02 0.035 2.44 1.02 0.033 -0.06 0.02 0.013 

POC3 15 2.46 0.92 0.006 2.26 0.94 0.007 -0.03 0.02 0.104 

Mean  1.24   1.21   0.03   

s  2.20   2.21   0.12   
*Highlighted cells indicate statistical significance at the P<.05 level.  

  



  
 

20 
 

*Cells highlighted in light grey indicate statistical significance at the P<.05 level. Cells highlighted in dark grey indicate 

nearly significant values. 

  

Table 3. Daily average differential use of structures versus surrounding habitat by large mammals, deer, and carnivores 
by side of road* 
 
  Large Mammal Deer Carnivores 
  East West East West East West 

Site # Diff. p Diff. p Diff. p Diff. p Diff. p Diff. p 

NEV 1 0.03 0.484 0.56 0.285 0.03 0.484 0.57 0.180 NA NA NA NA 

FC1 2 3.81 0.001 0.00 0.001 5.35 0.001 5.95 0.001 0.03 1.000 0.06 0.655 

FC2 3 0.05 0.823 -0.90 0.054 -0.01 0.852 -0.94 0.021 0.08 0.680 -0.04 0.622 

FC3 4 0.44 0.374 0.67 0.063 0.41 0.373 0.62 0.061 0.03 0.655 0.08 0.157 

RC1 5 1.44 0.050 1.76 0.001 1.00 0.173 1.40 0.002 0.44 0.007 0.36 0.016 

RC2 6 7.25 0.006 5.84 0.030 7.21 0.006 6.03 0.006 0.04 0.336 -0.15 0.125 

COPC 7 0.13 0.357 -0.10 0.575 -0.08 0.317 -0.22 0.066 0.22 0.066 0.12 0.324 

RH1 8 0.75 0.107 1.09 0.004 0.64 0.220 1.09 0.005 0.11 0.180 0.01 0.916 

RH2 9 -0.31 0.144 0.01 0.492 -0.27 0.273 0.11 0.655 -0.04 0.317 -0.10 0.059 

PIC1 10 -0.05 0.893 -0.42 0.032 -0.06 0.593 -0.42 0.037 -0.02 0.593 -0.02 0.785 

PIC2 11 0.10 0.156 -0.02 0.235 0.22 0.496 0.05 0.498 -0.12 0.015 -0.12 0.038 

SABC 12 -1.09 0.033 -1.20 0.003 -1.06 0.039 -1.12 0.003 -0.03 0.157 -0.08 0.180 

POC1 13 1.94 0.005 -0.92 0.152 1.96 0.005 -0.92 0.152 NA NA NA NA 

POC2 14 2.54 0.035 2.27 0.048 2.64 0.033 2.29 0.048 -0.11 0.034 -0.01 0.317 

POC3 15 3.13 0.006 1.79 0.096 2.94 0.007 1.58 0.300 -0.04 0.083 -0.01 0.317 
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Figure 4. Effect of distance and percent cover on observed movement rates per day of wildlife at control 

plots along highway US93. 
A simple linear model was calculated to predict average movements per day of large mammals based on distance to road 

center. Blue indicates plots with greater than 50% cover and black indicates those with less than 50% cover. A regression 

equation for plots with greater than 50% cover (blue dotted line) was found (n=63, p=0.43, R2=0.001) to show no 

evidence of a significant relationship. A regression equation for plots with less than 50% cover (black dotted line) was 

found (n=78, p=.001, R2=0.126) to show evidence that average movements per day increase by 0.004 for each additional 

1 meter distance from the road center. The solid black line is a fitted linear model for all plots (n=142, p=0.11, R2=0.018) 

which did not show evidence of a significant relationship. 
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Figure 5. Relationship between average daily movement rate differentials at wildlife crossing structures 

to distance to nearest alternative crossing opportunity.  
Area of circles represents average total movements recorded per day at each site. Blue points represent deer species and 

red points represent carnivores. The dotted blue lines represent an unweighted, fitted linear models for deer (n=15, 

p=0.55, R2=0.03) and shows no evidence of a significant relationship. The red dotted line represents carnivores (n=13, 

p=0.002, R2=0.61) and shows significant evidence that differential values for average daily movements (structure minus 

control plots) increases by 3.7x10-4 for every additional increase of 1 meter to the distance to the nearest alternative 

crossing structure.  
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Table 4. Total observations and group percentages of animal movements at both structure 
and control plots along US93 within the Flathead Indiana Reservation, Montana for April 
through November 2015 

Species 
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White-tailed deer 
(Odocoileus virginianus) 

2047 70.0% 73.2% 77.8%  

Mule deer 
(Odocoileus hemionus) 

576 19.7% 20.6% 21.9%  

Deer sp. 
(sp. unknown) 

7 0.2% 0.3% 0.3%  

Moose 
(Alces alces) 

2 0.1% 0.1%   

Elk 
(Cervus canadensis) 

1 0.0% 0.0%   

Black bear 
(Ursus americanus) 

57 1.9% 2.0%  34.5% 

Bear sp. 
(sp. uknown) 

1 0.0% 0.0%  0.6% 

Coyote 
(Canis latrans) 

86 2.9% 3.1%  52.1% 

Bobcat 
(Lynx rufus) 

6 0.2% 0.2%  3.6% 

Raccoon 
(Procyon lotor) 

10 0.3% 0.4%  6.1% 

Skunk 
(Mephitis mephitis) 

4 0.1% 0.1%  2.4% 

American badger 
(Taxidea taxus) 

1 0.0% 0.0%  0.6% 

Mountain cotton-tail rabbit 
(Sylvilagus nuttallii) 

23 0.8%    

Red squirrel 
(Tamiasciurus hudsonicus) 

3 0.1%    

Bat 
(sp. unknown) 

2 0.1%    

Ring-necked pheasant 
(Phasianus colchicus) 

47 1.6%    

Turkey 
(Meleagris gallopavo) 

13 0.4%    

Grouse 
(sp. unknown) 

1 0.0%    

Magpie 
(Pica hudsonia) 

10 0.3%    

Great Blue Heron 
(Ardea herodias) 

1 0.0%    

Western meadowlark 1 0.0%    
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(Sturnella neglecta) 
Starling 

(Sturnus vulgaris) 
15 0.5%    

Red-tailed hawk 
(Buteo jamaicensis) 

1 0.0%    

Canada goose 
(Branta canadensis) 

2 0.1%    

Great-horned owl 
(Strix nebulosa) 

1 0.0%    

Bird sp. 
(sp. unknown) 

8 0.3%    

Data Collector 63     
Human 54     
Cow 1783     
Dog 31     
Cat 31     
Total Obs.  
(Percent of wild animal observations) 

4888 2926 
(100%) 

2798 
(95.6%) 

2630 
(89.9%) 

165 
(5.6%) 
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Table 5.1. Differential movements rates of deer species by structure* 
 
  Structure – Both Sides Structure – East Structure - West 

Site # Differential Differential p Differential p 

NEV 1 0.30 0.03 0.484 0.57 0.180 
FC1 2 5.65 5.35 0.001 5.95 0.001 
FC2 3 -0.47 -0.01 0.852 -0.94 0.021 
FC3 4 0.50 0.41 0.373 0.62 0.061 
RC1 5 1.20 1.00 0.173 1.40 0.002 
RC2 6 6.56 7.21 0.006 6.03 0.006 
COPC 7 -0.15 -0.08 0.317 -0.22 0.066 
RH1 8 0.89 0.64 0.220 1.09 0.005 
RH2 9 -0.08 -0.27 0.273 0.11 0.655 
PIC1 10 -0.22 -0.06 0.593 -0.42 0.037 
PIC2 11 0.13 0.22 0.496 0.05 0.498 
SABC 12 -1.09 -1.06 0.039 -1.12 0.003 
POC1 13 0.16 1.96 0.005 -0.92 0.152 
POC2 14 2.44 2.64 0.033 2.29 0.048 
POC3 15 2.26 2.94 0.007 1.58 0.300 

 

Table 5.2. Differential movement rates for carnivore species by structure* 
 
  Structure – Both Sides Structure – East  Structure – West 

Site # Differential Differential p Differential p 

NEV 1 NA NA NA NA NA 
FC1 2 0.04 0.03 1.000 0.06 0.655 
FC2 3 0.02 0.08 0.680 -0.04 0.622 
FC3 4 0.05 0.03 0.655 0.08 0.157 
RC1 5 0.40 0.44 0.007 0.36 0.016 
RC2 6 -0.07 0.04 0.336 -0.15 0.125 
COPC 7 0.17 0.22 0.066 0.12 0.324 
RH1 8 0.05 0.11 0.180 0.01 0.916 
RH2 9 -0.07 -0.04 0.317 -0.10 0.059 
PIC1 10 -0.02 -0.02 0.593 -0.02 0.785 
PIC2 11 -0.09 -0.12 0.015 -0.12 0.038 
SABC 12 -0.05 -0.03 0.157 -0.08 0.180 
POC1 13 NA NA NA NA NA 
POC2 14 -0.06 -0.11 0.034 -0.01 0.317 
POC3 15 -0.03 -0.04 0.083 -0.01 0.317 

*Cells highlighted in light grey indicate statistical significance at the P<.05 level. Cells highlighted in dark grey indicate 

nearly significant values. 
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Figure 6. Differential (structure minus control) use of crossing sites by large mammals (1), deer (2), and carnivores 

(3) by site.  
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Table 6.- Corridor-wide (pooled across all structures where species or 
group is present) movement differentials and performance ratios. 
 

Species n differential SE ratio 
Large Mammals 15 0.092 0.083 2.550 
Deer 15 0.090 0.082 2.727 
Carnivores 14 0.001 0.004 1.667 
White-tailed deer 13 0.056 0.072 2.581 
Mule deer 5 0.127 0.188 20.368 
Black bear 8 0.004 0.005 0.000 
Coyote 12 -0.001 0.004 0.000 
Bobcat 5 0.0003 0.0017 0.0000 
In this analysis, an individual unit (n) is a unique site at which each species or group 
occurs. 
*Cells highlighted in light grey indicate statistical significance at the P<.05 level. Cells 
highlighted in dark grey indicate nearly significant values. 
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Figure 7. – Corridor-wide (pooled across all structures where species or group is present) 

movement differentials by species or group. Bars indicate 95% confidence intervals. 
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