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  Crossing structures enable wildlife to safely cross highways by physically separating 

wildlife and vehicles.  Most wildlife underpasses and overpasses are designed to 

accommodate a wide variety of species.  Their suitability for individual species, however, 

varies by location (surrounding habitat), structure type (e.g. underpass or overpass), and 

dimensions (height, width, length).  For some taxa, the habitat immediately adjacent to 

and inside an underpass or on top of an overpass is critical. For instance, small mammals, 

reptiles, amphibians and many invertebrates may avoid open areas because they require 

cover (e.g., live vegetation, tree stumps, branches, or rocks) to reduce predation risk and 

because of the microhabitat it provides (e.g., temperature, moisture). I investigated the 

effect of cover on the abundance and movements of small mammals in ten large mammal 

underpasses (approximately 7 m wide, 4 m high) along U.S. Hwy 93 North on the 

Flathead Indian Reservation, Montana. Track tubes recorded abundance of small 

mammals in and around 10 structures (5 control/ 5 treatment) in 2011 and 2012. I placed 

cover (dead tree limbs) inside half (five) of the underpasses in winter 2012 (“treatment”), 

while the remaining five underpasses served as control with no cover added. Capture-

mark-recapture using live traps was conducted in the fall of 2012 to record abundance 

and movement of small mammals in and around the underpasses. There was no 

statistically significant effect of cover on small mammal abundance detected by track 

tubes or live traps. . There was a statistically significant effect of cover on movement 

between the right of way and crossing structure for small mammals detected by live traps. 

By placing cover inside wildlife underpasses, wildlife managers can increase crossing 

structure use by small mammals at minimal cost. 
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INTRODUCTION 

There are >6 million km of public roads in the U.S., 22% of the U.S. land surface 

may be impacted by road infrastructure (Forman 2000, Riiters and Wickham 2003), and 

73% is within 810 m of a road (Riiters and Wickham 2003). Habitat fragmentation and 

the loss of large landscape connectivity due to roads can have detrimental effects on 

many species of animals, including loss of wildlife habitat, road mortality, create barrier 

effects, decrease habitat quality, and introduce non-native ecological processes in the road 

verges (Yanes et al. 1995, Gerlach and Musolf 2000, Huijser and Bergers 2000, 

Trombulak and Frissell 2000, Ng 2003, Aresco 2005, Jaeger et al. 2005).  

The barrier effect can also affect small mammal populations. Barriers created by 

roads create genetically isolated populations, and thus create smaller, less viable 

populations (Gerlach and Musolf 2000, Rico et al. 2007, Holderegger and Di Giulio 

2010). By reducing gene flow the genetic diversity of a population suffers (Frankham 

1995, Balkenhol and Waits 2002, Fahrig 2002). Lack of genetic diversity increases risk of 

extinction, especially if populations are also small and isolated, and although there is no 

immediate risk of any small mammal species extirpation in the study area, the presence 

of roads may block attempts to recolonize empty habitat patches (Mader 1984, Forman 

and Alexander 1998, Keller and Waller 2002, Balkenhol and Waits 2002). 

 Negative road-related impacts on wildlife, such as the barrier effect, are often 

mitigated through the construction of wildlife crossing structures (Foresman 2004). 

Crossing structures enable wildlife to cross roads without exposing themselves to traffic 

by providing a safe crossing opportunity under or over the roadway.  Daily movements, 

seasonal migration, and dispersal through crossing structures can help maintain viable 



2 

 

populations with adequate genetic diversity (Adams and Geis 1983, Forman 2000, van 

der Ree et al. 2007). 

 For small mammals, the road surface is the main deterrent when faced with 

crossing a road, rather than other common factors associated with roads such as traffic 

noise or volume (Swihart and Slade 1984, Goosem 2002, Ford and Fahrig 2008, 

McGregor et al. 2008). In addition, many small mammal species move greater distances 

along the road than the actual road width, exhibiting the physical ability to travel across 

the road but not the willingness (Richardson 1997). Therefore, crossing structures are a 

feasible alternative for connecting small mammal habitat when fragmented by roads 

(Clevenger and Waltho 2000a, Foresman 2004, McDonald and St. Clair 2004). 

Even if roadways have underpasses, the crossing structures may still be 

inhospitable to small mammals if they lack sufficient cover (Foresman 2004). Small 

mammals generally seek cover to avoid detection or capture by predators (Diffendorfer et 

al. 1995, McDonald and St. Clair 2004). Corridors with suitable habitat have been 

successful in linking fragmented habitats of small mammals (Andreassen et al. 1996, 

Bolger et al. 2001, Coffman et al. 2001). Vegetative cover including grasses, forbs, trees, 

and shrubs, located near the entrance to crossing structures are positive attributes for 

multi-species use of wildlife underpasses (Hunt et al. 1987, Clevenger and Waltho 2000a, 

Bolger et al. 2001, Foresman 2004, McDonald and St. Clair 2004). However, little 

research has focused on whether cover provided by coarse woody debris inside 

underpasses affects use and movement of small mammals through underpasses.  

 To improve the long-term effectiveness and success of a project, it is important to 

recognize the needs of multiple species, as well as the effort and cost involved with 
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structure construction (Clevenger and Waltho 2000b). To date, there has been no research 

focused on modifying crossing structures with course woody debris that were originally 

made for larger animals and the subsequent effects on small mammals use of those 

structures. My objective was to test whether underpasses with course woody debris 

placed inside and adjacent to the entrances had higher abundance and rates of movement 

of small mammals than underpasses without woody debris. 

I focused on three general questions: 1) what is the effect of course woody debris 

on small mammals in the crossing structure, in the ROW, and beyond ROW, 2) what is 

the abundance of small mammals inside the crossing structure, in the ROW, and beyond 

the ROW and 3) are small mammals using the crossing structures and, if so, do animals 

move between the ROW and crossing structure zones? Another outcome of the research 

was a power analysis of needed sample size to test these sorts of questions for small 

mammals in the future. 

METHODS 

Study area 

This study was conducted in northwestern Montana on US Hwy 93 between 

Evaro and Polson on the Flathead Indian Reservation. In 2012, US Hwy 93 had an 

average traffic volume of 7,047 vehicles per day (MDT 2012). Most of the road section in 

the study area was upgraded between 2004 and 2009 to make the roadway safer for the 

travelling public. The reconstruction spanned 90 km of road, and included 13.4 km of 

wildlife fencing, 40 wildlife underpasses and 1 wildlife overpass.  Terrain surrounding 

US Hwy 93 consisted of rolling hills and elevation ranged from 896 m to 974 m. 
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Predominate land use in the valley was cattle ranching and farming of hays and grains, 

but there were also patches of natural or semi-natural habitat.  

Design and research of the crossing structures on U.S. Interstate Highway 93 (US 

Hwy 93) located between Evaro and Polson, Montana has focused mainly on large 

mammals (e.g. mule deer (Odocoileus hemionus), whitetail deer (Odocoileus virginianus) 

and Grizzly bear (Ursus arctor horribilis)). Other large mammals found in the area are 

American black bear (Ursus Americanus), cougar (Puma concolor), and elk (Cervus 

canadensis). Mid-sized mammals include raccoon (Procyon lotor), striped skunk 

(Mephitis mephitis), bobcat (Lynx rufus), northern river otter (Lontra canadensis), red fox 

(Vulpes vulpes), coyote (Canis latrans), domestic dog (Canis lupus familiaris), and 

domestic cat (Felis catus). Small mammals include weasel (Mustela ssp.), shrew (Sorex 

spp.) and several members of the Sqiuridae family. Many Muridae species are common 

in the area, some of which include vole (Microtus spp.), deer mouse (Peromyscus 

maniculatus), and bushy tailed wood rat (Neotoma cinerea). 

Experimental design 

Crossing structures were selected for entry size (approximately 7-m wide, 4-m 

tall), unmanaged vegetation outside of the right of way (ROW), and a drainage feature 

(ditch or stream) in the middle of the structure.  Using these selection criteria, ten similar-

sized underpasses were selected for the study from the original 40 structures. Crossing 

structures were located in different habitat types, including mixed forest, grass and marsh 

habitat, and mixed grassland and shrub habitat, in order to capture variation across the 

landscape (table 1). Dominant species in the mixed forests included ponderosa pine 
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(Pinus ponderosa), Douglas fir (Psuedotsuga menziesii), black cottonwood (Populus 

trichocarpa) and a mixture of native and exotic grasses and forbes. Grass and marsh 

habitat consisted of willows (Salix spp.), quaking aspen (Populus tremuloides), cattails 

(Typha spp.), and a mixture of native and exotic grasses and sedges. Mixed grassland and 

shrub habitat consisted of Rocky Mountain juniper (Juniperus scopulorum), invasive 

knapweed (Centaurea diffusa) and a variety of grasses and forbs. Structures were also 

selected for the presence of a drainage feature in the middle of the structure.  Most of 

these drainages were small ephemeral streams and only ran for a portion of the year. 

The ground surface of the ten underpasses was generally bare soil or rocks, with 

no vegetative or woody cover or debris. Some initial re-vegetation efforts in the ROW 

were completed immediately after construction, but no additional maintenance has since 

occurred in the ROW. Mowing and spraying for invasive weeds has taken place in the 

area, but not contiguous to any of the study sites and did not directly influence small 

mammal movement within the study area.  
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Table 1:  Crossing structure characteristics. The 10 selected crossing structures were within 45 km of each 

other on CSKT land. In 5 randomly chosen structures, out of these 10 cover was placed in January 2012. 

All but 2 crossing structures had a drainage feature running down the middle, most with water present for a 

portion of the year. Dominant vegetation described the natural habitat beyond the ROW.  

Crossing Name Cover 

placed 

January 

2012 

 Stream 

Feature 

Year 

Structure 

construction 

completed 

Dominant Surrounding 

Vegetation 

UTM 

Easting  

UTM 

Northing 

North Evaro No Yes 2009 Mixed forest 11 722099E

  

5215866N 

Finely Creek #3 Yes Yes 2009 Mixed forest, Grass and 

marsh habitat 

11 723941E

  

5217756N 

Finely Creek #4 No Yes 2009 Mixed forest 11 724294E

  

5218074N 

Ravalli Hill #1 No Yes 2006 Mixed grassland and 

mixed forest 

11 713357E

  

5240749N 

Ravalli Hill #2 Yes No 2006 Mixed grassland 11 713640E

  

5241084N 

Pistol Creek #1         Yes Yes 2006 Mixed grassland 11 716563E

  

5242682N 

Pistol Creek #2 No No 2006 Mixed grassland 11 716810E

  

5242871N 

Sabine Creek  Yes Yes 2006 Mixed grassland, Grass 

and marsh habitat 

11 717997E

  

5243962N 

Post Creek #2 No Yes 2006 Mixed grassland, Grass 

and marsh habitat 

11 719310E

  

5247178N 

Post Creek #3 Yes Yes 2006 Mixed grassland, Grass 

and marsh habitat 

11 719293E

  

5247669N 

 

 Crossing structures were monitored for small mammals using two detection 

methods: track plates and capture-mark-recapture. Track plates placed in tubes were used 

to record small mammal abundance in each of the zones. Capture-mark-recapture 

techniques using Sherman live traps were used to record animals movement between 

zones.   

The study area at each structure was divided into three zones (figure 1): (1) 

underpass structure, (2) ROW, and (3) beyond the ROW. Total sample stations per 

structure equaled 30.  
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1)  Crossing structure: Three sampling stations were placed along the edge of each 

wall of the crossing structure, totaling six sampling stations inside each structure. 

Station layout was set from the middle of the crossing structure. Stations were 

spaced 3m from each other and placed within 1m of the layout design, to allow 

for the selection of the most suitable site for each sampling station.  

2)  ROW: Six stations were placed at least 10 m from the outermost crossing 

structure sampling station, divided into two groups of three. This pattern was on 

both sides of the crossing structure, totaling 12 sampling stations in the ROW. 

3)  Beyond ROW: The same design used in the ROW was used outside the ROW. 

The distance used between sampling stations in the crossing structure and ROW 

was used to determine where the beyond ROW stations were placed.  
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Figure 1: General placement and layout of the sample stations (track tubes traps and live traps). Each white 

dot represents a track tube or a live trap. The sample stations  were arranged in groups of 3 (spaced 3 m 

apart) with two groups in each zone : crossing structure (Xing Structure), right of way (ROW), beyond 

right of way (beyond ROW). The distance between the groups in different zones was at least 10 m. The 

distance between groups within the same zone was 7-20 m. Cover was on one side of the structure, which is 

represented by green stars.  

 

In order to ensure that the traps did not act as stepping stones for small mammals 

and alter natural behavior and movement in the area (Andreassen et al. 1996, Wiewel et 

al. 2007, Yletyinen and Norrdahl 2007), traps were at least 10 m apart between zones.  

The exact distance between traps varied from 10-20 m, due to varying structure length. 

The coarse woody debris was a mixture of blue spruce (Picea pungens), black 

cottonwood, ponderosa pine and Douglas fir. To minimize affecting movement of large 

animals using the crossing structure, course woody debris was placed on only one side of 
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the crossing structure. Cover extended continuously through the crossing structure and 

was placed in piles (approximately 1 m² in size at 3m intervals) in the ROW zone.  

Track Tubes 

In August and September 2011 (before course woody debris was placed in five of 

the 10 structures) and 2012 (after course woody debris was placed in five of the 10 

structures), I sampled small mammal abundance using track tubes.   For five consecutive 

trapping nights per structure, small mammals were detected by tracking plates in each 

tube. Tubes were constructed out of polyvinyl chloride (PVC) pipe, 30.0 cm in length 

(Mabee 1998) and 10 cm in diameter. Tracking plates consisted of felt ink pad squares (7 

cm x 4.5 cm) placed on the outer ends of the tube, with a sheet of clear contact paper (30 

cm x 7 cm) in the center of the tube (Wiewel et al. 2007). The felt squares were soaked in 

a toner and mineral oil mixture (1:2 ratio), allowing tracks to be left on the contact paper 

(Glennon et al. 2002, Nams and Gillis 2003). Tracking plates were checked daily and 

replaced with a new plate if used. Unbaited tracking tubes were used due to the presence 

of larger and often curious and destructive carnivores (e.g., black bear).  

During track plate sampling, there was no way of recording whether the tracks 

were made by one individual animal or multiple individuals. For this reason track data 

was recorded for every individual tube as presence/absence (1/0) for each of the 5 

sampling nights.  Individual species identification from the track tubes was impossible, 

but it was possible to distinguish between larger animals such as bushy tailed woodrats, 

chipmunks, and weasels versus smaller species such as mice, voles, and shrews. 
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Live Trapping 

In September and October 2012 (after placing course woody debris in five of the 

10 crossing structures), I live trapped small mammals for 5 consecutive nights per 

structure. Tracking tubes were removed before live trapping was initiated. Sherman live 

traps were set using the same sampling configuration used for the tracking tubes (figure 

1), with 30 total traps per structure. Traps were baited with dry oatmeal and bedding of 6-

8 cotton balls. Additional insulation consisted of straw covering the outside of the traps 

and cedar shingles placed on the top of the trap to protect the animals from precipitation. 

To allow animals to habituate to the presence of the traps, traps were propped open and 

baited for one night prior to trapping (Renwick and Lambin 2011). Traps were set in the 

evening and checked at first light the following morning for five consecutive nights. 

Traps were closed during the day in order to prevent daytime captures and extended 

capture periods (> 12 hr). 

Trapped animals were marked with permanent marker on the under belly as a 

non-invasive and non-toxic marking method (Ekernas and Mertes 2006).  Five colors 

were used to record animals and their initial trap location: 1) inside underpass 2) west 

side ROW 3) east side ROW 4) west side beyond ROW 5) east side beyond ROW. 

Subsequent nights were recorded by an additional strip of color in accordance to where 

the animal was trapped. The captured animal was marked, recorded and released. All 

animals were captured and handled in accordance with University of Montana and 

Montana State University Institutional Animal Care and Use Committee protocols. 
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Statistical analysis 

Statistical analysis differed slightly between track tubes and live traps since 

before-after (2011 and 2012, respectively) and control-impact (no course woody debris 

and course woody debris, respectively) (BACI design) data existed only for track tubes, 

while only control (no cover) and impact (cover) data existed for live traps.  

To assess if cover increased small mammal abundance (all species combined) in and 

adjacent to the crossing structure, I first calculated for each sampling year and site track 

numbers within each crossing structure and mean track numbers within each of the other 

two zones (ROW and beyond ROW) to account for both sides of the highway (12 total 

sampling stations were placed in both ROW and beyond ROW, where only six were 

placed in the crossing structure). Each track station (30 per structure) had the possibility 

of 5 occupancies (5 nights of sampling). I then calculated the change in track numbers 

between 2012 and 2011 for each zone at each structure. An analysis of variance 

(ANOVA) was conducted (GenStat Release 8.1) to assess if there were between treatment 

differences in change of small mammal abundance.  It was expected that cover would 

result in increased abundance and movement by small mammals, rather than decreased 

abundance and movements, which allowed for one-sided tests rather than two-sided tests. 

Individual tests were run on the effect of cover on small mammal abundance in the each 

zone: crossing structure, ROW, and beyond ROW, as well as crossing structure + ROW, 

and crossing structure + ROW + beyond ROW. In addition, the same tests were run for 

all mice, voles and shrews; this excluded the larger species (woodrats, chipmunks, 

weasels). The difference between 2011 and 2012 track tube data was calculated with the 

2011 track tube data as a covariate to correct for relative population size at each structure. 
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ANOVA tests (GenStat Release 8.1) were run for all species combined and the smaller 

species group made up of mice, voles, and shrews.  

Given the variation that was present in the data I conducted power analyses (Pass12) 

to calculate the number of replicate crossing structures that would need to be sampled to 

detect an effect of the treatment (P<0.05, power 0.80), if there indeed was one, given the 

variation that was present in the data. A power analysis test was run on the difference 

between 2012 and 2011 crossing structure zone data for all species combined. 

Live trap data recorded both the total number of animals captured in each zone, and 

any movement between the crossing structure zone and ROW zone, as well as from one 

side of the crossing structure to the other.  An ANOVA was run on live captures by 

separating into crossing structure, ROW, beyond ROW, crossing structure + ROW, and 

crossing structure + ROW + beyond ROW as was done with the track tubes.  Data were 

normalized by taking the natural log and transformed using ln(x+1). Movement data were 

separated into two distinct categories: 1) complete cross through the structure, from one 

side of the road, through the crossing structure to the other side of the road and 2) 

movement from one side of the road to the crossing structure or vice versa.  An ANOVA 

was run to observe effect of treatment. Separate tests were conducted for all species 

combined and for deer mice (which represented the majority of live captures).   

RESULTS 

Track Tubes 

During the 2011 sampling period, crossing structures had a total of 25 occupied 

track tubes, ROW  had 107, and beyond ROW had 91.5 (figure 2). The reported ROW 

and beyond ROW results were divided by 2 to standardize for the east and west sides of 
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the highway for statistical analysis. Mean tracks (n/5) found in the control crossing 

structure was 2.8 (SD = 3.11), while the mean tracks (n/5) found in the future treatment 

crossing structure was 2.2 (SD = 2.34). Mean tracks (n/5) found in the control ROW was 

7.5 (SD = 4.24), while the mean tracks (n/5) found in the future treatment ROW was 13.9 

(SD = 5.52). Mean tracks (n/5) found in the control beyond ROW was 8.5 (SD = 8.20), 

while the mean tracks (n/5) found in the future treatment beyond ROW was 9.8 (SD = 

7.97).  

Before cover was added (2011), the mean abundance of small mammals was higher at 

the underpasses that later received cover than in the underpasses that served as a control. 

This pattern applied to two of the three zones (figure 2). After cover was added (2012), 

the mean abundance of small mammals was higher in treatment structures for all three 

zones (figure 3). 
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Figure 2: The mean abundance and standard deviation of small mammals (all species combined) recorded 

in the crossing structure, ROW, and beyond ROW zones from 2011 track tube sampling. “Future treatment” 

represents the structures that received added cover in January 2012. 
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Figure 3: The mean abundance and standard deviation of small mammals recorded in the crossing structure, 

ROW, and beyond ROW zones from 2012 track tube sampling. 

 

An ANOVA run using the difference between 2012 and 2011 track numbers as the test 

parameter, and the 2011 dataset as a covariate was run (to account for relative small 

mammal population size at each structure and yearly population fluctuations). The ROW 

(p=0.452), beyond ROW (p=0.327), crossing structure + ROW (p=0.249), and crossing 

structure + ROW + beyond ROW (p=0.423) were not significantly different between 

treatment and control. Effect of cover on crossing structure was nearly significant 

(p=0.066).  

 

 

 



16 

 

Table 4: Track tube sampling analysis results: all species. 

Zone Control 

Mean 

Treatment 

Mean 

P value (one 

sided) 

D.F. F value 

XING -0.40 3.40 0.066 1 2.909 

ROW -3.00 -3.40 0.452 1 0.016 

Beyond ROW -2.40 -0.40 0.327 1 0.220 

XING + ROW -3.40 0.00 0.249 1 0.513 

XING + ROW + Beyond ROW -6.40 -5.00 0.423 1    0.041 

 

The same analysis was run for mice, voles, and shrews using the 2011 track data as a 

covariate with no significant differences found for crossing structure (p=0.197), ROW 

(p=0.290), beyond ROW (p=0.324), crossing structure + ROW (p=0.448), or crossing 

structure + ROW + beyond ROW (p=0.423). 

Table 5: Track tube results: mice, voles, and shrews.  

Zone Control 

Mean 

Treatment 

Mean 

P value (one 

sided) 

D.F. F value 

XING -0.71 0.71 0.197 1 0.830 

ROW 2.70 -4.70 0.290 1 0.339 

Beyond ROW -3.00 -1.00 0.324 1 0.228 

XING + ROW -3.40 -4.00 0.448 1 0.019 

XING + ROW + Beyond ROW -6.40 -5.00 0.423 1 0.041 

 

 

The power analyses showed that based on the crossing structure difference observed 

between 2012 and 2011 track tube data, 16 control and 16 treatment structures would 

have been required to be able to detect a significant difference, should there indeed be a 

treatment effect (80% detection probability).  

Live Trapping  

 For 5 nights of live trapping, 377 individual animals were captured, with 274 

recapture events. Of the individual animals captured, 64% were deer mice (Peromyscus 
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maniculatus; n=242). Other species captured included meadow vole (Microtus 

pensylvanicus; n=102), long tailed vole (Microtus longicaudus; n=9), water shrew (Sorex 

palustris; n=1), shrew (Sorex spp; n=9), bushy tailed woodrat (Neotoma cinerea; n= 4), 

yellow pine chipmunk (Neotamias amoenus; n=4), red tailed chipmunk (Neotamias 

ruficaudus; n=2) and short tailed weasel (Mustela ermine; n=4). There was only one 

Microtus sp. and no Sorex spp. trapped inside the crossing structures. 

Table 6: Live trapping results,. Total captures included recaptured animals. Individual capture totals 

excluded recaptures, and recapture rate (=1-(individual captures/total captures)). 

 

Species Total 

Captures 

(including 

recaptures) 

Individual 

captures 

(excluding 

recaptures) 

Recapture 

rate 

Captured in 

beyond 

ROW  

Captured 

in ROW  

Captured 

in crossing 

structure  

deer mouse  

(Peromyscus maniculatus) 

488 242 0.503 Yes Yes Yes 

meadow vole 

 (Microtus pensylvanicus) 

126 102 0.190 Yes Yes Yes 

long tailed vole  

(Microtus longicaudus) 

9 9 0.000 Yes Yes No 

water shrew  

(Sorex palustris) 

1 1 0.000 No Yes No 

shrew  

(Sorex spp) 

10 9 0.100 Yes Yes No 

bushy tailed woodrat  

(Neotoma cinerea) 

7 4 0.429 Yes No Yes 

yellow pine chipmunk  

(Neotamias amoenus) 

4 4 0.000 Yes No Yes 

red tailed chipmunk  

(Neotamias ruficaudus) 

4 2 0.500 Yes No Yes 

short tailed weasel  

(Mustela erminea) 

4 4 0.000 Yes No Yes 

Total 651 377 0.421    

  

 

 

 

 

 



18 

 

Table 7: 2012 live trap abundance analyses. 

Zone Control 

Mean 

Treatment 

Mean 

P value (one 

sided) 

D.F. F value 

XING 1.22 1.48 0.245 1 0.522 

ROW 2.50 2.95 0.148 1 1.254 

Beyond ROW 2.64 2.93 0.215 1 0.693 

XING + ROW 2.71 3.16 0.112 1 1.740 

XING + ROW + Beyond ROW 3.36 3.73 0.152 1 1.212 

 

Table 8: 2012 live trap abundance for deer mice. 

Zone Control 

Mean 

Treatment 

Mean 

P value (one 

sided) 

D.F. F value 

XING 0.94 1.34 0.205 1 0.760 

ROW 2.68 2.95 0.247 1 0.515 

Beyond ROW 2.56 2.89 0.184 1 0.916 

XING + ROW 2.79 3.16 0.158 1 1.142 

XING + ROW + Beyond ROW 3.34 3.71 0.165 1 1.075 

 

Only deer mice and meadow vole were trapped in all three sections. Bushy tailed 

woodrat, yellowpine chipmunk, and short tailed weasel were trapped in the beyond ROW 

area and crossing structure, but never the ROW. For all combined species trapped, the 

effect of treatment doubled animals movement between the crossing structure and ROW 

in treatment structures (p=0.039, d.f.=1, f=4.081). For additional analysis, I separated 

deer mice because they represented the majority of live captures. As with all combined 

species, the effect of treatment significantly increased deer mouse movement between the 

crossing structure and ROW in treatment structures (p=0.02, d.f.= 1, f=6.250). 
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Figure 4: Effect of cover on live trap abundance: all species. Individual animals that completely crossed 

through the structure were also higher in treatment structures than in control structures. 

 

 
 

Figure 5: Deer mice that moved between ROW and XING more than doubled in the treatment structures. 

Individual animals that completely crossed through the structure was also higher in treatment structures 

than in control structures. 
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DISCUSSION 

 

This study was an effort to specifically measure if added cover of coarse woody 

debris in structures resulted in an increase in abundance or movement by small mammals. 

Although several investigators have stressed the importance of cover near the entrances 

of culverts, tunnels, and underpasses (Hunt et al. 1987, Clevenger and Waltho 2000a, 

Bolger et al. 2001, Foresman 2004, McDonald and St. Clair 2004), there are no prior 

studies that specifically address whether large culverts (made for large carnivores and 

ungulates) can be modified to increase use by small mammals in the US. The results from 

this study conclude that structures with cover likely have higher abundance and 

movement of small mammals and suggest that cover can thus increase small mammal use 

of culverts originally designed for large mammals. 

Live trap movement results were consistent with our original hypothesis. Results from all 

species combined and deer mice only recorded a statistically significant effect of cover on 

movement between the crossing structure and ROW, therefore, adding cover to large 

structures is likely to increase small mammal movement in underpasses. Indeed, the 

movement of individuals from ROW into the crossing structure was more than doubled 

by the addition of cover. This represents an important increase in movement facilitated by 

the placement of cover that could increase the probability of population persistence and 

aid the maintenance of genetic diversity in populations formerly separated by roadways 

(Gerlach and Musolf 2000, Rico et al. 2007, Holderegger and Di Giulio 2010). The mark-

recapture detection method was the most accurate of those employed due to the marking 

and recapture of individuals. While track tube detection methods did not find a 

statistically significant effect of cover on small mammal abundance in the crossing 
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structure, those results trended towards significance (P< 0.1), consistent with the mark 

recapture data. All zones except ROW tended toward an increase in mean from control to 

treatment. Although none of these tests produced a statistically significant increase in 

abundance of small mammals, the mean increase from control to treatment structures 

suggests a positive effect of cover. Because track tubes could not distinguish between 

individuals using the same tube multiple times in a sample period versus multiple 

individuals, the track tube results are biased low and therefore have less sensitivity to an 

effect.  

Additional factors that may have influenced small mammal detection were habitat 

variations and population dynamics at individual structures. In fact, site variability may 

have been a larger source of variability than the treatment. Yearly population density 

variation likely played a role in our results since population crashes are common in 

rodent populations (Krebs and Myers 1974).  There were no apparent external events 

(e.g. weather or poisoning) that caused a change in detection probability between 

sampling. After comparing 2011 and 2012 track tube abundance data at individual 

structures, several structures (Pistol Creek 1, Pistol Creek 2) experienced dramatic 

crashes in small mammal population between 2011 and 2012. Small mammal population 

fluctuations could affect small mammal abundance and utilization of the crossing 

structures from year to year. It would be beneficial for multiple years of data to identify 

trends since small mammal populations can be so volatile. The lack of stronger statistical 

significance was ultimately due to limited replication.  Although our sample size needed 

to be larger, the opportunity to examine even 10 structures of similar dimensions and 

within 45 km of each other is rare in wildlife underpass research. 
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Live trap abundance analysis did not result in any significant effect of cover. 

Similar to the track tube results, the mean increased in all zones except ROW from 

control to treatment structures, consistent with a positive effect of cover although not 

statistically significant. Again, abundance measures are less able to distinguish actual use 

and movement. Thus, the lack of significance of the results given the achievable sample 

size is not surprising and does not diminish the evidence provided by the mark-recapture 

methods of detection. 

The potential barrier effect of crossing structures for small mammals must be 

considered and addressed using adaptive measures such as cover or elevated shelves 

(Clevenger and Waltho 2000a, Foresman 2004, McDonald and St. Clair 2004). The 

barrier effect and consequent genetic sub-structuring of populations caused by roads has 

been demonstrated in several instances (Richardson et al. 1997, Gerlach and Musolf 

2000, Rico et al. 2007). As a result, it is vital to ensure that larger sized crossing 

structures are benefitting the maximum number of species in the direct vicinity. 

Small mammals avoid road surfaces (Swihart and Slade 1984, Goosem 2002, 

Ford and Fahrig 2008, McGregor et al. 2008), making habitable crossing structures a 

viable option to mitigate barriers created by roads. Additional cover in structures may 

benefit more than just small mammals. It is common practice to focus on a specific 

species when analyzing crossing structures, since underpass attributes may have different 

effects on individual species. Clevenger and Waltho (2000b) examined 24 structures of 

varying size and subsequent use by small and medium sized mammals with respect to 18 

structural, landscape, and road attributes. They found varied preferences for each species. 

However, they concluded that a variety of culvert sizes depending on the local and 
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relevant species, as well as cover near culverts would increase use by both carnivores and 

small mammals. Their results demonstrate the utility of adding cover to underpasses for a 

wide spectrum of species.    

Small mammals prefer structures with <3m diameter, most likely due to their 

preference for dense and proximate overhead cover (Diffendorfer et al. 1995, McDonald 

and St. Clair 2004). Because larger, bare culverts tend to create a formidable barrier to 

small mammals, placing cover creates an effect of protection and overhead cover similar 

to that of the smaller culverts. On Highway 93 South, Foresman (2004) recorded many of 

the same species captured in this study using small culverts (1.2 m diameter). By 

adapting culverts using elevated shelves, Foresman (2004) was able to successfully 

modify culverts for small mammals that were traditionally designed to route water. In my 

study, additional cover was used to create a more protected corridor for small mammal 

movement in large culverts. Placing woody debris in smaller culverts made for drainage 

may plug or block the culvert, so placing cover in and around structures may only be 

feasible in larger structures.  

Species specific behavior may have a large influence on structure use. The fact 

that most captures were deer mice may be explained by several factors. Trapping hours 

were mainly at night and thus nocturnal deer mice had a greater probability of capture 

than other diurnal species such as meadow vole (McDonald and St. Clair 2004). When 

captured and relocated across a road, McDonald and St. Clair (2004) found that meadow 

voles were unable to return to home ranges through underpasses when no cover was 

provided. Meadow voles are also less mobile than deer mice, and consequently have 

smaller home ranges (Blair 1940, Reich 1981, McDonald and St. Clair 2004, Wood 
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2010). These results correspond with our minimal vole captures inside the structure (n=1) 

and may have influenced results in the Highway 93 N structures. Although cover was not 

successful in influencing vole abundance and movement inside structures, an increase 

was observed for all species combined. 

Finally, placing course woody debris in wildlife underpasses is likely to be little 

or no cost to managers and beneficial for all small mammal species, especially deer mice. 

During wildlife underpass construction, it is common for construction crews to unearth 

large trees, rootwads, and/or branches. Customary management techniques call for the 

removal of the material from the construction site. Leaving the natural material would 

reduce waste, reduce cost and likely improve the habitat in and adjacent to crossing 

structures.  
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